两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

合集下载

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习一、知识要点:1.两角和与差的正弦、余弦、正切公式(1)():sin()sin cos cos cos S αβαβαβαβ±±=±;(2)():cos()cos cos sin sin C αβαβαβαβ±±= ; (3)()tan tan :tan()1tan tan T αβαβαβαβ±±±= . 2.二倍角的正弦、余弦、正切公式(1)(2):sin 22sin cos S αααα=α;(2)2222(2):cos 2cos sin 2cos 112sin C αααααα=-=-=-; (3)(2)22tan :tan 21tan T αααα=-. 3.常用的公式变形(1)tan tan tan()(1tan tan )αβαβαβ±=± ; (2)221cos 21cos 2cos ,sin 22αααα+-==;(3)221sin 2(sin cos ),1sin 2(sin cos )αααααα+=+-=-,sin cos )4πααα±=±.4.函数()sin cos (,f x a x b x a b =+为常数),可以化为())),f x x x ϕθ=+=-其中()ϕθ可由,a b 的值唯一确定.两个技巧(1)拆角、拼角技巧:(2)化简技巧:切化弦、“1”的代换等.【双基自测】1.(人教A 版教材习题改编)下列各式的值为14的是( ). A .22cos 112π- B .2012sin 75- C.0202tan 22.51tan 22.5- D .00sin15cos15 2.0000sin 68sin 67sin 23cos68-=( )A . D .13.(2011·福建)若tan 3,α=则2sin 2cos αα=( ). A .2 B .3 C .4 D .64.已知2sin ,3α=则cos(2)πα-=( ). A..19- C.195.(2011·辽宁)设1sin(),43πθ+=则sin 2θ=( ). A .79- B .19- C.19 D.796.0000tan 20tan 4020tan 40+=________.7.若2tan(),45πα+=则tan α=t________. 考向一 三角函数式的化简与求值[例1]求值:①0000cos15sin15cos15sin15-+;②00sin 50(1). [例2]已知函数()2sin(),36x f x x R π=-∈. (1)求5()4f π的值;(2)设106,0,,(3),(32),22135f f ππαβαβπ⎡⎤∈+=+=⎢⎥⎣⎦求cos()αβ+的值. 练习:1.(1)已知3sin ,(,),52πααπ=∈则cos 2)4απα=+________. (2)(2012·济南模拟)已知α为锐角,cos 5α=则tan(2)4πα+=( ) A .3- B .17-C .43- D .7- 2.已知41,(0,),sin ,tan(),253παβααβ∈=-=-求cos β的值. 考向二 三角函数的求角问题[例3]已知113cos ,cos(),714ααβ=-=且0<β<α<2π,求β. 练习:1.已知,(,),22ππαβ∈-且tan ,tan αβ是方程240x ++=的两个根,求αβ+的值.2.(2011·南昌月考)已知11tan(),tan ,27αββ-==-且,(0,),αβπ∈α,β∈(0,π),求2αβ-的值.3.已知锐角,αβ满足sin ,cos 510αβ==求:①αβ-的值;②αβ+的值. 考向三三角函数公式的逆用与变形应用[例4](2013·德州一模)已知函数2()2cos 2x f x x =. (1)求函数()f x 的最小正周期和值域;(2)若α为第二象限角,且1(),33f πα-=求cos 21cos 2sin 2ααα+-的值. 练习:1.(1)(2012·赣州模拟)已知sin()cos 65παα++=则sin()3πα+的值为( )A.45B.35C.2D.5 (2)若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 考向四角的变换[例5](1)(2012·温州模拟)若sin cos 3,tan()2,sin cos αααβαα+=-=-则tan(2)βα-=_______. (2)(2012·江苏高考)设α为锐角,若4cos(),65πα+=则sin(2)12πα+=________. 练习:1.设21tan(),tan(),544παββ+=-=则tan()4πα+=( ) A.1318 B.1322C.322 D.162.已知0<β<2π<α<,π且12cos(),sin(),2925βααβ-=--=求cos()αβ+的值. 考向五 三角函数的综合应用【例4】►(2010·北京)已知函数2()2cos 2sin f x x x =+.(1)求()3f π的值;(2)求()f x 的最大值和最小值. 【训练4】 已知函数()2sin()cos f x x x π=-.(1)求()f x 的最小正周期;(2)求()f x 在区间[,]62ππ-上的最大值和最小值. 作业:1.(2012·南昌二模)已知cos()6x π-=则cos cos()3x x π+-的值是( )A .3-B .3±C .1- D .1± 2. (2012·乌鲁木齐诊断性测验)已知α满足1sin ,2α=那么sin()sin()44ππαα+-=( ) A.14 B .14- C.12 D .12-3. (2012·东北三校联考)设,αβ都是锐角,且3cos ),55ααβ=+=则cos β=( )A.25B.5255 D.5或254.已知α为第二象限角,sin cos αα+=则cos2α=( )A ..5.已知sin()sin 32ππαα++=-<α<0,求cos α的值. 6.求值:①000000sin 7sin8cos15cos 7sin8sin15+-;②0002cos10sin 20sin 70-;③000cos 20cos 40cos80. 7.已知:0<α<2π<β<4,cos()45ππβ-=. (1)求sin 2β的值;(2)求cos()4πα+的值. 8.已知,αβ都是锐角,且45cos ,cos(),513ααβ=+=-求cos β的值. 9.(2012·衡阳模拟) 函数()cos()sin(),22x x f x x R π=-+-∈.(1)求()f x 的最小正周期;(2)若()(0,),2f παα=∈求tan()4πα+的值.10.(2012·北京西城区期末)已知函数2()sin cos ,[,]2f x x x x x ππ=+∈.(1)求()f x 的零点;(2)求()f x 的最大值和最小值. 11.已知3335(,),(0,),cos(),sin(),44445413πππππαβαβ∈∈-=+=求sin()αβ+的值. 12.已知1tan()2,tan 42παβ+==. ①求tan 2α的值;②求sin()2sin cos 2sin sin cos()αβαβαβαβ+-++的值.。

第三节 两角和与差的正弦、余弦、正切公式及二倍角公式

第三节 两角和与差的正弦、余弦、正切公式及二倍角公式

所以sin
2α=cos 2

=cos
2
4

α

=2cos2 4
α
-1=2× 295 -1=- 275 .
4.已知α∈ 0, 2

,cos
α= 33 ,则cos α

6

=
(
)
A. 1 - 6 B.1- 6 C.- 1 + 6 D.-1+ 6
θ

= 7 , 4
∵θ∈ 0, 4

,∴0< 4 -θ< 4 ,∴cos 4
θ

= 3 .
4
栏目索引

2cos2θ 1
cos

4

θ

=
cos 2θ
sin

4

θ

=
sin

2



sin
栏目索引
1-2 在△ABC中,若cos A= 4,cos B= 5 ,则cos C= ( )
5
13
A. 3 B. 36 C. 16 D. 33
65
65
65
65
答案 C 在△ABC中,0<A<π,0<B<π,由cos A= 4>0,cos B= 5 >0,得0<A<
5
13
,0<B< ,从而sin A= 3,sin B= 12 ,所以cos C=cos[π-(A+B)]=-cos(A+B)=

4

θ

高考数学复习考点知识讲解课件20 两角和与差的正弦、余弦、正切公式及二倍角公式

高考数学复习考点知识讲解课件20 两角和与差的正弦、余弦、正切公式及二倍角公式

2 cos(45°- 15°) =

3 2

6 2.
(3)原式=coss1in01°-0°co3ss1i0n°10°=212cossin1100°-°co2s31s0i°n10°
=4sin30°c2ossin1100°-°cocso1s03°0°sin10°
=4sins3in02°-0°10°=4.
— 返回 —
运用和、差、倍角公式时,不但要熟悉公式的正用,还要熟悉公式的逆用及变形应用, 如 tanα+tanβ=tan(α+β)·(1-tanαtanβ)和二倍角的余弦公式的多种变形等.
— 20 —
(新教材) 高三总复习•数学
— 返回 —
角度 2:辅助角公式的运用 【例 2】 化简:(1)sin1π2- 3cos1π2; (2)cos15°+sin15°; (3)sin110°-sin830°; (4)3 15sinx+3 5cosx.
— 18 —
(新教材) 高三总复习•数学
— 返回 —
[解析]
(1)a =
3 2
cos29°-
1 2
sin29°=
sin(60°-
29°)

sin31°,
b

1-c2os66°=
2sin16° 2sin2233°= sin33°, c = 1+2tatann1261°6°= 1+cocssoi1ns62211°66°°= 2sin16°cos16°= sin32°, 显 然
— 7—
(新教材) 高三总复习•数学
2.已知 cosα=-45,α∈π,32π,则 sinα+π4等于( C )
A.-
2 10
B.
2 10

