完整word版,《高三复习课——椭圆解题案例》教学设计
高三复习教案椭圆
高三复习教案椭圆(总10页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除椭圆【2013年高考会这样考】1.考查椭圆的定义及利用椭圆的定义解决相关问题.2.考查椭圆的方程及其几何性质.3.考查直线与椭圆的位置关系.【复习指导】1.熟练掌握椭圆的定义及其几何性质会求椭圆的标准方程.2.掌握常见的几种数学思想方法——函数与方程、数形结合、转化与化归等.体会解析几何的本质问题——用代数的方法解决几何问题.基础梳理1.椭圆的概念在平面内到两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.集合P ={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形续表范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a一条规律椭圆焦点位置与x2,y2系数间的关系:给出椭圆方程x2m+y2n=1时,椭圆的焦点在x轴上⇔m>n>0;椭圆的焦点在y轴上⇔0<m<n.两种方法(1)定义法:根据椭圆定义,确定a2、b2的值,再结合焦点位置,直接写出椭圆方程.(2)待定系数法:根据椭圆焦点是在x轴还是y轴上,设出相应形式的标准方程,然后根据条件确定关于a、b、c的方程组,解出a2、b2,从而写出椭圆的标准方程.三种技巧(1)椭圆上任意一点M到焦点F的所有距离中,长轴端点到焦点的距离分别为最大距离和最小距离,且最大距离为a+c,最小距离为a-c.(2)求椭圆离心率e时,只要求出a,b,c的一个齐次方程,再结合b2=a2-c2就可求得e(0<e<1).(3)求椭圆方程时,常用待定系数法,但首先要判断是否为标准方程,判断的依据是:①中心是否在原点;②对称轴是否为坐标轴.双基自测1.(人教A版教材习题改编)若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ).+y 216=1 +y 216=1+y 216=1或x 216+y 225=1 D .以上都不对2.(2012·合肥月考)设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( ).A .4B .5C .8D .103.(2012·兰州调研)“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的 ( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.(2012·淮南五校联考)椭圆x 29+y 24+k =1的离心率为45,则k 的值为( ).A .-21B .21C .-1925或21 或215.(2011·全国新课标)在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________.考向一 椭圆定义的应用【例1】►(2011·青岛模拟)已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.【训练1】 已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ). A .2 3 B .6 C .4 3D .12考向二 求椭圆的标准方程【例2】►(1)求与椭圆x 24+y 23=1有相同的离心率且经过点(2,-3)的椭圆方程.(2)已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5、3,过P 且与长轴垂直的直线恰过椭圆的一个焦点,求椭圆的方程.[审题视点] 用待定系数法求椭圆方程,但应注意椭圆的焦点位置是否确定. 解 (1)由题意,设所求椭圆的方程为x 24+y 23=t (t >0),∵椭圆过点(2,-3),∴t =224+-323=2, 故所求椭圆标准方程为x 28+y 26=1.(2)设所求的椭圆方程为 x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),由已知条件得⎩⎨⎧2a =5+3,2c 2=52-32, 解得a =4,c =2,b 2=12. 故所求方程为x 216+y 212=1或y 216+x 212=1. 运用待定系数法求椭圆标准方程,即设法建立关于a 、b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为mx 2+ny 2=1(m >0,n >0,m ≠n ),由题目所给条件求出m 、n 即可.【训练2】 (1)求长轴是短轴的3倍且经过点A (3,0)的椭圆的标准方程.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点是F (1,0),若椭圆短轴的两个三等分点M ,N 与F构成正三角形,求椭圆的方程.解 (1)若椭圆的焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆过点A (3,0),∴9a 2=1,a =3, ∵2a =3·2b ,∴b =1,∴方程为x 29+y 2=1.若椭圆的焦点在y 轴上,设椭圆方程为y 2a 2+x 2b2=1(a >b >0),∴椭圆过点A (3,0),∴02a 2+9b 2=1,∴b =3, 又2a =3·2b ,∴a =9,∴方程为y 281+x 29=1.综上所述,椭圆方程为x 29+y 2=1或y 281+x 29=1.(2)由△FMN 为正三角形,则c =|OF |=32|MN |=32×23b =1.∴b = 3.a 2=b 2+c 2=4.故椭圆方程为x 24+y 23=1.考向三 椭圆几何性质的应用【例3】►(2011·北京)已知椭圆G :x 24+y 2=1.过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.[审题视点] (1)由椭圆方程可直接求出c ,从而求出离心率.(2)可设出直线方程与椭圆方程联立得一元二次方程,由弦长公式列出|AB |长的表达式从而求出|AB |的最大值. 解 (1)由已知得,a =2,b =1,所以c =a 2-b 2= 3.所以椭圆G 的焦点坐标为(-3,0),(3,0),离心率为e =c a =32. (2)由题意知,|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32,此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ).由⎩⎨⎧y =k x -m ,x24+y 2=1.得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2. 又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1, 即m 2k 2=k 2+1 所以|AB |=x 2-x 12+y 2-y 12=1+k 2[x 1+x 22-4x 1x 2]=1+k 2⎣⎢⎡⎦⎥⎤64k 4m 21+4k 22-44k 2m 2-41+4k 2=43|m |m 2+3. 由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞).因为|AB |=43|m |m 2+3=43|m |+3|m |≤2,且当m =±3时,|AB |=2,所以|AB |的最大值为2. (1)求椭圆的离心率,其法有三:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率. (2)弦长公式l =1+k 2|x 1-x 2|=1+k 2x 1+x 22-4x 1x 2.【训练3】 (2012·武汉质检)在Rt △ABC 中,AB =AC =1,如果一个椭圆通过A ,B 两点,它的一个焦点为点C ,另一个焦点在AB 上,则这个椭圆的离心率为________. 解析设另一个焦点为F ,如图所示,∵|AB |=|AC |=1,△ABC 为直角三角形, ∴1+1+2=4a ,则a =2+24,设|FA |=x ,∴⎩⎪⎨⎪⎧x +1=2a ,1-x +2=2a ,∴x =22,∴1+⎝ ⎛⎭⎪⎫222=4c 2,∴c =64,e =c a =6- 3.考向四 椭圆中的定值问题【例4】►(2011·重庆)如图,椭圆的中心为原点O ,离心率e =22, 一条准线的方程为x =2 2.(1)求该椭圆的标准方程;(2)设动点P满足:O P→=OM→+2ON→,其中M、N是椭圆上的点,直线OM与ON的斜率之积为-12.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标;若不存在,说明理由.解(1)e=ca=22,a2c=22,解a=2,c=2,b2=a2-c2=2,故椭圆的标准方程为x24+y22=1.(2)设P(x,y),M(x1,y1),N(x2,y2),则由O P→=OM→+2ON→得(x,y)=(x1,y1)+2(x2,y2)=(x1+2x2,y1+2y2),即x=x1+2x2,y=y1+2y2.因为点M、N在椭圆x2+2y2=4上,所以x21+2y21=4,x22+2y22=4,故x2+2y2=(x21+4x22+4x1x2)+2(y21+4y22+4y1y2)=(x21+2y21)+4(x22+2y22)+4(x1x2+2y1y2)=20+4(x1x2+2y1y2).设k OM,k ON分别为直线OM,ON的斜率,由题设条件知k OM·k ON=y1y2x1x2=-12,因此x1x2+2y1y2=0,所以x2+2y2=20.所以P点是椭圆x2252+y2102=1上的点,设该椭圆的左、右焦点为F1,F2,则由椭圆的定义|PF1|+|PF2|为定值.又因c=252-102=10,因此两焦点的坐标为F1(-10,0),F2(10,0).本题考查椭圆方程的求法和椭圆中的定点、定值等综合问题,可先设出动点P,利用设而不求的方法求出P点的轨迹方程,从而找出定点.