基本计数原理和排列组合
计数原理与排列组合
分类加法计数原理和分步乘法计数原理的 共同点:回答的都是有关做一件事的不同方法种数的问题 不同点:分类加法计数原理与分类有关,
分步乘法计数原理与分步有关.
例1:书架第1层放有4本不同的计算机书,第2层放 有3本不同的文艺书,第3层放有2本不同的体育书.
计数原理和排列组合
计数原理
1、分类加法计数原理:完成一件事,有n类办法,在 第1类办法中有m1种不同的方法,在第2类办法中有m2种 不同的方法……在第n类办法中有mn种不同的方法.那么 完成这件事共有N m1 m2 种不同m的n 方法.
2、分步乘法计数原理:完成一件事,需要分成n个步 骤,做第1步有m1种不同的方法,做第2步有m2种不同 的方法……,做第n步有mn种不同的方法.那么完成这
Cnm
Anm Amm
nn 1n 2
m!
排列与组合的区别与联系
n
m
1
m!
n! n
m
!
共同点:元素的取法相同,都是从n个元素中取出m(m ≤ n)个元素 不同点:排列问题与顺序有关,
组合问题与顺序无关.
例2:(1)平面内有5个点,以其中每2个点为端点的线
段共有多少条?
没有顺序,根据组合公式有
C52
A52 A22
5 43 21
21 3 21
10
(2)平面内有5个点,以其中每2个点为端点的有
向线段共有多少条? 含有顺序,根据排列公式有
A52 5 4 20
解题关键:从n个元素中抽取m个元素是“含有顺序”, 还是“没有顺序”.再根据其对应的排列组合计算.
排列组合
1、排列的定义及公式:从n个不同元素中,任取m(m ≤n)
计数原理、排列组合
计数原理一、两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.二、例题例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
现要配成一荤一素一汤的套餐。
问可以配制出多少种不同的品种?分析:1、完成的这件事是什么?2、如何完成这件事?(配一个荤菜、配一个素菜、配一汤)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步配一个荤菜有3种选择第二步配一个素菜有5种选择第三步配一个汤有2种选择共有N=3×5×2=30(种)例2 有一个书架共有2层,上层放有5本不同的数学书,下层放有4本不同的语文书。
(1)从书架上任取一本书,有多少种不同的取法?(2)从书架上任取一本数学书和一本语文书,有多少种不同的取法?(1)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算。
解:属于分类:第一类从上层取一本书有5种选择第二类从下层取一本书有4种选择共有N=5+4=9(种)(2)分析:1、完成的这件事是什么?2、如何完成这件事?3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.解:属于分步:第一步从上层取一本书有5种选择第二步从下层取一本书有4种选择共有N=5×4=20(种)例3、有1、2、3、4、5五个数字.(1)可以组成多少个不同的三位数?(2)可以组成多少个无重复数字的三位数?(3)可以组成多少个无重复数字的偶数的三位数?(1)分析: 1、完成的这件事是什么?2、如何完成这件事?(配百位数、配十位数、配个位数)3、它们属于分类还是分步?(是否独立完成)4、运用哪个计数原理?5、进行计算.略解:N=5×5×5=125(个)(2)(3)(4)自己完成。
计数原理与排列组合
计数原理与排列组合1.两个计数原理2.排列3.组合1.计数原理的两个不同点(1)分类问题中的每一个方法都能完成这件事.(2)分步问题中每步的每一个方法都只能完成这件事的一部分.2.排列与组合问题(1)三个原则①有序排列、无序组合.②先选后排.③复杂问题分类化简或正难则反.(2)两个优先①特殊元素优先.②特殊位置优先.即先考虑特殊的元素(或位置),再考虑其他元素(或位置).3.正确理解组合数的性质(1)C m n=C n-mn从n个不同元素中取出m个元素的方法数等于取出剩余n-m个元素的方法数.(2)C m n+C m-1=C m n+1n从n+1个不同元素中取出m个元素可分以下两种情况:①不含特殊元素A有C m n种方法;②含特殊元素A有C m-1种方法.n[四基自测]1.从3,5,7,11这四个质数中,每次取出两个不同的数分别为a,b,共可得到lg a-lg b的不同值的个数是()A.6B.8C.12D.16答案:C2.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13 D.10答案:C3.(a+b+c)(d+e+f+h)(i+j+k+l+m)展开后共有________项.答案:604.如图,从A城到B城有3条路;从B城到D城有4条路;从A城到C城有4条路,从C城到D城有5条路,则某旅客从A城到D城共有________条不同的路线.答案:325.(2017·高考全国卷Ⅱ改编)安排3人完成3项工作,每人完成一项,有______种安排方式.答案:6授课提示:对应学生用书第187页考点一计数原理◄考基础——练透[例1](1)已知集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:因为P={x,1},Q={y,1,2},且P⊆Q,所以x∈{y,2}.所以当x=2时,y=3,4,5,6,7,8,9,共有7种情况;当x=y时,x=3,4,5,6,7,8,9,共有7种情况.故共有7+7=14种情况,即这样的点的个数为14.答案:B(2)教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有() A.10种B.25种C.52种D.24种解析:共分4步:一层到二层有2种,二层到三层有2种,三层到四层有2种,四层到五层有2种,一共有24种.答案:D(3)从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为()A.56 B.54C.53 D.52解析:在8个数中任取2个不同的数共有8×7=56个对数值;但在这56个对数值中,log24=log39,log42=log93,log23=log49,log32=log94,即满足条件的对数值共有56-4=52个.答案:D(4)从0,1,2,3,4这5个数字中任选3个组成三位数,其中偶数的个数为________.解析:按个位数字是否为0进行分类,因为0不能排在首位.若0在个位,则十位数字有4种排法,百位数字有3种排法,共有4×3=12种.若2或4在个位,个位数字有2种排法,再分类,若0在十位,则百位数字有3种排法.若0不在十位,十位数字有3种排法,百位数字有2种排法.共有2×(1×3+3×2)=18,故总12+18=30.答案:30应用计数原理的三个注意点(1)注意完成“这件事”是做什么.(2)弄清完成“这件事”是分类还是分步.①根据完成事件的特点,进行“分类”,根据事件的发生过程进行“分步”.②分类要按照同一个标准,任何一类中的任何一种方法都可以单独完成这件事.③分步时各步相互依存,只有各步都完成时,才算完成这件事.(3)合理设计步骤、顺序,使各步互不干扰,还要注意元素是否可以重复选择.1.将本例(3)改为从1,2,3,4,9中每次取出两个数记为a,b,则可得到log a b 的不同值的个数为()A.9 B.10C.13 D.16解析:显然a≠1,若a=2,3,4,9,b=1时,有log a b=0,1个;若a=2,b=3,4,9时,有log23,log24=2,log29,3个;若a =3,b =2,4,9时,有log 32,log 34,log 39=2(舍去),2个; 若a =4,b =2,3,9时,有log 42=12,log 43,log 49=log 23(舍去),2个; 若a =9,b =2,3,4时,有log 92,log 93=12(舍去),log 94=log 32(舍去),1个,共有1+3+2+2+1=9个. 答案:A2.将本例(4)改为用数字2,3,4,6,8组成无重复数字的三位偶数的个数为________.解析:先排个位有4种方法,再排十位有4种方法,最后排百位,有3种方法,故共有4×4×3=48种排法,对应48个三位偶数. 答案:483.将本例(4)改为在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:根据题意,将十位上的数字按1,2,3,4,5,6,7,8的情况分成8类,在每一类中满足题设条件的两位数分别是8个,7个,6个,5个,4个,3个,2个,1个.由分类加法计数原理知:符合条件的两位数共有8+7+6+5+4+3+2+1=36(个). 答案:36考点二 排列问题◄考能力——知法[例2] (1)室内体育课上王老师为了丰富课堂内容,调动同学们的积极性,他把第四排的8名同学请出座位并且编号为1,2,3,4,5,6,7,8.通过观察这8名同学的身体特征,王老师决定,按照1,2号相邻,3,4号相邻,5,6号相邻,而7号与8号不相邻的要求站成一排做一种游戏,则有________种排法.(用数字作答)解析:把编号相邻的3组同学每两名同学捆成一捆,这3捆之间有A 33=6(种)排序方法,并且形成4个空当,再将7号与8号插进空当中,有A24=12(种)插法,而捆好的3捆中每相邻的两名同学都有A22=2(种)排法.所以不同的排法种数为23×6×12=576.答案:576(2)(2019·济南模拟)航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为________(用数字作答).解析:优先安排第一项实验,再利用定序问题相除法求解.由于0号实验不能放在第一项,所以第一项实验有5种选择.最后两项实验的顺序确定,所以共有5A55A22=300种不同的编排方法.答案:300有限制条件的排列问题的解题方法1.(2019·衡水冀州中学月考)将A,B,C,D,E五种不同的文件放入编号依次为1,2,3,4,5,6,7的七个抽屉内,每个抽屉至多放一种文件,若文件A,B必须放入相邻的抽屉内,文件C,D也必须放入相邻的抽屉内,则所有不同的放法有()A.120种B.210种C.420种D.240种解析:可先排相邻的文件,再作为一个整体与其他文件排列,则有A22A22A35=240种排法,所以选D.答案:D2.6名同学排成1排照相,要求同学甲既不站在最左边又不站在最右边,共有________种不同站法.解析:先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有A25种站法;第2步,余下4人(含甲)站在剩下的4个位置上,有A44种站法.由分步乘法计数原理可知,共有A25A44=480(种)不同的站法.答案:480考点三组合问题及混合问题◄考基础——练透角度1简单的组合问题[例3](1)(2018·高考全国卷Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有________种.(用数字填写答案)解析:法一:按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故共有C12C24+C22C14=2×6+4=16(种).法二:间接法.从2位女生,4位男生中选3人,共有C36种情况,没有女生参加的情况有C34种,故共有C36-C34=20-4=16(种).答案:16(2)有甲、乙、丙3项任务,甲需2个人承担,乙、丙各需1个人承担,从10个人中选出4个人承担这3项任务,不同的选法有________.解析:要从10个人中选出4个人承担3项任务,甲需2个人承担,乙、丙各需1个人承担,先从10个人中选出2个人承担甲项任务,不同的选法有C210种;再从剩下8个人中选1个人承担乙项任务,不同的选法有C18种;最后从另外7个人中选1个人承担丙项任务,不同的选法有C17种.综上,不同的选法共有C210C18C17=2 520(种).答案:2 520角度2简单的组合与排列混合问题[例4](1)将红、黑、蓝、黄4个不同的小球放入3个不同的盒子,每个盒子至少放一个球,且红球和蓝球不能放在同一个盒子,则不同的放法的种数为()A.18 B.24C.30 D.36解析:将4个小球放入3个不同的盒子,先在4个小球中任取2个作为1组,再将其与其他2个小球对应3个盒子,共有C24A33=36种情况,若红球和蓝球放到同一个盒子,则黑、黄球放进其余的盒子里,有A33=6种情况,则红球和蓝球不放到同一个盒子的放法种数为36-6=30种.