两角和与差的正、余弦公式、正切公式、二倍角公式

两角和与差的正、余弦公式、正切公式、二倍角公式

1.已知tan 2α=,则tan 2α的值为 . 【答案】43-【分析】222tan 224tan 21tan 123ααα⨯===---. 2.已知P (-3,4)为角α终边上的一点,则cos (π+α)= .【考点】任意角的三角函数的定义.【答案】35【分析】∵P (-3,4)为角α终边上的一点,∴x =-3,y =4,r =|OP |=5,∴cos (π+α)=-cos α=x r -=35--=35,故答案为35. 3.已知cos(α-β)=35,sin β=513-且α∈(0,π2),β∈(π2-,0),则sin α= .【考点】两角和与差的余弦函数;同角三角函数间的基本关系.【答案】3365【分析】∵α∈(0,π2),β∈(π2-,0),∴α-β∈(0,π), 又cos (α-β)=35,sin β=513-,∴sin (α-β)=21cos ()αβ--=45,cos β=21sin β-=1213,则sin α=sin[(α-β)+β]= sin (α-β)cos β+cos (α-β)sin β=45×1213+35×(513-)=3365.故答案为3365. 4.若0≤x ≤π2,则函数y =cos (x -π2)sin (x +π6)的最大值是 .【考点】两角和与差的正余弦公式的应用.【答案】234+ 【分析】y =sin x (sin x 32⋅+12cos x )=322sin x +12sin x cos x =()31cos 24x -+14sin2x =12sin (2x -π3)+34, ∵0≤x ≤π2,∴-π3≤2x -π3≤2π3,∴max y =12+34=234+. 5.已知过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),则tan (α+β)=________.【考点】平面的法向量. 【答案】1【分析】∵过点(0,1)的直线l :x tan α-y -3tan β=0的一个法向量为(2,-1),∴-1-3tan β=0,12-tan α=-1.∴1tan 3β=-,tan α=2. ∴tan (α+β)=12tan tan 3111tan tan 123αβαβ-+==-+⨯,故答案为1. 6.在ABC △中,已知BC =8,AC =5,三角形面积为12,则cos2C = .【考点】三角形面积公式,二倍角公式的应用. 【答案】725【分析】∵已知BC =8,AC =5,三角形面积为12, ∴12⋅BC ⋅AC sin C =12,∴sin C =35,∴cos2C =122sin C -=1-2×925=725. 7.某种波的传播是由曲线()()()sin 0f x A x A ωϕ=+>来实现的,我们把函数解析式()()sin f x A x ωϕ=+称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波()()11sin f x x ϕ=+与()()22sin f x x ϕ=+叠加后仍是“1类波”,求21ϕϕ-的值;(2)在“A 类波“中有一个是()1sin f x A x =,从 A 类波中再找出两个不同的波()()23,f x f x ,使得这三个不同的波叠加之后是平波,即叠加后()()()1230f x f x f x ++=,并说明理由.(3)在()2n n n ∈N,≥个“A 类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明. 【考点】两角和与差的正弦函数;归纳推理.【解】(1)()()()()1212sin sin f x f x x x ϕϕ+=+++ =1212(cos cos )sin (sin sin )cos x x ϕϕϕϕ+++,振幅是221212(cos cos )(sin sin )ϕϕϕϕ+++=()1222cos ϕϕ+-,则()1222cos ϕϕ+-=1,即()121cos 2ϕϕ-=-,所以122π2π,3k k ϕϕ-=±∈Z . (2)设()()21sin f x A x ϕ=+,()()32sin f x A x ϕ=+, 则()()()()()12312sin sin sin f x f x f x A x A x A x ϕϕ++=++++=()()1212sin 1cos cos cos sin sin 0A x A x ϕϕϕϕ++++=恒成立, 则121cos cos 0ϕϕ++=且12sin sin 0ϕϕ+=, 即有:21cos cos 1ϕϕ=--且21sin sin ϕϕ=-,消去2ϕ可解得11cos 2ϕ=-, 若取12π3ϕ=,可取24π3ϕ=(或22π3ϕ=-等),此时,()22πsin 3f x A x ⎛⎫=+ ⎪⎝⎭,()34πsin 3f x A x ⎛⎫=+ ⎪⎝⎭(或()32πsin 3f x A x ⎛⎫=- ⎪⎝⎭等), 则()()()1231313sin sin cos sin cos 02222f x f x f x A x x x x x ⎡⎤⎛⎫⎛⎫++=+-++--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以是平波.(3)()1sin f x A x =,()22πsin f x A x n ⎛⎫=+⎪⎝⎭,()34πsin f x A x n ⎛⎫=+ ⎪⎝⎭,…, ()()21πsin n n f x A x n -⎛⎫=+ ⎪⎝⎭,这n 个波叠加后是平波.8. (4分)已知sin α=3cos α,则cos 21sin 2αα=+ ________.【参考答案】 12-【测量目标】 运算能力/能根据法则准确的进行运算和变形. 【考点】二倍角的余弦;二倍角的正弦.【试题分析】 由已知先求tan α,因为sin α=3cos α,所以tan α=3,把所求的式子中的三角函数利用二倍角公式进行化简,然后化为正切形式,即可求值:222222cos 2cos sin 1tan 1911sin 2cos 2sin cos +sin 12tan tan 1692ααααααααααα---====-++++++.9.若tan (α-π4)=14,则tan α=______. 【参考答案】 53【测量目标】 数学基本知识和基本技能/理解或掌握初等数学中有关函数与分析的基本知识. 【考点】 两角和与差的正切函数.【试题分析】 ∵tan (α-π4)=14, ∴πtan tan4π1tan tan4αα-+=tan 11tan αα-+=14,解得tan α=53.故答案为53. 10.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,且3cos 4B =. (1)求2sin 2cos2A CB ++的值; (2)若3b =,求ABC △面积的最大值. 【考点】余弦定理,二倍角的正弦、余弦. 【解】(1)因为3cos 4B =,所以7sin 4B =, 又22π1sin 2cos2sin cos cos 2sin cos (1cos )222A CB B B B B B B +-+=+=+- =73113724488+⨯⨯+=. (2)由已知可得:2223cos 24a cb B ac +-==, 又因为3b =,所以22332a c ac +-=, 又因为223322a c ac ac +=+≥, 所以6ac ≤,当且仅当6a c ==时,ac 取得最大值.此时11737sin 62244ABC S ac B ==⨯⨯=△. 所以△ABC 的面积的最大值为374. 11.已知1sin 4θ=,则sin 2()4θπ⎡⎤-=⎢⎥⎣⎦__________. 【答案】78-【分析】27sin 2()cos 212sin 48θθθπ⎡⎤-=-=-+=-⎢⎥⎣⎦.12. 已知α为第二象限的角,sin α=35,则tan2α=_______________. 【答案】247-【分析】因为α为第二象限的角,又sin α=35,所以cos α=45-,tan α=sin cos αα=34-,tan2α=22tan 1tan αα-=247-.【考点】两角和与差的三角函数、二倍角公式. 13.若△ABC 的内角A 满足sin2A =23,则sin A +cos A 等于( ) A.153 B.153- C.53 D.53-【答案】A 【分析】∵0<A <π,0<2A <2π,又sin2A =23,即2sin A cos A =23,∴0<A <π2, 2(sin cos )A A +=53,sin A +cos A =153,故选A. 【考点】两角和与差的三角函数、二倍角公式. 14.已知sin θ+cos θ=15,且π2≤θ≤3π4,则cos2θ的值是___________. 【答案】725-【分析】由已知sin θ+cos θ=15①,2sin θcos θ= 2425-,又π2≤θ≤3π4,∴cos θ<0,sin θ>0. 2(cos sin )θθ-=4925,则sin θ-cos θ=75②,由①②知cos2θ=22cossin θθ-=725-. 【考点】两角和与差的三角函数、二倍角公式.15.已知0<α<π2,sin α=45.(1)求22sin sin 2cos cos 2αααα++的值;(2)求tan(α-5π4)的值.【解】∵0<α<π2,sin α=45,∴cos α=35,tan α=43.(1)22sin sin2cos cos2αααα++=222sin2sin cos2cos sinααααα+-=22tan2tan2tanααα+-=2244()23342()3+⨯-=20;(2)tan(α-5π4)=tan11tanαα-+=413413-+=17.【考点】两角和与差的三角函数、二倍角公式.16.已知x∈(π2-,0),cos x=45,tan2x=()A.724B.724- C.247D.247-【答案】D【分析】sin x=35-,tan x=34-,tan2x=22tan1tanxx-=247-,故选D.【考点】两角和与差的三角函数、二倍角公式.17.cos20cos351sin20︒︒-︒=()A.1B. 2C.2D.3【答案】C【分析】cos20cos351sin20︒︒-︒=22cos10sin10cos35(cos10sin10)︒-︒︒︒-︒=cos10sin10cos35︒+︒︒=2sin55cos35︒︒=2,故选C.【考点】两角和与差的三角函数、二倍角公式.18.设a=sin14°+cos14°,b=sin16°+cos16°,c =62,则a、b、c大小关系是()A.a<b<cB.b<a<cC. c<b<aD. a<c<b【答案】D【分析】由题意知,a =2sin59°,b =2sin61°,c =2sin60°,所以a<c<b,故选D.【考点】两角和与差的三角函数、二倍角公式.19.tan20°+tan40°+ 3tan20°tan40°=_____________.【答案】3【分析】tan60°= tan(20°+40°)=tan20+tan401tan20tan40︒︒-︒︒=3,∴3-3tan20°tan40°=tan20°+tan40°,移向即可得结果为3. 【考点】两角和与差的三角函数、二倍角公式. 20.已知sin2θ+cos 2θ=233,那么sin θ =______,cos2θ =___________. 【答案】13,79【分析】2(sin cos )22θθ+=1+ sin θ=43,sin θ=13,cos2θ=1-22sin θ=79. 【考点】两角和与差的三角函数、二倍角公式. 21.若1tan 1tan αα+-=2008,则1cos 2α+tan2α=_______________.【答案】2008【分析】1cos 2α+tan2α=1sin 2cos 2cos 2ααα+=1sin 2cos 2αα+=222(cos +sin )cos sin αααα-= cos +sin cos sin αααα-=1+tan 1tan αα-=2008.【考点】两角和与差的三角函数、二倍角公式. 22.计算:sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=________.【答案】2+3【分析】sin65+sin15sin10sin 25cos15cos80︒︒︒︒-︒︒=sin80cos15sin15cos10︒︒︒︒=cos15sin15︒︒=2+3.【考点】两角和与差的三角函数、二倍角公式.23.求值:(1)sin6°sin42°sin66°sin78°;(2)22sin 20cos 50︒+︒+sin20°cos50°.【解】原式=sin6°cos12°cos24°cos48°=sin 6cos 6cos12cos 24cos 48cos 6︒︒︒︒︒︒=1sin12cos12cos 24cos 482cos6︒︒︒︒︒=1sin 24cos 24cos 484cos6︒︒︒︒=1sin 48cos 488cos6︒︒︒=1sin 9616cos6︒︒=1cos616cos6︒︒=116; (2)原式=1cos 401cos1001(sin 70sin 30)222-︒+︒++︒-︒ =1+111(cos100cos 40)sin 70224︒-︒+︒-=31sin 70sin 30sin 7042-︒⋅︒+︒=34.【考点】两角和与差的三角函数、二倍角公式. 24.已知tan α、tan β是方程2x -5x +6=0的两个实根,求22sin ()αβ+-3sin ()αβ+cos ()αβ++2cos ()αβ+的值. 【解】由韦达定理得tan α+tan β=5,tan α·tan β=6,所以tan(α+β)=tan tan 1tan tan αβαβ+-⋅=-1.原式=[22sin ()αβ+-3sin(α+β)cos(α+β)+2cos ()αβ+]/[22sin ()cos ()αβαβ+++]=222tan ()3tan()1tan ()1αβαβαβ+-++++=213(1)111⨯-⨯-++=3.【考点】两角和与差的三角函数、二倍角公式.。

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习

两角和与差的正弦、余弦和正切公式及二倍角公式、知识要点:1. 两角和与差的正弦、余弦、正切公式(1) sin(:z 二I')=⑵cos(.二I )=(3) tan(.二I )=2. 二倍角的正弦、余弦、正切公式(1) sin 2:= (2) cos2:=⑶tan 2:=3. 常用的公式变形(1) tan a 土tan E =tan(a ±E)(1 干tana tan E);2 1 cos2: 21 -cos2:(2) cos : =,sin :=;2 2(3) 1 sin2:-(sin::、" cos: )2,1-sin2: - (sin : - cos: )2,sin 二里cos: = . 2sin(: —).44. 辅助角公式函数f (x) = asin x+ bcosx (a ,内常数),可以化为f (x) = l廿十^ sin( )』占+ b cos(*e 其中甲(8)可由a,b的值唯一确定.两个技巧一(1)一一一握角一、…携角技互二…(2) 一一化简技一巧二切化霎L…一一':1':一一的代换笠一.…一一【双基自测】(人教A版教材习题改编)下列各式的值为1的是()4sin 2上A.3 .右tan a =3,则-- 2—=().2 2__Q 2 tan 22.50o o2cos 衫 T B . 1 -2sin 75 C. ~-一2 & 5° D. sin15 cos152. sin 68°sin 67°—sin23°cos68°=( )A. 一岂经乎D. 1cos :■A. 2 B . 3 C . 4 D . 64 .已知sin a 2贝U cos(兀一A. D.5.1设sin(—+8)=-,贝U sin 26 =()4 3A. D.6. tan200 +tan40° + 后tan200 tan400 =r 5 , ,-.、 2 …7.右tan(—+ot)= —,则tan a =t 4 5考点一三角函数式的化简与求值[例1]求值:①cos15:-sin150;②sin50°(1 + T3tan100).cos15 sin15x 二[例2]已知函数f (x) =2sin(一一一), x 匚R .3 6,-5一:■■:: 10 6 ,(1)求f (宇)的值;⑵设a, E e件一',f (3。