【训练4】(2010·安徽)如图,已知椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=1 2 .(1)求椭圆E的方程;(2)求∠F 1AF 2的角平分线所在直线l 的方程.解 (1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),e =12,即c a =12,得a =2c ,得b 2=a 2-c 2=3c 2.∴椭圆方程可化为x 24c 2+y 23c 2=1.将A (2,3)代入上式,得1c 2+3c 2=1,解得c =2,∴椭圆E 的方程为x 216+y 212=1. (2)由(1)知F 1(-2,0),F 2(2,0),∴直线AF 1的方程为y =34(x +2),即3x -4y +6=0直线AF 2的方程为x =2.由点A 在椭圆E 上的位置知,直线l 的斜率为正数. 设P (x ,y )为l 上任一点,则|3x -4y +6|5=|x -2|. 若3x -4y +6=5x -10,得x +2y -8=0(因其斜率为负,舍去). 于是,由3x -4y +6=-5x +10,得2x -y -1=0, ∴直线l 的方程为2x -y -1=0.规范解答16——怎样求解与弦有关的椭圆方程问题【问题研究】 求椭圆的方程是高考的重中之重,几乎每年必考,有的是以选择题或填空题的形式出现,多数以解答题的形式出现.虽然考向二中学习了求椭圆方程的方法,但在解答题中往往结合弦长等知识来求椭圆方程,难度中等偏上.【解决方案】 解决这类问题首先根据题设条件设出所求的椭圆方程,再由直线与椭圆联立,结合根与系数的关系及弦长公式求出待定系数.【示例】►(本题满分12分)(2011·天津)设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2.点P (a ,b )满足|PF 2|=|F 1F 2|. (1)求椭圆的离心率e ;(2)设直线PF 2与椭圆相交于A ,B 两点,若直线PF 2与圆(x +1)2+(y -3)2=16相交于M ,N 两点,且|MN |=58|AB |,求椭圆的方程.第(1)问由|PF 2|=|F 1F 2|建立关于a 、c 的方程;第(2)问可以求出点A 、B 的坐标或利用根与系数的关系求|AB |均可,再利用圆的知识求解.[解答示范] (1)设F 1(-c,0),F 2(c,0)(c >0),因为|PF 2|=|F 1F 2|,所以a -c2+b 2=2c .整理得2⎝ ⎛⎭⎪⎫c a 2+ca-1=0,得c a =-1(舍),或c a =12.所以e =12.(4分)(2)由(1)知a =2c ,b =3c ,可得椭圆方程为3x 2+4y 2=12c 2,直线PF 2的方程为y =3(x -c ).A 、B 两点的坐标满足方程组⎩⎪⎨⎪⎧3x 2+4y 2=12c 2,y =3x -c .消去y 并整理,得5x 2-8cx =0.解得x 1=0,x 2=85c .(6分)得方程组的解为⎩⎪⎨⎪⎧x 1=0,y 1=-3c ,⎩⎨⎧x 2=85c ,y 2=335c .不妨设A ⎝ ⎛⎭⎪⎫85c ,335c ,B (0,-3c ),所以|AB |=⎝ ⎛⎭⎪⎫85c 2+⎝ ⎛⎭⎪⎫335c +3c 2=165c .(8分) 于是|MN |=58|AB |=2c . 圆心(-1,3)到直线PF 2的距离d =|-3-3-3c |2=3|2+c |2.(10分)因为d 2+⎝ ⎛⎭⎪⎫|MN |22=42,所以34(2+c )2+c 2=16. 整理得7c 2+12c -52=0.得c =-267(舍),或c =2. 所以椭圆方程为x 216+y 212=1.(12分)用待定系数法求椭圆方程时,可尽量减少方程中的待定系数(本题只有一个c ),这样可避免繁琐的运算而失分.【试一试】 已知直线y =-12x +2和椭圆x 2a 2+y 2b 2=1(a >b >0)相交于A 、B 两点,M 为线段AB 的中点,若|AB |=25,直线OM 的斜率为12,求椭圆的方程.[尝试解答] 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0).1111 则⎩⎪⎨⎪⎧ x 21a 2+y 21b2=1, ①x 22a 2+y 22b 2=1, ②①-②得:y 2-y 1x 2-x 1=-b 2a 2x 1+x 2y 1+y 2. ∴k AB =-b 2a 2×x 0y 0=-12.③ 又k OM =y 0x 0=12,④ 由③④得a 2=4b 2. 由⎩⎪⎨⎪⎧ y =-12x +2,x 24b 2+y 2b 2=1得:x 2-4x +8-2b 2=0,∴x 1+x 2=4,x 1·x 2=8-2b 2.∴|AB |=1+k 2|x 1-x 2|=52x 1+x 22-4x 1x 2=5216-32+8b 2=528b 2-16=2 5. 解得:b 2=4.故所求椭圆方程为:x 216+y 24=1.。
高考数学椭圆总复习教案-精选教学文档
高考数学椭圆总复习教案【小编寄语】查字典数学网小编给大家整理了高考数学椭圆总复习教案,希望能给大家带来帮助!高三数学理科复习39-----椭圆【考纲要求】掌握椭圆的定义、标准方程及简单几何性质【自学质疑】1.椭圆的长轴位于轴,长轴长等于 ;短轴位于轴,短轴长等于 ;焦点在轴上焦点坐标分别是和 ;离心率 ;左顶点坐标是下顶点坐标是 ;椭圆上点的横坐标的范围是,纵坐标的范围是 ; 的取值范围是。
2.如果方程表示焦点在轴上的椭圆,则实数的取值范围为。
3.若是椭圆的两个焦点,过作直线交椭圆于两点,则的周长等于 .4.(1)若椭圆短轴一端点到椭圆焦点的距离是该点到同侧长轴一端点距离的倍则椭圆的离心率。
(2)若椭圆的长轴长不大于短轴长的倍则椭圆的离心率。
(3)若椭圆短轴长的两个三等分点与两个焦点构成一个正方形则椭圆的离心率。
【例题精讲】1.设椭圆中心在原点,对称轴在坐标轴,且长轴是短轴的2倍。
又点在椭圆上,求这个椭圆方程。
2.如图,设椭圆的焦点为与,为该椭圆上的点,且。
求证:的面积。
3.若椭圆上存在一点,使,求椭圆离心率的范围。
【矫正巩固】1.若椭圆的离心率,则的值是。
2.椭圆上的点到左焦点的距离,到右焦点的距离3.设中心在原点,焦点在轴上的椭圆左顶点为,上顶点为,若左焦点到直线的距离是,则椭圆的离心率。
4.已知椭圆,为左顶点,为短轴一顶点,为右焦点,且,则此椭圆离心率为 .5.已知是椭圆上一点,与两焦点连线互相垂直,且到两焦点的距离分别为,则椭圆方程为。
6.点是椭圆的一点,与是它的两个焦点,若 ,则的面积为。
7.如图,在中, , ,一个椭圆以为一个焦点,以分别作为长、短轴的一个端点,以原点作为中心,求该椭圆的方程。
【迁移应用】1. 椭圆的右焦点为,点在椭圆上,如果线段的中点在轴上,那么点的纵坐标是2. 若椭圆的离心率为,则实数。
3. 椭圆上一点到两个焦点的距离之积为,则取最大值时,点的坐标是4. 已知椭圆的中心在原点,离心率为,一个焦点是,( 是大于0的常数)(1)求椭圆的方程;(2)若椭圆过点,求的值。
高三一轮复习----椭圆 教学设计
高三一轮复习——椭圆教学设计考情分析:根据我个人对这几年高考试题的分析,这几年对圆锥曲线的考查形式为:(1)2014年小题——5椭圆9双曲线;大题——抛物线(2)2015年小题——11双曲线;大题——椭圆(3)2016年小题——11椭圆;大题——抛物线小题:双> 椭> 抛小结大题:椭≈抛>双学习目标:1、掌握椭圆的定义,几何图形,标准方程及简单的几何性质。
2、理解数形结合的思想。
(一)体验[知识梳理]1.椭圆的概念在平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做_____.这两个定点叫做椭圆的_____,两焦点间的距离叫做椭圆的_____.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数.(1)若_____,则集合P为椭圆;(2)若_____,则集合P为线段;(3)若_____,则集合P为空集.2.椭圆的标准方程和几何性质(二)质疑 如何求椭圆的标准方程 ?例1 (2015·洛阳市高三年级统考)已知中心在原点的椭圆C 的右焦点为F (15,0),直线y =x 与椭圆的一个交点的横坐标为2,则椭圆方程为( )A.x 216+y 2=1 B .x 2+y 216=1 C.x 220+y 25=1 D .x 25+y 220=1 解析: (1)依题意,设椭圆方程为x 2a 2+y 2b2=1(a >b >0),则有⎩⎪⎨⎪⎧22a 2+22b 2=1a 2-b 2=15,由此解得a 2=20,b 2=5,因此所求的椭圆方程为x 220+y 25=1. (三)练习:1、(2015·江苏常州调研)若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.2、(2015·广东卷)已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9解析:1、由已知得⎩⎪⎨⎪⎧5-k >0k -3>05-k ≠k -3,解得3<k <5且k ≠4.2、依题意有25-m 2=16,∵m >0,∴m =3.选B. (四) 椭圆的几何性质 质疑 如何求椭圆的离心率?例2 (2014·江西卷)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D ,若AD ⊥F 1B ,则椭圆C 的离心率等于________.解析: 法一:不妨设A 在x 轴上方,由于AB 过F 2且垂直于x 轴,因此可得A ⎝⎛⎭⎫c ,b2a ,B ⎝⎛⎭⎫c ,-b 2a ,由OD ∥F 2B ,O 为F 1F 2的中点可得D ⎝⎛⎭⎫0,-b 22a ,所以AD →=⎝⎛⎭⎫-c ,-3b 22a ,F 1B →=⎝⎛⎭⎫2c ,-b 2a ,又AD ⊥F 1B ,所以AD →·F 1B →=-2c 2+3b 42a 2=0,即3b 4=4a 2c 2,又b 2=a 2-c 2,所以可得3(a 2-c 2)=2ac ,两边同时除以a 2,得3e 2+2e -3=0,解得e =33或-3,又e ∈(0,1),故椭圆C 的离心率为33. 