答案:C(2)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案种数是() A.150 B.300C.600 D.900解析:若甲去,则乙不去,丙去,再从剩余的5名教师中选2名,有C25×A44=240种方法;若甲不去,则丙不去,乙可去可不去,从6名教师中选4名,共有C46×A44=360种方法.因此共有600种不同的选派方案.答案:C角度3分组、分配问题[例5](1)(2017·高考全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种解析:因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C24C12C11A22=6种,再分配给3个人,有A33=6种,所以不同的安排方式共有6×6=36(种).答案:D(2)将2名教师、4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有() A.12种B.10种C.9种D.8种解析:先从4名学生中选2人安排到甲地,有C24种不同的方法;再从2名老师中选1人安排到甲地,有C12种不同的方法;其余2名学生和1名老师安排到乙地只有一种方法,根据分步乘法计数原理,不同的安排方法共有C24C12=12种,故选A.答案:A1.解决简单的排列与组合的综合问题的思路(1)根据附加条件将要完成事件先分类.(2)对每一类型取出符合要求的元素组合,再对取出的元素排列.(3)由分类加法计数原理计算总数.2.“分组分配”问题的解题技巧1.(2019·河南豫北名校联考)2018年元旦假期,高三的8名同学准备拼车去旅游,其中(1)班、(2)班、(3)班、(4)班每班各两名,分乘甲乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中(1)班两位同学是孪生姐妹,需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一个班的乘坐方式共有()A.18种B.24种C.48种D.36种解析:由题意,有两类:第一类,一班的2名同学在甲车上,甲车上剩下两个要来自不同的班级,从三个班级中选两个,有C23=3种,然后分别从选择的班级中再选择一个学生,有C12C12=4种,故有3×4=12种.第二类,一班的2名同学不在甲车上,则从剩下的3个班级中选择一个班级的两名同学在甲车上,有C13=3种,然后再从剩下的两个班级中分别选择一人,有C12C12=4种,这时共有3×4=12种,根据分类计数原理得,共有12+12=24种不同的乘车方式,故选B.答案:B2.(2019·福建福州模拟)福州西湖公园花展期间,安排6位志愿者到4个展区提供服务,要求甲、乙两个展区各安排一个人,剩下两个展区各安排两个人,不同的安排方案共有()A.90种B.180种C.270种D.360种解析:根据题意,分3步进行分析:①在6位志愿者中任选1个,安排到甲展区,有C16=6种情况;②在剩下的5个志愿者中任选1个,安排到乙展区,有C15=5种情况;③将剩下的4个志愿者平均分成2组,然后安排到剩下的2个展区,有C24C22A22×A22=6种情况,则一共有6×5×6=180种不同的安排方案,故选B.答案:B数学建模、数学运算——不定方程与组合问题中的学科素养在学习排列组合知识时,我们经常遇到把若干相同元素分成几组的问题.这类问题可以用一个比较简单的模型,就是转化为不定方程解的个数问题,从而得以快速解决.[直接隔板法][例]把6个相同的小球放入4个盒子中,每个盒子都不为空,有多少种不同的放法?解析:本题相当于将6个相同的球分为4组.可以先把6个球排成一排,中间有五个空位,我们只需在这五个位置中任取三个位置放上隔板就可把小球分隔成4组了,故有C35=10种不同的放法.[拓展为不定方程法]设每个盒子中的小球数分别为x1,x2,x3,x4,求x1+x2+x3+x4=6的正整数解的组数.这是四元不定方程,把6分为6个1,6个1之间有5个空,选3个空放3个加号,所以有C35=10种放法.一种放法就唯一对应不定方程x1+x2+x3+x4=6的一组正整数解,故此不定方程有C35=10组正整数解.[拓展模型]设n,m∈N*,n≥m≥1,则不定方程x1+x2+x3+…+x m=n的正整数解有C m-1n-1组.拓展应用1把20个相同的小球放入4个盒子中,有多少种不同的放法?解析:与例题相比少了“每个盒子都不为空”这个条件,就是说盒子里可以为空.我们可以这样理解:设每个盒子的小球数分别为x1,x2,x3,x4,求不定方程x1+x2+x3+x4=20的非负整数解的组数.那么能否转化为模型1来解决呢?先在每个盒子里放上1个球,保证每个盒子不空,然后再来放这20个球,就是模型1了.即(x1+1)+(x2+1)+(x3+1)+(x4+1)=20+4=24,令y1=x1+1,y2=x2+1,y3=x3+1,y4=x4+1,则y1,y2,y3,y4为正整数,问题转化为求不定方程y1+y2+y3+y4=24的正整数解的组数,从而转化为模型1,可知不定方程有C4-1=C323组正整数解.所以,原20+4-1问题中,有C323种不同的放球方法.拓展应用2把20个相同的小球放入5个编号为1,2,3,4,5的盒子中,且每个盒子里的球数不得少于编号,问有多少种不同的放法?解析:问题即是解不定方程x1+x2+x3+x4+x5=20,(x i≥i,x i∈N*).我们先在2号盒子里放1个球,3号盒子放2个球,4号盒子放3个球,5号盒子放4个球,则有x1+(x2-1)+(x3-2)+(x4-3)+(x5-4)=10,令y i=x i-(i-1),则y1,y2,y3,y4,y5为正整数,只需求y1+y2+y3+y4+y5=C49=126种不同=10的正整数解有多少组,从而转化为模型1,知有C5-110-1的放法.课时规范练单独成册:对应学生用书第325页A组基础对点练1.把标号为1,2,3,4,5的同色球全部放入编号为1~5号的箱子中,每个箱子放一个球且要求偶数号的球必须放在偶数号的箱子中,则所有的放法种数为()A.36B.20C.12 D.10解析:依题意,满足题意的放法种数为A22·A33=12,选C.答案:C2.一个学习小组有6个人,从中选正、副组长各一个,则不同的选法种数为()A.C26B.A26C.62D.26解析:问题可转化为从6个元素中任选两个元素的排列问题,共有A26种不同的选法.答案:B3.已知集合A={1,2,3,4,5,6},则集合A的含偶数个元素的子集的个数为()A.16 B.32C.64 D.128解析:由题意,集合A的含偶数个元素的子集的个数为C06+C26+C46+C66=1+15+15+1=32.答案:B4.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A.24B.18C.12 D.6解析:当从0,2中选取2时,组成的三位奇数的个位只能是奇数,十位、百位全排列即可,共有C23C12A22=12个.当选取0时,组成的三位奇数的个位只能是奇数,0必须在十位,共有C23C12=6个.综上,共有12+6=18个.选B.答案:B5.书架上原来并排放着5本不同的书,现要再插入3本不同的书,那么不同的插法共有()A.336种B.120种C.24种D.18种解析:分三步完成:第一步,插入第1本书,有6种方法;第二步,插入第2本书,有7种方法;第三步,插入第3本书,有8种方法,所以不同的插法有6×7×8=336种.答案:A6.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144 B.120C.72 D.24解析:先把三把椅子隔开摆好,它们之间和两端有4个位置,再把三人带椅子插放在四个位置,共有A34=24种放法,故选D.答案:D7.若从1,2,3,…,9这9个数字中同时取4个不同的数字,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种解析:共有4个不同的偶数和5个不同的奇数,要使和为偶数,则4个数全为奇数,或全为偶数,或2个奇数和2个偶数,故不同的取法有C45+C44+C25C24=66(种).答案:D8.(2019·洛阳模拟)从10名大学毕业生中选3人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为()A.72 B.56C.49 D.28解析:分两类:甲、乙中只有1人入选且丙没有入选,甲、乙均入选且丙没有入选,计算可得所求选法种数为C12C27+C22C17=49.答案:C9.(2019·唐山模拟)某会议室第一排有9个座位,现安排4人就座,若要求每人左右均有空位,则不同的坐法种数为()A.8 B.16C.24 D.60解析:根据题意,9个座位中满足要求的座位只有4个,现有4人就座,把4人进行全排列,即有A44=24种不同的坐法.答案:C10.(2019·成都模拟)由数字1,2,3,4,5组成没有重复数字的五位数,若2与4相邻,且1与2不相邻,则这样的五位数共有()A.12个B.24个C.36个D.48个解析:分步完成,先排2,4,有A22种排法,再把排好的2,4看成一个整体,与3,5再排,有A33种排法;最后把1插空,仅有3个空位可选,有3种插法,故共有A22A33·3=2×6×3=36个不同的五位数.答案:CB组能力提升练11.如图所示,∠MON的边OM上有四点,A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3为顶点的三角形个数为()A.30 B.42C.54 D.56解析:分类完成.在O,A1,A2,A3,A4这5个点中取2个,在B1,B2,B3中取1个,有C25C13个三角形;在B1,B2,B3中取2个,在A1,A2,A3,A4中取1个,有C23C14个三角形,故共C25C13+C23C14=42个.答案:B12.某学习小组共6人,现遇到了两道难题,一道物理题,一道数学题,其中甲、乙、丙三人对数学题感兴趣,丁对两道题都感兴趣,戍、己两人对物理题感兴趣,现从感兴趣的人中各选2人解这两道难题,则不同的选法种数为() A.9 B.15C.18 D.30解析:若丁解数学题,则不同的选法为C24C22;若丁解物理题,则不同的选法为C23C23;故共有C24C22+C23C23=15种不同的选法.答案:B13.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对解析:正方体中共有12条面对角线,任取两条作为一对共有C212=66对,12条对角线中的两条所构成的关系有平行、垂直、成60°角.相对两面上的4条对角线组成的C24=6对组合中,平行有2对,垂直有4对,所以所有的平行和垂直共有3C24=18对.所以成60°角的有C212-3C24=66-18=48(对).答案:C14.在一次8名运动员参加的百米成绩测试中,甲,乙,丙三人要求在第三、四、五跑道上,其他人随意安排,则安排这8人进行成绩测试的方法的种数为________.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有3,4,5三条跑道可安排.所以安排方式有3×2×1=6种.第二步:安排另外5人,可在余下的5条跑道上安排,所以安排方式有5×4×3×2×1=120种.所以安排这8名运动员的方式有6×120=720种.答案:72015.将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有________种(用数字作答).解析:“小集团”处理,特殊元素优先,则不同的排法共有C36C12A22A33=480(种).答案:48016.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.解析:首先看图形中的3,5,7,有C13=3种涂法.对于2,有两种涂法,对于4有两种涂法.当2,4涂的颜色相同时,1有2种涂法;当2,4涂的颜色不同时,1有1种涂法.根据对称性可知共有3×(2×2+2×1)2=108种涂法.答案:108第二节二项式定理授课提示:对应学生用书第190页[基础梳理]1.二项式定理(a+b)n=C0n a n+C1n a n-1b+…+C k n a n-k b k+…+C n n b n(n∈N*),其中右端为(a+b)n 的二项展开式.2.