数列不等式放缩技巧
放缩法技巧全总结(非常精辟,是尖子生解决高考数学最后
2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.1求的值;2求证:.解析:1因为,所以2因为,所以奇巧积累:1 2 34 5 6 7 8 9 10 11111213 14 15 15 例2.1求证: 2求证: 3求证: 4 求证:解析:1因为,所以2 3先运用分式放缩法证明出,再结合进行裂项,最后就可以得到答案4首先,所以容易经过裂项得到再证而由均值不等式知道这是显然成立的,所以例3.求证: 解析:一方面:因为,所以另一方面: 当时,,当时,,当时,,所以综上有例 4.2008年全国一卷设函数.数列满足..设,整数.证明:解析:由数学归纳法可以证明是递增数列,故存在正整数,使,则,否则若,则由知,,因为,于是例5.已知,求证: 解析:首先可以证明: 所以要证只要证:故只要证,即等价于,即等价于而正是成立的,所以原命题成立.例6.已知,,求证:.解析:所以从而例7.已知,,求证:证明: ,因为,所以所以二、函数放缩例8.求证: 解析:先构造函数有,从而因为所以例9.求证:1 解析:构造函数,得到,再进行裂项,求和后可以得到答案函数构造形式: ,例10.求证:解析:提示:函数构造形式:当然本题的证明还可以运用积分放缩如图,取函数,首先:,从而,取有,,所以有,,…,,,相加后可以得到:另一方面,从而有取有,,所以有,所以综上有例11.求证:和.解析:构造函数后即可证明例12.求证: 解析:,叠加之后就可以得到答案函数构造形式:加强命题例13.证明: 解析:构造函数,求导,可以得到:,令有,令有,所以,所以,令有,所以,所以例14. 已知证明.解析: ,然后两边取自然对数,可以得到然后运用和裂项可以得到答案放缩思路:。
高中数学数列与不等式综合问题放缩法
数列与不等式综合问题一裂项放缩 放缩法证明与数列求和有关的不等式中,很多时候要留一手,即采用有保留的方法,保留数列第一项或前两项,从数列第二项或第三项开始放缩,这样才不至于结果放得过大或过小。
常见裂项放缩技巧:例1 求证(1) 变式训练 [2016·湖南怀化质检]设数列{a n }的前n 项和为S n ,已知a 1=1,2S n n =a n +1-13n 2-n -23,n ∈N *. 求数列{a n }的通项(1)公式;(2)证明:1a 1+1a 2+…+1a n<74. [2014·广东高考]设各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足S 2n -(n 2+n -3)S n -3(n 2+n )=0,n ∈N *.(1)求a 1的值;(2)求数列{a n }的通项公式;(3)证明:对一切正整数n ,有1a 1?a 1+1?+1a 2?a 2+1?+…+1a n ?a n +1?<13. 二等比放缩(一般的,形如 的数列,求证都可以等比放缩)例4 [2014·课标全国卷Ⅱ]已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式; (2)证明1a 1+1a 2+…+1a n<32. 变式训练【2012.广东理】已知数列{a n }满足111221,1n n n s a a ++=-+=(1)求{a n }的通项公式2311111()21212121n n *++++<∈++++N 例求证:,n n n n n a a b a a b =-=-12111....nk a a a +++<231111+++......+12222n<(2)证明:对一切正整数n ,都有121113 (2)n a a a +++< 三伯努利不等式应用及推广 对任意的实数()()*1,11nx x nx n N >-+≥+∈有伯努利不等式 例:求证()1111+11+1....13521n ⎛⎫⎛⎫⎛⎫++> ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭变式训练【2008,福建理】已知函数()()ln 1f x x x =+-(1)求f (x )的单调区间(2)记f (x )在[]()0,n n N ∈上的最小值是n b ,令()ln 1n n a x b =+-,求证1313211224242......1...n na a a a a a a a a a a a -+++< 伯努利不等式的推广对任意的实数,例,【2006,江西理】已知数列{a n }满足()11133,2221n n n na a a n a n --==≥+- (1)已知数列{a n }满足(2)证明:对于一切正整数n ,不等式123...2!n a a a a n <恒成立。
高考数学数列放缩法技巧全总结
高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k.解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n,所以122121114212+=+-=-∑=n n n k n k(2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n n C T r rrn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n(2)求证:n n 412141361161412-<++++(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n n n -+<+++=++++ (3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n 解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}na 满足101a <<.1()n n af a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k ab+>.解析: 由数学归纳法可以证明{}na 是递增数列, 故 若存在正整数k m ≤, 使ba m≥, 则ba ak k ≥>+1,若)(k m b am≤<,则由101<<≤<b a am 知0ln ln ln 11<<≤b a a a a am m m,∑=+-=-=km mm k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是ba b a b a k a ak =-+≥+>+)(|ln |11111例5.已知mm m m m n S x Nm n ++++=->∈+321,1,,,求证:1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nxx n+≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m nk mnk m m k k k m k k1111111])1[()1(])1([,即等价于mm m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m 而正是成立的,所以原命题成立.例6.已知nn na 24-=,nnn a a a T +++=212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n n n n T -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n nnn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+因为 12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩 例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ .解析:先构造函数有xx x x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n n n +++--<++++cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n n n 例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xxx f ln )(=,得到22ln ln nn n n ≤αα,再进行裂项)1(1111ln 222+-<-≤n n nn n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:n n n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln)1ln(++-++=⋅⋅-⋅+=+ n nn n n n n n n函数构造形式:xx x x 11ln ,ln -><当然本题的证明还可以运用积分放缩如图,取函数xx f 1)(=,首先:⎰-<nin ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n nin --==<⋅--⎰FE D C BAn-inyxO取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->ni n ABDEx S 1,从而有)ln(ln |ln 11i n n x xi i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和en <+⋅⋅++)311()8111)(911(2 .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 函数构造形式:)0(13)1ln(1)0(132)1ln(>+>++⇔>+->+x x x x x x x (加强命题)例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n a a a n n +==+++证明2nae <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+,然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