高考大一轮总复习4.3两角和与差的正弦、余弦和正切公式、二倍角公式

高考大一轮总复习4.3两角和与差的正弦、余弦和正切公式、二倍角公式

§4.3两角和与差的正弦、余弦和正切公式、二倍角公式考纲展示►1.会用向量的数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.考点1三角函数公式的基本应用1.两角和与差的正弦、余弦和正切公式sin(α±β)=________________;cos(α∓β)=________________;tan(α±β)=tan α±tan β1∓tan αtan β.答案:sin αcos β±cos αsin βcos αcos β±sin αsin β2.二倍角的正弦、余弦、正切公式sin 2α=________________;cos 2α=______________=______________=______________;tan 2α=2tan α1-tan2α.答案:2sin αcos αcos2α-sin2α2cos2α-1 1-2sin2α(1)[教材习题改编]计算:sin 108°cos 42°-cos 72°sin 42°=________.答案:12(2)[教材习题改编]已知cos α=-35,α∈⎝⎛⎭⎫π2,π,则sin⎝⎛⎭⎫α+π3的值是________.答案:4-3310解析:因为cos α=-35,α∈⎝⎛⎭⎫π2,π,所以sin α=45,所以sin⎝⎛⎭⎫α+π3=sin αcosπ3+cos αsinπ3=45×12+⎝⎛⎭⎫-35×32=4-3310.公式使用中的误区:角的范围;公式的结构.(1)若函数f(α)=tan α+21-2tan α,则α满足2tan α≠1,且α≠________.答案:kπ+π2(k∈Z)解析:要使函数f(α)=tan α+21-2tan α有意义,则1-2tan α≠0,tan α有意义,所以2tan α≠1,则α≠kπ+π2(k∈Z).(2)化简:12sin x-32cos x=________.答案:sin⎝⎛⎭⎫x-π3解析:12sin x-32cos x=cosπ3sin x-sinπ3cos x=sin⎝⎛⎭⎫x-π3.[典题1](1)[2017·江西新余三校联考]已知cos⎝⎛⎭⎫π3-2x=-78,则sin⎝⎛⎭⎫x+π3的值为()A.14B.78 C .±14 D .±78 [答案] C[解析] 因为cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2x =cos ⎝⎛⎭⎫2x +2π3=78, 所以有sin 2⎝⎛⎭⎫x +π3=12×⎝⎛⎭⎫1-78=116, 从而求得sin ⎝⎛⎭⎫x +π3的值为±14,故选C. (2)已知cos θ=-513,θ∈⎝⎛⎭⎫π,3π2,则sin ⎝⎛⎭⎫θ-π6的值为________. [答案]5-12326[解析] 由cos θ=-513,θ∈⎝⎛⎭⎫π,3π2得 sin θ=-1-cos 2θ=-1213,故sin ⎝⎛⎭⎫θ-π6=sin θcos π6-cos θsin π6 =-1213×32-⎝⎛⎭⎫-513×12 =5-12326. (3)设sin 2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan 2α的值是________. [答案]3[解析] ∵sin 2α=2sin αcos α=-sin α, ∴cos α=-12.又α∈⎝⎛⎭⎫π2,π,∴sin α=32,tan α=-3, ∴tan 2α=2tan α1-tan 2α=-231-(-3)2= 3. [点石成金]三角函数公式的应用策略(1)使用两角和与差的三角函数公式,首先要记住公式的结构特征. (2)使用公式求值,应先求出相关角的函数值,再代入公式求值.考点2 三角函数公式的逆用与变形应用公式的常用变形(1)tan α±tan β=tan(α±β)(________);(2)________=1+cos 2α2,________=1-cos 2α2;(3)1+sin 2α=(________)2,1-sin 2α=(________)2,________=2sin ⎝⎛⎭⎫α±π4.答案:(1)1∓tan αtan β (2)cos 2α sin 2α (3)sin α+cosα sin α-cos α sin α±cos α(1)[教材习题改编]计算:sin 43°cos 13°-sin 13°cos 43°=________. 答案:12解析:原式=sin(43°-13°)=sin 30°=12.(2)[教材习题改编]已知sin θ=35,θ为第二象限角,则sin 2θ的值为________.答案:-2425解析:∵sin θ=35,θ为第二象限角,∴cos θ=-45,∴sin 2θ=2sin θcos θ=2×35×⎝⎛⎭⎫-45=-2425.辅助角公式.(1)函数f (x )=sin x +cos x 的最大值为________. 答案: 2解析:sin x +cos x =2⎝⎛⎭⎫sin x cos π4+cos x sin π4 =2sin ⎝⎛⎭⎫x +π4≤ 2. (2)一般地,函数f (α)=a sin α+b cos α(a ,b 为常数),可以化为f (α)=________⎝⎛⎭⎫其中tan φ=b a 或f (α)=________⎝⎛⎭⎫其中tan φ=a b . 答案:a 2+b 2sin(α+φ)a 2+b 2cos(α-φ)解析:一般地,函数f (x )=a sin α+b cos α(a ,b 为常数)可以化为f (α)=a 2+b 2sin(α+φ)⎝⎛⎭⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝⎛⎭⎫其中tan φ=ab.[典题2] (1)[2017·贵州贵阳监测]已知sin ⎝⎛⎭⎫π3+α+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( ) A .-235 B.235C.45 D .-45 [答案] D[解析] ∵sin ⎝⎛⎭⎫π3+α+sin α=435, ∴sin π3cos α+cos π3sin α+sin α=435,∴32sin α+32cos α=435, 即32sin α+12cos α=45. 故sin ⎝⎛⎭⎫α+7π6=sin αcos 7π6+cos αsin 7π6 =-⎝⎛⎭⎫32sin α+12cos α=-45.(2)在△ABC 中,若tan A tan B =tan A +tan B +1,则cos C 的值为( ) A .-22B.22C.12 D .-12[答案] B[解析] 由tan A tan B =tan A +tan B +1, 可得tan A +tan B 1-tan A tan B =-1,即tan(A +B )=-1, 又A +B ∈(0,π), 所以A +B =3π4,则C =π4,cos C =22.(3)[2017·陕西西安模拟]计算:1+cos 20°2sin 20°-sin 10°·⎝⎛⎭⎫1tan 5°-tan 5°=________. [答案]32 [解析] 原式=2cos 210°4sin 10°cos 10°-sin 10°·cos 25°-sin 25°sin 5°cos 5°=cos 10°2sin 10°-sin 20°sin 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin (30°-10°)2sin 10°=cos 10°-2sin 30°cos 10°+2cos 30°sin 10°2sin 10°=32. [点石成金] 三角函数公式活用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.(3)注意切化弦思想的运用.1.已知sin ⎝⎛⎭⎫π6-α=13,则cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α的值是( ) A.79 B.13 C .-13D .-79答案:D解析:∵sin ⎝⎛⎭⎫π6-α=13, ∴cos ⎝⎛⎭⎫π3-2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫π6-α =1-2sin 2⎝⎛⎭⎫π6-α=79,∴cos ⎣⎡⎦⎤2⎝⎛⎭⎫π3+α=cos ⎝⎛⎭⎫2π3+2α =cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π3-2α =-cos ⎝⎛⎭⎫π3-2α=-79. 2.化简:(1+sin α+cos α)·⎝⎛⎭⎫cos α2-sin α22+2cos α(0<α<π)=________.答案:cos α 解析:原式=⎝⎛⎭⎫2cos 2α2+2sin α2cos α2⎝⎛⎭⎫cos α2-sin α24cos2α2=cos α2⎝⎛⎭⎫cos 2α2-sin 2α2⎪⎪⎪⎪cos α2=cos α2cos α⎪⎪⎪⎪cos α2. 因为0<α<π,所以0<α2<π2,所以cos α2>0,所以原式=cos α.考点3 角的变换角的变换技巧2α=(α+β)+(α-________); α=(α+________)-β;β=α+β2________α-β2; α-β2=⎝⎛⎭⎫α+β2________⎝⎛⎭⎫α2+β.[典题3] 已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值. [解] (1)∵α,β∈⎝⎛⎭⎫0,π2, ∴-π2<α-β<π2.又tan(α-β)=-13<0,∴-π2<α-β <0.∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010.∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010 =91050. [题点发散1] 在本例条件下,求sin(α-2β)的值. 解:∵sin(α-β)=-1010,cos(α-β)=31010,cos β=91050,sin β=131050.∴sin(α-2β)=sin [(α-β)-β]=sin(α-β)cos β-cos(α-β)sin β =-2425.[题点发散2] 若本例中“sin α=35”变为“tan α=35”,其他条件不变,求tan(2α-β)的值.解:∵tan α=35,tan(α-β)=-13,∴tan(2α-β)=tan []α+(α-β) = tan α+tan (α-β)1-tan αtan (α-β)=35-131+35×13=29.[点石成金] 利用角的变换求三角函数值的策略(1)当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解:∵0<β <π2<α<π,∴π4<α-β2<π, -π4<α2-β<π2, ∴sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459,cos ⎝⎛⎭⎫2-β=1-sin 2⎝⎛⎭⎫2-β=53, ∴cosα+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, 则由二倍角公式,可得cos(α+β)=2cos 2α+β2-1=-239729.真题演练集训1.[2015·新课标全国卷Ⅰ]sin 20°cos 10°-cos 160°·sin 10°=( ) A .-32 B.32 C .-12 D.12答案:D解析:sin 20°cos 10°-cos 160°sin 10°=sin 20°·cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.[2016·四川卷]cos 2π8-sin 2π8=________.答案:22解析:由二倍角公式,得 cos 2 π8-sin 2 π8=cos ⎝⎛⎭⎫2×π8=22. 3.[2015·四川卷]sin 15°+sin 75°的值是________.答案:62解析:sin 15°+sin 75°=sin 15°+cos 15° =2⎝⎛⎭⎫22sin 15°+22cos 15°=2sin 60°=2×32=62. 4.[2015·江苏卷]已知tan α=-2,tan(α+β)=17,则tan β的值为________.答案:3解析:tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.课外拓展阅读 三角恒等变换的综合问题1.三角恒等变换与三角函数性质的综合应用利用三角恒等变换先将三角函数式转化为y =A sin(ωx +φ)的形式,再求其周期、单调区间、最值等,一直是高考的热点.[典例1] [改编题]已知函数f (x )=2sin ωx -4sin 2ωx2+2+a (其中ω>0,α∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标为2.(1)求函数f (x )的最小正周期;(2)若f (x )在区间[6,16]上的最大值为4,求a 的值. [解] (1)f (x )=2sin ωx -4sin 2ωx2+2+a =22sin ⎝⎛⎭⎫ωx +π4+a , 由题意,知2ω+π4=π2,得ω=π8.所以最小正周期T =2πω=16.(2)f (x )=22sin ⎝⎛⎭⎫π8x +π4+a , 因为x ∈[6,16],所以π8x +π4∈⎣⎡⎦⎤π,9π4.由图象可知(图略),当π8x +π4=9π4,即当x =16时, f (x )的最大值, 由22sin9π4+a =4,得a =2. 2.三角恒等变换与三角形的综合三角恒等变换经常出现在解三角形中,与正弦定理、余弦定理相结合,综合考查三角形中的边与角、三角形形状的判断等,是高考热点内容.根据所给条件解三角形时,主要有两种途径:(1)利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解;(2)利用正弦、余弦定理把边的关系化成角的关系,再用三角恒等变换化简求解. [典例2] 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且a 2+b 2+2ab =c 2. (1)求C ;(2)设cos A cos B =325,cos (α+A )cos (α+B )cos 2α=25,求tan α的值. [解] (1)因为a 2+b 2+2ab =c 2,由余弦定理,得cos C =a 2+b 2-c 22ab =-2ab 2ab =-22.故C =3π4.(2)由题意,得(sin αsin A -cos αcos A )(sin αsin B -cos αcos B )cos 2α=25, 因此(tan αsin A -cos A )(tan αsin B -cos B )=25, tan 2αsin A sin B -tan α(sin A cos B +cos A sin B )+cos A cos B =25,tan 2αsin A sin B -tan αsin(A +B )+cos A cos B =25.① 因为C =3π4,A +B =π4,所以sin(A +B )=22. 因为cos(A +B )=cos A cos B -sin A sin B , 即325-sin A sin B =22, 解得sin A sin B =325-22=210.由①得tan 2α-5tan α+4=0, 解得tan α=1或tan α=4. 3.三角恒等变换与向量的综合三角恒等变换与向量的综合问题是高考中经常出现的问题,一般以向量的坐标形式给出与三角函数有关的条件,并结合简单的向量运算,往往是两向量平行或垂直的计算,即令a =(x 1,y 1),b =(x 2,y 2),则a ·b =x 1x 2+y 1y 2,a ∥b ⇔x 1y 2=x 2y 1,a ⊥b ⇔x 1x 2+y 1y 2=0,把向量形式化为坐标运算后,接下来的运算仍然是三角函数的恒等变换以及三角函数、解三角形等知识的运用.[典例3] 已知△ABC 为锐角三角形,若向量p =(2-2sin A ,cos A +sin A )与向量q =(sin A -cos A,1+sin A ),是共线向量.(1)求角A ;(2)求函数y =2sin 2B +cosC -3B2的最大值. [思路分析] (1)向量共线→三角函数式――→化简得sin 2A 的值→得锐角A(2)化函数为A sin (ωx +φ) +b 的形式→根据B 的范 围求最值[解] (1)因为p ,q 共线,所以(2-2sin A )(1+sin A )=(cos A +sin A )(sin A -cos A ), 则sin 2A =34.又A 为锐角,所以sin A =32,则A =π3. (2)y =2sin 2B +cosC -3B2=2sin 2B +cos⎝⎛⎭⎫π-π3-B -3B 2=2sin 2B +cos ⎝⎛⎭⎫π3-2B=1-cos 2B +12cos 2B +32sin 2B=32sin 2B -12cos 2B +1 =sin ⎝⎛⎫2B -π6+1. 因为B ∈⎝⎛⎭⎫0,π2,所以2B -π6∈⎝⎛⎭⎫-π6,5π6, 所以当2B -π6=π2时,函数y 取得最大值,解得B =π3,y max =2.课时跟踪检测(二十) [高考基础题型得分练]1.(1+tan 17°)(1+tan 28°)的值是( ) A .-1 B .0 C .1 D .2答案:D解析:原式=1+tan 17°+tan 28°+tan 17°·tan 28° =1+tan 45°(1-tan 17°·tan 28°)+tan 17°·tan 28° =1+1=2.2.已知sin ⎝⎛⎭⎫π2+α=12,-π2<α<0,则cos ⎝⎛⎭⎫α-π3的值是( ) A.12 B .23C .-12D .1 答案:C解析:由已知得cos α=12,sin α=-32,∴cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 3.[2017·河南六市联考]设a =12cos 2°-32sin 2°,b =2tan 14°1-tan 214°,c =1-cos 50°2,则有( )A .a <c <bB .a <b <cC .b <c <aD .c <a <b答案:D解析:由题意可知,a =sin 28°,b =tan 28°,c =sin 25°, ∴c <a <b .4.[2017·安徽师大附中学高三上学期期中]设当x =θ时,函数y =sin x -2cos x 取得最大值,则cos θ=( )A .-55B .55 C .-255D .255答案:C解析:f (x )=sin x -2cos x =5⎝⎛⎭⎫55sin x -255cos x =5sin(x -α),其中sin α=255,cos α=55,因为当x =θ时,函数y =sin x -2cos x 取得最大值,所以sin(θ-α)=1, 即sin θ-2cos θ=5,又sin 2θ+cos 2θ=1,联立方程组可得cos θ=-255,故选C.5.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B .13C .-23D .23答案:D解析:依题意,得cos 2⎝⎛⎭⎫α-π4=12(cos α+sin α)2 =12(1+sin 2α)=23. 6.[2017·广西柳州、北海、钦州三市模拟]若sin ⎝⎛⎭⎫α-π4=-cos 2α,则sin 2α的值可以为( )A .-12或1B .12C .34D .-34答案:A解析:解法一:由已知得22(sin α-cos α)=sin 2α-cos 2α,∴sin α+cos α=22或sin α-cos α=0,解得sin 2α=-12或1.解法二:由已知得sin ⎝⎛⎭⎫α-π4=sin ⎝⎛⎭⎫2α-π2 =2sin ⎝⎛⎫α-π4cos ⎝⎛⎫α-π4, ∴cos ⎝⎛⎭⎫α-π4=12或sin ⎝⎛⎭⎫α-π4=0, 则sin 2α=cos ⎣⎡⎦⎤2⎝⎛⎭⎫α-π4=2cos 2⎝⎛⎭⎫α-π4-1=2×14-1=-12或sin 2α=1. 7.[2017·四川成都一诊]若sin 2α=55,sin(β-α)=1010,且α∈⎣⎡⎦⎤π4,π,β∈⎣⎡⎦⎤π,3π2,则α+β的值是( )A.7π4 B .9π4C .5π4或7π4D .5π4或9π4答案:A解析:因为α∈⎣⎡⎦⎤π4,π,所以2α∈⎣⎡⎦⎤π2,2π, 又sin 2α=55,所以2α∈⎣⎡⎦⎤π2,π,α∈⎣⎡⎦⎤π4,π2, 故cos 2α=-255.又β∈⎣⎡⎦⎤π,3π2,所以β-α∈⎣⎡⎦⎤π2,5π4, 故cos(β-α)=-31010.所以cos(α+β)=cos [2α+(β-α)] =cos 2αcos(β-α)-sin 2αsin(β-α) =-255×⎝⎛⎭⎫-31010-55×1010=22,且α+β∈⎣⎡⎦⎤5π4,2π,故α+β=7π4. 8.计算2cos 10°-sin 20°sin 70°=________.答案: 3解析:原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.9.设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. 答案:17250解析:因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425,cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. 10.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 答案:12解析:解法一:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.解法二:令α=0,则原式=14+14=12.11.已知cos(α+β)=16,cos(α-β)=13,则tan αtan β的值为________.答案:13解析:因为cos(α+β)=16,所以cos αcos β-sin αsin β=16.①因为cos(α-β)=13,所以cos αcos β +sin αsin β=13.②①+②得cos αcos β=14.②-①得sin αsin β=112.所以tan αtan β=sin αsin βcos αcos β=13.[冲刺名校能力提升练]1.已知sin ⎝⎛⎭⎫α-π4=7210,cos 2α=725,则sin α=( ) A.45 B .-45C .35D .-35答案:C解析:由sin ⎝⎛⎭⎫α-π4=7210得, sin α-cos α=75,①由cos 2α=725得,cos 2α-sin 2α=725,所以(cos α-sin α)(cos α+sin α)=725,② 由①②可得,cos α+sin α=-15,③由①③可得,sin α=35.2.[2017·江西九校联考]已知锐角α,β满足sin α-cos α=16,tan α+tan β+3tan αtan β=3,则α,β的大小关系是( ) A .α<π4<βB .β<π4<αC .π4<α<βD .π4<β<α答案:B解析:∵α为锐角,sin α-cos α=16>0,∴α>π4.又tan α+tan β+3tan αtan β=3, ∴tan(α+β)=tan α+tan β1-tan αtan β=3,∴α+β=π3,又α>π4,∴β<π4<α.3.[2017·河北衡水中学二调]3cos 10°-1sin 170°=( )A .4B .2C .-2D .-4答案:D解析:3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin (10°-30°)12sin 20°=-2sin 20°12sin 20°=-4.4.[2017·山东菏泽二模]已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β=________.答案:-3π4解析:因为tan α=tan [(α-β)+β] =tan (α-β)+tan β1-tan (α-β)tan β=12-171-12×⎝⎛⎭⎫-17=13<1,所以0<α<π4.又因为tan 2α=2tan α1-tan 2α=2×131-⎝⎛⎭⎫132=34<1, 所以0<2α<π4,所以tan(2α-β)=tan 2α-tan β1+tan 2αtan β=34-⎝⎛⎭⎫-171+34×⎝⎛⎭⎫-17=1.因为0<β<π,所以-π<2α-β<π4,所以2α-β=-3π4.5.已知cos α=17,cos(α-β)=1314⎝⎛⎭⎫0<β<α<π2. (1)求tan 2α的值; (2)求β的值.解:(1)∵cos α=17,0<α<π2,∴sin α=437,∴tan α=43,∴tan 2α=2tan α1-tan 2α=2×431-48=-8347. (2)∵0<β<α<π2,∴0<α-β<π2,∴sin(α-β)=3314,∴cos β=cos [α-(α-β)] =cos αcos(α-β)+sin αsin(α-β) =17×1314+437×3314=12. ∴β=π3.6.[2017·安徽合肥质检]已知cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)cos ⎝⎛⎭⎫π6+αcos ⎝⎛⎭⎫π3-α=cos ⎝⎛⎭⎫π6+αsin ⎝⎛⎭⎫π6+α =12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3 =sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.。