二项展开式的通项公式=C k n a n-k b k.第k+1项为:T k+13.二项式系数(1)定义:二项式系数为:C k n(k∈{0,1,2,…,n}).(2)二项式系数的性质和1.一对易混概念二项展开式中第r+1项的(1)二项式系数是C r n .而不是C r +1n .(2)项的系数是该项的数字因数. 2.两个常用公式(1)C 0n +C 1n +C 2n +…+C n n =2n .(2)C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.(展开式的奇数项、偶数项的二项式系数相等) 3.三个重要特征(1)字母a 的指数按降幂排列由n 到0. (2)字母b 的指数按升幂排列由0到n .(3)每一项字母a 的指数与字母b 的指数和等于n .[四基自测]1.二项式⎝ ⎛⎭⎪⎫2x +1x 26的展开式中,常数项的值是( )A .240B .60C .192D .180答案:A2.(x -1)10的展开式中第6项的系数是( ) A .C 610 B .-C 610 C .C 510 D .-C 510答案:D3.二项式(2a 3-3b 2)10的展开式中各项系数的和为________. 答案:14.C 111+C 311+…+C 1111=________.答案:2105.(2018·高考全国卷Ⅲ改编)(x 2+2x )5的展开式的二项式系数和为________. 答案:32授课提示:对应学生用书第190页考点一 通项公式法解决特定项或系数问题◄考基础——练透[例1] (1)(2018·高考全国卷Ⅲ)⎝ ⎛⎭⎪⎫x 2+2x 5的展开式中x 4的系数为( )A .10B .20C .40D .80解析:⎝ ⎛⎭⎪⎫x 2+2x 5的展开式的通项公式为T r +1=C r 5·(x 2)5-r ·⎝ ⎛⎭⎪⎫2x r =C r 5·2r ·x 10-3r ,令10-3r =4,得r =2.故展开式中x 4的系数为C 25·22=40. 故选C . 答案:C(2)二项式⎝ ⎛⎭⎪⎫x -1ax 6(a >0)展开式中x 2项的系数为15,则实数a =________.解析:由题意可知T r +1=C r 6x 6-2r(-1)r ·a -r ,0≤r ≤6,r ∈Z ,则x 2项的系数是C 26a-2=15,又a >0,则a =1. 答案:1(3)⎝⎛⎭⎪⎪⎫x -124x 8的展开式中的有理项共有________项. 解析:⎝ ⎛⎭⎪⎪⎫x -124x 8的展开式的通项为T r +1=C r 8(x )8-r ⎝ ⎛⎭⎪⎪⎫-124x r =⎝ ⎛⎭⎪⎫-12r C r 8x (r=0,1,2,…,8),为使T r +1为有理项,r 必须是4的倍数,所以r =0,4,8,故共有3个有理项,分别是T 1=⎝ ⎛⎭⎪⎫-120C 08x 4=x 4,T 5=⎝ ⎛⎭⎪⎫-124C 48x =358x ,T 9=⎝ ⎛⎭⎪⎫-128C 88x -2=1256x 2. 答案:3通项公式法即利用二项展开式的通项公式,根据题意,对相应的指数进行赋值,从而解决指定项问题的方法.此方法适用于已知二项式,求常数项、指定项的系数等问题.破解此类题的关键点:(1)求通项,根据二项式(a +b )n 的展开式的通项公式T k +1=C k n an -k b k (k =0,1,2,…,n ),整理出T k +1=m ·x f (k ).(2)找方程,依题设条件中的指定项的相关信息,寻找关于k 的方程. (3)解方程,通过解方程,求出k 的值. (4)得结论,把k 的值代入通项公式,得结论.1.在本例(2)的条件下求展开式中的常数项.解析:由于a =1,(x -1x )6的通项公式T r +1=(-1)r C r 6·x 6-2r . 令6-2r =0,∴r =3. 常数项为T 4=(-1)3C 36=-20.2.将本例(1)改为:⎝ ⎛⎭⎪⎫x 2+a x 5的展开式中x 4的系数为40,求a 的值.解析:T r +1=C r 5(x 2)5-r ·⎝ ⎛⎭⎪⎫a x r=C r 5·a r ·x 10-3r ,令10-3r =4.∴r =2.∴C 25a 2=40,∴a 2=4,∴a =±2.考点二 赋值法解决二项展开式的各项系数和问题◄考能力——知法[例2] (1)设⎝ ⎛⎭⎪⎫5x -1x n 的展开式的各项系数之和为M ,二项式系数之和为N ,若M -N =240,则展开式中含x 的项为________.(2)若⎝ ⎛⎭⎪⎫x 2-1x n的展开式中含x 的项为第6项,设(1-3x )n =a 0+a 1x +a 2x 2+…+a n x n ,则a 1+a 2+…+a n 的值为________. 解析:(1)由已知条件4n-2n=240,解得n =4,T r +1=C r 4(5x )4-r ⎝⎛⎭⎪⎫-1x r=(-1)r 54-r C r 4x ,令4-3r2=1,得r =2,T 3=150x .(2)二项式⎝ ⎛⎭⎪⎫x 2-1x n 的展开式的第6项是T 5+1=C 5n (-1)5x 2n -15,令2n -15=1,得n =8.在二项式(1-3x )8的展开式中,令x =0,得a 0=1;令x =1,得a 0+a 1+…+a 8=(-2)8=256.所以a 1+a 2+…+a 8=255. 答案:(1)150x (2)255赋值法是指对二项式中的未知元进行赋值,从而求得二项展开式的各项的系数和的方法.此方法体现的是从一般到特殊的转化思想.破解此类题的关键点: (1)赋值,认真观察已知等式,给未知元合理赋值.常赋的值有1,-1,0等. (2)求参数,通过合理赋值,建立关于参数的方程,并解方程,求出参数的值. (3)得结论,求出指定项的系数和.1.(2019·河北邯郸模拟)在⎝ ⎛⎭⎪⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为64,则x 3的系数为( ) A .15 B .45 C .135D .405解析:令⎝ ⎛⎭⎪⎫x +3x n 中x 为1,得各项系数和为4n ,又展开式的各项的二项式系数和为2n,各项系数的和与各项二项式系数的和之比为64,∴4n2n =64,解得n=6,∴二项式的展开式的通项公式为T r +1=C r 6·3r·x ,令6-32r =3,求得r =2,故展开式中x 3的系数为C 26·32=135,故选C .答案:C2.(2019·湖南湘潭模拟)若(1+x )(1-2x )8=a 0+a 1x +…+a 9x 9,x ∈R ,则a 1·2+a 2·22+…+a 9·29的值为( ) A .29 B .29-1 C .39D .39-1解析:(1+x )(1-2x )8=a 0+a 1x +a 2x 2+…+a 9x 9,令x =0,得a 0=1;令x =2,得a 0+a 1·2+a 2·22+…+a 9·29=39, ∴a 1·2+a 2·22+…+a 9·29=39-1.故选D . 答案:D考点三 求非二项式结构的展开的特定项(或系数)◄考基础——练透[例3] (1)如果(1+x +x 2)(x -a )5(a 为实常数)的展开式中所有项的系数和为0,则展开式中含x 4项的系数为________;(2)(x 2-x +1)10展开式中x 3项的系数为________; (3)(1+3x )6⎝⎛⎭⎪⎪⎫1+14x 10展开式中的常数项为________. 解析:(1)∵(1+x +x 2)(x -a )5的展开式所有项的系数和为(1+1+12)(1-a )5=0, ∴a =1.∴(1+x +x 2)(x -a )5=(1+x +x 2)(x -1)5=(x 3-1)·(x -1)4=x 3(x -1)4-(x -1)4,其展开式中含x 4项的系数为C 34(-1)3-C 04(-1)0=-5.(2)由题意,(x 2-x +1)10=[x (x -1)+1]10=C 010[x (x -1)]0·110+C 110[x (x -1)]1·19+C 210[x (x -1)]2·18+C 310[x (x -1)]3·17+…+C 1010[x (x -1)]10·10 =C 010+C 110x (x -1)+C 210x 2(x -1)2+C 310x 3(x -1)3+…+C 1010x 10(x -1)10, 因为x 3出现在C 210x 2(x -1)2+C 310x 3(x -1)3=C 210x 2(x 2-2x +1)+C 310x 3(x 3-3x 2+3x -1)中,所以x 3的系数为C 210(-2)+C 310(-1)=-90-120=-210.(3)分别求两个因式的通项:T r +1=C r 6x,T r ′+1=C r ′10x ,则C r 6x ·C r ′10x=C r 6C r ′10x.又0≤r ≤6,0≤r ′≤10,则r 3-r ′4=0,解得r =r ′=0,r =3且r ′=4,r =6且r ′=8. 即常数项为1+C 36C 410+C 66C 810=4 246.[答案] (1)-5 (2)-210 (3)4 246非二项式结构求指定项的方法1.(2017·高考全国卷Ⅲ)(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x )2(-y )3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x )3(-y )2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.答案:C2.(2017·高考全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x )6展开式中x 2的系数为( )A .15B .20C .30D .35解析:(1+x )6展开式的通项T r +1=C r 6x r ,所以⎝⎛⎭⎪⎫1+1x2(1+x )6的展开式中x 2的系数为1×C 26+1×C 46=30,故选C .答案:C3.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:(x 2+x +y )5=[(x 2+x )+y ]5的展开式中只有C 25(x 2+x )3y 2中含x 5y 2,易知x 5y 2的系数为C 25C 13=30,故选C .答案:C考点四 二项式系数或项的系数的最值问题◄考基础——练透[例4] (1)已知二项式(a x +13x)n (a >0)的展开式的第五、六项的二项式系数相等且最大,展开式中x 2项的系数为84,则a 的值为( ) A .1 B .14 C .2D .12解析:由展开式的第五、六项的二项式系数相等且最大可知n =9,则展开式的通项公式为T r +1=C r 9(a x )9-r(13x)r =C r 9a9-rx ·x=C r 9a9-rx (r =0,1,2,3,…,9),令92-5r 6=2,则r =3,所以C 39a 9-3=C 39a 6=84,解得a =±1,因为a >0,所以a =1. 答案:A(2)(2019·石家庄模拟)在(1-2x )n 的展开式中,偶数项的二项式系数之和为128,则展开式二项式系数最大的项为________.解析:由二项式系数的性质知,2n -1=128,解得n =8,(1-2x )8的展开式共有9项,中间项,即第5项的二项式系数最大,T 4+1=C 4814(-2x )4=1 120x 4. 答案:1 120x 41.二项式系数的最大值,根据(a +b )y 的二项式系数性质求解.2.项的系数的最值,利用不等式法.求出展开式的通项公式T r +1=C r n ·m ·x q =a r x q为最大系数,则⎩⎪⎨⎪⎧a r ≥a r +1,a r ≥a r -1.求r 的整数解.1.设n 为正整数,(x -2x 3)n 的展开式中仅有第5项的二项式系数最大,则展开式中的常数项为________.解析:依题意得,n =8,所以展开式的通项T r +1=C r 8x 8-r (-2x 3)r =C r 8x8-4r(-2)r ,令8-4r =0,解得r =2,所以展开式中的常数项为T 3=C 28(-2)2=112.答案:1122.(2019·厦门模拟)⎝⎛⎭⎪⎪⎫x +13x 2n (n ∈N *)的展开式中只有第6项系数最大,则其常数项为( ) A .120 B .210 C .252D .45解析:由已知得,二项式展开式中各项的系数和二项式系数相等.