放缩法技巧全总结.doc
..2011 高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩 例 1.(1) n2的值 ;(2) 求证 : n1 5 .求k 14k 2 1k 1 k23解析 :(1) 因为2211 , 所以n21 12n4n 2 1(2n 1)(2n 1)2n 1 2n 1k14k 2 1 2n 12 n 1(2)因为 11411, 所以 1 1 21 11152n1 2214 n 22n1 2n 1k 1k23 5 2n 1 2n 13 321nn4奇巧积累 :(1)1 4 42 11(2)1 21 1n24n24n22n 1C n11C n2( n 1)n( n 1)n( n 1)n(n 1)12n 1(3)Tr 1r1 n! 1 1 1 1 1 (r 2)C nr!( nr )! n rr! r ( r 1)r 1rn r(4)(1 1 ) n 1 1 1 1 115n 2 3 2 n(n 1)2(5)11 1(6)1 n 2n2 n(2n1) 2n1 2nn 2(7)2( n 1 n )1 2( nn 1) (8)2 1 11 1n2 n 1 2n3 2n(2 n 1) 2 n 1 (2n 3) 2n (9)1 1 1 1 , 1 1 1 1k (n 1 k) n 1 kk n 1 1 k ) k 1 n n 1 kn(n(10)n 1 1(11)12 22(n 1) ! n ! (n 1) !2( 2n 12n 1)n 2n1 2n 11 1nn22(11)2 n2n2 n2n 111(n 2 )(2n 1)2(2n1)( 2n 1) (2 n1)( 2 n2) (2 n 1)(2n 1 1) 2n 11 2 n1 (12)1 11111 n 3 n n2 n (n 1)(n 1)n( n 1) n (n 1) n 1 n 1 1 1 n 1 n 1 1 1n1 n 12 nn 1n1(13)(14)2 n 12 2n(3 1) 2n 3 3(2 n 1) 2n2n 1 2n1 2 n3 2n1 3k 2 11 (15)1 nn 1(n 2)k! (k1)!(k 2)! (k 1) ! (k2) !n( n1)(15)i 21 j 21i 2j 2ij 1ij(i j)( i 21j 2 1)i 2 1j 21. .下载可编辑 . ...例 2.(1) 求证: 11 1 1 71 (n2)325 2( 2n 1) 262( 2n 1)(2)求证:11 11 1 1 (3)求证 : 1 1 31 3 5 1 3 5 6 (2n 1)2n 1 14 16 364n 224n2 2 42 4 62 42n (4) 求证: 2( n1 1)1 1 12 ( 2n 1 1)13n2解析 :(1) 因为11111, 所以n11 1 1 1 1 11 ( ) 1 ( )(2 n 1) 2 (2n 1)(2ni 1 (2i1) 2 2 32n1) 2 2n 1 2n 12n 1 2 31(2) 11 1 1 1 (111) 1 (1 11 )416 3624 22 4 n4n2n(3) 先运用分式放缩法证明出1 3 5 (2 n 1) 1, 再结合2 4 62n2n 11 进行裂项 , 最后就可以得到答n 2 nn 2案(4) 首先再证1 2 , 所以容易经过裂项得到1 1 1 2( n 1 n )n2( n 1 1) 13nnn 12而由均值不等式知道这是显然成立的,1 2( 2n 12n1)2 22 n 12n 11 12 nnn22所以 11 1 12( 2n 1 1)2 3 n例3.求证:6n11 115( n 1)( 2n 1)4 9n 23解析 :一方面 : 因为 11411, 所以n11 2 111112 521 22k 1k23 52n 1 2n 13 3nn 24n12n 12n 14另一方面 : 11 1 1 11 1 1 11 n49n22 3 34n(n 1)n 1n1当 n3 时 , n(n 6n1) , 当 n 1时 , ( n 6n 1 1 1 1 ,n 1 1)(2n1)( 2n 1)4 9 n 2当 n2 时 ,6n11 1 1 ,(n1)(2n 1)4 9 n2所以综上有6n111 1 5(n 1)(2n1)4 9 n 23例 4.(2008 年全国一卷 ) 设函数 f ( x)x x ln x . 数列 a 满足 0a 1. a n 1 f (a n ).n1设 b ( a 1,1) ,整数 k ≥ a 1 b. 证明 : a k 1b .a 1 ln b解析 : 由数学归纳法可以证明a n 是递增数列 ,故 若存在正整数 m k , 使 a mb , 则 a k 1 a k b ,. .下载可编辑. ...若 a mb(m k) , 则由 0a 1 a mb 1知 a m ln a ma 1 ln a m a 1 lnb 0 ,k,a k 1 a k a k ln a k a 1a m ln a mm 1因为 k a m ln a m k( a 1 ln b ),于是a k 1 a 1k | a 1 ln b | a 1 (b a 1 ) bm 1例 5. 已知 n, m N , x1, S1m 2 m3 mn m , 求证 : n m 1 (m 1) S( n 1) m 1 1.mn解析 : 首先可以证明 :(1 x)n 1 nxn m 1 n m 1(n 1)m(n1) m 1 ( n 2 )m 11m 1 0n(k 1)m 1]所以要证1[k m 1k 1n m 1(m 1)S n ( n 1) m 1 1只要证 :nnn[ k m 1(k 1)m 1](m 1)k m (n 1)m 1 1 ( n 1) m 1n m 1 n m 1 (n 1)m 12m 1 1 m 1[( k 1) m 1 k m 1 ]k 1k 1k1故只要证 n[ k m 1 ( k 1)m 1 ](m 1)nk mn [( k 1) m 1 k m1 ],k 1k 1k1即等价于 k m 1 ( k1) m 1 (m 1)k m ( k 1) m 1k m ,即等价于 1 m 1 (1 1) m 1 ,1 m 1(1 1) m 1 而正是成立的 , 所以原命题成立 .kk kk例 6. 已知 a 4n2 n ,2n,求证: T 1 T 2 T 3T n3 .nT na 1 a 2a n2解析: T4142434n( 21222 n) 4(1 4 n) 2(1 2n)4(4 n1) 2(1 2n )n1 4 1 23所以2n2n2n3 2n32nT n4 (4n 1) 2 (1 2n )4 n 144n 124 n 13 2n 1 2 2 2 ( 2n ) 2 3 2n 12 2n 1 2 n 13 3 3 3332 n3 1 12 (2 2 n 1)( 2n 1) 2 2n 12n 1 1从而TTTTn3 1 1 1 11 131232 3 3 72n1 2n 1 12例 7. 已知 x1 , n( n 2k 1,kZ),求证:1111x n2k ,k Z)2 ( n 1 1)(n N*)n 1(n4x 2 x 34x 4 x 5 4x 2 n x 2 n 1证明 :1111 12 ,4x 2 n x 2 n 1 4 ( 2n 1)(2 n 1)44n 2144n 22 n 2 n因为2 n nn 1 , 所以 122n1 n )2 (4x 2 n x 2 n 12 nnn 1所以1112( n 1 1)( n N *)4x 2 x 34x 4 x 5 4x 2n x 2n 1二、函数放缩例 8. 求证:ln 2ln 3 ln 4 ln 3n 3n5n 6( n N * ) .2 3 43n6解析 : 先构造函数有 ln x x 1 ln x 1, 从而 ln 2ln 3 ln 4ln 3n3n111 )1n1 (nxx 2 34 2 333. .下载可编辑 . ...cause1 1 11 1 1 1 1 1 1 1 1 1 123 3n 2 345678 92n 2 n 13n5 3 3 9 9 3n 13n 15n 66 918 272 3 n 1 3n 6所以 ln 2 ln 3ln 4 ln 3 n 3 n5n 3n5n 62343n16 6例 9. 