八年级下学期其中测试
四川省成都市树德中学2023-2024学年八年级下学期期中考试英语试题
树德中学初2022级初二下学期期中测试英语试题A卷(共100分)第一部分听力(共30小题;计30分)一、听句子,根据所听到的内容选择正确答语。
每小题念两遍。
(共5小题,每小题1分;计5分)()1.A.OK,I will. B.I think so. C.It tastes bad.()2.A.You’re welcome. B.Idon’t agree. C.That’sOK()3.A.Good day! B.Good idea! C.Good job!()4.A.On the phone. B.It doesn’t matter. C.You’re right.()5.A.Sounds bad. B.Goodluck. C.Don’t worry.二、听句子,选择与所听句子内容相符合的图片,并将代表图片的字母填涂在答题卡的相应位置。
每小题念两遍。
(共5小题,每小题1分;计5分)6.7.8.9.10.三、听对话,根据对话内容及问题选择正确答案。
每段对话念两遮。
(共10小题,每小题1分;计10分)()11.A.Clean his room B.Play the game. C.Takeout the rubbish.()12.A.In his office. B.At a park. C.At a supermarket.()13.A.Because Alan argued with him.B.Because Alan copied his homework.C.Because he disliked doing homework.()14.A.Three times a week. B.Twice a week C.Everyday.()15.A.Listening to music.B.Cooking dinner. C.Doing homework.()16.A.By having a food festival B.By having a concert C.By having a book sale.()17.A.Rainy. B.Sunny. C.Windy.()18.A.At9:00p.m. B.At8:30p.m. C.At8:45p.m.()19.A.Father and daughter. B.Sister and brother. C.Classmates.()20.A.Helpful. B.Boring. C.Difficult.四、听短文,根据短文内容完成表格中所缺信息,并将答案填写在答题卡相应题号后。
重庆市渝中区巴蜀中学2023-2024学年八年级下学期期中数学试卷(含答案)
2023-2024学年重庆市渝中区巴蜀中学八年级(下)期中数学试卷一、选择题(共12个题,每小题4分,共48分)1.(4分)以下国产电动汽车标志中,不是轴对称图形的是 A .B .C .D .2.(4分)下列各式计算正确的是 A .B.C .D3.(4分)从我校4月30日的春季运动会中,抽取了甲、乙、丙3位同学的跳远成绩进行分析,这3位同学三次跳远平均成绩大致相同,他们的方差分别是,,,则这3位同学三次跳远成绩发挥最稳定的是 A .甲B .乙C .丙D .无法确定4.(4分)用配方法解方程,配方结果正确的是 A .B .C .D .5.(4分)下列命题正确的是 A .对角线相等的平行四边形是菱形B .平行四边形的两条对角线互相垂直C .一组对边平行另一组对边相等的四边形是平行四边形D .有三个角为直角的四边形为矩形6.(4分)已知点、、在关于的一次函数的图象上,则,,的大小关系是 A .B .C .D .7.(4分)如图,点的坐标为,点在直线上运动,则线段的最短长度为 ()()222()a b a b -=-22211x x x -=--1|2|20--+=4÷=2 2.5s =甲21.0s =乙2 4.5s =丙()2470x x +-=()2(4)23x +=2(2)3x +=-2(2)11x +=2(4)9x +=()1(1,)y -2(3,)y 3(5,)y x 5y x m =-+1y 2y 3y ()123y y y >>123y y y <<213y y y <<132y y y >>A (1,0)-B y =+AB ()A .B .2C .D .38.(4分)甲、乙两人在同一条滨江健身步道上从同一起点沿同一方向匀速慢跑720米,到终点后则停止运动.已知甲先出发2分钟,在整个慢跑过程中,甲、乙两人的距离(米与甲出发的时间(分之间的函数关系如图所示,下列说法中错误的是 A .甲慢跑的速度为80米分B .乙跑完全程用了6分钟C .的值为9D .乙到达终点时,与甲的距离为75米9.