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式

两角和与差的正弦余弦正切公式及二倍角公式1.两角和的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的和角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c,其中a、b、c分别为三角形ABC的对边、邻边和斜边。

根据正弦公式,sinC = c/c =1、所以,两角和的正弦公式为sin(A + B) = sinC = 12.两角和的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的和角C的余弦为cosC。

根据三角函数的定义,有cosA = b/c和cosB = a/c。

根据余弦公式,cosC = cos(A + B) = cos(AcosB - BsinA) = cosAcosB + sinAsinB = (b/c)(a/c) + (a/c)(b/c) = 2ab/c²。

3.两角和的正切公式:设角A和角B的正切分别为tanA和tanB,则它们的和角C的正切为tanC。

根据三角函数的定义,有tanA = a/b和tanB = b/a。

根据正切公式,tanC = tan(A + B) = (tanA + tanB) / (1 - tanAtanB) = (a/b + b/a) / (1 - (a/b)(b/a)) = (a² + b²) / (ab - ab) = a² + b² / ab。

4.两角差的正弦公式:设角A和角B的正弦分别为sinA和sinB,则它们的差角C的正弦为sinC。

根据三角函数的定义,有sinA = a/c和sinB = b/c。

根据差角公式,sinC = sin(A - B) = sin(AcosB + BsinA) = sinAcosB - cosAsinB = a/c(b/c) - (b/c)(a/c) = 2a b/c²。