求证 :(1)ln 2ln 3ln n 2n 2 n 12,3n2(n(n 2)21)解析 : 构造函数ln x ,得到 ln nln n 2, 再进行裂项 ln n 21 1, 求和后可以得到答案f ( x)nn 2n 21211)xn n(n 函数构造形式 : ln x x 1, ln nn1(2)例 10. 求证:11 1 1 ln( n 1) 11 12 3n2 n解析 : 提示 : ln( n 1) lnn1 n n 12 lnn1 ln n1 ln 2n 1n n函数构造形式 :ln x x, ln x1 1yx当然本题的证明还可以运用积分放缩如图 , 取函数 f (x)1,xDE首先 : SABCFn1 , 从而 , 1i n1nln n ln( n i )F Cn i xnx ln x |n iA Bn iOn-inx取 i 1有,1ln n ln( n 1) ,n所以有1ln 2,1ln 3 ln 2, ,1ln n ln( n 1) ,1 ln( n 1) ln n ,相加后可以得到:23nn11 11ln( n 1)23n1另一方面 SABDEn1, 从而有1 i n1nln n ln( n i )xn ix ln x |n in in i取 i 1有 , 1ln n ln( n 1) ,n 1所以有ln( n 1) 111 , 所以综上有 11 1 ln( n 1) 111 2n 23 n 12n例 11. 求证: (1)(1) (1) e 和(1 1)(1 1 ) (1 1 )e .解析 : 构造函数后即可证明11 12!3!n!98132 n例 12.求证: (1 1 2) (1 2 3)2 n 3解析 :, 叠加之后就可以得到答[1 n(n 1)] eln[ n(n 1) 1]321n(n 1)案. .下载可编辑 . .函数构造形式 :3 ( x 0 ) 1 ln( 1 x)3 ( x 0) ln( x 1) 2x 1xx 1..( 加强命题 )例 13. 证明 : ln 2 ln 3ln 4 ln n n(n 1)(n N *, n1)345 n 14解析 : 构造函数 f ( x) ln( x 1) (x1) 1(x 1) , 求导 , 可以得到 :'( x)1 1 2x , 令 f '(x ) 0 有 1x 2 , 令 f ' (x )0 有 x 2,fxx 11所以f ( x)f (2)0 ,所以ln( x1) x2 , 令 x n 2 1 有 , ln n2n 2 1所以 ln nn1 , 所以 ln2 ln3 ln 4ln n n(n 1) (n N*, n 1)n 12345n 14例 14. 已知1,a n 1 (1 1 ) a n 1证明a ne 2 .a.n 2 n 2n解析 : an 1(1 1)a n 1 (111) a n ,1)1)n (n2 nn (n 2 n然后两边取自然对数, 可以得到11ln a n 1ln(1 n(n 1)2n)ln an然后运用 ln(1 x ) x 和裂项可以得到答案 )放缩思路: 21 1n )a n 1 1a n 1(1nln a n 1 ln(1n 2n 2 n)ln a nn2ln a n1 1 。
浅析用放缩法证明数列不等式的策略
浅析用放缩法证明数列不等式的策略
放缩法是一种常见的证明数列不等式的策略,在数学竞赛和数学研究中被广泛应用。
放缩法的基本思想是通过对数列的放缩,得到一个和原数列有关的数列,然后通过比较这两个数列的性质来证明原数列的不等式性质。
放缩法可以分为两种情况:上界放缩和下界放缩。
上界放缩即找到一个比原数列大的数列,而下界放缩则是找到一个比原数列小的数列。
根据具体的问题和数列的性质,可以选择合适的放缩方法。
对于上界放缩,一种常见的方法是通过迭代构造一个比原数列大的数列。
假设原数列为a_n,我们希望找到一个数列b_n满足b_n > a_n。
可以通过递推的方式定义数列b_n,即b_1, b_2, b_3, \ldots。
首先选择b_1 > a_1作为初始条件,然后通过递推关系b_{n+1} = f(b_n)构造数列b_n。
递推关系f(b_n)的具体选择需要根据问题的要求和数列的性质来确定。
一般来说,递推关系应该满足b_{n+1} > a_{n+1},即b_n比a_n要大。
放缩法的关键是构造合适的递推关系,具体的方法可以根据问题的要求来选择。
常见的递推关系有加减法、乘除法等。
证明数列不等式的关键在于比较两个数列的性质,可以通过数学归纳法、反证法、构造法等方式进行。
放缩法的优点是可以简化复杂的数列不等式问题,通过找到合适的放缩数列,可以将问题转化为更简单的形式,更容易证明。
放缩法也有一定的局限性,仅适用于一些特定的问题和数列。
证明数列求和不等式的两种放缩技巧
求和(Sum)不等式是数学中一种有用的工具,用来估计数列的总和。
这种不等式经常被用来证明一些性质,比如收敛性、最大最小值等等。
在解决一些复杂的问题时,求和的不等式经常要求使用特殊的技巧,如放缩。
本文将介绍两种求和不等式的放缩技巧:前项放缩和后项放缩。
前项放缩指的是一种能够让前n项值成比例证明一个求和不等式的技巧。
例如,假设我们有如下的求和不等式:S = x <sub>1 </sub> + x <sub>2 </sub> + ... + x <sub>n </sub> ≤ A那么我们可以用前项放缩的技巧来证明这个不等式:首先,假定 n 个x <sub>i<sub> (i=1,2,…,n) 的值分别为 a<sub>i </sub>,则有S = a<sub>1 </sub> + a<sub>2 </sub> + ... + a<sub>n </sub> ≤ A其次,将所有的x <sub>i </sub>(i=1,2,…,n) 都放缩至 b<sub>i </sub>值,意思是你将每一项都扩展或缩小一倍(例如,a<sub>1 </sub> 会放缩至2a<sub>1 </sub>)。
此时有 S = b<sub>1 </sub> + b<sub>2 </sub> + ... + b<sub>n </sub> ≤ A(由此可见,前 n 项值放缩后,左边的总和 S 仍小于右边的 A,因此原来的不等式:S≤A 成立)另一种求和不等式的放缩技巧是后项放缩。
此时我们可以将最后一项x<sub>n</sub> 放缩成 b<sub>n</sub>(通常要求b<sub>n</sub> ≤a<sub>n</sub>),这样就有实数范围[a<sub>n</sub>, b<sub>n</sub>]了。
高考数学复习考点题型专题讲解12 数列中的不等式证明及放缩问题
高考数学复习考点题型专题讲解专题12 数列中的不等式证明及放缩问题数列中的不等式证明问题的常用放缩技巧(1)对1n2的放缩,根据不同的要求,大致有三种情况(下列n∈N*):1 n2<1n2-n=1n-1-1n(n≥2);1 n2<1n2-1=12⎝⎛⎭⎪⎫1n-1-1n+1(n≥2);1 n2=44n2<44n2-1=2⎝⎛⎭⎪⎫12n-1-12n+1(n≥1).(2)对12n的放缩,根据不同的要求,大致有两种情况(下列n∈N*):1 2n >1n+n+1=n+1-n(n≥1);1 2n <1n+n-1=n-n-1(n≥1).类型一关于数列项的不等式证明(1)结合“累加”“累乘”“迭代”放缩;(2)利用二项式定理放缩;(3)利用基本不等式或不等式的性质;(4)转化为求最值、值域问题.例1 设正项数列{a n }满足a 1=1,a n +1=a n +1a n(n ∈N *).求证:(1)2<a 2n +1-a 2n ≤3;(2)3n -13n -2≤a n +1a n ≤2n2n -1. 证明 (1)因为a 1=1及a n +1=a n +1a n(n ≥1),所以a n ≥1,所以0<1a 2n≤1.因为a 2n +1=⎝ ⎛⎭⎪⎫a n +1a n 2=a 2n+1a 2n +2, 所以a 2n +1-a 2n =1a 2n+2∈(2,3],即2<a 2n +1-a 2n ≤3.(2)由(1)得2<a 22-a 21≤3,2<a 23-a 22≤3,2<a 24-a 23≤3,⋮2<a 2n +1-a 2n ≤3,故2n <a 2n +1-a 21≤3n ,所以2n +1<a 2n +1≤3n +1, 即2n -1<a 2n ≤3n -2(n ≥2),而n =1时,也满足2n -1≤a 2n ≤3n -2, 所以2n -1≤a 2n ≤3n -2, 所以a n +1a n =1+1a 2n ∈⎣⎢⎡⎦⎥⎤3n -13n -2,2n 2n -1.即3n -13n -2≤a n +1a n ≤2n 2n -1. 训练1(2022·天津模拟)已知数列{a n }满足a n =n n -1a n -1-13n ·⎝ ⎛⎭⎪⎫23n(n ≥2,n ∈N *),a 1=49.