(4分)如图,在渝中区的劳动技能课程中,小张同学将一张长,宽的矩形纸板,剪去两个全等的正方形和两个全等的矩形后,剩余部分恰好制作成底面积为的有盖的长方体工艺盒,则剪去的正方形的边长为 A .1.5B .2C .2.5D .310.(4分)正方形,正方形,正方形按如图方式排列,点、、在直线上,点、、在轴上,则正方形的边长为y )t )()/m 16cm 12cm 248cm ()111OA C B 1222A A C B 2333A A C B ⋯1B 2B 3B ⋯2y x =+1A 2A 3A ⋯x 2023202420242024A A C B ()A .B .C .D .11.(4分)如图,菱形的顶点、在直线上,点在轴上,点的坐标为,则点的坐标为 A .B .C .D .12.(4分)对于整式列,,第一次操作:将中相邻两个整式之和插入,之间,得到新整式列整式列,,;第二次操作:将中相邻两个整式之和依次插入,之间,得到新整式列,,,;类似的,第三次操作后得到新整式列,,,,;以此类推.现有以下结论:①第四次操作后的整式列,,,,,;②将整式列中相邻两个整式的乘积之和记为,当时,有;③若中所有整式之和记为,中所有整式之和记为,,中所有整式之和为记为,,若系数不大于1024,则所有符合条件的之和为10.其中正确的结论有 个.A .0B .1C .2D .3二、填空题(共8个题,每小题4分,共32分)20242202422-2023220252ABCD A D 36y x =--A x C (2,4)B ()3(4,)2-(4,2)-95(,)22-9(,2)2-:3A x 3m x -A 3x 3m x -1:3A x m 3m x -1A 3x 3m x -2:3A x 3x m +23m x -3m x -3:3A x 6x m +3m 36m x -3m x -⋯4:3A x 9x m +64x m +66m x -49m x -3m x -3A ()F x 2()14F x m =16x m =1A 1B 2A 2B ⋯n A n B 1231n n n T B B B B B -=⋅⋅⋅⋯⋅n T n ()13.(4分)若关于的函数是正比例函数,则的值为 .14.(4分)如果是方程的一个根,那么代数式的值为 .15.(4分)花园中学规定学生的学期体育成绩满分为100分,其中大课间自编操成绩占,体育模块化成绩占,期末体考项目成绩占,小桂同学三项体育成绩(百分制)依次95分、90分、88分,则小桂同学这学期的体育成绩是 分.16.(4分)如图,直线与直线相交于点,点的纵坐标为4,则关于的不等式的解集为 .17.(4分)如图,在中,,,点从点出发,沿射线运动,速度为,点从点出发,沿线段运动,速度为,连接.、两点同时出发,当点到达点时,点也停止运动,请问经过 后,的面积恰为.18.(4分)若关于的一元二次方程有两个不相等实数解,且关于的分式方程有整数解,那么满足条件的所有整数的和为 .19.(4分)如图,中,,为的中点,将沿折叠得,点的对应点为点,连接,与交于点,,则的长为 .x 73y x a =+-a m 2340x x --=226m m -20%30%50%1:3l y x =+2:l y kx b =+P P x 3kx b x ++…Rt ABC ∆30BAC ∠=︒5BC cm =E A AB 2/cm s F C CA 1/cm s EF E F F A E s AEF ∆212cm x 2(2)420m x x --+=x 3222my yy y+=---m ABC∆AC =D BC ABD ∆AD AED ∆B E CE AE BC F 135BAC AFC ∠=∠=︒AB20.(4分)若一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则称这个四位数为“乐蜀数”,则最大乐蜀数与最小乐蜀数之差为 ,若,,、、为整数,且,,且、均为“乐蜀数”,记,、的各个数位的数字之和分别记为、.当为整数,且取最小值时,的值为 .三、解答题(共7个题,22题8分,27题12分,其余每题10分,共70分)21.(10分)解方程:(1);(2).22.(8分)学习了菱形的知识后,爱思考的小蜀同学发现,过平行四边形其中一条对鱼线中点且满足某个特殊条件的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点,形成的图形恰好是一个菱形.根据他的思路,完成以下作图与填空.已知:在中,点为对角线上一点,且;(1)尺规作图:请用无刻度直尺和圆规,过点作的垂线,分别交、于点、,连接、;(保留作图痕迹)(2)求证:四边形为菱形.证明:在中,① ,,在和中,,,又,四边形为平行四边形,③ ,四边形为菱形.