由展开式中只有第6项的系数C 52n 最大,可得展开式有11项,即2n =10,n =5. ⎝⎛⎭⎪⎪⎫x +13x 10展开式的通项为T r +1=C r 10xx=C r 10x,令5-56r =0可得r =6,此时T 7=C 610=210.答案:B数学运算、逻辑推理——二项式定理的展开原理的应用 [例1] (x +2y -3z )9的展开式中含x 4y 2z 3项的系数为( ) A .-136 000 B .-136 080 C .-136 160D .136 280解析:由(x +2y -3z )9=[x +(2y -3z )]9,得展开式的通项T r +1=C r 9·x 9-r ·(2y -3z )r =C r 9·x 9-r ·C t r ·(2y )r -t ·(-3z )t =C r 9·C t r ·2r -t ·(-3)t ·x 9-r ·y r -t ·z t (t ≤r ≤9),令⎩⎪⎨⎪⎧t =3,r -t =2,9-r =4,则⎩⎪⎨⎪⎧t =3,r =5.故含x 4y 2z 3项的系数为C 59×C 35×22×(-3)3=-136 080.故选B . 答案:B[例2] (2019·临沂模拟)489被7除的余数为________.解析:由489=(49-1)9=C 09499+C 19498(-1)+C 29497(-1)2+…+C 8949(-1)8+C 99(-1)9=49[C 09498+C 19497(-1)+C 29496(-1)2+…+C 89(-1)8]-7+6,知489被7除的余数为6. 答案:6课时规范练单独成册:对应学生用书第326页A 组 基础对点练1.(1+2x )5的展开式中,x 2的系数等于( ) A .80 B .40 C .20D .10解析:T k +1=C k 515-k (2x )k =C k 5×2k ×x k ,令k =2,则可得含x 2项的系数为C 25×22=40. 答案:B2.(x -2y )8的展开式中,x 6y 2项的系数是( ) A .56 B .-56 C .28D .-28解析:二项式的通项为T r +1=C r 8x 8-r (-2y )r ,令8-r =6,即r =2,得x 6y 2项的系数为C 28(-2)2=56.答案:A3.在x (1+x )6的展开式中,含x 3项的系数为( ) A .30 B .20 C .15D .10解析:在(1+x )6的展开式中,含x 2的项为T 3=C 26·x 2=15x 2,故在x (1+x )6的展开式中,含x 3的项的系数为15. 答案:C4.⎝ ⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( ) A .-54 B .54 C .-1516D .1516解析:T r +1=C r 6(x 2)6-r ⎝ ⎛⎭⎪⎫-12x r=⎝ ⎛⎭⎪⎫-12r C r 6x 12-3r ,令12-3r =0,解得r =4. ∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D .。
计数原理与排列组合知识点总结
计数原理与排列组合知识点总结计数原理和排列组合是高中数学中重要的概念和工具,在各种数学问题的解决过程中起到了重要的作用。
本文将对计数原理和排列组合的相关知识点进行总结和介绍。
一、计数原理计数原理通过分析一个问题中的各个步骤或条件,来确定解决问题的方式和策略。
常用的计数原理有加法原理、乘法原理、容斥原理和抽屉原理等。
1. 加法原理加法原理适用于多个事件发生的情况,它指出如果一个事件发生的方式有m种,另一个事件发生的方式有n种,那么这两个事件发生的总方式数为m+n。
2. 乘法原理乘法原理适用于多个事件发生的情况,它指出如果一个事件发生的方式有m种,另一个事件发生的方式有n种,则这两个事件发生的总方式数为m×n。
3. 容斥原理容斥原理适用于计算多个集合的并集的情况。
它指出如果有n个集合,分别有A1,A2,...,An个元素,那么这n个集合的并集中元素的个数为:|A1∪A2∪...∪An| = Σ|Ai| - Σ|Ai∩Aj| + Σ|Ai∩Aj∩Ak| - ... + (-1)^(n-1)|A1∩A2∩...∩An|。
4. 抽屉原理抽屉原理也称为鸽笼原理,它指出如果有m+1个物体放入m个抽屉中,那么至少会有一个抽屉中放入两个或两个以上的物体。
二、排列组合排列组合是计数原理的一个重要应用,用于解决选择和安排问题。
它包括排列和组合两个不同的概念。
1. 排列排列是指从一组元素中按一定顺序选取若干元素的方式,其中元素的选取不可重复。
常见的排列问题有全排列和有限排列。
- 全排列是指将一组元素全部进行排列,例如3个元素的全排列有3! = 3×2×1 = 6种。
- 有限排列是指从一组元素中选取若干个元素进行排列,其中元素的选取数目有限。
例如从3个元素中选取2个进行排列,有3×2 = 6种不同的排列方式。
2. 组合组合是指从一组元素中选择若干元素的方式,其中元素的选取不按顺序进行,而是以集合的形式呈现。
计数原理与排列组合
计数原理与排列组合计数原理与排列组合是数学中重要的概念和工具,在许多实际问题中起着重要作用。
本文将介绍计数原理与排列组合的概念、性质和应用,帮助读者更好地理解和应用这些知识。
一、计数原理的概念和性质计数原理是数学中的基本原理之一,主要用于求解事件的总数。
常见的计数原理有加法原理和乘法原理。
加法原理:若一个事物可以分成若干个互不相容的部分,且这些部分无交集,则该事物的总数等于各部分的数目之和。
乘法原理:若一个事件可以分成若干个独立的步骤,且每个步骤的选择个数相互独立,则该事件的总数等于各步骤的选择个数之积。
计数原理的性质包括交换律、结合律和分配律,这些性质使得计数原理在组合计数中具有灵活性和实用性。
二、排列组合的概念和性质排列和组合是计数原理的重要应用,它们用于描述对象的选择和排列的方式。
排列:指从n个不同元素中选取r个并按照一定顺序排列的方式。
排列的总数用P(n, r)表示,计算公式为P(n, r) = n!/(n-r)!组合:指从n个不同元素中选取r个元素的方式,不考虑元素的顺序。
组合的总数用C(n, r)表示,计算公式为C(n, r) = n!/[(n-r)!*r!]排列和组合具有许多重要性质,包括互补律、对偶律、加法公式和乘法公式等,这些性质使得排列组合在实际问题中得以应用。
三、排列组合的应用排列组合在实际生活和学术研究中有广泛的应用,下面简要介绍几个常见的应用领域。
1. 组合数学:排列组合是组合数学的基础,用于研究离散结构和组合问题。
在网络安全、密码学等领域中,排列组合作为数学工具发挥着重要作用。
2. 概率统计:排列组合是概率统计的基础,用于计算事件的发生概率和统计样本的组合方式。
在数据分析、市场调查等领域中,排列组合被广泛应用。
3. 计算机科学:排列组合是计算机科学中的重要概念,用于算法设计、数据处理和图形处理等领域。
在计算机图形学、人工智能等研究中,排列组合具有重要应用。
4. 组合优化:排列组合是组合优化问题的基础,用于求解最优方案和优化策略。
公务员考试行测排列组合基本计数原理
公务员考试行测排列组合基本计数原理在各省公务员行测考试中,数量关系是每年都会考察的内容。
这一部分涉及到的内容、题型和知识点都非常繁多,是大家一直比较头痛的部分。
其中,排列组合的相关题目,可能是大家复习当中的难点。
本文是店铺整理的,欢迎阅读。
排列组合基本计数原理排列组合的基本计数原理有两个,加法原理和乘法原理。
下面让我们逐一进行解释:加法原理即分类时采用的计数方法。
也就是说,当完成一件事情,分成几类情况时,把每一类的情况数计算或枚举出来,那么总的情况数,就是所有类的情况数相加。
乘法原理即分步时采用的计数方法。
也就是说,当完成一件事情,分成先后几步时,把每一步的情况数计算或枚举出来,那么总的情况数,就是所有步的情况数相加乘。
那么,何为分类,何为分步?让我们来举例说明。
如果从北京到上海,那么坐飞机可以,坐高铁可以,坐汽车可以,自驾也行,此时称为分类;如果坐飞机有3个航班合适,坐高铁有4趟高铁合适,坐汽车有2趟都行,自驾游也有1种路线,那么从北京到上海,所有的方法数就是3+4+2+1=10种方法。
如果从北京到上海,上海到广州,广州再回北京,整个的行程按顺序分成了3个步骤,此时即为分步;如果从北京到上海有3种方法,上海到广州到4条路线,广州再回北京也有2种方案,那么整个行程,所有的方法数就是3×4×2=24种方法。
我们发现分类与分步,一定是不同的、有区别的,它们的区别就在于:能否独立完成此事。
第一个例子中,想从北京到上海,飞机、高铁、汽车、自驾,这4类方案,都可以完成这个行程,即分类当中的每一类,都可以独立完成整个事情。
第二个例子中,北京到上海,上海到广州,广州再回北京,这是完成整个行程的3步,单独拿出任何一步来,比如上海到广州,这1步,并不意味着整个行程就完成了,即分步当中的任何一步,都不能独立完成此事。
下面来看一个例题,加深对于分类分步的理解:例题:某人乘车从家直接到艺术中心有3条路线可选;从家到体育场有4条路线可选,从体育场到艺术中心有2条路线可选,则他从家到艺术中心共有几种不同的路线?通过阅读题目,我们可以发现,题目所求的从家到艺术中心,可以分成两类情况:要么直接到;要么从体育场中转换乘间接到。
计数原理与排列组合
计数原理与排列组合计数原理和排列组合是概率论中重要的基础知识,它们用于计算事件的可能性和排列组合的情况。
计数原理是一种计算方法,用于确定事件的总数。
它有两个主要的原理:乘法原理和加法原理。
乘法原理是指如果事件A可以分解为n个步骤,每个步骤都有m个可能的选择,那么事件A发生的总次数是n乘以m。
例如,如果要选择一套衣服,有3个上衣的选择和2条裤子的选择,那么可以通过乘法原理计算出有6种不同的组合。
加法原理是指如果事件A可以通过两个或多个不相交的事件B1,B2,...,Bn发生,那么事件A发生的总次数是B1、B2、...、Bn事件发生的次数之和。
例如,某人每天可以选择穿红色、蓝色或绿色的衣服,那么一周内可能的衣服组合数可以通过加法原理计算。
排列组合是一种计算方法,用于确定从给定元素集合中选择若干个元素的不同方式。
排列是指从集合中选择出所有可能的有序排列,组合是指从集合中选择出所有可能的无序组合。
排列的计算公式为P(n,m) = n! / (n-m)!,其中n是元素总数,m是选择的元素个数,"!"表示阶乘。
例如,从4个不同的数字中选择2个数字进行排列,可以通过P(4,2) = 4! / (4-2)! = 12计算出有12种不同的排列方式。
组合的计算公式为C(n,m) = n! / (m! * (n-m)!),其中n是元素总数,m是选择的元素个数。
例如,从4个不同的数字中选择2个数字进行组合,可以通过C(4,2) = 4! / (2! * (4-2)!) = 6计算出有6种不同的组合方式。
通过计数原理和排列组合,我们可以计算出事件的可能性和组合的情况,这对于概率论和统计学的研究非常重要。
计数原理和排列组合
计数原理、知识要点1、分类计数原理:完成一件事,有n类办法,在第一类办法中有m!种不同的方法,第二类方法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有:N= _____________ 种不同的方法。
注意:1 )分类要全、清; 2 )任何一种方法均能完成此事;3)各类方法相互独立。
2、分步计数原理:完成一件事,需要分成n个步骤,做第一步有m!种不同的方法,做第二步有m2 种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有的N=________________________________________________________________________________ 种不同的方法。
注意:1 )各步方法数相互独立;2)每步均完成后才能完成这件事。
3、用两个原理解决实际问题时可按下列步骤进行思考:(1)做什么事?定目标;(2 )怎么做?一一定方法(分类、分步、先分类后分步、先分步后分类等) ;(3)确定每类或每步的方法数;(4)利用原理计算出方法总数并作答。
二、例题分析:例1 :从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。
一天中,火车有4班,汽车有2班,轮船有3班。