法二:连接AF 1,∵OD ∥AB ,O 为F 1F 2的中点, ∴D 为BF 1的中点. 又AD ⊥BF 1,∴|AF 1|=|AB |. ∴|AF 1|=2|AF 2|.设|AF 2|=n ,则|AF 1|=2n ,|F 1F 2|=3n . ∴e =c a =|F 1F 2||AF 1|+|AF 2|=3n 3n =33.生成解题思路:数形结合——(1)代数法;(2)几何法. 变式:(2016·新课标全国卷 理11)已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,A ,B 分别为C 的左,右顶点,P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( ). A .1/3 B .1/2 C .2/3D .3/4拓展(2015·福建卷)已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A.⎝⎛⎦⎤0,32 B .⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D .⎣⎡⎭⎫34,1解析: 根据椭圆的对称性及椭圆的定义可得A ,B 两点到椭圆左、右焦点的距离为4a =2(|AF |+|BF |)=8,所以a =2.又d =|3×0-4×b |32+-42≥45,所以1≤b <2,所以e =c a =1-b 2a 2=1-b 24.因为1≤b <2,所以0<e ≤32,故选A.课堂小结 1.椭圆的概念; 2.椭圆的标准方程;3椭圆的几何性质:椭圆的几何性质常涉及一些不等关系,例如对椭圆x 2a 2+y 2b 2=1(a >b >0)有-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求与椭圆有关的一些量的范围,或者求这些量的最大值或最小值时,经常用到这些不等关系. 课后作业1.设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点为F 1,F 2,P 是椭圆C 上的一点,∠F 1P F 2=90º,求椭圆离心率的取值范围.2.(2014·辽宁五校联考)椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆M上任一点,且|PF 1→|·|PF 2→|的最大值的取值范围是[2c 2,3c 2],其中c =a 2-b 2.则椭圆M 的离心率e 的取值范围是( ) A.⎣⎡⎦⎤33,22 B .⎣⎡⎭⎫22,1 C.⎣⎡⎭⎫33,1 D .⎣⎡⎭⎫13,12板书设计。
椭圆复习课(第一课时)学案-2025届高三数学一轮复习
椭圆复习课(第一课时)学习目标知识与技能:掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).过程与方法:通过例题的研究,进一步掌握椭圆的简单应用.理解数形结合的思想. 情态与价值:引发学生学习和使用数学知识的兴趣,发展创新精神,培养实事求是、理论与实际相结合的科学态度和科学道德.教学过程一、知识梳理1、定义:平面内到两个定点21F F ,的距离之 等于常数( )的点的 轨迹叫椭圆.2、椭圆的标准方程和几何性质标准方程22221(0)x y a b a b +=>> )0(12222>>=+b a b x a y 图 像范围 -a ≤x ≤a -b ≤y ≤b -a ≤x ≤a -b ≤y ≤b对称性 对称轴:坐标轴; 对称中心:原点顶点坐标()0,1a A - ()0,2a A ()b B -,01 ()b B ,01()a A -,01 ()a A ,02 ()0,1b B - ()0,2b B焦点坐标 ()0,1c F - ()0,2c F()c F -,01 ()c F ,02轴长 长轴长2a ,短轴长2b焦距 c F F 221=a,b,c 关系222b a c +=亲,表格中有数处错误,你能一一找出吗?离心率1>=ac e(1)动点P 到两定点A (–2,0),B(2,0)的距离之和为4,则点P 的轨迹是椭圆.( )(2)若椭圆1ky 4x 22=+的焦距是22,则k=2. ( )三、能力提升考点一 椭圆的定义及其标准方程例1:已知椭圆以坐标轴为对称轴,求分别满足下列条件的椭圆的标准方程.(1)一个焦点为(2,0),离心率为 ;(2)过 ()23,N 1,6M ,),(-两点.直击高考已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,离心率为33,过2F 的直线L 交C 于A ,B 两点,若B AF 1∆的周长为43,则C 的方程为( )A.12y 3x 22=+B. 1y 3x 22=+ C. 18y 12x 22=+ D. 14y 12x 22=+变式提升:设21F F ,分别是椭圆116y 25x 22=+的左、右焦点,P 为椭圆上一点,M 是P F 1的中点,|OM| =3,则P 点到椭圆左焦点的距离为 ( )A.4B.3C.2D.521=e X YPO xyBOA1F1F2F2FM考点二、椭圆的几何性质例2、已知椭圆C: 1b y a x 2222=+(a>b>0)的左右焦点为21F F ,,P 是椭圆短轴的一个端点,且21PF PF ⊥,则椭圆的离心率为 .变式提升椭圆C :1by a x 2222=+(a >b >0)的左、右焦点分别为21F F ,,焦距为2c ,若直线y=3(x+c )与椭圆C 的一个交点M 满足12212F MF F MF ∠=∠,则该椭圆的离心率等于 .互动探究已知椭圆C: 1by a x 2222=+(a>b>0)的左右焦点为21F F ,,M 为椭圆上一点,021=•M F M F ,则椭圆离心率的范围是 .XYMO1F2FYOXP1F2F探究思考1)本题中若P 点在椭圆内部,其他条件不变,试求之。
高中椭圆知识教案模板详细
教学目标:1. 知识与技能:理解椭圆的定义,掌握椭圆的标准方程及其推导方法,能熟练运用椭圆的性质解决实际问题。
2. 过程与方法:通过观察、分析、归纳等过程,培养学生自主学习、合作探究的能力。
3. 情感态度与价值观:激发学生对数学学科的兴趣,培养学生严谨、求实的科学态度。
教学重点:1. 椭圆的定义及其标准方程2. 椭圆的性质及应用教学难点:1. 椭圆标准方程的推导2. 椭圆的性质在实际问题中的应用教学准备:1. 多媒体课件2. 教学模型(如椭圆模型、坐标纸等)3. 练习题教学过程:一、导入1. 提问:什么是圆锥曲线?请同学们举例说明。
2. 引出椭圆的概念,介绍椭圆在生活中的应用。
二、新课讲授1. 椭圆的定义- 介绍椭圆的定义:平面内到定点F1、F2的距离之和等于定长的动点M的轨迹。
- 分析定义中的关键词:定点、定长、动点、轨迹。
- 通过动画演示椭圆的形成过程,帮助学生直观理解椭圆的定义。
2. 椭圆的标准方程- 推导椭圆的标准方程:首先,介绍椭圆的两种标准方程,然后分别推导两种方程。
- 强调方程中的参数a、b、c的含义,以及a、b、c之间的关系。
- 通过实例,让学生理解标准方程在实际问题中的应用。
3. 椭圆的性质- 介绍椭圆的几何性质,如长轴、短轴、焦距、离心率等。
- 通过实例,让学生掌握椭圆的性质,并能熟练运用性质解决实际问题。
三、课堂练习1. 基本概念练习:巩固椭圆的定义、标准方程、性质等基本概念。
2. 应用题练习:运用椭圆的性质解决实际问题,如计算椭圆的面积、体积等。
四、课堂小结1. 回顾本节课所学内容,强调椭圆的定义、标准方程、性质等关键知识点。
2. 指出学生在学习过程中存在的问题,并提出改进建议。
五、课后作业1. 完成课后习题,巩固所学知识。
2. 预习下一节课内容,为深入学习做好准备。
教学反思:本节课通过引入实际问题,引导学生逐步深入理解椭圆的定义、标准方程、性质等知识点。
在教学过程中,注重培养学生的自主学习、合作探究的能力,激发学生对数学学科的兴趣。
最新椭圆(高三复习课教案)
椭圆(高三复习课)阜阳三中谭含影一、教学内容分析圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算,并且为复习双曲线和抛物线奠定了基础。
二、学生学习情况分析本班是普通文科班,此课之前,学生已经学习过相关内容。
此时,学生已有一定的学习基础和学习兴趣。
总体上来讲,由于学生应用数学知识的意识不强,创造力较弱,分析问题不透彻,知识体系不完整,使得学生在对椭圆定义的理解及其标准方程的灵活运用上有一定的难度。
因此根据尝试教学法,教学过程中遵循“练习探索——自主复习——课堂研究——巩固运用”的四个要素,侧重学生的“练” 、“思”、“究” 的自主学习。
通过学生的“练” 、“ 思”、“究” ,再到教师的“讲” ,使学生的学习达到“探索有所得,研究获本质” 。
三、教学目标1、知识与能力:能用自己的语言描述椭圆的定义;准确地写出椭圆两种形式的标准方程;能根据椭圆的定义及标准方程画出椭圆的几何图形;并概括出椭圆的简单几何性质。
2、过程与方法:通过了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;理解数形结合的思想,并能用数形结合的思想结合椭圆的有关性质,解决椭圆的简单应用问题。
3、情感、态度与价值观:通过与同学、老师的交流、合作与探究,体会合作学习的乐趣;通过对椭圆的定义、几何图形、基本性质的探索,体会椭圆的几何图形与方程之间的相互联系和相互转化的规律,感受数学的严谨性;逐步形成细心观察、认真分析、善于总结的良好思维习惯。
四、教学重点与难点教学重点:1、掌握椭圆的定义,几何图形,标准方程及简单的几何性质。
2、了解椭圆的简单应用。
教学难点:椭圆的定义和简单几何性质的应用,理解数形结合的思想。
五、教学过程1、知识梳理构建网络问题1平面内与两个定点F「F2的距离之和为常数的点的轨迹是什么常数大于\F1F2 |时,点的轨迹是椭圆常数等于\F1F2 \时,点的轨迹是线段F1F2常数小于\ F1F2 \时,点的轨迹不存在F! F2问题2:平面内到定点 F 与到定直线l 的距离之比为常数的点的轨迹是椭圆吗? 常数e(0<e<1)点的轨迹是椭圆2 2 2 2字 卡 T , 合 ¥ 冷,(a >b > 0)分别表示中心在原点,焦点在 问题4:椭圆的几何性质有哪些?问题3:椭圆的标准方程的两种形式是什么?x 轴和y 轴上的椭圆2、要点训练知识再现例1设椭圆的两个焦点分别为F i、F2 ,过F2作椭圆长轴的垂线交椭圆于点P,若厶F1PF2为等腰直角三角形,求椭圆的离心率。