(1)求数列{a n }的通项公式;(2)设数列{c n }满足c 1=12,c n +1=⎝ ⎛⎭⎪⎫23k +1a k·c 2n +c n ,其中k 为一个给定的正整数,求证:当n ≤k 时,恒有c n <1. (1)解 由已知可得:a n n =a n -1n -1-13⎝ ⎛⎭⎪⎫23n(n ≥2),即a n n -a n -1n -1=-13⎝ ⎛⎭⎪⎫23n, 由累加法可求得a n n =⎝ ⎛⎭⎪⎫a n n -a n -1n -1+⎝ ⎛⎭⎪⎫a n -1n -1-a n -2n -2+…+⎝ ⎛⎭⎪⎫a 22-a 11+a 11 =-13⎝ ⎛⎭⎪⎫23n-13⎝ ⎛⎭⎪⎫23n -1-…-13⎝ ⎛⎭⎪⎫232+49=⎝ ⎛⎭⎪⎫23n +1,即a n =n ⎝ ⎛⎭⎪⎫23n +1(n ≥2),又n =1时也成立,故a n =n ⎝ ⎛⎭⎪⎫23n +1(n ∈N *).(2)证明 由题意知c n +1=1kc 2n +c n ,∴{c n }为递增数列, ∴只需证c k <1即可. 当k =1时,c 1=12<1成立,当k ≥2时,c n +1=1k c 2n +c n<1kc n c n +1+c n ,即1c n +1-1c n>-1k,因此1c k =⎝ ⎛⎭⎪⎫1c k -1c k -1+…+⎝ ⎛⎭⎪⎫1c 2-1c 1+1c 1>-k -1k +2=k +1k ,∴c k <k k +1<1,∴当n ≤k 时,恒有c n <1. 类型二 对求和结论进行放缩对于含有数列和的不等式,若数列的和易于求出,则一般采用先求和再放缩的策略证明不等式.例2 已知数列{a n }满足a 1=2,(n +1)a n +1=2(n +2)a n ,n ∈N *. (1)求数列{a n }的通项公式;(2)设S n 是数列{a n }的前n 项和,求证:S n <2a n . (1)解 法一 由题意得a n +1n +2=2·a nn +1, 又a 11+1=1,所以数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n +1是首项为1,公比为2的等比数列,所以a n n +1=2n -1,所以a n =(n +1)·2n -1(n ∈N *). 法二 由题意得a n +1a n =2(n +2)n +1, 所以a n a 1=a n a n -1·a n -1a n -2·…·a 2a 1=2(n +1)n ·2n n -1·2(n -1)n -2·…·2×32=(n +1)·2n -2.因为a 1=2,所以a n =(n +1)·2n -1(n ∈N *).(2)证明 因为a n =(n +1)·2n -1,所以S n =2×20+3×21+4×22+…+n ·2n -2+(n +1)·2n -1,① 2S n =2×21+3×22+…+(n -1)×2n -2+n ×2n -1+(n +1)×2n ,② ②-①得S n =-2×20-(21+22+…+2n -1)+(n +1)×2n =n ·2n . 因为S n -2a n =n ·2n -(n +1)2n =-2n <0, ∴S n <2a n .训练2(2022·广州模拟)在各项均为正数的等比数列{a n }中,a 1=2,-a n +1,a n ,a n +2成等差数列.等差数列{b n }满足b 1=a 2+1,2b 5-3b 2=a 3-3. (1)求数列{a n },{b n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1(2n +1)b n 的前n 项和为T n ,证明:T n <16.(1)解 设等比数列{a n }的公比为q (q >0), 因为-a n +1,a n ,a n +2成等差数列, 所以2a n =a n +2-a n +1, 所以2a n =a n ·q 2-a n ·q . 因为a n >0,所以q 2-q -2=0, 解得q =2或q =-1(舍去), 又a 1=2,所以a n =2n (n ∈N *). 设等差数列{b n }的公差为d , 由题意,得b 1=a 2+1=5, 由2b 5-3b 2=a 3-3=5,得2(b 1+4d )-3(b 1+d )=-b 1+5d =-5+5d =5,解得d =2, 所以b n =b 1+(n -1)d =5+2(n -1)=2n +3(n ∈N *).(2)证明1(2n +1)b n =1(2n +1)(2n +3)=12⎝⎛⎭⎪⎫12n +1-12n +3, 则T n =12⎣⎢⎡⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17⎦⎥⎤+…+⎝⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3=16-12(2n +3).因为n ∈N *,所以12(2n +3)>0,所以T n <16.类型三 对通项公式放缩后求和在解决与数列的和有关的不等式证明问题时,若不易求和,可根据项的结构特征进行放缩,转化为易求和数列来证明.例3(2022·济南模拟)在数列{a n }中,a 1=2,2na n +1=(n +1)·a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =a 2n16n 2-a 2n ,若数列{b n }的前n 项和是T n ,求证:T n <12.(1)解 由题知2na n +1=(n +1)a n , 所以a n +1n +1=12×a n n ,a 11=2, 故数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n n 是首项为2,公比为12的等比数列,所以a n n =2×⎝ ⎛⎭⎪⎫12n -1=22-n ,所以a n=n·22-n(n∈N*).(2)证明由(1)可知a n=n·22-n,所以b n=a2n16n2-a2n=14n-1=12n+1×12n-1,根据指数增长的特征知,对任意n∈N*,2n≥2n恒成立,所以22n≥(2n)2,即4n≥4n2.所以14n-1≤14n2-1=12⎝⎛⎭⎪⎫12n-1-12n+1,所以b n≤12⎝⎛⎭⎪⎫12n-1-12n+1,所以数列{b n}的前n项和T n ≤12⎝⎛⎭⎪⎫1-13+13-15+…+12n-1-12n+1=12⎝⎛⎭⎪⎫1-12n+1<12.训练3 已知数列{a n}的前n项和为S n,3a n=2S n+2n(n∈N*). (1)证明:数列{a n+1}为等比数列,并求数列{a n}的前n项和S n,(2)设b n=log3(a n+1+1),证明:1b21+1b22+…+1b2n<1.证明(1)∵3a n=2S n+2n,n∈N*,∴当n=1时,3a1=2S1+2,解得a1=2;当n≥2时,3a n-1=2S n-1+2(n-1),两式相减得a n=3a n-1+2,∴a n+1=3(a n-1+1),即an+1an-1+1=3,a1+1=3,∴数列{a n+1}是以3为首项,3为公比的等比数列,∴a n+1=3n,则a n=3n-1,∴S n=3+32+…+3n-n=3(1-3n)1-3-n=3n+12-n-32.(2)b n=log3(a n+1+1)=log33n+1=n+1,∵1b2n=1(n+1)2<1n(n+1)=1n-1n+1,∴1b21+1b22+…+1b2n<⎝⎛⎭⎪⎫1-12+⎝⎛⎭⎪⎫12-13+…+⎝⎛⎭⎪⎫1n-1n+1=1-1n+1<1.类型四求和后利用函数的单调性证明数列不等式若所证的数列不等式中有等号,常考虑利用数列的单调性来证明. 例4 已知数列{a n}的前n项和为S n,且满足2a n-S n=1(n∈N*).(1)求数列{a n}的通项公式;(2)设b n=an+1(a n+1-1)(a n+2-1),数列{b n}的前n项和为T n,求证:23≤T n<1.(1)解已知2a n-S n=1,令n=1,解得a1=1,当n≥2时,2a n-1-S n-1=1(n∈N*),两式相减得a n=2a n-1,∴数列{a n}是以1为首项,2为公比的等比数列,所以a n=2n-1(n∈N*).(2)证明由(1)可得b n =an+1(a n+1-1)(a n+2-1)=2n(2n-1)(2n+1-1)=12n-1-12n+1-1,∴T n =b 1+b 2+…+b n =⎝ ⎛⎭⎪⎫1-122-1+⎝ ⎛⎭⎪⎫122-1-123-1+…+⎝ ⎛⎭⎪⎫12n -1-12n +1-1=1-12n +1-1. ∵⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1-12n +1-1是单调递增的数列, ∴1-12n +1-1∈⎣⎢⎡⎭⎪⎫23,1.∴23≤T n <1. 训练4 已知等差数列{a n }的公差d ≠0,a 1=25,且a 1,a 11,a 13成等比数列. (1)求使不等式a n ≥0成立的最大自然数n ;(2)记数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和为T n ,求证:-1325≤T n ≤1225.(1)解 由题意,可知a 211=a 1·a 13, 即(a 1+10d )2=a 1·(a 1+12d ), ∴d (2a 1+25d )=0. 