那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?例2 :如图,由A村去B村的道路有3条,由B村去C村的道路有2条。
从A村经B村去C村,共有多少种不同的走法?三、巩固练习:1.某班级有男三好学生5人,女三好学生4人。
(1)从中任选一人去领奖,有多少种不同的选法?(2)从中任选男、女三好学生各一人去参加座谈会,有多少种不同的选法?2、在所有的两位数中,个位数字大于十位数字的两位数共有多少个?3、一个三位密码锁,各位上数字由0,1,2,3,4,5,6,7,8,9 十个数字组成,可以设置多少种三位数的密码4、如图,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁(各位上的数字允许重复)?首位数字不为0的密码数是多少?首位数字是0的密码数又是多少?甲地地到丙地有2条路可通。
排列组合问题题型方法总结
排列组合常用方法题型总结【知识内容】1.基本计数原理⑴加法原理分类计数原理:做一件事,完成它有n 类方法,在第一类方法中有1m 种不同的方法,在第二类方法中有2m 种方法,……,在第n 类方法中有n m 种不同的方法.那么完成这件事共有12n N m m m =+++种不同的方法.又称加法原理.⑵乘法原理分步计数原理:做一件事,完成它需要分成n 个子步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同方法,……,做第n 个步骤有n m 种不同的方法.那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.又称乘法原理.⑶加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用.2. 排列与组合⑴排列:一般地,从n 个不同的元素中任取()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.〔其中被取的对象叫做元素〕排列数:从n 个不同的元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号A m n 表示.排列数公式:A (1)(2)(1)m n n n n n m =---+,m n +∈N ,,并且m n ≤. 全排列:一般地,n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列. n 的阶乘:正整数由1到n 的连乘积,叫作n 的阶乘,用!n 表示.规定:0!1=.⑵组合:一般地,从n 个不同元素中,任意取出m ()m n ≤个元素并成一组,叫做从n 个元素中任取m 个元素的一个组合.组合数:从n 个不同元素中,任意取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m 个元素的组合数,用符号C m n 表示.组合数公式:(1)(2)(1)!C !!()!m n n n n n m n m m n m ---+==-,,m n +∈N ,并且m n ≤. 组合数的两个性质:性质1:C C m n m n n -=;性质2:11C C C m m m n n n -+=+.〔规定0C 1n =〕⑶排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1.特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2.分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏.3.排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法.4.捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列.5.插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空.6.插板法:n 个相同元素,分成()m m n ≤组,每组至少一个的分组问题——把n 个元素排成一排,从1n -个空中选1m -个空,各插一个隔板,有11m n C --.7.分组、分配法:分组问题〔分成几堆,无序〕.有等分、不等分、部分等分之别.一般地平均分成n 堆〔组〕,必须除以n !,如果有m 堆〔组〕元素个数相等,必须除以m !8.错位法:编号为1至n 的n 个小球放入编号为1到n 的n 个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n =,3,4,5时的错位数各为1,2,9,44.关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题.1.排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; ②位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,防止“选取”时重复和遗漏;最后列出式子计算作答.2.具体的解题策略有:①对特殊元素进行优先安排;②理解题意后进行合理和准确分类,分类后要验证是否不重不漏; ③对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; ④对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法; ⑤顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; ⑥对于正面考虑太复杂的问题,可以考虑反面.⑦对于一些排列数与组合数的问题,需要构造模型.【排列组合题型总结】直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足以下条件的四位数各有多少个〔1〕数字1不排在个位和千位〔2〕数字1不在个位,数字6不在千位。
基本的计数原理
基本的计数原理计数是我们日常生活中不可或缺的一种能力,它涉及到我们对事物的量化和统计。
基本的计数原理是指在离散数学中,用于计算组合和排列的原理。
本文将介绍基本的计数原理及其应用。
一、基本的计数原理是指组合和排列的计数原则:1. 组合计数原理:组合是指从n个不同的元素中选取r个元素形成一个子集,其中元素的顺序不重要。
组合计数原理可以表示为C(n, r) = n! / (r! * (n-r)!),其中n表示元素的总数,r表示选取的元素数量。
2. 排列计数原理:排列是指从n个不同的元素中选取r个元素形成一个有序的集合,其中元素的顺序重要。
排列计数原理可以表示为P(n, r) = n! / (n-r)!,其中n表示元素的总数,r表示选取的元素数量。
这两个计数原理是解决组合问题和排列问题的基础,通过运用组合和排列计数原理,我们可以更方便地解决实际问题。
二、基本的计数原理的应用基本的计数原理在不同领域都有广泛的应用,下面将介绍几个常见的应用场景:1. 考试成绩排名:假设一场考试有n个学生参加,我们希望计算出某个学生的排名。
根据排列计数原理,我们可以计算出有多少种可能的排名情况,从而确定该学生的排名。
2. 同学小组分配:假设班级有n个学生,老师要将他们分为r个小组,每个小组人数可以不同。
根据组合计数原理,我们可以计算出不同分组情况的数量,从而帮助老师进行合理的分组安排。
3. 彩票中奖概率计算:彩票中奖的概率可以通过排列计数原理来计算。
假设彩票有n个号码,每次开奖选取r个号码,根据排列计数原理,我们可以计算出中奖的可能性。
4. 字符串的排列组合:在计算机领域,字符串的排列组合常常用于密码破解或者生成字典等场景。
通过排列组合计数原理,我们可以计算出字符串可能的组合情况。
以上仅是基本的计数原理应用的一些例子,实际应用场景非常广泛,涵盖了各个学科和行业。
总结:基本的计数原理是离散数学中重要的概念,用于计算组合和排列的原理。
计数原理及二项式定理概念公式总结
计数原理及二项式定理概念公式总结计数原理和二项式定理是组合数学中的基本概念之一,被广泛应用于概率统计、离散数学、组合数学等领域。
下面将对这两个概念进行详细的解释和总结。
一、计数原理计数原理是组合数学中的一种基本原理,用于求解离散数学中的计数问题。
计数原理包括基本计数原理、乘法原理、加法原理和排列组合原理。
1.基本计数原理:基本计数原理是运用数学归纳法来解决计数问题的基本方法。
它的核心思想是将一个计数问题分解为若干个互相独立的子问题,再对子问题求解,最后将子问题的解累加得到原问题的解。
2.乘法原理:乘法原理是计数原理的一种特殊形式,用于解决多阶段决策类计数问题。
乘法原理的关键是将决策问题分解为多个阶段的决策子问题,然后通过求解每个子问题在相应阶段的可选项个数,再将各阶段的可选项个数相乘得到问题的解。
3.加法原理:加法原理是计数原理的另一种特殊形式,适用于解决分情况计数问题。
加法原理的核心思想是将计数问题分解为若干个情况,然后分别计算每种情况下的计数结果,最后将各种情况下计数结果相加得到问题的解。
4.排列组合原理:排列组合原理是计数原理的核心概念,描述了从给定元素集合中选取若干元素进行排列或组合的方法。
排列组合分为无重复元素的排列组合和有重复元素的排列组合两种情况。
-无重复元素的排列组合:若从n个不同元素中选取r个元素进行排列,称为排列数,用符号P(n,r)表示,排列数的计算公式为P(n,r)=n*(n-1)*...*(n-r+1)=n!/(n-r)。
若从n个不同元素中选取r个元素进行组合,称为组合数,用符号C(n,r)表示,组合数的计算公式为C(n,r)=P(n,r)/r!=n!/(r!*(n-r)。
-有重复元素的排列组合:若从n个相同元素中选取r个元素进行排列,称为重复排列,用符号P(n;r₁,r₂,...,r_k)表示,重复排列的计算公式为P(n;r₁,r₂,...,r_k)=n!/(r₁!*r₂!*...*r_k!),其中r₁,r₂,...,r_k分别表示重复元素的个数。
高二数学两个基本计数原理及排列组合
一、两个基本计数原理(一)知识点1.分类计数原理完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有mn种不同的方法,那么完成这件事共有N=m1+m2+...+m n种不同的方法.2.分步计数原理完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有mn种不同的方法,那么完成这件事共有N=m1*m2*...*m n种不同的方法.(二)运用与方法检测:1、要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少中不同的选法?从3名工人中选1名上白班和1名上晚班,可以分成先选1名上白班,再选1名上晚班这两个步骤完成.先选1名上白班,共有3种选法;上白班的人选定后,上晚班的工人有2种选法.根据分步计数原理,所求的不同的选法数是3×2=6(种).2、有5封不同的信,投入3个不同的信箱中,那么不同的投信方法总数为多少?3的五次3、(1)一件工作可以用两种方法完成,有5人会用第1种方法完成,有4人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的总数是分两类.第一类有5种选法;第二类有4种选法.共9种(2)从A村去B村的道路有3条,从B村去C村的道路有2条,从A村经过B 村去C村不同走法的总数是 3×2=6所有六条路*4、从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列共有多少个?这样的等比数列有:1、2、4;4、2、1;2、4、8;8、4、2;1、3、9;9、3、1;4、6、9;9、6、4,共计8个,故答案为:8.5、有不同的中文书9本,不同的英文书7本,不同的日文书5本,欲从中取出不是同一国文字的两本书,共有多少种不同的取法?取中文和英文:9*7=63取中文和日文:9*5=45取英文和日文:7*5=35总共:63+45+35=143二、排列与组合(一)知识点1.排列(1)排列的定义:一般地,从n个不同的元素中取出m (m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列. (2)排列数的定义:一般地,从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A n m表示.(4)从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列。