高三数学 椭圆复习教案高三全册数学教案
芯衣州星海市涌泉学校椭圆课题椭圆备注三维目的掌握椭圆的定义和根本性质,能解决常规小题和解答题培养学生数形结合的思想重点椭圆的定义和根本性质,能解决常规小题和解答题难点灵敏处理椭圆的定义和根本性质辨析(1)平面内与两个定点F1,F2的间隔之和等于常数的点的轨迹是椭圆.(×)(2)椭圆上一点P与两焦点F1,F2构成△PF1F2的周长为2a+2c(其中a为椭圆的长半轴长,c为椭圆的半焦距).(√)(3)椭圆的离心率e越大,椭圆就越圆.(×)(4)方程mx2+ny2=1(m>0,n>0,m≠n)表示的曲线是椭圆.(√)(5)+=1(a≠b)表示焦点在y轴上的椭圆.(×)(6)+=1(a>b>0)与+=1(a>b>0)的焦距一样.(√)考点自测1.椭圆+=1的焦距为4,那么m等于()A.4 B.8C.4或者者8 D.122.中心在原点的椭圆C的右焦点为F(1,0),离心率等于,那么C的方程是()A.+=1B.+=1C.+=1D.+=13.设P是椭圆+=1上的点,假设F1、F2是椭圆的两个焦点,那么△PF1F2的周长为________.4.椭圆+=1(a>b>0)的两焦点为F1、F2,以F1F2为边作正三角形,假设椭圆恰好平分正三角形的另两条边,那么椭圆的离心率为________.知识梳理1.椭圆的概念平面内与两个定点F1,F2的间隔的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的间隔叫做椭圆的焦距.2.椭圆的标准方程和几何性质点P(x0,y0)和椭圆的关系(1)点P(x0,y0)在椭圆内⇔0+0<1.(2)点P(x0,y0)在椭圆上⇔0+0=1.(3)点P(x0,y0)在椭圆外⇔0+0>1.例题选讲题型一椭圆的定义及标准方程例1(1)圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,且点N(2,0),线段AN的垂直平分线交MA于点P,那么动点P的轨迹是()A.圆B.椭圆C.双曲线D.抛物线(2)椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点P(3,0),那么椭圆的方程为________________.(3)椭圆的中心在原点,以坐标轴为对称轴,且经过两点P1(,1)、P2(-,-),那么椭圆的方程为________.变式训练(1)过点(,-),且与椭圆+=1有一样焦点的椭圆的标准方程为________.(2)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左,右焦点,过点F1的直线交椭圆E于A,B两点.假设|AF1|=3|F1B|,AF2⊥x轴,那么椭圆E的方程为______________________.题型二椭圆的几何性质例2如图,在平面直角坐标系xOy中,F1,F2分别是椭圆+=1(a>b>0)的左,右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)假设点C的坐标为,且BF2=,求椭圆的方程;(2)假设F1C⊥AB,求椭圆离心率e的值.变式训练(1)点F1,F2是椭圆x2+2y2=2的两个焦点,点P是该椭圆上的一个动点,那么|+|的最小值是() A.0B.1 C.2D.2(2)椭圆C:+=1(a>b>0)的左焦点为F,椭圆C与过原点的直线相交于A,B两点,连接AF,BF.假设|AB|=10,|AF|=6,cos∠ABF=,那么C的离心率e=________.例3椭圆+=1(a>b>0)的一个顶点为B(0,4),离心率e=,直线l交椭圆于M,N两点.(1)假设直线l的方程为y=x-4,求弦MN的长.(2)假设△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.变式训练设F1,F2分别是椭圆C:+=1(a>b>0)的左,右焦点,M是C上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)假设直线MN的斜率为,求C的离心率;(2)假设直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.高考链接过点M(1,1)作斜率为-的直线与椭圆C:+=1(a>b>0)相交于A,B两点,假设M是线段AB的中点,那么椭圆C的离心率等于________.(2)椭圆+=1(a>b>0)的左、右焦点分别为F1(-c,0)、F2(c,0),假设椭圆上存在点P使=,那么椭圆的离心率的取值范围为______.。
高三数学第一轮复习教案第50课时—椭圆(学案)
高三数学第一轮复习讲义(50)椭 圆一.复习目标:熟练掌握椭圆的定义、标准方程、简单的几何性质及参数方程.二.知识要点:1.椭圆的定义(1)第一定义: .(2)第二定义: .2.标准方程: .3.几何性质: .4.参数方程 .三.课前预习:1.设一动点P 到直线3x =的距离与它到点(1,0)A 的距离之比为3,则动点P 的轨迹方程是 ( )()A 22132x y += ()B 22132x y -= ()C 22(1)132x y ++= ()D 22123x y += 2.曲线192522=+y x 与曲线)9(192522<=-+-k k y k x()A 有相等的长、短轴 ()B ()C 有相等的离心率 ()D 3.已知椭圆的长轴长是短轴长的3方程是 .4.底面直径为12cm 的圆柱被与底面成30该椭圆的长轴长 ,短轴长 5.已知椭圆22221(0)x y a b a b +=>>的离心率为35针方向旋转2π后,所得新椭圆的一条准线方程是 ;新椭圆方程是 .四.例题分析:例1.设,A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例2.已知椭圆22221(0)x y a b a b+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若α=∠21F PF ,β=∠21F PF ,求证:离心率2cos 2cos βαβα-+=e ; (2)若θ221=∠PF F ,求证:21PF F ∆的面积为2tan b θ⋅.例3.设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q,若22||2||QF PF =-2PF 的方程. 五.课后作业: 班级 学号 姓名1.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若1230F PF ∠=,则12F PF ∆的面积等于 ( )()A 3316 ()B )32(4- ()C )32(16+ ()D 16 2.已知椭圆22221(0)x y a b a b+=>>的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB,则椭圆的离心率为 ( )()A ()B ()C 12 ()D 453. 椭圆C 与椭圆14)2(9)3(22=-+-y x ,关于直线0x y +=对称,则椭圆C 的方程是___________________.4.到两定点12(3,0),(9,0)F F 的距离和等于10的点的轨迹方程是 .5.已知椭圆19822=++y a x 的离心率21=e ,则a 的值等于 . 6.如图,PMN ∆中,1tan 2PMN ∠=,tan 2PNM ∠=-,PMN ∆面积为1,建立适当的坐标系,求以M 、N 为焦点,经过点P 的椭圆方程.7.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点, O 是椭圆的中心,求证:OM AB k k ⋅为定值.8.已知椭圆13422=+y x ,能否在此椭圆位于y 轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点12,F F 距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由.M NP经典语录1、最疼的疼是原谅,最黑的黑是背叛。
第五高三数学 椭圆的综合应用公开课复习教案
城东蜊市阳光实验学校第五中学高三数学椭圆的综合应用公开课复习教案教学目的:理解和深化认识椭圆的定义和椭圆的性质;会利用椭圆的定义和性质解椭圆的简单综合应用题。
教学重点、难点:利用椭圆的定义和性质求解椭圆的综合题教学方法:讲练结合教学过程:一、【课堂练习】例1在平面直角坐标系xoy 中,椭圆C 的中心为原点,焦点F1,F2在x 轴上,离心率为2,过点F1的直线 l 交椭圆C 于A,B 两点,且2ABF ∆的周长为16,那么椭圆C 的方程为【变】在平面直角坐标系xoy 圆C 的中心为原点,焦点在坐标轴上,离心率为2.抛物线24y x =的焦点为F ,点P 是抛物线与椭圆C 的公一一共点,且PF=3,那么椭圆C 的方程为_________.例2椭圆224x y +=1的左顶点为A ,过A 作两条互相垂直 的弦AM AN 、交椭圆于M N 、两点,当直线AM 的斜率变化时,直线MN 过x 轴上一定点P ,那么P 的坐标是 椭圆:224x y +=1的左顶点为A ,过A 作两条互相垂直的弦 AM AN 、交椭圆于M N 、两点,当直线AM 的斜率变化时,求证:直线MN 过x 轴上一定点P 。
例3点O 和点1F 分别是椭圆13422=+y x 的中心和左焦点,点P 是椭圆上任意一点,那么1OP F P ⋅的最大值是【练习】椭圆C :2221x y m+=〔常数1m >〕,点P 是椭圆C 上的一动点,点M 是椭圆的右顶点,定点A (2,0)。
(1) 假设3m =,求线段PA 的最值。
(2) 假设线段PA 的最小值为线段MA ,求m 的取值范围。