又a 1=25,d ≠0,∴d =-2,∴a n =-2n +27, ∴-2n +27≥0,∴n ≤13.5, 故满足题意的最大自然数为n =13. (2)证明1a n a n +1=1(-2n +27)(-2n +25)=-12⎝⎛⎭⎪⎫1-2n +27-1-2n +25, ∴T n =1a 1a 2+1a 2a 3+1a 3a 4+…+1a n a n +1=-12⎣⎢⎡⎝ ⎛⎭⎪⎫125-123+⎝ ⎛⎭⎪⎫123-121+…⎦⎥⎤+⎝⎛⎭⎪⎫1-2n +27-1-2n +25 =-12⎝ ⎛⎭⎪⎫125-1-2n +25 =-150+150-4n .从而当n ≤12时,T n =-150+150-4n单调递增,且T n >0; 当n ≥13时,T n =-150+150-4n单调递增,且T n <0, ∴T 13≤T n ≤T 12,由T 12=1225,T 13=-1325,∴-1325≤T n ≤1225.一、基本技能练1.已知数列{a n }是等差数列,且a 2=3,a 4=7,数列{b n }的前n 项和为S n ,且S n =1-12b n (n ∈N *).(1)求数列{a n },{b n }的通项公式;(2)记c n =a n b n ,数列{c n }的前n 项和为T n ,求证:T n <2. (1)解 因为数列{a n }是等差数列,a 2=3,a 4=7, 设数列{a n } 的公差为d , 则⎩⎨⎧a 1+d =3,a 1+3d =7,解得⎩⎨⎧a 1=1,d =2.所以a n =a 1+(n -1)d =1+2(n -1)=2n -1(n ∈N *).对于数列{b n },S n =1-12b n (n ∈N *),当n =1时,b 1=1-12b 1,解得b 1=23;当n ≥2时,b n =S n -S n -1=⎝ ⎛⎭⎪⎫1-12b n -⎝ ⎛⎭⎪⎫1-12b n -1,整理得b n =13b n -1,所以数列{b n }是首项为23,公比为13的等比数列,所以b n =23×⎝ ⎛⎭⎪⎫13n -1=23n (n ∈N *). (2)证明 由题意得c n =a n b n =2(2n -1)3n =4n -23n , 所以数列{c n }的前n 项和T n =23+632+1033+…+4(n -1)-23n -1+4n -23n ,则3T n =2+63+1032+…+4n -23n -1,两式相减可得2T n =2+43+432+…+43n -1-4n -23n =2+4×13⎝ ⎛⎭⎪⎫1-13n -11-13-4n -23n=4-4n +43n ,所以T n =2-2n +23n .所以T n <2.2.(2022·石家庄模拟)已知数列{a n }的前n 项和为S n ,a 1=3,a 2=4,S n +1+2S n -1=3S n -2(n ≥2).(1)证明:数列{a n-2}是等比数列,并求数列{a n}的通项公式;(2)记b n=2n-1anan+1,数列{b n}的前n项和为T n,证明:112≤T n<13.证明(1)当n≥2时,由S n+1+2S n-1=3S n-2可变形为S n+1-S n=2(S n-S n-1)-2,即a n+1=2a n-2,即a n+1-2=2(a n-2),所以an+1-2an-2=2(n≥2),又因为a1=3,a2=4,可得a1-2=1,a2-2=2,所以a2-2a1-2=2,所以数列{a n-2}是以1为首项,2为公比的等比数列,所以a n-2=2n-1,所以数列{a n}的通项公式为a n=2+2n-1(n∈N*).(2)由a n=2+2n-1,可得b n=2n-1anan+1=2n-1(2+2n-1)(2+2n)=12+2n-1-12+2n,所以T n=b1+b2+b3+…+b n=13-14+14-16+16-110+…+12+2n-1-12+2n=13-12+2n,因为12+2n>0,所以13-12+2n<13,即T n<13,又因为f(n)=13-12+2n,n∈N*,单调递增,所以T n≥b1=1(2+1)(2+2)=112,所以112≤T n <13.3.已知数列{a n }的前n 项和S n =n 2+n 2.(1)求{a n }的通项公式;(2)若数列{b n }满足对任意的正整数n ,b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2恒成立,求证:b n ≥4.(1)解 因为S n =n 2+n 2,所以当n ≥2时,a n =S n -S n -1=n 2+n 2-(n -1)2+(n -1)2=n ,当n =1时,a 1=S 1=1满足a n =n , 所以{a n }的通项公式为a n =n (n ∈N *). (2)证明 因为b 1a 1·b 2a 2·b 3a 3·…·b n a n=(n +1)2,所以当n ≥2时,b 1a 1·b 2a 2·b 3a 3·…·b n -1a n -1=n 2, 所以b n a n =(n +1)2n 2(n ≥2),又n =1时,b 1a 1=22=4,满足b n a n =(n +1)2n 2,所以对任意正整数n ,b n a n =(n +1)2n 2,由(1)得,a n =n , 所以b n =(n +1)2n=n 2+2n +1n=n +1n+2≥2n ·1n+2=4, 当且仅当n =1时,等号成立. 二、创新拓展练4.(2022·湖州质检)已知正项数列{a n }的前n 项和为S n ,且a 1=2,4S n =a n a n +1(n ∈N *). (1)求数列{a n }的通项公式;(2)设数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a 2n 的前n 项和为T n ,求证:n4n +4<T n <12. (1)解∵4S n =a n a n +1,n ∈N *, ∴4a 1=a 1·a 2,又a 1=2, ∴a 2=4,当n ≥2时,4S n -1=a n -1a n ,得4a n =a n a n +1-a n -1a n . 由题意知a n ≠0,∴a n +1-a n -1=4,∴数列{a n }的奇数项与偶数项分别为等差数列,公差都为4, ∴a 2k -1=2+4(k -1)=2(2k -1),a 2k =4+4(k -1)=2·2k ,∴该数列是等差数列,首项为2,公差为2. 综上可知,a n =2n ,n ∈N *.(2)证明∵1a 2n =14n 2>14n (n +1)=14⎝⎛⎭⎪⎫1n -1n +1, ∴T n =1a 21+1a 22+…+1a 2n >14⎝ ⎛⎭⎪⎫1-12+12-13+…+1n -1n +1 =14⎝⎛⎭⎪⎫1-1n +1=n4n +4.又∵1a 2n =14n 2<14n 2-1=1(2n -1)(2n +1)=12⎝⎛⎭⎪⎫12n -1-12n +1. ∴T n =1a 21+1a 22+…+1a 2n<12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12.即得n4n +4<T n <12.。
放缩法技巧全总结
高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn n n 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8)nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10)!)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n nn n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13)3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以)12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n nn111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n n x x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 311212191817161514131213131216533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案函数构造形式: 1ln -≤x x ,)2(1ln ≥-≤αααn n例10.求证:nn n 1211)1ln(113121+++<+<++++ 解析:提示:2ln 1ln 1ln 1211ln )1ln(++-++=⋅⋅-⋅+=+ n n nn n n n n n当然本题的证明还可以运用积分放缩 如图,取函数xx f 1)(=,首先:⎰-<n in ABCFx S 1,从而,)ln(ln |ln 11i n n x x i n n i n ni n --==<⋅--⎰ 取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n ,n n n ln )1ln(11-+<+,相加后可以得到: )1ln(113121+<++++n n另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰取1=i 有,)1ln(ln 11-->-n n n ,所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e n <+⋅⋅++)311()8111)(911(2 . 解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。