5.两角差的余弦公式:设角A和角B的余弦分别为cosA和cosB,则它们的差角C的余弦为cosC。

两角和与差的正弦、余弦和正切公式讲义 高三数学一轮专题复习

两角和与差的正弦、余弦和正切公式讲义 高三数学一轮专题复习

§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)= ;(2)公式C (α+β):cos(α+β)= ;(3)公式S (α-β):sin(α-β)= ;(4)公式S (α+β):sin(α+β)= ;(5)公式T (α-β):tan(α-β)= ;(6)公式T (α+β):tan(α+β)= .2.辅助角公式a sin α+b cos α= ,其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在α,β,使等式sin(α+β)=sin α+sin β.( )(2)两角和与差的正切公式中的角α,β是任意角.( )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)公式a sin x +b cos x =a 2+b 2sin(x +φ)中φ的取值与a ,b 的值无关.( )教材改编题1.sin 20°cos 10°-cos 160°sin 10°等于( )A .-32 B.32 C .-12 D.12 2.若将sin x -3cos x 写成2sin(x -φ)的形式,其中0≤φ<π,则φ= .3.已知α∈⎝⎛⎭⎫π2,π,且sin α=45,则tan ⎝⎛⎭⎫α+π4的值为 .题型一 两角和与差的三角函数公式例1 (1)计算:cos 55°+sin 25°cos 60°cos 25°等于( ) A .-32 B.32 C .-12 D.12(2)(2023·青岛模拟)已知tan α=1+m ,tan β=m ,且α+β=π4,则实数m 的值为( ) A .-1 B .1 C .0或-3 D .0或1听课记录:______________________________________________________________ ________________________________________________________________________思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)(2023·茂名模拟)已知0<α<π2,sin ⎝⎛⎭⎫π4-α=26,则sin α1+tan α的值为( ) A.41451 B.21413 C.41751 D.21713(2)(2022·新高考全国Ⅱ)若sin(α+β)+cos(α+β)=22cos ⎝⎛⎭⎫α+π4sin β,则( ) A .tan(α-β)=1B .tan(α+β)=1C .tan(α-β)=-1D .tan(α+β)=-1题型二 两角和与差的公式逆用与辅助角公式 例2 (1)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( ) A.14 B.13 C.12 D.53(2)(2022·浙江)若3sin α-sin β=10,α+β=π2,则sin α= ,cos 2β= .听课记录:______________________________________________________________ ________________________________________________________________________思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力.跟踪训练2 (1)(2022·咸阳模拟)已知sin ⎝⎛⎭⎫x -π6=33,则sin x +sin ⎝⎛⎭⎫x -π3等于( ) A .1 B .-1 C.233D.3 (2)满足等式(1+tan α)(1+tan β)=2的数组(α,β)有无穷多个,试写出一个这样的数组________.题型三 角的变换问题例3 (1)(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22(2)已知α,β为锐角,sin α=31010,cos(α+β)=-55.则sin(2α+β)的值为 . 听课记录:______________________________________________________________ ________________________________________________________________________思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等. 跟踪训练3 (1)(2023·青岛质检)已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=2425,则cos ⎝⎛⎭⎫α+π4=________. (2)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .。

高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式

高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式

高考一轮复习---两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识1.两角和与差的正弦、余弦、正切公式S (α±β):sin(α±β)=sin αcos β±cos αsin β.C (α±β):cos(α±β)=cos αcos β∓sin αsin β.T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎪⎭⎫ ⎝⎛∈+≠+Z k k ,2,,ππβαβα 两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎪⎭⎫ ⎝⎛∈+≠+≠Z k k k ,且42ππαππα 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角. 二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2. (2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α.(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎪⎪⎭⎫ ⎝⎛+=+=2222cos ,sin b a ab a b ϕϕ三、考点解析考点一 三角函数公式的直接应用例、(1)已知sin α=35,α∈⎪⎭⎫ ⎝⎛ππ,2,tan β=-12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112(2)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( ) A .-229 B .-429 C.229 D.429[解题技法]应用三角公式化简求值的策略:(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用.跟踪训练1.已知sin α=13+cos α,且α∈⎪⎭⎫ ⎝⎛2,0π,则)4sin(2cos παα+的值为( ) A .-23 B.23 C .-13 D.132.已知sin α=45,且α∈⎪⎭⎫ ⎝⎛23,2ππ,则sin ⎪⎭⎫ ⎝⎛+32πα的值为________. 考点二 三角函数公式的逆用与变形用例、(1)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________.[解题技法]两角和、差及倍角公式的逆用和变形用的技巧:(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式.(2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β;cos αsin β+sin(α-β)=sin αcos β;1±sin α=⎝⎛⎭⎫sin α2±cos α22;sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1; cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.跟踪训练1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b 2.已知cos ⎪⎭⎫ ⎝⎛-6πα+sin α=435,则sin ⎪⎭⎫ ⎝⎛+6πα=________. 3.化简sin 2⎪⎭⎫ ⎝⎛-6πα+sin 2⎪⎭⎫ ⎝⎛+6πα-sin 2α的结果是________.考点三 角的变换与名的变换考法(一) 三角公式中角的变换典例、已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎪⎭⎫ ⎝⎛--54,53,若角β满足sin(α+β)=513,则cos β的值为________.[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+ββα22a 等.考法(二) 三角公式中名的变换典例、已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.[解题技法]三角函数名的变换技巧:明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.跟踪训练1.已知tan θ+1tan θ=4,则cos 2⎪⎭⎫ ⎝⎛+4πα=( ) A.12 B.13 C.14 D.152.若sin ⎪⎭⎫ ⎝⎛+4πA =7210,A ∈⎪⎭⎫ ⎝⎛ππ,4,则sin A 的值为( ) A.35 B.45 C.35或45 D.343.已知sin α=-45,α∈⎥⎦⎤⎢⎣⎡ππ223,,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136 C .-613 D .-136课后作业1.sin 45°cos 15°+cos 225°sin 165°=( )A .1 B.12 C.32 D .-122.若2sin x +cos ⎪⎭⎫ ⎝⎛-x 2π=1,则cos 2x =( ) A .-89 B .-79 C.79 D .-7253.若cos ⎪⎭⎫ ⎝⎛-6πα=-33,则cos ⎪⎭⎫ ⎝⎛-3πα+cos α=( ) A .-223 B .±223C .-1D .±1 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B.2 C.22 D.335.若α∈⎪⎭⎫ ⎝⎛ππ,2,且3cos 2α=sin ⎪⎭⎫ ⎝⎛-απ4,则sin 2α的值为( ) A .-118 B.118 C .-1718 D.17186.已知sin 2α=13,则cos 2⎪⎭⎫ ⎝⎛-4πα=( ) A .-13 B.13 C .-23 D.237.已知sin ⎪⎭⎫ ⎝⎛+2πα=12,α∈⎪⎭⎫ ⎝⎛-0,2π,则cos ⎪⎭⎫ ⎝⎛-3πα的值为________. 8.已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________. 9.若tan ⎪⎭⎫ ⎝⎛-4πα=16,则tan α=________. 10.化简:sin 235°-12cos 10°cos 80°=________. 11.已知tan α=2.(1)求tan ⎪⎭⎫ ⎝⎛+4πα的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.。

第24讲 两角和与差的正弦、余弦、正切公式及二倍角公式(讲)(解析版)

第24讲 两角和与差的正弦、余弦、正切公式及二倍角公式(讲)(解析版)

第24讲 两角和与差的正弦、余弦、正切公式及二倍角公式(讲)思维导图知识梳理1.两角和与差的正弦、余弦、正切公式 C (α-β):cos(α-β)=cos αcos β+sin αsin β. C (α+β):cos(α+β)=cos αcos β-sin_αsin β. S (α+β):sin(α+β)=sin αcos β+cos_αsin β. S (α-β):sin(α-β)=sin αcos β-cos αsin β. T (α+β):tan(α+β)=tan α+tan β1-tan αtan β⎝⎛⎭⎫α,β,α+β≠π2+k π,k ∈Z .T (α-β):tan(α-β)=tan α-tan β1+tan αtan β⎝⎛⎭⎫α,β,α-β≠π2+k π,k ∈Z .2.二倍角的正弦、余弦、正切公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠π4+k π2,且α≠k π+π2,k ∈Z .题型归纳题型1 公式的直接应用【例1-1】(2020春•六盘水期末)已知sin (π﹣α)=√33,则cos2α=( ) A .2√23B .−13C .23D .13【分析】由已知利用诱导公式可求sinα的值,进而根据二倍角的余弦函数公式即可计算求解. 【解答】解:∵sin (π﹣α)=sinα=√33, ∴cos2α=1﹣2sin 2α=1﹣2×(√33)2=13.故选:D .【例1-2】((2020春•金牛区校级期末)计算cos18°•cos42°﹣cos72°•sin42°=( ) A .12B .−12C .√32D .−√32【分析】直接利用三角函数的诱导公式的应用和余弦的和角公式的运用求出结果. 【解答】解:cos18°•cos42°﹣cos72°•sin42°=cos18°•cos42°﹣sin18°•sin42°=cos60°=12. 故选:A .【例1-3】((2020春•上饶期末)若3sinα−2sin(α+π3)−√7=0,则tanα=( ) A .−2√33B .2√33C .−√32D .√32【分析】由两角和的正弦公式展开整理可得√3cosα=2sinα−√7,两边平方,由基本关系式sin 2α+cos 2α=1可得7sin 2α﹣4√7sinα+4=0,解出sinα,进而求出cosα,再求出结果.【解答】解:由3sinα−2sin(α+π3)−√7=0,化简可得3sinα﹣2⋅12sinα﹣2⋅√32cosα=√7,即2sinα−√3cosα=√7,所以√3cosα=2sinα−√7,两边平方可得3cos 2α=4sin 2α﹣4√7sinα+7,整理可得3(1﹣sin 2α)=4sin 2α﹣4√7sinα+7,即7sin 2α﹣4√7sinα+4=0,解得sinα=2√7, 所以√3cosα=27−√7=7,所以cosα=√37, 所以tanα=sinαcosα=27−3√7=−2√33.故选:A .【跟踪训练1-1】(2020春•河池期末)已知tanα=12,tan (α+β)=13,则tanβ=( ) A .16B .−17C .17D .56【分析】由于β=(α+β)﹣α,根据已知利用两角差的正切函数公式即可计算求解. 【解答】解:∵tanα=12,tan (α+β)=13,∴tanβ=tan[(α+β)﹣α]=tan(α+β)−tanα1+tan(α+β)tanα=13−121+12×13=−17.故选:B .【跟踪训练1-2】((2020春•南阳期末)sin75°cos45°﹣sin15°sin45°=( ) A .0B .12C .√32D .1【分析】由条件利用诱导公式、两角和的余弦公式,进行化简所给的式子,可得结果. 【解答】解:sin75°cos45°﹣sin15°sin45°=cos15°cos45°﹣sin15°sin45°=cos (15°+45°)=12, 故选:B .【跟踪训练1-3】((2020春•宁波期末)sin 2π12=( ) A .2−√34B .2+√34C .34D .14【分析】利用二倍角的余弦函数公式,特殊角的三角函数值即可求解.【解答】解:sin 2π12=1−cos π62=1−√322=2−√34.故选:A .【跟踪训练1-4】((2020春•南充期末)若cosα=13,则cos2α=( )A .−79B .−89C .79D .89【分析】由已知利用二倍角的余弦函数公式即可求解. 【解答】解:∵cosα=13,∴cos2α=2cos 2α﹣1=2×(13)2﹣1=−79.故选:A .【跟踪训练1-5】(2020春•黄浦区期末)若tan2α=14,则tan (α+π4)+tan (α−π4)= . 【分析】展开两角和与差的正切,整理后再由二倍角的正切得答案. 【解答】解:∵tan2α=14,∴tan (α+π4)+tan (α−π4)=tanα+tan π41−tanπtan π4+tanα−tan π41+tanαtan π4=1+tanα1−tanα+tanα−11+tanα=(1+tanα)2−(1−tanα)21−tan 2α=4tanα1−tan 2α=2tan2α=2×14=12. 故答案为:12.【跟踪训练1-6】(2020春•平谷区期末)2cos 215°﹣1等于 . 【分析】由题意利用二倍角的余弦公式,求得结果. 【解答】解:2cos 215°﹣1=cos30°=√32,故答案为:√32. 【名师指导】应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”. (2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用.题型2 三角函数公式的逆用与变形用【例2-1】(2020•重庆模拟)(1+tan19°)•(1+tan26°)= . 【分析】先把所求展开,再根据两角和的正切即可求解结论. 【解答】解:因为(1+tan19°)•(1+tan26°) =1+tan19°+tan26°+tan19°tan26°=1+tan (19°+26°)(1﹣tan19°tan26°)+tan19°tan26° =1+1﹣tan19°tan26°+tan19°tan26° =2; 故答案为:2.【例2-2】(2020春•开江县校级月考)已知cos(x −π6)=13,则cosx +cos(x −π3)=( ) A .√32B .√3C .12D .√33【分析】由题意利用诱导公式、两角和差的三角公式,求得要求式子的值. 【解答】解:∵已知cos(x −π6)=13,∴cosx +cos(x −π3)=cos[(x −π3)+π3]+cos (x −π3) =cos (x −π3)cos π3−sin (x −π3)sin π3+cos (x −π3)=32cos (x −π3)−√32sin (x −π3)=√3cos[π6+(x −π3)]=√3cos (x −π6)=√3×13=√33, 故选:D .【跟踪训练2-1】(2020•张家口二模)1−tan 2105°1+tan 2105°=( )A .12B .−12C .√32D .−√32【分析】切化弦,易得原式为cos210°,进而利用诱导公式,特殊角的三角函数值即可求解. 【解答】解:1−tan 2105°1+tan 2105°=cos 2105°−sin 2105°cos 2105°+sin 2105°=cos210°=﹣cos30°=−√32.故选:D .【跟踪训练2-2】(2019秋•武汉期末)化简√1−2sin(π−2)cos(π+2)的结果是( ) A .sin2+cos2B .sin2﹣cos2C .cos2﹣sin2D .﹣sin2﹣cos2【分析】利用诱导公式变形,化为两数和的平方,开方得答案. 【解答】解:√=√ √sin 22+2sin2⋅cos2+cos 22=√(sin2+cos2)2 =|sin2+cos2|=sin2+cos2. 故选:A . 【名师指导】两角和、差及倍角公式的逆用和变形用的应用技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)和差角公式变形:sin αsin β+cos(α+β)=cos αcos β, cos αsin β+sin(α-β)=sin αcos β, tan α±tan β=tan(α±β)·(1∓tan α·tan β). (3)倍角公式变形:降幂公式.题型3 角的变换与名的变换【例3-1】(2020春•宁波期末)设α,β∈(0,π),cosβ=−1213,cos α2=2√55,则cosα= ,tan (α+β)= .【分析】利用余弦的倍角公式以及两角和差的正切公式进行计算即可. 【解答】解:cosα=2cos 2α2−1=2×(2√55)2﹣1=35,则α∈(0,π2), 则sinα=45,tanα=43, ∵cosβ=−1213,∴sinβ=513,则tanβ=−512, 则tan (α+β)=tanα+tanβ1−tanαtanβ=43−5121+43×512=48−1536+20=3356,故答案为:35,3356【例3-2】(2020春•城关区校级期末)若tanα=3,则cos2α+3sin 2α= .【分析】先利用余弦的二倍角公式将其化简,再利用同角三角函数的平方关系将分母的1用sin 2α+cos 2α代替,然后将分式的上下同除cosα后,可将原式转化为只含tanα的表达式,代入数据即可得解.【解答】解:cos2α+3sin 2α=cos 2α﹣sin 2α+3sin 2α=cos 2α+2sin 2αsin 2α+cos 2α,两边同除cosα,原式=1+2tan 2αtan 2α+1=1+2×3232+1=1910. 故答案为:1910.【例3-3】(2020春•梧州期末)已知cos (π2+θ)=−√32,则cos2θ= .【分析】由题意利用诱导公式、二倍角的余弦公式,求得结果. 【解答】解:∵已知cos (π2+θ)=−√32=−sinθ,∴sinθ=√32,则cos2θ=1﹣2sin 2θ=1﹣2×34=−12,故答案为:−12.【跟踪训练3-1】(2020春•宁波期末)已知sin2θ=−34,则tanθ+1tanθ=( ) A .43B .−43C .83D .−83【分析】利用同角三角函数基本关系式,二倍角的正弦函数公式化简所求结合已知即可计算求解. 【解答】解:sin2θ=−34,则tanθ+1tanθ=sinθcosθ+cosθsinθ=sin 2θ+cos 2θsinθcosθ=112sin2θ=112×(−34)=−83. 故选:D .【跟踪训练3-2】(2020春•广州期末)已知cos (α+π3)=13,则sin(π6−α)=( ) A .13B .−13C .2√23D .±2√23 【分析】由角的转化可得π6−α=π2−(α+π3),进而可得sin (π6−α)=sin[π2−(α+π3)]=cos (α+π3). 【解答】解:因为π6−α=π2−(α+π3),所以sin (π6−α)=sin[π2−(α+π3)]=cos (α+π3)=13,故选:A .【跟踪训练3-3】(2020春•潍坊期末)已知cos(θ−π4)=7√210,则sin2θ=( ) A .−2425B .−1225C .1225D .2425【分析】由题意利用诱导公式、二倍角的余弦,求得要求式子的值. 【解答】解:由cos(θ−π4)=7√210,则sin2θ=cos (2θ−π2)=2cos 2(θ−π4)−1 =2×(7√210)2−1=2425, 故选:D . 【名师指导】1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 3.三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.。