1、椭圆m x 2+n y 2=1与双曲线p x 2-q y 2=1〔m ,n ,p ,q∈R+〕有一一共同的焦点F1、F2,P 是椭圆和双曲线的一个交点,那么|PF1|·|PF2|=.答案:p m -提示:令F1为左焦点,F2为右焦点,P 为第一象限内点, 那么⎪⎩⎪⎨⎧=-=+p PF PF m PF PF 2||||2||||2121,∴p m PF PF -=⋅||||21.点评:涉及到椭圆、双曲线的焦点弦、焦半径——常常用到相关定义或者者第二定义.2、椭圆G :+=1(a >b >0),直线l 为圆O :x2+y2=b2的一条切线,且经过椭圆的右焦点,记椭圆离心率为e .〔1〕假设直线l 的倾斜角为,求e 的值;〔2〕是否存在这样的椭圆G ,使得原点O 关于直线l 的对称点恰好在椭圆G 上?恳求出e 的值;假设不存在,请说明理由.思路透析:〔1〕设椭圆的右焦点为〔c ,0〕,x =.那么直线l 的方程为y =(x -c)×tan,即x -y -c =0.因为直线l 与圆O 相切,所以圆心O 到直线l 的间隔=b ,即b =c .所以a2=b2+c2=c2,从而离心率e==.〔2〕假设存在.显然直线l的斜率不为0,不妨设直线l的方程为x=my+c,即x-my-c=0.因为直线l与圆O相切,所以圆心O到直线l的间隔)=b,即m2=-1.…①设原点O关于直线l的对称点为O(x0,y0),那么=-m,,=m+c)),解得,,y0=-)).因为O′在椭圆G上,所以,a2)+,b2)=1,即+=1.…②将①代入②,化简,得b2=3c2.由①可得,此时m2=-1=-,不成立.点评:椭圆是否存在——“几何〞问题,转化为方程(组)是否有解——“代数〞问题,这正是解析几何中所表达的最根本的思想方法.。
椭圆(高三复习课教案)
椭 圆(高三复习课)阜阳三中 谭含影一、教学内容分析圆锥曲线是解析几何的主体内容,也是高中数学的重点内容,而椭圆是圆锥曲线的起始部分,通过本节课的学习,不但让学生对椭圆的知识结构有一个较清晰的认识,而且在处理问题时,让学生学会灵活运用定义,正确选用标准方程,恰当利用几何性质,合理的分析,准确的计算,并且为复习双曲线和抛物线奠定了基础。
二、学生学习情况分析本班是普通文科班,此课之前,学生已经学习过相关内容。
此时,学生已有一定的学习基础和学习兴趣。
总体上来讲,由于学生应用数学知识的意识不强,创造力较弱,分析问题不透彻,知识体系不完整,使得学生在对椭圆定义的理解及其标准方程的灵活运用上有一定的难度。
因此根据尝试教学法,教学过程中遵循“练习探索——自主复习——课堂研究——巩固运用”的四个要素,侧重学生的“练”、“思”、“究”的自主学习。
通过学生的“练”、“ 思”、“究” ,再到教师的“讲”, 使学生的学习达到“探索有所得,研究获本质”。
三、教学目标1、知识与能力:能用自己的语言描述椭圆的定义;准确地写出椭圆两种形式的标准方程;能根据椭圆的定义及标准方程画出椭圆的几何图形;并概括出椭圆的简单几何性质。
2、过程与方法:通过了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;理解数形结合的思想,并能用数形结合的思想结合椭圆的有关性质,解决椭圆的简单应用问题。
3、情感、态度与价值观:通过与同学、老师的交流、合作与探究,体会合作学习的乐趣;通过对椭圆的定义、几何图形、基本性质的探索,体会椭圆的几何图形与方程之间的相互联系和相互转化的规律,感受数学的严谨性;逐步形成细心观察、认真分析、善于总结的良好思维习惯。
四、教学重点与难点教学重点:1、掌握椭圆的定义,几何图形,标准方程及简单的几何性质。
2、了解椭圆的简单应用。
教学难点:椭圆的定义和简单几何性质的应用,理解数形结合的思想。
五、教学过程 1、知识梳理 构建网络问题1:平面内与两个定点F 1、F 2的距离之和为常数的点的轨迹是什么? 常数大于12||F F 时,点的轨迹是椭圆常数等于12||F F 时,点的轨迹是线段F 1F 2 常数小于12||F F 时,点的轨迹不存在问题2:平面内到定点F 与到定直线l 的距离之比为常数的点的轨迹是椭圆吗? 常数e (0<e <1)点的轨迹是椭圆问题3:椭圆的标准方程的两种形式是什么?12222=+b y a x , 12222=+ay b x , (a >b >0) 分别表示中心在原点,焦点在 x 轴和y 轴上的椭圆问题4:椭圆的几何性质有哪些?2、要点训练 知识再现例1 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,求椭圆的离心率。
(教案)椭圆(复习课)
椭圆【课题】椭圆【课型】高三复习课【授课教师】昆明市第24中学云付泽高考考情分析椭圆是高考必考内容之一,一般有两种考查方式:一是考查椭圆的定义、标准方程、焦点、离心率及其几何性质等自身的知识,题型以选择题或填空题为主;二是以椭圆为载体的解答题,多与代数、三角函数、数列、向量等知识相联系,常常作为压轴题,难度较大.教学目标1.掌握椭圆的定义,会用定义解题;2.掌握椭圆的标准方程及其简单的几何性质,熟练地进行基本量间,,,a b c e的互求,会3.根据所给的方程画出图形;4.掌握求椭圆的标准方程的基本步骤——①定型(确定它是椭圆);②定位(判断它的中心在原点、焦点在哪条坐标轴上);③定量(建立关于基本量的方程或方程组,解基本量,a b)4. 椭圆几何性质中相关结论的运用教学方法:自主学习,诱导探究式教学重点:1、椭圆的定义,标准方程和几何性质;2、利用椭圆性质解决一些问题。
教学难点:椭圆定义和几何性质的灵活应用教具准备: 多媒体电脑课件第 1 页共 4 页【教学过程】一、回顾知识、把握基础(完成学案自主梳理要点)二、典例分析考点一:椭圆的定义及应用例1、(1)已知12F F 、为两定点,21F F =4,动点M 满足421=+MF MF ,则动点M 的轨迹是 .(2) 设F 1、F 2为椭圆x 29+y 24=1的两个焦点,P 为其上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且|PF 1|>|PF 2|,求|PF 1||PF 2|的值.考点二:求椭圆的标准方程例2、已知椭圆以坐标轴为对称轴,求分别满足下列条件的椭圆的标准方程(1)已知椭圆的对称轴是坐标轴,O 为坐标原点,F 是一个焦点,A 是一个顶点,若椭圆的长轴长是6,且cos ∠OFA =23; (2)经过点P(-23,1),Q(3,-2)两点;(3)与椭圆 x 24+y 23=1有相同的离心率且经过点(2,-3); (4)椭圆过(3,0),离心率e =63第 3 页 共 4 页例3、椭圆)0(12222>>=+b a by a x 左、右焦点为F 1、F 2,P 是椭圆上一点,=∠21PF F 60°,21F PF ∆的面积为3,且离心率为21,求此椭圆的方程。
高三数学一轮复习椭圆教案
第一讲 椭圆一、考情分析解析几何是用代数的方法解决几何问题,体现了形数结合的思想,因而这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式和三角函数式的变形,这对学生能力的要求较高.“圆锥曲线”是解析几何的重点内容,特别是在对学生掌握坐标法的训练方面有着不可替代的作用.本讲主要是调动学生学习的主动性,注意交代知识的来龙去脉,教给学生解决问题的思路,帮助考生培养分析、抽象和概括等思维能力,掌握形数结合、函数与方程、化归与转化等数学思想,培养良好的个性品质,以及勇于探索、敢于创新的精神.二、知识归纳(一)椭圆的定义(1)第一定义:平面内与两个定点12F F 、的距离之和等于常数()1222||a a F F >的点的轨迹叫作椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.特征式:()121222||MF MF a a F F +=>.注:①若122||a F F <,则点的轨迹是线段12F F 的垂直平分线; ②若122||a F F =,则这样的点不存在.(2)第二定义:一动点到定点的距离和它到一条定直线l 的距 离的比是常数()01e ∈,,那么这个点的轨迹叫做椭圆.其中定点叫 做焦点,定直线叫做准线,常数e 就是离心率.特征式:()101M lMF e e d →=<<.(二)椭圆的方程(1)椭圆的标准式方程:①()()()222210x m y n a b ab--+=>>;(焦点在x 轴的平行线上,中心在()m n ,的椭圆方程) ②()()()222210y n x m a b a b --+=>>.(焦点在y 轴的平行线上,中心在()m n ,的椭圆方程) (2)椭圆的参数方程:①()2222cos 10sin x a x y a b y b a b ϕϕ=⎧⇔+=>>⎨=⎩;注:ϕ角不是NOM ∠.②()()()2222cos 10sin x m a x m y n a b y n b a b θθ=+--⎧⇔+=>>⎨=+⎩. P PF1F2F(3)椭圆的向量式方程:()121222||OM OF OM OF a a OF OF -+-=>-.(三)性质:对于椭圆()222210x y a b a b+=>>而言,①范围:a x a ≤≤-,b y b ≤≤-,椭圆落在x a y b =±=±,组成的矩形中.②对称性:图象既关于y 轴对称,又关于x 轴对称,也关于原点对称.原点叫椭圆的对称中心,简称中心.x 轴、y 轴叫椭圆的对称轴.③顶点:椭圆和对称轴的交点叫做椭圆的顶点.2(0)(0)A a A a -,,,,2(0)(0)B b B b -,,,;加两焦点12(0)(0)F c F c -,,,共有六个特殊点.21A A 叫椭圆的长轴,21B B 叫椭圆的短轴,长分别为22a b 、.a b 、分别为椭圆的长半轴长和短半轴长.④离心率:椭圆焦距与长轴长之比)01c e e e a =⇔=<<. 注:椭圆形状与e 的关系:01be a→→, ,椭圆变圆,直至成为极限位置的圆,此时也可认为圆为椭圆在0=e 时的特例;10be a→→, ,椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例.