不等式的放缩技巧
数列型不等式放缩技巧八法证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一 利用重要不等式放缩1. 均值不等式法例1 设.)1(3221+++⋅+⋅=n n S n Λ求证.2)1(2)1(2+<<+n S n n n解析 此数列的通项为.,,2,1,)1(n k k k a k Λ=+=2121)1(+=++<+<k k k k k k Θ,)21(11∑∑==+<<∴nk n nk k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n S n n n注:①应注意把握放缩的“度”:上述不等式右边放缩用的是均值不等式2b a ab +≤,若放成1)1(+<+k k k 则得2)1(2)3)(1()1(21+>++=+<∑=n n n k S nk n ,就放过“度”了!②根据所证不等式的结构特征来选取所需要的重要不等式,这里na a n a a a a a a nn nnn n22111111++≤++≤≤++ΛΛΛΛ其中,3,2=n 等的各式及其变式公式均可供选用。
例2 已知函数bx a x f 211)(⋅+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121)()2()1(1-+>++++n n n f f f Λ(02年全国联赛山东预赛题)简析 )2211()()1()0(22114111414)(⨯->++⇒≠•->+-=+=n f f x x f xx x x Λ .2121)21211(41)2211()2211(112-+=+++-=⨯-++⨯-++-n n n n n ΛΛ例3 已知b a ,为正数,且111=+ba ,试证:对每一个*∈N n ,1222)(+-≥--+n n n n nb a b a .(88年全国联赛题)简析 由111=+b a 得b a ab +=,又42)11)((≥++=++abb a b a b a ,故4≥+=b a ab ,而n n n r r n r n n n n nn b C b a C b a C a C b a +++++=+--ΛΛ110)(, 令n n n b a b a n f --+=)()(,则)(n f =1111----++++n n n r r n r n n n ab C b a C b aC ΛΛ,因为in n i n C C -=,倒序相加得)(2n f =)()()(111111b a ab C b a b a C ab b a C n n n n r n r r r n r n n n n -------+++++++ΛΛ,而1211112422+------=⋅≥≥+==+==+n nnn n n r n r r r n n n b a b a ab b a b a ab b aΛΛ,则)(2n f =))(22())((11r r n r n r n r r n r n r n n r n n b a b a b a b a C C C -----+-=+++++ΛΛ⋅-≥)22(n 12+n ,所以)(n f ⋅-≥)22(n n 2,即对每一个*∈N n ,1222)(+-≥--+n n n n n b a b a .例4 求证),1(221321N n n n C C C C n n nnnn∈>⋅>++++-Λ.简析 不等式左边=++++nn n n n C C C C Λ32112222112-++++=-n n Λn n n 122221-⋅⋅⋅⋅⋅>Λ=212-⋅n n ,原结论成立.2.利用有用结论例5 求证.12)1211()511)(311)(11(+>-++++n n Λ简析 本题可以利用的有用结论主要有:法1 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n Λ=+⋅⋅n n 212674523Λ)12(212654321+⋅-⋅⋅n nn Λ ⇒12)122563412(2+>-⋅⋅n n n Λ即.12)1211()511)(311)(11(+>-++++n n Λ法2 利用贝努利不等式)0,1,2,(1)1(≠->≥∈+>+*x x n N n nx x n 的一个特例12121)1211(2-⋅+>-+k k (此处121,2-==k x n )得 =-+∏⇒-+>-+=)1211(121212111k k k k n k .1212121+=-+∏=n k k n k注:例5是1985年上海高考试题,以此题为主干添“枝”加“叶”而编拟成1998年全国高考文科试题;进行升维处理并加参数而成理科姊妹题。
高中数学讲义:放缩法证明数列不等式
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。
高考数学难点---数列放缩法技巧总结
高考数学备考之一 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n nn k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk技巧积累:(1)⎪⎭⎫⎝⎛+--=-<=1211212144441222n n n n n(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC T r r rn r(4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn 21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21≥---=--=--<--=--n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14) !)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n (15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n n n (4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222n nn -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合n n n -+<+221进行裂项,最后就可以得到答案 (4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n kn k 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n nn n n n 当3≥n 时,)12)(1(61++>+n n nn n ,当1=n 时,2191411)12)(1(6nn n n ++++=++ ,当2=n 时,2191411)12)(1(6n n n n ++++<++ , 所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>. 解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a 111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m mm m k k k m k k-+<+<--+++111)1()1()1(, 即等价于11)11(11,)11(11++-<+-+<++m m kk m k km 而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,n nn a a a T +++= 212,求证:23321<++++n T T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n nn n nnn T -+-=-----=+++-++++= 所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nnT⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n n T T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n ,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明: nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n ∈+-<++++ . 解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111nn n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---n例 例11.例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到: 12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x , 所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n ,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知11111,(1).2n n a a a n n +==+++证明2n a e <.解析:n n n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到n n n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+nnn a n n a )2111(21⇒++++≤+nn an n a ln )2111ln(ln 1nn n n a 211ln 2+++≤。