通过小蜀的上述探究过程,我们可以得出以下真命题:5M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 22(,)11M N b nF M N -+-=M N ()G M ()G N (,)F M N ()()G M G N M N +22(23)9(2)x x -=+261x x -=ABCD O BD OB OD =O BD AD BC E F BE DF BEDF ABCD EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO EOD FOB ∠=∠⎧⎪⎨⎪∠=∠⎩②()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF ∴BEDF过平行四边形④ 的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.23.(10分)某校初二年级数学组为了解学生数学错题整理的效果,决定在全年级开展错题重做比赛,数学组选择了近一个月作业中部分易错题,制作了一张比赛测试卷,共100分,张老师为了解、两个班级的易错题整理效果,从、两个班级各随机抽取了10人的测试成绩数据,并对数据进行整理、描述和分析(测试成绩用表示,共分为四个等级:不合格:,合格:,良好:,优秀:,下面给出部分数据信息:班10名学生的测试成绩:72,60,64,80,86,80,90,98,100,80.班10名学生的测试成绩中,等级为“良好”的所有数据为:82,84,84.抽取两个班的学生测试成绩统计表:班级平均数中位数众数班8180班8184请根据以上信息,解答下列问题:(1)根据上述图表填空: , , ;(2)根据以上数据,你认为哪个班级的错题整理效果更好?请说明理由(写出一条理由即可);(3)根据抽取的两个班的学生测试成绩情况,估计该校初二年级840名同学中错题整理成绩为“优秀”的有多少名?24.(10分)如图,四边形中,,,,,连接,点从点出发,沿着折线运动,到点时停止运动,连接,设点的运动路程为,A B A B x 70x <7080x <…8090x <…90100)x ……A B A aB ba =b =m =ABCD //AD BC BC CD ⊥24BC AD ==3CD =AC P B B C D →→D AP P x ACP∆的面积为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出的函数图象,并写出该函数的一条性质;(3)当的函数图象与直线有两个交点时,请直接写出的取值范围为 .25.(10分)某智能家电经销商销售、两种智能空调,其中一台种空调的销售价格比一台种空调的销售价格高1500元,已知4月份种空调的销量是种空调销量的,且4月份种空调的销售总额为120万元,种空调的销售总额为225万元.(1)请问、两种智能空调的销售单价分别为多少元?(2)5月份气温回升、该经销商对两种空调进行了降价促销活动,已知种空调降价元、种空调降价元.经销商发现5月的第一周内:种空调的销量就已经与4月份种空调的总销量相同,种空调的销量比4月份种空调的总销量增加了台,5月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,请求出的值.26.(10分)如图1,直线AB 交x 轴于点A (﹣4,0),交y 轴于点B ,且OA =OB ,直线BC :4交x 轴于点C ,点D 为AB 的中点.(1)求直线CD 的解析式;(2)如图2,点E 在线段CB 上,过E 作EF ∥y 轴交CD 于点F ,过E 作EG ∥x 轴交AB 于点G ,连接DE ,当时,求△BED 的面积;(3)点H (m ,1﹣2m )为平面内一点,且满足∠ABH =∠OBC ,请直接写出点H 的坐标.y y x x y y 12y x b =+b A B B A A B 45A B A B A 70a B 100a A A B B 20a A B A B a27.(12分)如图,等腰中,,,点是射线上一点,连接,过点作于点,.(1)如图1,点在上,,,求的长;(2)如图2,点在延长线上,点为的中点,过点作于点,连接,求证:;(3)如图3,点在的延长线上,,,点在的延长线上,点在的延长线上,且,连接、,当取得最小值时,请直接写出的面积.Rt ACB ∆90ACB ∠=︒AC BC =D CA BD C CF BD ⊥E //AF BD D AC 75CAF ∠=︒4BD =BC D CA F CE F FH BC ⊥HEH HB HF +=D CA 30CDB ∠=︒4AC =N BA M AC AM BN =BMDN BM AN -BDN ∆2023-2024学年重庆市渝中区巴蜀中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共12个题,每小题4分,共48分)1.