⑤椭圆的准线方程:对于12222=+by a x ,左准线21a l x c =-:;右准线22a l x c =:;对于12222=+bx a y ,下准线21a l y c =-:;上准线22a l y c =:.⑥焦准距:焦点到准线的距离c b c c a c c a p 2222=-=-=(焦参数). ⑦通径:经过焦点且垂直于长轴的弦称之为通径,长度为22b a.⑧焦半径公式:焦点在x轴上的椭圆的焦半径公式: 10MF a ex =+(左焦半径);20MF a ex =-(右焦半径); 焦点在y 轴上的椭圆的焦半径公式:10MF a ey =+(下焦半径);20MF a ey =-(上焦半径); (规律:左加右减,上减下加.)⑨焦点三角形:曲线上的点与焦点连线构成的三角形称焦点三角形;2cos 2tan2cos2S b e αβγαβ∆+==-;.(如何证明?) (四)椭圆系方程(焦点在x 轴的上,中心在原点)PF1F2αβγ(1)共焦点的椭圆系:()22221x y k c k k c +=>-;注:若20k c <<,则表示共焦点的双曲线系.(2)离心率相同的椭圆系:()22220x y a b λλ+=>.注:若()22220x y a bλλ-=≠,则表示共渐进线的双曲线系.三、精典例析 (一)活用定义例1:椭圆13610022=+y x 上有一点P它到椭圆的左准线距离为10,求点P到椭圆的右焦点的距离.解析:椭圆13610022=+y x 的离心率为54=e , 根据椭圆的第二定义得,点P到椭圆的左焦点距离为:810=e ; 再根据椭圆的第一定义得,点P到椭圆的右焦点的距离为20-8=12 . 例2:方程2x y =++表示什么曲线?解析:设()P x y ,=即:()P x y ,到定点()11A ,的距离与它到定直线20l x y ++=:的距离之比为2, 故原方程表示以定点()11A ,为焦点,以定直线20l x y ++=:为准线的椭圆.例3:定点()()22110A F ,,,是2218x y C m +=:的焦点,P是曲线C上的动点. (1)求2PA PF +的范围; (2)求23PA PF +的最小值.解析:∵()210F ,是2218x y C m +=:的焦点,∴22198x y C +=:.(1)211266PA PF PA a PF PA PF ⎡+=+-=+-∈-⎣.(2)237PA PF PA PD AH +=+≥=.引申:1P A PA PF AP d d e--+=+≥准线准线也适用于双曲线、抛物线. 例4:求过定点()12M ,,以y 轴为准线、离心率为12e =的椭圆的左顶点P的轨迹方程.解析:设()()00P x y F x y ,,,,则:0y y =,001322x x x x x -=⇒=()2213112224x y ⎛⎫=⇔-+-= ⎪⎝⎭, 故椭圆的左顶点P的轨迹方程是()22311224x y ⎛⎫-+-= ⎪⎝⎭.(二)焦半径公式例5:椭圆)0( 12222>>=+b a by a x ,其上一点()3P y ,到两焦点的距离分别是6.5和3.5,求椭圆方程.解析:由椭圆的焦半径公式,得:3 6.5153 3.52a e a e a e +=⎧⇒==⎨-=⎩,,解得: 22257524c b a c ==-=,. 故所求椭圆方程为:22412575x y +=. 例6:已知P为椭圆221259x y +=上的点,且P与12F F 、的连线互相垂直,求P. 解析:由题意,得:+-20)545(x 20)545(x +=641625720⨯=⇒x ,16812=y ,∴P的坐标为9999()())4444⎫--⎪⎪⎝⎭,,,,. 例7:椭圆22143x y +=上能否找到一点M ,使得M 到左准线的距离是它到两个焦点的距离的等比中项?解析:椭圆22143x y +=的左准线是4l x =-:,若存在,设()00M x y ,,则:()()()2000044a ex a ex x x +-=+⇒=-或0125x =-, ∵02x ≤,故不存在符合条件的点.例8:设P是以O为中心的椭圆上任意一点,2F 为右焦点,求证:以线段P F 2为直径的圆与以椭圆长轴为直径的圆内切.解析:设椭圆方程为()222210x y a b a b +=>>,焦半径P F 2是圆1O 的直径,则:11222222OO PF PF a PF a ==-=-,∴两圆半径之差等于圆心距.故以线段P F 2为直径的圆与以椭圆长轴为直径的圆内切.(三)焦点三角形曲线上的点与焦点连线构成的三角形称焦点三角形,与曲线三角形有关的问题常常借助正(余)弦定理,借助比例性质进行处理.例9:证明:椭圆的焦点三角形中,2cos2tan 2cos 2S b e αβγαβ∆+==-;. 解析:在12F F P ∆中,()()222212121212122cos 21cos F F PF PF PF PF PF PF PF PF γγ=+-=+-+,∴21221cos b PF PF γ=+,∴22121sin sin tan 21cos 2S PF PF b b γγγγ∆===+; 在12F F P ∆中,12211212sin sin sin sin sin sin F F PF PF F F PF PF γαβγαβ+==⇒=+, ∴()cossin sin 2sin sin sin sin cos 2c e a αβαβγαβαβαβ++====-++. 例10:已知椭圆的焦点是12(10)(10)F F -,,,,P为椭圆上一点,且12F F 是1PF 和2PF 的等差中项.(1)求椭圆的方程;(2)若点P在第三象限,且1223PF F π∠=,求12tan F PF ∠. F1F2αβγP解析:(1)∵12F F 是1PF 和2PF 的等差中项. ∴121224PF PF F F +==, ∴42=a ,∴b =13422=+yx . (2)设12F PF θ∠=,则213PF F πθ∠=-,∵)60sin(120sin sin 1221θθ-︒=︒=PF PF F F ,∴)60sin(120sin sin 2121θθ-︒+︒+=PF PF F F .∴25sin cos )sin θθθ=⇒=+∴sin 1cos 5θθ=+,故232tan =θ,1225tan tan 3125F PF θ∠===-. (四)对称问题例11:在直线40l x y +-=:任取一点,过M且以2211612x y +=的焦点为焦点作椭圆,问M在何处时,所作椭圆的长轴长最短?并求出此椭圆.解析:法1:待求椭圆的2c =,其焦点()()122020F F -,、,在直线40l x y +-=:的同侧,2F 关于直线40l x y +-=:的对称点为()242F ,1212122a MF MF F M MF F F ''=+=+≥,∴M为直线12320F F x y '-+=:与40l x y +-=:的 焦点时,所作椭圆的长轴长最短;320534022x y M x y -+=⎧⎛⎫⇒⎨⎪+-=⎝⎭⎩,,此时,12F F '= 故待求椭圆为:221106x y +=. 法2:设待求椭圆为:22221x y a b+=,则40l x y +-=:与椭圆相切于M点时,椭圆的长轴长最短,()()22222222224081601x y a b x a x b a x y ab +-=⎧⎪⇒+-+-=⎨+=⎪⎩, ∵40l x y +-=:与椭圆相切, ∴22016a b ∆=⇒+=,又∵224a b -=,∴22106a b ==,,故待求椭圆为:221106x y +=,此时,52x =,即5322M ⎛⎫⎪⎝⎭,. 例12:已知椭圆22143x y +=上有两个不同的点P Q 、关于直线4l y x m =+:对称,求m的取值范围.解析:法1:∵点P Q 、关于直线4l y x m =+:对称, ∴14PQ k =-,设14PQ l y x b =-+:,则: 22221413816480143y x b x bx b x y ⎧=-+⎪⎪⇒-+-=⎨⎪+=⎪⎩, 21304b ∆>⇒<,21212816481313b b x x x x -+==,, ∴12122242241313x x b by y b b ++=-+=-+=; ∵PQ 的中点4121313b b M ⎛⎫⎪⎝⎭,在直线4l y x m =+:上, ∴12213413134b b m b m ⎛⎫=⋅-+⇒=- ⎪⎝⎭;∴21313441313m m ⎛⎫⎛⎫-<⇔∈- ⎪ ⎪ ⎪⎝⎭⎝⎭,.故m的取值范围是1313⎛-⎝⎭,. 法2:设()()1122P x y Q x y ,、,,PQ 的中点()M x y ,,则:2211222212121212143313134344422x y x y y y x x y x x x y y x x x y y y⎧+=⎪⎪-⎪+=⇒=-⇔-=-⇒=⎨-⎪+=⎪⎪+=⎩, ∴PQ 的中点()M x y ,在3y x =上,则:()334y xM m m y x m=⎧⇒--⎨=+⎩,, ∵PQ 的中点()3M m m --,在椭圆22143x y +=内, ∴()()22314313m m m --+<⇒<.故m的取值范围是⎛ ⎝⎭.(五)范围(最值)问题例13:已知椭圆)0(12222>>=+b a by a x 与x 轴的正半轴交于A,O是原点,若椭圆上存在一点M,使0MA OM ⋅=,求椭圆离心率的取值范围.解析:()0A a ,,设()cos sin 02M a b πϕϕϕ⎛⎫<< ⎪⎝⎭,, ∵0MA OM ⋅=, ∴1cos sin cos sin -=⋅-ϕϕϕϕa b a a b ,∴222cos (1cos )cos 1110sin 1cos 1cos 2b a ϕϕϕϕϕϕ-⎛⎫===-∈ ⎪++⎝⎭,.故12e ⎛⎫= ⎪ ⎪⎝⎭. 例14:已知B是椭圆()222210x y C a b a b+=>>:的上顶点,P是椭圆上的动点,求BP 的最大值.解析:设()()cos sin 02P a b θθθπ≤≤,,则:()()()2222222222422222222cos sin 1sin sin 2sin sin 2sin sin BP a b b a b b b b a c b b a c c c θθθθθθθθ=+-=-+-+⎛⎫=--++=-++ ⎪⎝⎭ (1)若2201b e c <≤⇔≥时,2MAX a BP c =;(2)若2210b e c >⇔<<时,2MAX BP b =.