高中理科数学-计数问题(排列组合)
理科数学复习专题统计与概率排列组合一.基本计数原理1.加法原理:做一件事有n类办法,完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n步完成,完成这件事的方法数等于各步方法数相乘。
注:要求做一件事有多少种方法,一般先分类,再分步。
例:用ABCD四个字母和1-9九个数字中各取一个给教室的座位编号,可以编出几种号码?练:从3名老师,8名男生,5名女生中选人参加活动。
(1)活动只需一人参加,有几种选法?(2)活动需一名老师,一名男生,一名女生参加,有几种选法?(3)活动需一名老师,一名学生参加,有几种选法?题型总结※重排问题(元素可以重复选取)例:(1)将5本书分给3个不同的学生,有几种分法?(2)将3个人分到5个不同的车间工作,有几种分法?练:甲、乙、丙、丁争夺数、物、化三门学科的冠军,每门学科一名冠军,可能出现几种结果?※组数问题(特殊位置、特殊元素优先考虑)例:(1)用1、2、3、4、5可以组成多少个四位偶数?(2)用1、2、3、4、5可以组成多少个无重复数字的四位偶数?(3)用0、1、2、3、4、5可以组成多少个无重复数字的四位偶数?C B AD ※选取问题(优先安排“全能者”)例:艺术小组共有9人,每人至少会钢琴和小号一种乐器,其中会钢琴的有7人,会小号的有3人。
从中选一人参加钢琴比赛,一人参加小号比赛。
总共有几种选取方案?练:艺术小组共有9人,只会钢琴有5人,只会小号有2人,全能的有2人,从中选一个参加钢琴比赛,一个参加小号比赛。
总共有几种选取方案?※涂色问题例:将红、黄、绿、黑四种不同的颜色涂入下图的五个区域内,要求相邻的两个区域颜色都不相同,则有几种不同的涂色方法练:如图,一环形花坛分成A ,B ,C ,D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数是_______二、排列:例:从甲、乙、丙3个人中选2个人打扫卫生,1个上午,1个下午,几种选法?总结:从n 个元素中选出m 个进行排列,总共有几种选法?1. 排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....【说明】排列的定义包括两个方面:①取出元素,②按一定的顺序排列;2.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号m n A 表示注意区别排列和排列数的不同:“一个排列”是指:从n 个不同元素中,任取m 个元素按照一定的顺序.....排成一列,不是数;“排列数”是指从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数,是一个数所以符号m n A 只表示排列数,而不表示具体的排列3.排列数公式及其推导:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤)全排列数:(1)(2)21!n nA n n n n =--⋅=L (叫做n 的阶乘) 题型总结※ 计算排列数计算:42128642A A A A -++※ 用排列解决的计数问题(1)特殊优先原则(2)相邻元素捆绑法(3)不相邻元素插空法(4)定序问题倍缩法例:①用1、2、3、4、5可以组成多少个无重复数字的四位偶数?②用0、1、2、3、4、5可以组成多少个无重复数字的四位偶数?例:用0,1,2,3,4,5六个数字排成没有重复数字的6位数,分别有多少个?(1)0不在个位;(2)1与2相邻;(3)1与2不相邻; (4)偶数数字从左向右从小到大排列.练:3个男生4个女生站成一排(1) 甲只能排在中间或排在两端(2)甲和乙只能站在两端(3) 甲不站最左端,乙不站最右端 ( 4) 所有男生站一起(5) 所有男生站一起,所有女生站一起 (6)男生不能相邻(7) 甲乙中间有两人 (8)甲在乙的右边排列问题 综合练习1、摄影师要为5名学生和2位老师拍照,要求排成一排,2位老师相邻且不排在两端,不同的排法共有 ( )A .1440种B .960种C .720种D .480种2、有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种3、一排9个座位坐了3个三口之家,若每家人坐在一起的不同坐法种数为( )A 、333A ⨯B 、333)(3A ⨯ C. 433)(A D. 99A4、三个学校分别有1名、2名、3名学生获奖,这6名学生排成一排合影,要求同校的任两名学生不能相邻,那么不同的排法有( )A 、36种B 、72种C 、108种D 、120种5、张、王两家夫妇各带1个小孩一起去动物园游玩,购票后需要排队依次入园,为安全起见,首尾一定要排两位爸爸,两个小孩一定要排在一起,则这6个人的入园顺序的排法数共有 ( )A 、12B 、24C 、36D 、486、公共汽车上有4位乘客,其中任何两人都不在同一车站下车,汽车沿途停靠6个站,那么这4位乘客不同的下车方式共有( )A 、15种B 、24种C 、360种D 、480种7、在学校的一次演讲比赛中,高一,高二,高三分别有1名,2名,3名同学获奖,将这6名同学排成一排合影,要求同年级的同学相邻,那么不同的排法共有( )A 、6种B 、36种C 、72种D 、120种8、由1,2,3,4,5,6组成没有重复数字且1,3都不与5相邻的六位偶数的个数是_____A .72 B.96 C.108 D.1449、电视台某段时间连续播放5个广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且2个奥运宣传广告不能连续播放,则不同的播放方式有( )A .120种B .48种C .36种D .18种10、甲、乙、丙、丁四种不同的种子,在三块不同土地上试种,其中种子甲必须试种,那么不同的试种方法共有( )A.12种B.18种C.24种D.96种11、某中学一天的课表有6节课, 其中上午4节, 下午2节, 要排语文、数学、英语、信息技术、体育、地理6节课,要求上午第一节课不排体育,数学必须排在上午,则不同排法共有( )A .600种B .480种C .408种D .384种12、用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )(A )288个 (B )240个 (C )144个 (D )126个13、6位同学排成三排,每排2人,其中甲不站在前排,乙不站在后排,这样的排法有__种14、A ,B ,C ,D ,E 五个元素排成一列,若A 在B 的前面且D 在E 的前面,则有_____种不同的排法.15、安排7位工作人员在10月1日至10月7日值班,每人值班1天,其中甲乙二人都安排在10月1日和10月2日,不同的安排方法共有________种。
第一节 计数原理、排列与组合
第一节计数原理、排列与组合考试要求1.理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”.2.能利用两个原理解决一些简单的实际问题.3.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.[知识排查·微点淘金]知识点1两个计数原理(1)分类加法计数原理完成一件事可以有n 类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法,…,在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.[微提醒]①每类方法都能独立完成这件事,且每次得到的是最后结果,只需一种方法就可完成这件事.②各类方法之间是互斥的、并列的、独立的.(2)分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.[微提醒]①每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.②各步之间是相互依存的,并且既不能重复也不能遗漏.知识点2排列与组合(1)排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合的定义合成一组排列数组合数定义从n个不同元素中取出m(m≤n)个从n个不同元素中取出m(m≤n)个元元素的所有不同排列的个数素的所有不同组合的个数公式A m n=n(n-1)…(n-m+1)=n!(n-m)!C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质A n n=n!,0!=1 C m n=C n-mn ,C m n+C m-1n=C m n+1[小试牛刀·自我诊断]1.思考辨析(在括号内打“√”或“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)所有元素完全相同的两个排列为相同排列.(×)(4)两个组合相同的充要条件是其中的元素完全相同.(√)(5)若C x n=C m n,则x=m成立.(×)2.(链接教材选修2-3 P24例7)将3张不同的武汉军运会门票分给10名同学中的3人,每人1张,则不同分法的种数是()A.2160B.720C.240 D.120答案:B3.(链接教材选修2-3 P28B组T4)从4名男同学和3名女同学中选出3名参加某项活动,则男女生都有的选法种数是()A.18 B.24C.30 D.36答案:C4.(链接教材选修2-3 P28A组T17)A,B,C,D,E五人并排站成一排,如果B必须在A的右侧(A,B可以不相邻),那么不同的排法共有()A.24种B.60种C.90种D.120种答案:B5.(混淆两个计数原理)一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同,则从两个口袋中各取1个小球,有种不同的取法.答案:20一、基础探究点——两个计数原理的应用(题组练透)1.下图是某项工程的网络图(单位:天),则从开始节点①到终止节点⑧的路径共有()A.14条B.12条C.9条D.7条解析:选B由图可知,由①→④有3条路径,由④→⑥有2条路径,由⑥→⑧有2条路径,根据分步乘法计算原理可得从①→⑧共有3×2×2=12条路径.故选B.2.甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种解析:选B分两类:甲第一次踢给乙时,满足条件的传递方式有3种(如图);同理,甲第一次踢给丙时,满足条件的传递方式也有3种.由分类加法计数原理可知,共有3+3=6(种)传递方式.3.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204C.729 D.920解析:选A若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).4.某班一天上午有4节课,每节都需要安排1名教师去上课,现从A,B,C,D,E,F这6名教师中安排4人分别上一节课,第一节课只能从A,B两人中安排一个,第四节课只能从A,C两人中安排一人,则不同的安排方案共有种.解析:①第一节课若安排A,则第四节课只能安排C,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有4×3=12(种)排法.②第一节课若安排B,则第四节课可由A或C上,第二节课从剩余4人中任选1人,第三节课从剩余3人中任选1人,共有2×4×3=24(种)排法.因此不同的安排方案共有12+24=36(种).答案:36利用两个基本计数原理解决问题的步骤第一步,审清题意,弄清要完成的事件是怎样的;第二步,分析完成这件事应采用分类、分步、先分类后分步、先分步后分类这四种方法中的哪一种;第三步,弄清在每一类或每一步中的方法种数;第四步,根据两个基本计数原理计算出完成这件事的方法种数.二、应用探究点——排列、组合的基本问题(多向思维)[典例剖析]思维点1排列的基本问题[例1]有3名男生、4名女生,在下列不同条件下,求不同的排列方法总数.(1)选5人排成一排;(2)排成前后两排,前排3人,后排4人;(3)全体排成一排,甲不站排头也不站排尾;(4)全体排成一排,女生必须站在一起;(5)全体排成一排,男生互不相邻.