2021届高考数学总复习:两角和与差的正弦、余弦和正切公式

2021届高考数学总复习:两角和与差的正弦、余弦和正切公式

2021届高考数学总复习:两角和与差的正弦、余弦和正切公式一、知识点1.两角和的正弦、余弦、正切公式(1)sin(α+β)=sinαcosβ+cosαsinβ。

(2)cos(α+β)=cosαcosβ-sinαsinβ。

(3)tan(α+β)=tanα+tanβ1-tanαtanβ。

2.两角差的正弦、余弦、正切公式(1)sinαcosβ-cosαsinβ=sin(α-β)。

(2)cosαcosβ+sinαsinβ=cos(α-β)。

(3)tanα-tanβ1+tanαtanβ=tan(α-β)。

3.二倍角公式(1)sin2α=2sinαcosα。

(2)cos2α=2cos2α-1=1-2sin2α=cos2α-sin2α。

(3)tan2α=2tanα1-tan2α。

4.常用公式的变化形式(1)a sinα+b cosα=a2+b2sin(α+φ),其中cosφ=aa2+b2,sinφ=ba2+b2或a sin x+b cos x=a2+b2cos(x-θ),其中cosθ=ba2+b2,sinθ=aa2+b2。

(2)tanα+tanβ=tan(α+β)(1-tanαtanβ)。

(3)1-tan α1+tan α=tan ⎝ ⎛⎭⎪⎫π4-α。

(4)1+tan α1-tan α=tan ⎝ ⎛⎭⎪⎫π4+α。

1.两角和与差的正切公式的变形: tan α±tan β=tan(α±β)(1∓tan αtan β)。

2.二倍角余弦公式的变形: sin 2α=1-cos2α2,cos 2α=1+cos2α2。

3.一般地,函数f (α)=a sin α+b cos α(a ,b 为常数)可以化为f (α)=a 2+b2sin(α+φ)⎝ ⎛⎭⎪⎫其中tan φ=b a 或f (α)=a 2+b 2cos(α-φ)⎝ ⎛⎭⎪⎫其中tan φ=a b 。

一、走进教材1.(必修4P 131练习T 5改编)计算:sin108°cos42°-cos72°·sin42°=________。

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳

两角和与差的正弦、余弦和正切公式及二倍角公式考点与提醒归纳一、基础知识1.两角和与差的正弦、余弦、正切公式 S (α±β):sin(α±β)=sin αcos β±cos αsin β. C (α±β):cos(α±β)=cos αcos β∓sin αsin β. T (α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+k π,k ∈Z .两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C (α±β)同名相乘,符号反;S (α±β)异名相乘,符号同;T (α±β)分子同,分母反.2.二倍角公式 S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α.T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).(4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223,所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用.(3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,① cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+ 3 t an 25°·tan 35°= 3 (1-tan 25°tan 35°)+3tan 25°tan 35°= 3. [答案] (1)-12 (2)3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形: sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.[题组训练]1.设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22 (sin 56°-cos 56°)=22 s in 56°-22 c os 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213.由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925,所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255,所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)] =tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14.2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210,∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4=sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613.[课时跟踪检测]A 级1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1.4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A.3 B.2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cosαsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________. 解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1=2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1 =2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1. 12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14, ∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:157 2.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π, 所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12. (2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725, 所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

两角和与差的正弦余弦和正切公式及二倍角公式

两角和与差的正弦余弦和正切公式及二倍角公式

两角和与差的正弦余弦和正切公式及二倍角公式1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B4.两角差的余弦公式:cos(A - B) = cos A cos B + sin A sin B5.两角和的正切公式:tan(A + B) = (tan A + tan B) / (1 - tan A tan B)6.两角差的正切公式:tan(A - B) = (tan A - tan B) / (1 + tan A tan B)二倍角公式:1.正弦的二倍角公式:sin(2A) = 2sin A cos A2.余弦的二倍角公式:cos(2A) = cos^2 A - sin^2 A = 2cos^2 A - 1 = 1 - 2sin^2 A 3.正切的二倍角公式:tan(2A) = (2tan A) / (1 - tan^2 A)这些公式在三角函数的学习中非常重要,可以用于简化计算,推导其他公式,解三角方程等。

以上是两角和与差的正弦、余弦和正切公式及二倍角公式的简要描述。

详细阐述这些公式需要更多的字数,下面将对每个公式进行更详细的解释。

1.两角和的正弦公式:sin(A + B) = sin A cos B + cos A sin B这个公式表示角A和角B的和的正弦等于角A的正弦乘以角B的余弦加上角A的余弦乘以角B的正弦。

2.两角差的正弦公式:sin(A - B) = sin A cos B - cos A sin B这个公式表示角A和角B的差的正弦等于角A的正弦乘以角B的余弦减去角A的余弦乘以角B的正弦。

3.两角和的余弦公式:cos(A + B) = cos A cos B - sin A sin B这个公式表示角A和角B的和的余弦等于角A的余弦乘以角B的余弦减去角A的正弦乘以角B的正弦。

高中数学复习:两角和与差的正弦、余弦和正切公式及二倍角公式

高中数学复习:两角和与差的正弦、余弦和正切公式及二倍角公式

1 cos 2α
1 cos 2α
(2)cos2α=⑧
2
,sin2α=⑨
2
;
(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2.
教材研读 栏目索引
知识拓展
(1)降幂公式:cos2α=1 cos 2α ,sin2α=1 cos 2α .
2
2
(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).
(4)辅助角公式:asin x+bcos x= a2 b2 sin(x+φ)
其中sin
φ
b ,cos φ a2 b2
a a2 b2
.
教材研读 栏目索引
教材研读 栏目索引
1.判断正误(正确的打“√”,错误的打“✕”) (1)存在实数α,β使等式sin(α+β)=sin α+sin β成立. ( √ ) (2)在锐角△ABC中,sin Asin B和cos Acos B的大小不确定. ( ✕ )
1.两角和与差的正弦、余弦、正切公式
sin(α±β)=① sin αcos β±cos αsin β , cos(α±β)=② cos αcos β∓sin αsin β ,
tan α tan β
tan(α±β)=③ 1 tan α tan β .
教材研读 栏目索引
2.二倍角的正弦、余弦、正切公式
tan α tan β
(3)公式tan(α+β)=1 tan α tan β 可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立. ( ✕ ) (4)存在实数α,使tan 2α=2tan α. ( √ ) (5)两角和与差的正弦、余弦公式中的角α,β是任意的. ( √ ) 答案 (1)√ (2)✕ (3)✕ (4)√ (5)√