不等式放缩的万能解法
不等式放缩的万能解法不等式放缩是一种重要的不等式技巧,可以用来化简和证明复杂的不等式问题。
不等式放缩法可以分为取平均数和加均值不等式两种方法。
下面详细介绍这两种方法。
一、取平均数法取平均数法是不等式放缩中常用的一种方法。
它的基本思想是用不等式两边的平均数代替两个数,从而使不等式更易于处理。
下面描述取平均数法的运用步骤:1.将不等式中的变量全部提到一边,令不等式右边为0,即将不等式转化为a(x)≥0(其中a(x)是函数表达式)。
2.对a(x)进行适当的平均化处理,将其表示为两个平方数之差或两个次幂之比。
3.应用柯西不等式或均值不等式等不等式,将不等式继续简化。
4.进一步处理化简后的不等式,尽量将其化为简单明了的形式。
例如,我们要证明:当x>0时,有以下不等式成立:(1+x)ln(1+x) > x1.将不等式转化为:f(x)=(1+x)ln(1+x)−x>0。
2.考虑将f(x)表示成两个平方数之差,可以作如下变换:f(x)=(x+1)(ln(x+1)−x/(x+1))=(x+1)ln[(x+1)/e^(x/(x+1))]3.令y=(x+1)/e^(x/(x+1)),那么f(x)就可以表示成f(x)=ln(y)(y−e^−x)>0。
4.根据$f(x)=ln(y)(y−e^{-x})>0$,则y>e^x,即(y−e^-x)/y<1。
故有:f(x)=ln(y)(y−e^−x)>ln(y)(1−y/e^x)。
应用柯西不等式,有:f(x)=ln(y)(y−e^−x)>ln[y(1−y/e^x)]4.化简上式,执行以下步骤:f(x)>ln[(1+x)/(1+(1/e^x^))]. 因此,$f(x)>ln[(1+x)/(1+(1/e^x^))]−1/e^x$5.由于ln(x)是一个凸函数,使用函数的凸性可以证明上式成立。
因此,原命题得证。
二、加均值不等式法加均值不等式是不等式放缩中常用的一种方法。
放缩法证明数列不等式经典例题
放缩法证明数列不等式经典例题放缩法证明数列不等式放缩法是一种证明数学不等式的方法,它利用一些基本的放缩技巧来推导出更复杂的不等式。
下面介绍几种常用的放缩技巧:1.$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$证明:将右边的式子化简得到$\frac{1}{n(n+1)}<\frac{1}{2n}-\frac{1}{2(n+1)}$,再将右边的两项合并得到$\frac{1}{n(n+1)}<\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)$。
2.$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$证明:将右边的式子平方得到$\frac{n}{n+1}<\frac{n}{n+1}<\frac{(n+1)^2}{n(n+1)}$,再将中间的式子平方根得到$\frac{n}{n+1}<\sqrt{\frac{n}{n+1}}<\frac{n+1}{n}$。
3.$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$证明:将右边的式子通分得到$\frac{1}{n(n-1)}-\frac{1}{(n+1)n}=\frac{1}{n(n+1)}-\frac{1}{n(n-1)}$,再将右边的两项合并得到$\frac{1}{n^2}<\frac{1}{n(n-1)}-\frac{1}{(n+1)n}$。
4.$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$证明:将右边的式子通分得到$\frac{1}{n-1}-\frac{1}{n+1}=\frac{2}{n(n+1)}$,再将右边的式子倒数得到$\frac{2}{n(n-1)}<\frac{1}{n-1}-\frac{1}{n+1}$。
数列型不等式的放缩技巧九法
数列型不等式的放缩技巧九法1.上凸性法:如果数列满足$a_{n+1}-a_n>0$,则可放缩为$a_n>a_1+(n-1)d$或$a_n>a_1+n(n-1)d$,其中$d$为常数。
2.下凸性法:如果数列满足$a_{n+1}-a_n<0$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
3.奇偶性法:如果数列满足$a_{n+1}-a_n$的奇偶性与$n$的奇偶性相同,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
4.整除性法:如果数列满足$a_{n+1}-a_n$能整除$n$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
5.线性递增法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n>a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
6.线性递减法:如果数列满足$a_{n+1}-a_n$为常数$d$,则可放缩为$a_n<a_1+(n-1)d$或$a_n<a_1+n(n-1)d$,其中$d$为常数。
7.最值法:如果数列满足$a_{n+1}-a_n$为一组有界变量,且$a_n$有最大或最小值,则可通过对最大或最小值进行放缩得到不等式。
8. 平均值大小法:如果数列满足$a_1,a_2,\ldots,a_n$的平均值满足一些条件,则可借助平均值大小的不等式进行放缩。
9.乘积法:如果数列满足相邻项的乘积满足一些条件,则可通过对乘积进行放缩得到不等式。
举个例子来说明这些放缩技巧的应用:问题:证明数列$a_n=\frac{1}{2n-1}$是递减的。
解答:我们可以使用上凸性法进行放缩。
由$a_{n+1}-a_n=\frac{1}{2(n+1)-1}-\frac{1}{2n-1}=\frac{1}{2n+1}-\frac{1}{2n-1}=\frac{2n-1-(2n+1)}{(2n+1)(2n-1)}=-\frac{2}{(2n+1)(2n-1)}<0$所以$a_n>a_{n+1}$,即数列$a_n$是递减的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列不等式放缩技巧何谓放缩?就是当要证明不等式A<B 成立时,可以将它的一边放大或缩小,寻找一个中间量,如将A 放大成C ,即A<C ,后证C<B ,这种证法便称为放缩法,简称放缩。
在高考数列不等式中,常常伴随着类似1()ni i a f n =∑<形式的不等式证明,这类式子无法通过求和化简或数学归纳法证明,然而通过适当的放缩技巧,却能快速使问题简单化。
【知识技巧】1、放缩的几种形式:①构造特殊数列求和进行放缩; 技巧积累: (1)21111=(2(1)1n n n n n n ---<≥);22211411==214121214n n n n n ---+-<()(2)n n n -+<+221(3))1(21)1(2--<<-+n n nn n(4) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n (5)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n 11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n (6))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rr n r (7)25)1(123112111)11(<-++⨯+⨯++<+n n nn②应用基本不等式或函数单调性放缩;③加强命题,转化为数学归纳法证明题(注意点:形式、方向、首项)。