解:(1)从7人中选5人排列,有A57=7×6×5×4×3=2520(种).(2)分两步完成,先选3人站前排,有A37种方法,余下4人站后排,有A44种方法,共有A37A44=5040(种).(3)解法一:(特殊元素优先法)先排甲,有5种方法,其余6人有A66种排列方法,共有5×A66=3600(种).解法二:(特殊位置优先法)首尾位置可安排另6人中的两人,有A26种排法,其他有A55种排法,共有A26A55=3600(种).(4)(捆绑法)将女生看作一个整体与3名男生一起全排列,有A44种方法,再将女生全排列,有A44种方法,共有A44·A44=576(种).(5)(插空法)先排女生,有A44种方法,再在女生之间及首尾5个空位中任选3个空位安排男生,有A35种方法,共有A44·A35=1440(种).排列应用题的分类与解法(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.思维点2组合的基本问题[例2](1)某单位拟安排6位员工在今年6月9日至11日值班,每天安排2人,每人值班1天.若6位员工中的甲不值9日,乙不值11日,则不同的安排方法共有() A.30种B.36种C.42种D.48种解析:若甲在11日值班,则在除乙外的4人中任选1人在11日值班,有C14种选法,9日、10日有C24C22种安排方法,共有C14C24C22=24(种)安排方法;若甲在10日值班,乙在9日值班,余下的4人有C14C13C22=12(种)安排方法;若甲、乙都在10日值班,则共有C24C22=6(种)安排方法.所以不同的安排方法共有24+12+6=42(种).答案:C(2)现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为() A.232 B.252C.472 D.484解析:分两类:第一类,含有1张红色卡片,不同的取法共有C14C212=264(种);第二类,不含有红色卡片,不同的取法共有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法有264+208=472(种).答案:C组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.[学会用活]1.(2020·全国卷Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.解析:将4名同学分成人数为2,1,1的3组有C24=6种分法,再将3组同学分到3个小区共有A33=6种分法,由分步乘法计数原理可得不同的安排方法共有6×6=36种.答案:362.如图,∠MON的边OM上有四点A1,A2,A3,A4,ON上有三点B1,B2,B3,则以O,A1,A2,A3,A4,B1,B2,B3中三点为顶点的三角形的个数为()A.30B.42C.54 D.56解析:选B间接法:先从这8个点中任取3个点,有C38种取法,再减去三点共线的情形即可,即三角形的个数为C38-C35-C34=42.三、综合探究点——分组与分配问题(思维拓展)[典例剖析][例3] 按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本;(6)甲、乙、丙三人中,一人得4本,另外两人每人得1本.解:(1)6本不同的书分成三份,1份1本 ,1份2本,1份3本 ,分三个步骤,第1步,从6本书中取1本有C 16种分配方法;第2步,从剩余的5本书中取2本有C 25=10种分配方法,第3步,从剩余的3本书中取3本有C 33种分配方法,所以总共有C 16C 25C 33=60种分配方法.(2)由(1)可知分组后共有60种方法,分别分给甲、乙、丙后的方法有C 16C 25C 33A 33=360种.(3)从6本书中选择2本书,有C 26种分配方法;再从剩余4本书中选择2本书,有C 24种分配方法.剩余的就是2本书,有C 22种分配方法,所以有C 26C 24C 22=90种分配方法.但是,该过程有重复.假如6本书分别为A ,B ,C ,D ,E ,F ,若三个步骤分别选出的是(AB ),(CD ),(EF ),则所有情况为(AB ,CD ,EF ),(AB ,EF ,CD ),(CD ,AB ,EF ),(CD ,EF ,AB ),(EF ,AB ,CD ),(EF ,CD ,AB ).所以分配方式共有C 26C 24C 22A 33=15种. (4)把(3)中分成的三份书分别分给甲、乙、丙三人,则分配方法为C 26C 24C 22A 33×A 33=90种.(5)从6本书中选4本书的方法有C 46种,从剩余2本书中选1本书的有C 12种,因为在最后两本书选择中发生了重复,所以总共有C 46C 12A 22=15种方法. (6)把(5)中分成的三份书分别分给甲乙丙三人即可,即共有C 46C 12A 22×A 33=90种方法.分组、分配问题的一般解题思路是先分组再分配(1)分组问题属于“组合”问题.①对于整体均分,不管它们的顺序如何,都是一种情况,所以分组后一定要除以组数的阶乘;②对于部分均分,即若有m 组元素个数相同,则分组时应除以m !;③对于不等分组,只需先分组,后排列.(2)分配问题属于“排列”问题.①相同元素的“分配”问题,常用的方法是采用“挡板法”;②不同元素的“分配”问题,利用分步乘法计数原理,分两步完成,第一步是分组,第二步是发放;③有限制条件的分配问题常采用分类法求解.[学会用活]3.冬季供暖就要开始,现分配出5名水暖工去3个不同的居民小区检查暖气管道,每名水暖工只去一个小区,且每个小区都要有人去检查,那么分配的方案共有 种.解析:5名水暖工去3个不同的居民小区,每名水暖工只去一个小区,且每个小区都要有人去检查,5名水暖工分组方案为3,1,1和1,2,2,则分配的方案共有⎝⎛⎭⎫C 35C 122+C 15C 242·A 33=150(种).答案:150体育教育[情境素材]为深入践行“绿色、共享、开放、廉洁”的办奥理念,广泛汇聚海内外各界人士的力量,共同举办一届精彩、非凡、卓越的奥运盛会,北京冬奥组委面向全球招募北京2022年冬奥会和冬残奥会赛会志愿者.赛会志愿者将为北京冬奥会和冬残奥会开闭幕式以及各项比赛提供志愿服务,包括12类:对外联络服务、竞赛运行服务、媒体运行与转播服务、场馆运行服务、市场开发服务、人力资源服务、技术运行服务、文化展示服务、赛会综合服务、安保服务、交通服务、其他.2021年全国乙卷第6题以此为背景设计试题,既考查了排列组合的有关知识,又体现了数学在实际生活中的重要作用.[情境命题](2021·全国乙卷)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种[思维导引]解法一:根据题意从5名志愿者中任选2人,和其他3名志愿者一起分成4组,再分配4个项目即可得出结论;解法二:先从5名志愿者中选出2人安排1个项目,再将剩下的3名志愿者各安排剩下的3个项目中的一个,即可求解.[解法探究]解法一:若每名志愿者只分配到1个项目,且每个项目至少分配1名志愿者,则必有一个项目分配2名志愿者,所以先从5名志愿者中任选2名志愿者放在一起,再和剩下的3名志愿者一起分配到4个项目中,共有C25A44=240(种)不同的分配方案.故选C.解法二:先从5名志愿者中任选2名志愿者安排到1个项目中,则有C25C14种不同的方案;再将剩下的3名志愿者安排到剩下的3个项目中,每个项目1名志愿者,则有A33种不同的方案.根据分步乘法计数原理可知,共有C25C14A33=240(种)不同的分配方案.故选C.[答案] C以北京冬奥会安排志愿者为背景的试题,可以很好的考查排列与组合的有关知识,增强逻辑推理能力.本试题以“分配5名志愿者到4个比赛项目培训”为载体考查了排列与组合的基础知识.[应用](2021·茂名五校联考)电影《夺冠》讲述中国女排姑娘们顽强奋斗、为国争光的励志故事,是一部见证新中国体育改革40年的力作,该影片于2020年9月25日正式上映.在《夺冠》上映期间,一对夫妇带着他们的两个孩子一起去观看该影片.订购的4张电影票恰好在同一排且连在一起.为安全起见,影院要求每个孩子至少有一侧要有家长相邻陪坐,则不同的坐法种数是()A.8B.12C.16 D.20解析:选C将4个座位编号如下,4人的座位可分四种情况:①②③④.①④坐家长、②③坐孩子,①④坐孩子、②③坐家长,①③坐家长、②④坐孩子,①③坐孩子、②④坐家长,所以不同的坐法种数为4A22A22=16.限时规范训练基础夯实练1.(2021·四川成都月考)宋代学者聂崇义编撰的《三礼图集注》中描述的周王城,“匠人营国,方九里,旁三门,国中九经九纬……”;意思是周王城为正方形,边长为九里,每边都有左中右三个门;城内纵横各有九条路……;则依据此种描述,画出周王城的平面图,则图中共有()个矩形()A.3025B.2025C.1225 D.2525解析:选A要想组成一个矩形,需要找出两条横边、两条纵边,根据分步乘法计数原理,依题意,所有矩形的个数为C211·C211=3025,故选A.2.某校开展“学党史,感党恩”演讲活动,组建了甲、乙、丙、丁四个演讲组,分别到A,B,C,D四地参加演讲,每组仅去一地,每地仅去一组.其中甲不去B地,乙和丙不去A地也不去B地,则四个演讲组到A,B,C,D四地演讲的不同安排方案共有() A.5种B.4种C.3种D.2种解析:选D因为甲不去B地,乙和丙不去A地也不去B地,所以只能丁去B地,甲只能去A地,乙和丙只能去C地和D地.可能乙去C地,丙去D地,也可能乙去D地,丙去C地,故有两种安排方案.故选D.3.(2021·安徽合肥模拟)某医院有6个医疗小组,每个小组都配备1位主治医师,现根据工作需要,医院准备将其中3位主治医师由原来的小组均相应地调整到其他医疗小组,其余的3位主治医师仍在原来的医疗小组(不做调整),如果调整后每个医疗小组仍都配备1位主治医师,则调整的不同方案数为()A.36 B.40C.48 D.56解析:选B从6个医疗小组选出3位主治医师,有C36=20种不同的方法;不妨设这3位主治医师分别为甲、乙、丙,调整即为不在原来的医疗小组,有2种不同的方法.综上,调整的不同方案数为20×2=40.故选B.4.(2021·福建省南安一中二模)现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有()A.6种B.8种C.12种D.16种解析:选B先安排甲,其选座方法有C14种,由于甲、乙不能相邻,所以乙只能坐甲对面,而丙、丁两位同学坐另两个位置的坐法有A22种,所以共有坐法种数为C14·A22=4×2=8种.故选B.5.(2021·四川乐至中学月考)某研发机构依次研发六项不同的产品,其中产品a必须排在后三位,产品b,c必须排在一起,则这六项产品的不同安排方案共有() A.120种B.156种C.210种D.226种解析:选A当b, c排在前三位时共有C13A22A22A33=72种,当b, c排在后三位时共有A22 A22A33=24种,当b,c排在3,4位时共有A22C12A33=24种,这项产品的不同安排方案共有72+24+24=120种.故选A.6.(2021·山东泰安二模)如图,洛书(古称龟书)是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.若从四个阴数和五个阳数中随机选取3个数,则选取的3个数之和为奇数的方法数为()A.30 B.40C.42 D.44解析:选B根据题意,4个阴数即4个偶数:2、4、6、8;5个阳数即1、3、5、7、9,从中任选3个,使选出的三个数的和为奇数,共有两种可能:①选出的3个数都是奇数,有C35=10种选法;②选出的3个数有2个偶数、1个奇数,共有C24C15=30种选法.综上所述,一共有30+10=40种选法.故选B.7.某人民医院召开抗疫总结表彰大会,有7名先进个人受到表彰,其中有一对夫妻.现要选3人上台作报告,要求夫妻两人中至少有1人作报告,若夫妻同时被选,则两人的报告顺序需要相邻,这样不同的报告方案共有()A.80种B.120种C.130种D.140种解析:选D若夫妻中只选一人,则有C12C25A33=120种不同的方案;若夫妻二人全选,则有C15A22A22=20中不同方案,故总计有140种不同的方案,故选D.8.(2021·广东实验中学模拟)某校组织A、B、C、D、E五名学生分别上台演讲,若A 必须在B前面出场,且都不能在第3号位置,则不同的出场次序有()种() A.18 B.36C.60 D.72解析:选B因为A在B的前面出场,且A,B都不在3号位置,则情况如下:①A在1号位置时,B有2、4、5三种位置选择,有3A33=18种次序;②A在2号位置时,B有4,5号两种选择,有2A33=12种次序;③A在4号位置时,B有5号一种选择,有A33=6种;故共有18+12+6=36(种).