(完整版)第五节两角和与差的正弦、余弦和正切公式及二倍角公式

(完整版)第五节两角和与差的正弦、余弦和正切公式及二倍角公式

第五节两角和与差的正弦、余弦和正切公式及二倍角公式一、基础知识批注——理解深一点1.两角和与差的正弦、余弦、正切公式S(α±β):sin(α±β)=sin αcos β±cos αsin β.C(α±β):cos(α±β)=cos αcos β∓sin αsin β.T(α±β):tan(α±β)=tan α±tan β1∓tan αtan β⎝⎛⎭⎫α,β,α±β≠π2+kπ,k∈Z.两角和与差的正弦、余弦、正切公式的结构特征和符号特点及关系:C(α±β)同名相乘,符号反;S(α±β)异名相乘,符号同;T(α±β)分子同,分母反.2.二倍角公式S 2α:sin 2α=2sin αcos α.C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. T 2α:tan 2α=2tan α1-tan 2α⎝⎛⎭⎫α≠k π+π2且α≠k π2+π4,k ∈Z . 二倍角是相对的,例如,α2是α4的二倍角,3α是3α2的二倍角.二、常用结论汇总——规律多一点(1)降幂公式:cos 2α=1+cos 2α2,sin 2α=1-cos 2α2.(2)升幂公式:1+cos 2α=2cos 2α,1-cos 2α=2sin 2α. (3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β). (4)辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ)⎝⎛⎭⎪⎫其中sin φ=b a 2+b 2,cos φ=a a 2+b 2.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)两角和与差的正弦、余弦公式中的角α,β是任意的.( ) (2)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( ) (3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )(4)存在实数α,使tan 2α=2tan α.( ) 答案:(1)√ (2)√ (3)× (4)√ (二)选一选1.(2018·全国卷Ⅲ)若sin α=13,则cos 2α=( )A.89 B.79C .-79D .-89解析:选B ∵sin α=13,∴cos 2α=1-2sin 2α=1-2×⎝⎛⎭⎫132=79. 2.sin 20°cos 10°-cos 160°sin 10°=( ) A .-32B.32C .-12D.12解析:选D 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12.3.设角θ的终边过点(2,3),则tan ⎝⎛⎭⎫θ-π4=( ) A.15 B .-15C .5D .-5解析:选A 由于角θ的终边过点(2,3),因此tan θ=32,故tan ⎝⎛⎭⎫θ-π4=tan θ-11+tan θ=32-11+32=15. (三)填一填 4.已知cos α=1213,α∈⎝⎛⎭⎫0,π2,则cos ⎝⎛⎭⎫α-π4=________. 解析:∵cos α=1213,α∈⎝⎛⎭⎫0,π2,∴sin α=1-cos 2α=513, ∴cos ⎝⎛⎭⎫α-π4=cos αcos π4+sin αsin π4=1213×22+513×22=17226. 答案:172265.sin 15°+sin 75°=________. 解析:依题意得sin 15°+sin 75° =cos 75°+sin 75° =2cos(75°-45°) =62.答案:62考点一 三角函数公式的直接应用[典例] (1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan β=-12,则tan(α-β)的值为( ) A .-211B.211C.112D .-112(2)(2019·呼和浩特调研)若sin ()π-α=13,且π2≤α≤π,则sin 2α的值为( )A .-229B .-429C.229D.429[解析] (1)因为sin α=35,α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以tan(α-β)=tan α-tan β1+tan αtan β=-211.(2)因为sin(π-α)=sin α=13,π2≤α≤π,所以cos α=-1-sin 2α=-223, 所以sin 2α=2sin αcos α=2×13×⎝⎛⎭⎫-223=-429.[答案] (1)A (2)B[解题技法] 应用三角公式化简求值的策略(1)首先要记住公式的结构特征和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.(2)注意与同角三角函数基本关系、诱导公式的综合应用. (3)注意配方法、因式分解和整体代换思想的应用. [题组训练]1.已知sin α=13+cos α,且α∈⎝⎛⎭⎫0,π2,则cos 2αsin ⎝⎛⎭⎫α+π4的值为( ) A .-23B.23C .-13D.13解析:选A 因为sin α=13+cos α,所以sin α-cos α=13,所以cos 2αsin ⎝⎛⎭⎫α+π4=cos 2α-sin 2αsin αcos π4+cos αsin π4=(cos α-sin α)(cos α+sin α)22(sin α+cos α)=-1322=-23.2.已知sin α=45,且α∈⎝⎛⎭⎫π2,3π2,则sin ⎝⎛⎭⎫2α+π3的值为________. 解析:因为sin α=45,且α∈⎝⎛⎭⎫π2,3π2,所以α∈⎝⎛⎭⎫π2,π, 所以cos α=-1-sin 2α=-1-⎝⎛⎭⎫452=-35. 因为sin 2α=2sin αcos α=-2425,cos 2α=2cos 2α-1=-725.所以sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=-24+7350. 答案:-24+7350考点二 三角函数公式的逆用与变形用[典例] (1)(2018·全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.(2)计算:tan 25°+tan 35°+3tan 25°tan 35°=________. [解析] (1)∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1, ∴sin αcos β+cos αsin β=-12,∴sin(α+β)=-12.(2)原式=tan(25°+35°)(1-tan 25°tan 35°)+3tan 25°·tan 35°=3(1-tan 25°tan 35°)+3tan 25°tan 35°= 3.[答案] (1)-12 (2) 3[解题技法]两角和、差及倍角公式的逆用和变形用的技巧(1)逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式. (2)公式的一些常用变形:sin αsin β+cos(α+β)=cos αcos β; cos αsin β+sin(α-β)=sin αcos β; 1±sin α=⎝⎛⎭⎫sin α2±cos α22; sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1;cos 2α=cos 2α-sin 2αcos 2α+sin 2α=1-tan 2α1+tan 2α.[提醒](1)公式逆用时一定要注意公式成立的条件和角之间的关系.(2)tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,且常与一元二次方程根与系数的关系结合命题.(3)注意特殊角的应用,当式子中出现12,1,32, 3等这些数值时,一定要考虑引入特殊角,把“值变角”构造适合公式的形式.公式顺用和逆用,变形运用加巧用; 幂升一次角减半,升幂降次它为范; 1加余弦想余弦,1减余弦想正弦.[题组训练]1.(口诀第1句)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b解析:选D 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°)=22sin 56°-22cos 56°=sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x ,x ∈⎣⎡⎦⎤0,π2为增函数,所以sin 13°>sin 12°>sin 11°,所以a >c >b .2.(口诀第1句)已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+π6=________. 解析:由cos ⎝⎛⎭⎫α-π6+sin α=435, 可得32cos α+12sin α+sin α=435, 即32sin α+32cos α=435, ∴3sin ⎝⎛⎭⎫α+π6=435,即sin ⎝⎛⎭⎫α+π6=45. 答案:453.(口诀第2、3句)化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α=1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12.答案:12考点三 角的变换与名的变换考法(一) 三角公式中角的变换[典例] (2018·浙江高考改编)已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边过点P ⎝⎛⎭⎫-35,-45.若角β满足sin(α+β)=513,则cos β的值为________. [解析] 由角α的终边过点P ⎝⎛⎭⎫-35,-45, 得sin α=-45,cos α=-35.由sin(α+β)=513,得cos(α+β)=±1213. 由β=(α+β)-α,得cos β=cos(α+β)cos α+sin(α+β)sin α, 所以cos β=-5665或cos β=1665.[答案] -5665或1665[解题技法]1.三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式; (2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.2.常见的配角技巧2α=(α+β)+(α-β),α=(α+β)-β,β=α+β2-α-β2,α=α+β2+α-β2,α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β等. 考法(二) 三角公式中名的变换[典例] (2018·江苏高考)已知α,β为锐角,tan α=43,cos(α+β)=-55.(1)求cos 2α的值; (2)求tan(α-β)的值.[解] (1)因为tan α=43,tan α=sin αcos α,所以sin α=43cos α .因为sin 2α+cos 2α=1, 所以cos 2α=925, 所以cos 2α=2cos 2α-1=-725.(2)因为α,β 为锐角,所以α+β∈(0,π). 又因为cos(α+β)=-55,所以α+β∈⎝⎛⎭⎫π2,π. 所以sin(α+β)=1-cos 2(α+β)=255, 所以tan(α+β)=-2. 因为tan α=43,所以 tan 2α=2tan α1-tan 2α=-247.所以tan(α-β)=tan [2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β)=-211.[解题技法] 三角函数名的变换技巧明确各个三角函数名称之间的联系,常常用到同角关系、诱导公式,把正弦、余弦化为正切,或者把正切化为正弦、余弦.[题组训练]1.已知tan θ+1tan θ=4,则cos 2⎝⎛⎭⎫θ+π4=( ) A.12 B.13C.14D.15解析:选C 由tan θ+1tan θ=4,得sin θcos θ+cos θsin θ=4,即sin 2θ+cos 2θsin θcos θ=4,∴sin θcos θ=14,∴cos 2⎝⎛⎭⎫θ+π4=1+cos ⎝⎛⎭⎫2θ+π22=1-sin 2θ2=1-2sin θcos θ2=1-2×142=14. 2.(2018·济南一模)若sin ⎝⎛⎭⎫A +π4=7210,A ∈⎝⎛⎭⎫π4,π,则sin A 的值为( ) A.35 B.45C.35或45D.34解析:选B ∵A ∈⎝⎛⎭⎫π4,π,∴A +π4∈⎝⎛⎭⎫π2,5π4, ∴cos ⎝⎛⎭⎫A +π4=- 1-sin 2⎝⎛⎭⎫A +π4=-210, ∴sin A =sin ⎣⎡⎦⎤⎝⎛⎭⎫A +π4-π4 =sin ⎝⎛⎭⎫A +π4cos π4-cos ⎝⎛⎭⎫A +π4sin π4=45. 3.已知sin α=-45,α∈⎣⎡⎦⎤3π2,2π,若sin (α+β)cos β=2,则tan(α+β)=( ) A.613 B.136C .-613D .-136解析:选A ∵sin α=-45,α∈⎣⎡⎦⎤3π2,2π, ∴cos α=35.又∵sin (α+β)cos β=2,∴sin(α+β)=2cos [(α+β)-α].展开并整理,得65cos(α+β)=135sin(α+β),∴tan(α+β)=613. [课时跟踪检测]A 级——保大分专练1.sin 45°cos 15°+cos 225°sin 165°=( ) A .1 B.12C.32D .-12解析:选B sin 45°cos 15°+cos 225°sin 165°=sin 45°·cos 15°+(-cos 45°)sin 15°=sin(45°-15°)=sin 30°=12.2.若2sin x +cos ⎝⎛⎭⎫π2-x =1,则cos 2x =( ) A .-89B .-79C.79D .-725解析:选C 因为2sin x +cos ⎝⎛⎭⎫π2-x =1,所以3sin x =1,所以sin x =13,所以cos 2x =1-2sin 2x =79.3.(2018·山西名校联考)若cos ⎝⎛⎭⎫α-π6=-33,则cos ⎝⎛⎭⎫α-π3+cos α=( ) A .-223B .±223C .-1D .±1解析:选C cos ⎝⎛⎭⎫α-π3+cos α=12cos α+32sin α+cos α=32cos α+32sin α=3cos ⎝⎛⎭⎫α-π6=-1. 4.tan 18°+tan 12°+33tan 18°tan 12°=( ) A. 3 B. 2 C.22D.33解析:选D ∵tan 30°=tan(18°+12°)=tan 18°+tan 12°1-tan 18°tan 12°=33,∴tan 18°+tan 12°=33(1-tan 18°tan 12°),∴原式=33. 5.若α∈⎝⎛⎭⎫π2,π,且3cos 2α=sin ⎝⎛⎭⎫π4-α,则sin 2α的值为( ) A .-118 B.118C .-1718D.1718解析:选C 由3cos 2α=sin ⎝⎛⎭⎫π4-α,可得3(cos 2α-sin 2α)=22(cos α-sin α),又由α∈⎝⎛⎭⎫π2,π,可知cos α-sin α≠0,于是3(cos α+sin α)=22,所以1+2sin αcos α=118,故sin 2α=-1718.6.已知sin 2α=13,则cos 2⎝⎛⎭⎫α-π4=( ) A .-13B.13C .-23D.23解析:选D cos 2⎝⎛⎭⎫α-π4=1+cos ⎝⎛⎭⎫2α-π22=12+12sin 2α=12+12×13=23. 7.已知sin ⎝⎛⎭⎫π2+α=12,α∈⎝⎛⎭⎫-π2,0,则cos ⎝⎛⎭⎫α-π3的值为________. 解析:由已知得cos α=12,sin α=-32,所以cos ⎝⎛⎭⎫α-π3=12cos α+32sin α=-12. 答案:-128.(2019·湘东五校联考)已知sin(α+β)=12,sin(α-β)=13,则tan αtan β=________.解析:因为sin(α+β)=12,sin(α-β)=13,所以sin αcos β+cos αsin β=12,sin αcos β-cos αsin β=13,所以sin αcos β=512,cos αsin β=112,所以tan αtan β=sin αcos βcos αsin β=5.答案:59.(2017·江苏高考)若tan ⎝⎛⎭⎫α-π4=16,则tan α=________.解析:tan α=tan ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4 =tan ⎝⎛⎭⎫α-π4+tan π41-tan ⎝⎛⎭⎫α-π4tan π4=16+11-16=75.答案:7510.化简:sin 235°-12cos 10°cos 80°=________.解析:sin 235°-12cos 10°cos 80°=1-cos 70°2-12cos 10°sin 10°=-12cos 70°12sin 20°=-1.答案:-1 11.已知tan α=2. (1)求tan ⎝⎛⎭⎫α+π4的值; (2)求sin 2αsin 2α+sin αcos α-cos 2α-1的值.解:(1)tan ⎝⎛⎭⎫α+π4=tan α+tanπ41-tan αtanπ4=2+11-2=-3. (2)sin 2αsin 2α+sin αcos α-cos 2α-1 =2sin αcos αsin 2α+sin αcos α-(2cos 2α-1)-1=2sin αcos αsin 2α+sin αcos α-2cos 2α=2tan αtan 2α+tan α-2=2×222+2-2=1.12.已知α,β均为锐角,且sin α=35,tan(α-β)=-13.(1)求sin(α-β)的值; (2)求cos β的值.解:(1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0,∴-π2<α-β<0.∴sin(α-β)=-1010.(2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45.∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β) =45×31010+35×⎝⎛⎭⎫-1010=91050. B 级——创高分自选1.(2019·广东五校联考)若tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),|θ|<π2,则tan 2θ=________. 解析:∵tan ⎝⎛⎭⎫π2-θ=4cos(2π-θ),∴cos θsin θ=4cos θ, 又∵|θ|<π2,∴sin θ=14,∴0<θ<π2,cos θ=154,tan θ=sin θcos θ=115,从而tan 2θ=2tan θ1-tan 2θ=157. 答案:1572.(2018·江西新建二中期中)已知A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35,则cos ⎝⎛⎭⎫A -π3=________. 解析:因为A ,B 均为锐角,cos(A +B )=-2425,sin ⎝⎛⎭⎫B +π3=35, 所以π2<A +B <π,π2<B +π3<π,所以sin(A +B )=1-cos 2(A +B )=725,cos ⎝⎛⎭⎫B +π3=- 1-sin 2⎝⎛⎭⎫B +π3=-45, 可得cos ⎝⎛⎭⎫A -π3=cos ⎣⎡⎦⎤(A +B )-⎝⎛⎭⎫B +π3=-2425×⎝⎛⎭⎫-45+725×35=117125. 答案:1171253.(2019·石家庄质检)已知函数f (x )=sin ⎝⎛⎭⎫x +π12,x ∈R. (1)求f ⎝⎛⎭⎫-π4的值; (2)若cos θ =45,θ∈⎝⎛⎭⎫0,π2,求f ⎝⎛⎭⎫2θ-π3的值. 解:(1)f ⎝⎛⎭⎫-π4=sin ⎝⎛⎭⎫-π4+π12=sin ⎝⎛⎭⎫-π6=-12.(2)f ⎝⎛⎭⎫2θ-π3=sin ⎝⎛⎭⎫2θ-π3+π12=sin ⎝⎛⎭⎫2θ-π4=22(sin 2θ-cos 2θ). 因为cos θ=45,θ∈⎝⎛⎭⎫0,π2,所以sin θ=35, 所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f ⎝⎛⎭⎫2θ-π3=22(sin 2θ-cos 2θ)=22×⎝⎛⎭⎫2425-725=17250.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和与差的正弦、余弦和正切公式及二倍角公式专题复习
一、知识要点:
1.两角和与差的正弦、余弦、正切公式
(1)():sin()sin cos cos cos S αβαβαβαβ±±=±; (2)():cos()cos cos sin sin C αβαβαβ
αβ±±=;
(3)()tan tan :tan()1tan tan T αβαβ
αβαβ
±±±=
.
2.二倍角的正弦、余弦、正切公式
(1)(2):sin 22sin cos S αααα=α;
(2)2
222(2):cos2cos sin 2cos 112sin C αααααα=-=-=-;
(3)(2)22tan :tan 21tan T αα
αα
=
-.
3.常用的公式变形
(1)tan tan tan()(1tan tan )αβαβαβ±=±;
(2)2
21cos 21cos 2cos
,sin 22
αα
αα+-=
=