2、放缩的注意事项1111)2(1)(1)n n n n ⎡⎤=-⎢⎥-+⎣⎦,n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-这类数列由于可以裂项求和,所以在证明不等式1()ni i a f n =∑<时,大可不必放缩;②放与缩要注意形式、方向和首项,要注意放缩度的把握。
③可以只对数列的一部分进行放缩法,保留一些项不变(多为前几项)。
【例题讲解】一、通项公式的放缩 1、(2013广东理)设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式; (Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++<. 2、求证:35191411)12)(1(62<++++≤++n n n n3、(2012广东理)设数列{a n }的前n 项和为S n ,满足12211+-=++n n n a S ,n ∈N ﹡,且a 1,a 2+5,a 3成等差数列.(1) 求a 1的值;(2) 求数列{a n }的通项公式. (3) 证明:对一切正整数n ,有2311121<+++n a a a .二、递推式的放缩1、已知1,1411=++=+x x x x n n n ,求证:当2≥n 时,11222nni i x -=--∑<2、已知数列{}n a 满足:11=a ,)3,2,1()21(1 =+=+n a na nnn .求证:11213-++-≥>n n n n a a 证明:因为n n n a na )21(1+=+,所以1+n a 与n a 同号,又因为011>=a ,所以0>n a , 即021>=-+n n n n a na a ,即n n a a >+1.所以数列{}n a 为递增数列,所以11=≥a a n , 即n n n n n n a n a a 221≥=-+,累加得:121212221--+++≥-n n n a a .令12212221--+++=n n n S ,所以n n n S 2122212132-+++= ,两式相减得:n n n n S 212121212121132--++++=- ,所以1212-+-=n n n S ,所以1213-+-≥n n n a , 故得11213-++-≥>n n n n a a .三、加强命题 1、数列{}n a 中,132a =,对任何2,n n N +∈≥,都有11321n n n na a a n --=+-。
(1)求通项公式n a ;(2)证明:对任何n N +∈,122!n a a a n ⋅⋅⋅⋅<四、利用不等式或函数放缩1.设(n S n n ++求证.2)1(2)1(2+<<+n S n n n解析: 此数列的通项为.,,2,1,)1(n k k k a k =+=2121)1(+=++<+<k k k k k k ,)21(11∑∑==+<<∴nk n n k k S k , 即.2)1(22)1(2)1(2+<++<<+n n n n Sn n n2、设0a >,如图,已知直线ax y l =:及曲线C :2x y =,C 上的点1Q 的横坐标为1a (a a <<10).从C 上的点()1n Q n ≥作直线平行于x 轴,交直线l 于点1+n P ,再从点1+n P 作直线平行于y 轴,交曲线C 于点1n Q +.()1,2,,n Q n n =的横坐标构成数列{}n a .(Ⅰ)试求1n a +与n a 的关系,并求{}n a 的通项公式; (Ⅱ)当21,11≤=a a 时,证明∑=++<-nk k k ka a a121321)(;(Ⅲ)当1a =时,证明1211()3nk k k k a a a ++--<∑.解析:121()n n a a a a-=(过程略). 证明(II ):由1a =知21n na a +=,∵112a≤,∴2311,416a a ≤≤. ∵当1k ≥时,23116k aa +≤≤, ∴1211111111()()()161632n n kk k k k n k k aa a a a a a ++++==-≤-=-<∑∑. 证明(Ⅲ):由1a =知21k kaa +=. ∴21211()()k k k k k k a a a a a a ++++-=-恰表示阴影部分面积, 显然 12211()kk a kk k a a a a x dx+++-<⎰④∴2121111()()nnkk k k k k k k aa a a a a ++++---=-∑∑121kk na a k x dx +-<∑⎰120a x dx <⎰311133a =<.【课后练习】1、(2014广东文)设各项为正数的数列{}n a 的前n 和为n S ,且n S 满足222*(3)3()0,n n S n n S n n n N -+--+=∈ (1)求1a 的值; (2)求数列{}n a 的通项公式; (3)证明:对一切正整数n ,有11221111(1)(1)(1)3n n a a a a a a +++<+++2、(2014新课标2理)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112n a a a ++<…+.3、已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++n T T T T .4、已知数列}{n a 中,121(1)11,,4n n nn a a a a n a +-===-且(n ≥2)。
(1)求数列}{n a 的通项公式。
(2)证明:对一切217,6nkk n N a +=∈∑有<5.在数列12,2,}{11+==+n nn n a a a a a 已知中 (I )求数列}{n a 的通项公式;(II )求证:3)1()1()1(2211<-++-+-n n a a a a a a 6.(2009陕西卷理)已知数列{}n x 满足, *1111,21n nx x n N x ∈++’==. ()I 猜想数列{}n x 的单调性,并证明你的结论;(Ⅱ)证明:1112|()65n n n x x -+-|≤。
7.已知各项均为正数的数列{}n a 的前n 项和为n S ,且22n n n a a S +=.(1) 求证:2214n n n a a S ++<;(2)<⋅⋅⋅8、数列{}n a 中,已知12a =,且对一切正整数n ,都有1121n n a a a a +=⋅⋅⋅+。
求证:12111111242n n a a a ++⋅⋅⋅+++⋅⋅⋅+≥ 9、(2014安徽理)设实数0>c ,整数1>p ,*N n ∈.(1)证明:当1x >-且0x ≠时,(1)1p x px +>+; (2)数列{}n a 满足11p a c >,111pn n n p c a a a p p-+-=+, 证明:11p n n a a c+>>.10、已知数列{}n a 满足*111,21().n n a a a n N +==+∈ (I )求数列{}n a 的通项公式; (II )若数列{b n }滿足12111*444(1)(),n n b b b b n a n N ---=+∈证明:数列{b n }是等差数列;(Ⅲ)证明:*122311...().232n n a a a n nn N a a a +-<+++<∈ 11、设不等式组⎪⎩⎪⎨⎧+-≤>>n nx y y x 3,0,0表示的平面区域为nD ,设nD 内整数坐标点的个数为n a .设nn n n a a a S 221111+++=++ ,当2≥n 时,求证:3611711112321+≥++++n a a a a n12.(1)求证:212131211nn>-++++ (2)证明:)121n+>,()1,n n N >∈.13、(2008浙江)已知数列{}na ,0≥n a ,01=a ,)(12121∙++∈=-+N n a a a n n n .记n n a a a S +++= 21,)1()1)(1(1)1)(1(11121211n na a a a a a T +++++++++=.求证:当∙∈N n 时.(1)1+<n n a a ; (2)2->n Sn; (3)3<nT .14、(2011广东理)设0,b >数列{}n a 满足111=,(2)22n n n nba a b a n a n --=≥+-,(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n,1112n n n b a ++≤+15、已知数列}{n a 的前n 项和n S 满足:n n n a S )1(2-+=, 1≥n (1)写出数列}{n a 的前三项1a ,2a ,3a ; (2)求数列}{n a 的通项公式; (3)证明:对任意的整数4>m ,有8711154<+++m a a a 16、已知函数**(),,y f x x y =∈∈N N ,满足:①对任意*,,a b a b ∈≠N ,都有)()()()(a bf b af b bf a af +>+; ②对任意*n ∈N 都有[()]3f f n n =.(I )试证明:)(x f 为*N 上的单调增函数; (II )求)28()6()1(f f f ++; (III )令*(3),n n a f n =∈N ,试证明:.121111424n n n a a a +++<+≤。