故选B.9.若在7位男生和3位女生中随机挑选出1人,则所有选法种数是.(用数字作答)解析:在7位男生和3位女生中随机挑选出1人,从7位男生中随机挑选1人,有7种不同方法,从3位女生中随机挑选1人,有3种不同的方法,根据分类加法计数原理,则所有选法种数是7+3=10(种).答案:1010.(2021·上海模拟)第14届国际数学教育大会于7月在上海举办,大会一共进行8天.若有4位学者分别作个人大会报告,一天只能安排一个报告,且第一天和最后一天不安排报告,则不同的安排方案种数为(用数字作答).解析:根据题意,大会一共进行8天,第一天和最后一天不安排报告,只需在中间的6天中,任选4天,安排4位学者作报告即可,则有A46=360种安排方法.答案:360综合提升练11.(2021·辽宁实验中学二模)某班级的六名同学计划制作一个关于清明节的宣传栏,每人承担一项工作,现需要一名总负责,两名美工,三名文案,但甲,乙不参与美工,丙不能书写文案,则不同的分工方法有多少种( )A .11种B .15种C .30种D .9种解析:选B 若丙是美工,则需要从甲、乙、丙之外的三人中再选一名美工,然后从剩余四人中选三名文案,剩余一人是总负责人,共有C 13C 34=12种分工方法;若丙不是美工,则丙一定是总负责人,此时需从甲、乙、丙之外的三人中选两名美工,剩余三人是文案,共有C 23种分工方法;综上,共有12+3=15(种)分工方法,故选B .12.(2021·湖南高三模拟)某单位在春节七天的假期间要安排值班表,该单位有值班领导3人,值班员工4人,要求每位值班领导至少值两天班,每位值班员工至少值一天班,每天要安排一位值班领导和一位值班员工一起值班,且一人值多天班时要相邻的安排方案有( )A .249种B .498种C .1052种D .8640种解析:选D 先安排值班领导:选1位值班领导值三天班,则安排3位领导值班共有C 13A 33=18(种)方案.再安排值班员工:若4名员工中有1名员工值四天班,其他员工各值一天班,则有C 14=4(种)选法;若1名员工值两天班,另一名员工值三天班,剩余2名员工各值一天班,则有C 14C 13=12(种)选法;若3名员工各值两天班,1名员工值一天班,则有C 14=4(种)选法,故安排4名员工值班共有(4+12+4)A 44=480(种)方案.因此,该单位在春节七天的假期间值班表安排方案共有18×480=8640(种).故选D .13.(2021·贵州贵阳一中月考)有6名实习生去3个学校实习,每个学校至少去一人,每人去一个学校,有多少种安排方法( )A .540B .630C .450D .720解析:选A 6个人分成3组,有(2, 2, 2),(4, 1, 1),(3, 2, 1)三种情况,按(2, 2, 2)分组有C 46·C 24·C 22A 33·A 33=90,按(3, 2, 1)分组有C 36·C 23·C 11·A 33=360种,按(4, 1, 1)分组有C 46·C 12·C 11A 22·A 33=90(种),故一共有540种方法,故选A .14.(2021·江苏无锡模拟)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就能使具有共同边界的国家着上不同的颜色”.四色问题的证明进程缓慢,直到1976年,美国数学家运用电子计算机证明了四色定理.某校数学兴趣小组在研究给四棱锥P-ABCD的各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公共棱的平面)不得使用同一颜色,现有4种颜色可供选择,那么不同的涂法有()A.36种B.72种C.48种D.24种解析:选B如图所示:底面ABCD的涂色有4种选择,侧面P AB有3种选择,侧面PBC有2种选择.①若侧面PCD与侧面P AB所涂颜色相同,则侧面P AD有2种选择;②若侧面PCD与侧面P AB所涂颜色不同,则侧面P AD有1种选择.综上所述,不同的涂法种数为4×3×2×(2+1)=72种.故选B.15.(2021·辽宁沈阳二中模拟)《红楼梦》是中国古代章回体长篇小说,中国古典四大名著之一,一般认为是清代作家曹雪芹所著.《红楼梦》是一部具有世界影响力的人情小说,举世公认的中国古典小说巅峰之作,中国封建社会的百科全书,传统文化的集大成者.《红楼梦》第三十七回中贾探春提议邀集大观园中有文采的人组成海棠诗社.诗社成立目的旨在“宴集诗人於风庭月榭;醉飞吟盏於帘杏溪桃,作诗吟辞以显大观园众姊妹之文采不让桃李须眉.”诗社成员有林黛玉、薛宝钗、史湘云、贾迎春、贾探春、贾惜春、贾宝玉、李纨共8人.若林黛玉、薛宝钗、贾宝玉3人不相邻,共有种排列方法.(用数字作答) 解析:原问题等价于:含a, b, c在内的8个不同元素排成一排,其中a, b, c互不相邻的排列方法有多少种?先将除a, b, c之外的5个元素(小圆圈)排成一排,共有6个空档(小三角),如图所示.将a,b,c安排到6个空档之中,原来5个元素全排列即可,所以不同的排列方法共有A36A55=120×120=14 400(种).答案:14 40016.(2021·重庆杨家坪中学模拟)某学校,通过心理问卷调查,发现某校高三年级有6位学生心理问题凸显,需要心理老师干预.已知该校高三年级有三位心理老师,每位心理老师至少安排一位学生,至多安排三位学生,问共有种心理辅导安排方法.解析:根据题意,分2步进行分析:①将6位学生分为3组,若每组2人,有C26C24C22 A33=15种分组方法,若一组3人,一组2人,最后1组1人,有C36C23=60种分组方法,则共有15+60=75(种)分组方法;②将分好的3组安排给3个老师进行心理辅导,有A33=6种情况,则共有75×6=450种安排方法.答案:450。
2025数学大一轮复习讲义人教版 第十章 基本计数原理与排列组合
自主诊断
2.(多选)下列结论正确的是
√A.3×4×5=A35
B.C25+C35=C26 C.若 Cx10=C210x-2,则 x=3
√D.C07+C27+C47+C67=64
知识梳理
2.排列与组合的概念
名称 排列 组合
定义
从n个不同对象中取出m(m≤n)个 按照 一定的顺序 排成一列
对象
作为一组
知识梳理
3.排列数与组合数 (1)排列数:从n个不同对象中取出m(m≤n)个对象的所有 排列 的个数. (2)组合数:从n个不同对象中取出m(m≤n)个对象的所有 组合 的个数.
自主诊断
3.书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第 3层放有6本不同的体育书.从书架上任取1本书,不同的取法种数为 __1_5___,从第1,2,3层各取1本书,不同的取法种数为___1_2_0___.
由分类加法计数原理知,从书架上任取1本书,不同的取法种数为4+ 5+6=15.由分步乘法计数原理知,从1,2,3层各取1本书,不同的取法 种数为4×5×6=120.
第十章
§10.1 基本计数原理与排列组合
课标要求
1.理解分类加法计数原理、分步乘法计数原理及其意义. 2.理解排列、组合的概念. 3.能利用基本计数原理、排列组合解决简单的实际问题.
内容索引
第一部分 落实主干知识 第二部分 探究核心题型
课时精练
第一部分
落实主干知识
知识梳理
1.基本计数原理 (1)分类加法计数原理:完成一件事,如果有n类办法,且:第一类办法中 有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有 mn种不同的方法,那么完成这件事共有N= m1+m2+…+mn 种不同的 方法. (2)分步乘法计数原理:完成一件事,如果需要分成n个步骤,且:做第一 步有m1种不同的方法,做第二步有m2种不同的方法……做第n步有mn种不 同的方法.那么完成这件事共有N= m1×m2×…×mn 种不同的方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附
录
一.两个基本计数原理分类加法计数原理:做一件事情,完成它有n 类办法,在第一类办法中有m 1种不同的方法,在第二类办法中有m 2种不同的办法……在第n 类办法中有m n 种不同的方法,那么完成这
件事情共有N=m 1+m 2+…+m n 种不同的方法。
分步乘法计数原理:做一件事情,完成它需要分成n 个步骤,做第一个步骤有m 1种不同的方法,做第二个步骤有m 2种不同的办法……做第n 个步骤有m n 种不同的方法,那么完成这件
事情共有N=m 1×m 2×…×m n 种不同的方法。
两个基本计数原理是解决计数问题最基本的理论根据,它们分别给出了用两种不同方式(分类和分步)完成一件事情的方法总数的计算方法。
考虑用哪个计数原理,关键是看完成一件事情是否能独立完成,决定是分类还是分步。
如果完成一件事情有n 类办法,每类办法都能独立完成,则用分类加法计数原理;如果完成一件事情,需要分成n 个步骤,各个步骤都是不可缺少的,需要依次完成所有步骤,才能完成这件事情,则用分步乘法计数原理。
二.排列
以下陈述中如无特别说明,n、m 都表示正整数。
一般的,从n 个不同的元素中任取m (m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
如果要求排列中诸元素互不相同,则称为选排列;反之,若排列中的元素可以有相同时,则称为可重复排列。
可重复排列在生活中比较常见,如电话号码、证件号码、汽车牌照,等等。
从n 个不同的元素中任取m(m ≤n)个元素的所有排列的个数,叫做从n 个不同元素中任取m 个元素的排列数。
用符号m n A 。
为导出m n A 的计算公式,注意到对任一选排列,其第一位(从左到右计)可以放置编号1到n 的n 个元素的任意一个,共有n 种可能的结果;对于第一位的每一种放置结果,第二位可以放置剩下的n-1个元素中的任意一个,共有n-1种可能的结果;...,对于第m-1位的每一种放置结果,第m 位可以放置最后剩下的n-m+1个元素中的任何一个,共有n-m+1种可能结果。
因此,根据乘法计数原理,有排列数公式:
)
1()2)(1(+---=m n n n n A m n (1.3)从n 个不同的元素全部取出的一个排列,叫做n 个不同元素的一个全排列,记作n n A ,也记之
为!n 。
根据排列数的公式有
.12)1(!⋅⋅⋅⋅-⋅=n n n (1.4)
同时我们约定当n=0时,0!=1。
m n A 也可用全排列数表示,容易从(1.3)式直接得到
!)!(!
m m n n A m n -=(1.5)
下面计算所有不同的可重复排列数,仿照(1.3)式的推理,排列的第一位的放置有n 种可能结果。
由于可重复性,当11-≤≤m i ,对于第i 位的每一种放置结果,第i+1位仍然可放置全部n 个元素中的任何一个,因而仍然有n 种可能结果。
依乘法计数原理可得可重复排列种数为
m
n n n = (1.6)
三、组合一般地,从n 个不同的元素中任取m(m ≤n)个元素,不考虑次序将它们并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
从n 个不同的元素中任取m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中任取m 个元素的组合数。
用符号m n C
或)(m n 。
为导出组合数m n C 的计算公式,可以考虑选排列数m n A 的另一种算法。
为实现一个排列,
可以分两步走:先从n 个元素中任取m 个不同元素归并成一个组合;然后,将该组合中的m 个元素进行全排列。
第一步有m
n C 个可能结果,对第一步产生的每一个组合,第二步有!m 个可能结果。
于是,依乘法计数原理有
m n A =!m C m n ⋅由此即可得到组合数的计算公式:
),,(!)1()2)(1(n m N n m n m n n n n C m n ≤∈-=+---=+且 (1.7)依前面的约定0!=1,因而当r=0时,10=n C 。
又从组合的定义可知:每一个从n 个元
素取r 个的组合,其余下的n-r 个元素也构成一个组合;反之亦然。
因而从n 个元素取r 个的组合与从n 个元素取n-r 个组合构成一一对应。
所以有
m n n m n C C -=(1.8)。