(3)2
2
1sin 2(sin cos ),1sin 2(sin cos )αααααα+=+-=-,sin cos )4
π
ααα±=
±.
4.函数()sin cos (,f x a x b x a b =+为常数),可以化为())),f x x x ϕθ=+=-其中
()ϕθ可由,a b 的值唯一确定.
两个技巧
(1)拆角、拼角技巧:(2)化简技巧:切化弦、“1”的代换等. 【双基自测】
1.(人教A 版教材习题改编)下列各式的值为
1
4
的是( ). A .2
2cos 112
π
- B .20
12sin 75- C.020
2tan 22.51tan 22.5- D .00
sin15cos15 2.0000
sin 68sin 67sin 23cos68-=( )
A ..1 3.(2011·福建)若tan 3,α=则
2sin 2cos α
α
=( ).
A .2
B .3
C .4
D .6
4.已知2
sin ,3
α=
则cos(2)πα-=( ).
A ..19- C.1
9
5.(2011·辽宁)设1
sin(
),43
π
θ+=则sin 2θ= ( ). A .79-
B .19- C.19 D.7
9
6.0
tan 20tan 4020tan 40+=________.
7.若2
tan(
),45
π
α+=则tan α=t________. 考向一 三角函数式的化简与求值
[例1] 求值:①0000
cos15sin15cos15sin15
-+;②00
sin 50(1)+. [例2] 已知函数()2sin(),36
x f x x R π
=-
∈. (1)求5(
)4f π的值;(2)设106,0,,(3),(32),22135f f ππαβαβπ⎡⎤
∈+=+=⎢⎥⎣⎦
求cos()αβ+的值.
练习:
1.(1)已知3sin ,(,),52πααπ=

则cos 2)4
απα=+________.
(2)(2012·济南模拟)已知α
为锐角,cos α=
则tan(2)4
π
α+=( ) A .3- B .17-
C .4
3
- D .7- 2.已知41
,(0,
),sin ,tan(),253
π
αβααβ∈=-=-求cos β的值. 考向二 三角函数的求角问题
[例3] 已知113cos ,cos(),714ααβ=
-=且0<β<α<2
π
,求β. 练习:
1.已知,(,),22
ππ
αβ∈-
且tan ,tan αβ
是方程240x ++=的两个根,求αβ+的值. 2.(2011·南昌月考)已知11
tan(),tan ,27
αββ-=
=-且,(0,),αβπ∈α,β∈(0,π),求2αβ-的值. 3.已知锐角,αβ
满足sin ,510
αβ=
=求:①αβ-的值;②αβ+的值. 考向三 三角函数公式的逆用与变形应用
[例4] (2013·德州一模)
已知函数2
()2cos
2
x
f x x =. (1)求函数()f x 的最小正周期和值域;(2)若α为第二象限角,且1(),33f π
α-=求
cos 21cos 2sin 2α
αα
+-的值. 练习:
1.(1)(2012·赣州模拟)
已知sin()cos 6

αα+
+=
则sin()3
π
α+的值为( ) A.
45 B.3
5
C.2
D.5
(2)若3,4
π
αβ+=
则(1tan )(1tan )αβ--的值是________.
考向四 角的变换
[例5] (1)(2012·温州模拟)若
sin cos 3,tan()2,sin cos αα
αβαα
+=-=-则tan(2)βα-=_______.
(2)(2012·江苏高考)设α为锐角,若4cos(),65π
α+
=则sin(2)12
π
α+=________. 练习:
1.设21tan(),tan(),544παββ+=
-=则tan()4
π
α+=( ) A.
1318 B.1322 C.322 D.1
6
2.已知0<β<
2π<α<,π且12
cos(),sin(),2925
βααβ-=--=求cos()αβ+的值. 考向五 三角函数的综合应用
【例4】►(2010·北京)已知函数2
()2cos 2sin f x x x =+.
(1)求()3
f π
的值;(2)求()f x 的最大值和最小值.
【训练4】 已知函数()2sin()cos f x x x π=-.
(1)求()f x 的最小正周期;(2)求()f x 在区间[,]62
ππ
-
上的最大值和最小值.
作业:
1.(2012·南昌二模)已知cos()6
x π
-
=则cos cos()3
x x π
+-的值是( )
A .3-
B .3
± C .1- D .1± 2. (2012·乌鲁木齐诊断性测验)已知α满足1sin ,2α=
那么sin()sin()44
ππ
αα+-=( ) A.
14 B .14- C.12 D .1
2
-
3. (2012·东北三校联考)设,αβ都是锐角,且3
cos ),5
ααβ=
+=则cos β=( )
4.已知α为第二象限角,sin cos αα+=
则cos2α=( )
A .3-
.9- C.9 D.3
5.已知sin()sin 3
52
π
π
αα+
+=-
-<α<0,求cos α的值. 6.求值:①000000sin 7sin8cos15cos 7sin8sin15+-;②000
2cos10sin 20sin 70
-;③000
cos 20cos 40cos80. 7.已知:0<α<
2π<β<4
,cos()45
ππβ-=. (1)求sin 2β的值;(2)求cos()4
π
α+
的值.
8.已知,αβ都是锐角,且45
cos ,cos(),513
ααβ=
+=-求cos β的值. 9.(2012·衡阳模拟) 函数()cos()sin(),2
2
x
x f x x R π=-+-∈.
(1)求()f x 的最小正周期;(2)若()(0,),2f παα=
∈求tan()4
π
α+的值.
10.(2012·北京西城区期末)已知函数2
()sin cos ,[
,]2
f x x x x x π
π=+∈.
(1)求()f x 的零点;(2)求()f x 的最大值和最小值.
11.已知3335
(
,
),(0,),cos(),sin(),44445413
ππ
πππαβαβ∈∈-=+=求sin()αβ+的值. 12.已知1
tan(
)2,tan 4
2
π
αβ+==
. ①求tan 2α的值;②求
sin()2sin cos 2sin sin cos()
αβαβ
αβαβ+-++的值.。

相关文档
最新文档