综上,若22012b e c <≤⇔≥时,2MAX a BP c=;若22102b e c >⇔<<时,2MAX BP b =.(六)直线与椭圆相交问题例15:椭圆的中心是原点O,它的短轴长为,相应于焦点()()00F c c >,的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点. (1)求椭圆的方程及离心率;(2)若0OP OQ ⋅=,求直线PQ 的方程;(3)设()1AP AQ λλ=>,过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明:FM FQ λ=-.解析:(1)设椭圆的方程为(22221x y a a b+=>,则:222222()a c a c a c c c ⎧-=⎪⇒==⎨=-⎪⎩, 故椭圆的方程为22162x y +=,离心率e =.(2)解:(30)A ,,设直线PQ 的方程为(3)y k x =-,1122()()P x y Q x y ,,,,则:222222(3)(31)182760162y k x k x k x k x y =-⎧⎪⇒+-+-=⎨+=⎪⎩,∴212(23)0k k ∆=->⇒<< 又 2212122218276.3131k k x x x x k k -+==++,,∵1122(3)(3)y k x y k x =-=-,,∴2212121212(3)(3)[3()9]y y k x x k x x x x =--=-++,∵0OP OQ =,∴12120x x y y +=,∴22121212[3()9]051x x k x x x x k k ⎛+-++=⇒=⇒= ⎝⎭. 故直线PQ的方程为30x --=或30x +-=. (3)证明:1122(3,),(3,).AP x y AQ x y =-=-由已知得方程组()12122211222223(3)5111262162x x y yx y x x y λλλλλ-=-⎧⎪=⎪-⎪⇒=>⎨+=⎪⎪+=⎪⎩, ∵11(20)()F M x y -,,,, ∴()11211211(2)(3)1()()22FM x y x y y y λλλλλ--=--=-+-=-=-,,,,, 2221(2)()2FQ x y y λλ-=-=,,, ∴FM FQ λ=-.例16:椭圆E 的中心在原点O ,焦点在x轴上,离心率e =()10C -,的直线l 交椭圆于A 、B 两点,且满足()2CA BC λλ=≥.(1)若λ为常数,试用直线l 的斜率()0k k ≠表示三角形OAB ∆的面积; (2)若λ为常数,当三角形OAB ∆的面积取得最大值时,求椭圆E 的方程.解析:设椭圆方程为:()012222>>=+b a by a x ,∵32==a ce ,222c b a +=,∴223b a =, 故椭圆方程为:22233b y x =+.(1)直线)1(+=x k y l :交椭圆于()()1122A x y B x y ,,,,则:()222222221(31)633033y k x k x k x k b x y b⎧=+⎪⇒+++-=⎨+=⎪⎩, ∴2220(31)0k b b ∆>⇒-+>,且2122631k x x k +=-+;① 221223331k b x x k -=+;②∵BC CA λ=,∴ 121122121(1)(1)(1)x x x y x y y y λλλ+=-+⎧+=---⇒⎨=-⎩,,;③∴121121212221++=+=-=∆x k y y y S OABλλ, 由①③知:)13)(1(2122+-=+k x λ,∴)0(13112≠+⋅-+=∆k k k S OAB λλ. (2))(23211113111≥⋅-+≤+⋅-+=∆λλλλλkk S OAB , 当且仅当kk 13=时,即33±=k 时,S 取得最大值.当33±=k 时,代入①②中,得:222)1(13-+=λλb , 故所求为()2222132(1)x y k λλ++=≥-.(七)定点(值)问题例17:已知中心在原点,焦点在x 轴上的椭圆与直线10x y +-=相交于A 、B 两点,且满足0OA OB ⋅=(O为坐标原点).证明:满足上述条件的椭圆过定点22⎛ ⎝⎭,.解析:设椭圆的方程为:()()()2211222210x y a b A x y B x y a b+=>>,,,,,则:()()()22222222221021010x y a b x a x a b x y a b a b+-=⎧⎪⇒+-+-=⎨+=>>⎪⎩, ∴2201a b ∆>⇒+>,且()2221212222212a b a x x x x a b a b-+==++,,∵0OA OB ⋅=,∴()()121212120110x x y y x x x x +=⇔+--=,∴2222222221a b a b a b ⎝⎭⎝⎭+=⇔+=.故椭圆过定点⎝⎭.(八)综合应用例18:过椭圆()222210x y C a b a b+=>>:的中心的弦AB与x 轴所夹的锐角为α,将坐标平面沿x轴折成直二面角,求AB连线与x 轴成角.解析:作BC Ox 交椭圆于C,则BC 关于y 轴对称,AC 关于x 轴对称;翻折后,2ADC π∠=,据三垂线定理,知:BC AC ⊥,则AB连线与x 轴成角就等于ABC ∠;∵2cos BC OA α=,sin AC OA α=,∴tan tan 2AC ABC BCα∠==, 故AB连线与x 轴成角为arctan tan 2α⎛⎫⎪ ⎪⎝⎭. 四、课后反思.。
《高三复习课——椭圆解题案例》教学设计
《高三复习课——椭圆解题案例》教学设计(一)、教学内容分析解析几何属高考必考内容,考题涉及图形的几何性质及计算,主要考察数形结合思想,方程思想,对应和运动变化思想等数学思想,既要求学生的理解能力、分析问题的能力,同时对计算能力要求很高。
因此,本节课的教学重点是:根据题目条件进行“形”与“数”的相互转化,体会利用题目中隐含的几何特征解题比代数运算更简便。
(二)、教学对象分析我所教的班级为高三文科生,学生已学完高中数学的全部内容,初步掌握解析几何的基本概念、基本题型、基本方法,但他们的抽象思维能力比较差,不善于挖掘条件的几何特征,计算能力有待提高,优化计算意识不强。
因此,本节课的教学难点是:将条件进行“形”与“数”的相互转化 (三)、教学目标分析通过两道解析几何题目的处理,在“形”与“数”的相互转化过程中,进一步体会几何问题代数化的解析思想,强化充分挖掘题目中隐含的几何特征的意识,优化解题的方法,从而提高分析问题和解决问题的能力。
(四)、教学过程分析 OA OB OC +=,则11OA OB OC +=,所以212,y )x y +1=±OA OB OC+=,C是圆上一点OABC是菱形,所以0,0)到直线x y a+=OA OB OC+=的几何特征,四边形OC,且2 OD=2再挖掘直线x y a+=中a的几何特征:ODE中,OE=1,即得a根据对称性,a=-1±4】(向量法)将OA OB OC+=平方,求出1+1110F A F B ⋅=,11(1,F A x y =+,12(F B x =+11112()1F A F B x x x x ⋅=++++212121()1(x x x x k x =++++-2211(1)(1)(k x x k x =+-+222(1)1k =+⨯AOB的面积取最大值时,求直线3、已知椭圆x-F:(1)(Ⅰ)求椭圆《高三复习课——椭圆解题案例》教学反思北京十八中张艳铭我所教的班级为高三文科生,他们的抽象思维能力比较差,不善于挖掘条件的几何特征,对于一些题目有比较繁琐的计算,学生在计算时,通常是一算纠错,导致部分学生畏惧解析几何,做题时不敢想,不敢做。
高三数学第一轮复习教案第50课时—椭圆(学案)
高三数学第一轮复习讲义(50) 2004.11.4椭 圆一.复习目标:熟练掌握椭圆的定义、标准方程、简单的几何性质及参数方程.二.知识要点:1.椭圆的定义(1)第一定义: .(2)第二定义: .2.标准方程: .3.几何性质: .4.参数方程 .三.课前预习:1.设一动点P 到直线3x =的距离与它到点(1,0)A 的距离之比为3,则动点P 的轨迹方程是 ( )()A 22132x y += ()B 22132x y -= ()C 22(1)132x y ++= ()D 22123x y += 2.曲线192522=+y x 与曲线)9(192522<=-+-k k y k x ()A 有相等的长、短轴 ()B ()C 有相等的离心率 ()D 3.已知椭圆的长轴长是短轴长的3方程是 .4.底面直径为12cm 的圆柱被与底面成30o该椭圆的长轴长 ,短轴长 ,离心率为5.已知椭圆22221(0)x y a b a b +=>>的离心率为35针方向旋转2π后,所得新椭圆的一条准线方程是 ;新椭圆方程是 .四.例题分析:例1.设,A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例2.已知椭圆22221(0)x y a b a b+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若α=∠21F PF ,β=∠21F PF ,求证:离心率2cos 2cos βαβα-+=e ;(2)若θ221=∠PF F ,求证:21PF F ∆的面积为2tan b θ⋅.例3.设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q,若22||2||QF PF =-2PF 的方程. 五.课后作业: 班级 学号 姓名1.P 是椭圆14522=+y x 上的一点,1F 和2F 是焦点,若1230F PF ∠=o ,则12F PF ∆的面积等于 ( )()A 3316 ()B )32(4- ()C )32(16+ ()D 16 2.已知椭圆22221(0)x y a b a b+=>>的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB,则椭圆的离心率为 ( )()A 77- ()B 77+ ()C 12 ()D 453. 椭圆C 与椭圆14)2(9)3(22=-+-y x ,关于直线0x y +=对称,则椭圆C 的方程是___________________.4.到两定点12(3,0),(9,0)F F 的距离和等于10的点的轨迹方程是 .5.已知椭圆19822=++y a x 的离心率21=e ,则a 的值等于 . 6.如图,PMN ∆中,1tan 2PMN ∠=,tan 2PNM ∠=-,PMN ∆面积为1,建立适当的坐标系,求以M 、N 为焦点,经过点P 的椭圆方程.7.AB 是椭圆22221(0)x y a b a b+=>>中不平行于对称轴的一条弦,M 是AB 的中点, O 是椭圆的中心,求证:OM AB k k ⋅为定值.8.已知椭圆13422=+y x ,能否在此椭圆位于y 轴左侧的部分上找到一点M ,使它到左M NP,F F距离的等比中项,若能找到,求出该点的坐标,若不能找准线的距离为它到两焦点12到,请说明理由.。
《高三复习课——椭圆解题案例》教学设计
《高三复习课——椭圆解题案例》教学设计(一)、教学内容分析解析几何属高考必考内容,考题涉及图形的几何性质及计算,主要考察数形结合思想,方程思想,对应和运动变化思想等数学思想,既要求学生的理解能力、分析问题的能力,同时对计算能力要求很高。
因此,本节课的教学重点是:根据题目条件进行“形”与“数”的相互转化,体会利用题目中隐含的几何特征解题比代数运算更简便。
(二)、教学对象分析我所教的班级为高三文科生,学生已学完高中数学的全部内容,初步掌握解析几何的基本概念、基本题型、基本方法,但他们的抽象思维能力比较差,不善于挖掘条件的几何特征,计算能力有待提高,优化计算意识不强。
因此,本节课的教学难点是:将条件进行“形”与“数”的相互转化 (三)、教学目标分析通过两道解析几何题目的处理,在“形”与“数”的相互转化过程中,进一步体会几何问题代数化的解析思想,强化充分挖掘题目中隐含的几何特征的意识,优化解题的方法,从而提高分析问题和解决问题的能力。
(四)、教学过程分析 OA OB OC +=,则11OA OB OC +=,所以212,y )x y +1=±OA OB OC+=,C是圆上一点OABC是菱形,所以0,0)到直线x y a+=OA OB OC+=的几何特征,四边形OC,且2 OD=2再挖掘直线x y a+=中a的几何特征:ODE中,OE=1,即得a根据对称性,a=-1±4】(向量法)将OA OB OC+=平方,求出1+1110F A F B ⋅=,11(1,F A x y =+,12(F B x =+11112()1F A F B x x x x ⋅=++++212121()1(x x x x k x =++++-2211(1)(1)(k x x k x =+-+222(1)1k =+⨯AOB的面积取最大值时,求直线3、已知椭圆x-F:(1)(Ⅰ)求椭圆《高三复习课——椭圆解题案例》教学反思北京十八中张艳铭我所教的班级为高三文科生,他们的抽象思维能力比较差,不善于挖掘条件的几何特征,对于一些题目有比较繁琐的计算,学生在计算时,通常是一算纠错,导致部分学生畏惧解析几何,做题时不敢想,不敢做。
高中数学椭圆教案5篇
高中数学椭圆教案5篇以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。
而今的数学教学要求把学生的生活经验带到课堂,要求在简单的知识框架和结构上创造性的使用教材,让课堂变得有血有肉。
这里给大家分享一些关于高中数学椭圆教案,方便大家学习。
高中数学椭圆教案篇1一、教材分析(一)教材的地位和作用本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。
椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。
因此这节课有承前启后的作用,是本章和本节的重点内容之一。
(二)教学重点、难点1.教学重点:椭圆的定义及其标准方程2.教学难点:椭圆标准方程的推导(三)三维目标1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。
2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。
__3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。
二、教学方法和手段采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。
“授人以鱼,不如授人以渔。
”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。
三、教学程序1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。
2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。
3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。
4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。
5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。
高三数学一轮复习第1讲椭圆教案
第(1)课时课题:书法---写字基本知识课型:新授课教学目标:1、初步掌握书写的姿势,了解钢笔书写的特点。
2、了解我国书法发展的历史。
3、掌握基本笔画的书写特点。
重点:基本笔画的书写。
难点:运笔的技法。
教学过程:一、了解书法的发展史及字体的分类:1、介绍我国书法的发展的历史。
2、介绍基本书体:颜、柳、赵、欧体,分类出示范本,边欣赏边讲解。
二、讲解书写的基本知识和要求:1、书写姿势:做到“三个一”:一拳、一尺、一寸(师及时指正)2、了解钢笔的性能:笔头富有弹性;选择出水顺畅的钢笔;及时地清洗钢笔;选择易溶解的钢笔墨水,一般要固定使用,不能参合使用。
换用墨水时,要清洗干净;不能将钢笔摔到地上,以免笔头折断。
三、基本笔画书写1、基本笔画包括:横、撇、竖、捺、点等。
2、教师边书写边讲解。
3、学生练习,教师指导。
(姿势正确)4、运笔的技法:起笔按,后稍提笔,在运笔的过程中要求做到平稳、流畅,末尾处回锋收笔或轻轻提笔,一个笔画的书写要求一气呵成。
在运笔中靠指力的轻重达到笔画粗细变化的效果,以求字的美观、大气。
5、学生练习,教师指导。
(发现问题及时指正)四、作业:完成一张基本笔画的练习。
板书设计:写字基本知识、一拳、一尺、一寸我的思考:通过导入让学生了解我国悠久的历史文化,激发学生学习兴趣。
这是书写的起步,让学生了解书写工具及保养的基本常识。
基本笔画书写是整个字书写的基础,必须认真书写。
课后反思:学生书写的姿势还有待进一步提高,要加强训练,基本笔画也要加强训练。
总第(2)课时课题:书写练习1课型:新授课教学目标:1、教会学生正确书写“杏花春雨江南”6个字。
2、使学生理解“杏花春雨江南”的意思,并用钢笔写出符合要求的的字。
重点:正确书写6个字。
难点:注意字的结构和笔画的书写。
教学过程:一、小结课堂内容,评价上次作业。
二、讲解新课:1、检查学生书写姿势和执笔动作(要求做到“三个一”)。
2、书写方法是:写一个字看一眼黑板。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《高三复习课——椭圆解题案例》教学设计
(一)、教学内容分析
解析几何属高考必考内容,考题涉及图形的几何性质及计算,主要考察数形结合思想,方程思想,对应和运动变化思想等数学思想,既要求学生的理解能力、分析问题的能力,同时对计算能力要求很高。
因此,本节课的教学重点是:根据题目条件进行“形”与“数”的相互转化,体会利用题目中隐含的几何特征解题比代数运算更简便。
(二)、教学对象分析
我所教的班级为高三文科生,学生已学完高中数学的全部内容,初步掌握解析几何的基本概念、基本题型、基本方法,但他们的抽象思维能力比较差,不善于挖掘条件的几何特征,计算能力有待提高,优化计算意识不强。
因此,本节课的教学难点是:将条件进行“形”与“数”的相互转化
(三)、教学目标分析
通过两道解析几何题目的处理,在“形”与“数”的相互转化过程中,进一步体会几何问题代数化的解析思想,强化充分挖掘题目中隐含的几何特征的意识,优化解题的方法,从而提高分析问题和解决问题的能力。
(四)、教学过程分析
《高三复习课——椭圆解题案例》教学反思
北京十八中张艳铭我所教的班级为高三文科生,他们的抽象思维能力比较差,不善于挖掘条件的几何特征,对于一些题目有比较繁琐的计算,学生在计算时,通常是一算纠错,导致部分学生畏惧解析
几何,做题时不敢想,不敢做。
这就要求教师在备课时考虑不同层次的学生,题目设计要由
浅入深,层层递进,课堂上要留给学生思考和做题的时间。
在新课程背景下,如何有效利用课堂教学时间,提高学生在课堂上45分钟的学习效率,这对于每个教师来说,也是一个很重要的课题。
要达到课堂高效,除了教师要对教材有整体
的把握和认识外,还要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材
施教。
于是我选择了一道作业题作为引例,学生从最熟悉的题目入手,这样能激发他们学习
的兴趣,同时达到强化挖掘几何特征解题的意识的目的。
解析大题在高考中有着很重要的地位,由于近几年的高考题对于特殊多边形的形状、性质考查是热点,所以我选择的例题是
2014年西城二模的一道解析大题。
本题第一种情况用条件的几何特征解决非常简便,这和我
设计引例的目的是一致的;对于第二种情况,因为几何特征不明显,所以必须选择通过代数
运算才能解决。
这也是我这节课的教学目标。
但是在试讲中发现题目对于学生有些难度,于
是将题目条件稍作修改,让题目容易些,目的是让学生敢想、敢上手、敢算。
在处理第二问时,我选择让学生自由发挥,最后归纳总结解题方法,但由于比较紧张,语言还不够准确到位,总结提炼还没有到一定的高度.这在今后的教学中要有意识的锻炼自己。