(4分)以下国产电动汽车标志中,不是轴对称图形的是 A .B .C .D .【解答】解:根据轴对称图形的定义,选项、、中的图形都能沿着一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故、、不符合题意;选项中的图形不是轴对称图形,符合题意,故选:.2.(4分)下列各式计算正确的是 A .B.C .D【解答】解:.故本选项不符合题意;.原式,故本选项符合题意;.,故本选项不符合题意;.原式,故本选项不符合题意;故选:.3.(4分)从我校4月30日的春季运动会中,抽取了甲、乙、丙3位同学的跳远成绩进行分析,这3位同学三次跳远平均成绩大致相同,他们的方差分别是,,,则这3位同学三次跳远成绩发挥最稳定的是 A .甲B .乙C .丙D .无法确定【解答】解:,,,,()A B C A B C D D ()222()a b a b -=-22211x x x -=--1|2|20--+=4÷=A 222()2a b a ab b -=-+B 2(1)21x x -==-C 115|2|2222--+=+=D 2==B 2 2.5s =甲21.0s =乙2 4.5s =丙()22.5s = 甲21.0s =乙2 4.5s =丙222s s s ∴ 乙甲丙这3位同学三次跳远成绩发挥最稳定的是乙.故选:.4.(4分)用配方法解方程,配方结果正确的是 A .B .C .D .【解答】解:,,,,故选:.5.(4分)下列命题正确的是 A .对角线相等的平行四边形是菱形B .平行四边形的两条对角线互相垂直C .一组对边平行另一组对边相等的四边形是平行四边形D .有三个角为直角的四边形为矩形【解答】解:、对角线垂直的平行四边形是菱形,原命题是假命题;、平行四边形的两条对角线互相平分,原命题是假命题;、一组对边平行另一组对边相等的四边形不一定是平行四边形,原命题是假命题;、有三个角为直角的四边形为矩形,是真命题;故选:.6.(4分)已知点、、在关于的一次函数的图象上,则,,的大小关系是 A .B .C .D .【解答】解:对于一次函数,,随的增大而减小,,∴B 2470x x +-=()2(4)23x +=2(2)3x +=-2(2)11x +=2(4)9x +=2470x x +-=247x x +=24474x x ++=+2(2)11x +=C ()A B C D D 1(1,)y -2(3,)y 3(5,)y x 5y x m =-+1y 2y 3y ()123y y y >>123y y y <<213y y y <<132y y y >>5y x m =-+50k =-< y ∴x 531>>-故;故选:.7.(4分)如图,点的坐标为,点在直线上运动,则线段的最短长度为 A .B .2C .D .3【解答】解:点在直线上运动,最短线段所在直线解析式的,设最短线段所在直线解析式为,将坐标代入解析式得:直线的解析式为:.如图,两条直线的交点正好在轴上,即,最短线段.故选:.8.(4分)甲、乙两人在同一条滨江健身步道上从同一起点沿同一方向匀速慢跑720米,到终点后则停止运动.已知甲先出发2分钟,在整个慢跑过程中,甲、乙两人的距离(米与甲出发的时间(分之间的函数关系如图所示,下列说法中错误的是 321y yy <<AA (1,0)-B y =+AB () B y =+∴k y b =+(1,0)A -b =∴AB y y B 2AB ===B y )t )()A .甲慢跑的速度为80米分B .乙跑完全程用了6分钟C .的值为9D .乙到达终点时,与甲的距离为75米【解答】解:由题意可知,甲慢跑的速度为(米分),正确,不符合题意;设乙的速度为米分,当时乙追上甲,此时二人离起点距离相等,得,解得,则乙跑完全程用时(分,正确,不符合题意;甲到达终点用时(分,,正确,不符合题意;当乙到达终点时,甲离终点的距离为(米,乙到达终点时,与甲的距离为80米,错误,符合题意.故选:.9.(4分)如图,在渝中区的劳动技能课程中,小张同学将一张长,宽的矩形纸板,剪去两个全等的正方形和两个全等的矩形后,剩余部分恰好制作成底面积为的有盖的长方体工艺盒,则剪去的正方形的边长为 A .1.5B .2C .2.5D .3【解答】解:设剪去正方形的边长为 ,则长方体盒子的底面长为,宽为/m 160280÷=/A ∴v /6t =8064v ⨯=120v =7201206÷=)B ∴720809÷=)9m ∴=C ∴720(62)8080-+⨯=)∴D ∴D 16cm 12cm 248cm ()x cm (122)x cm -.依题意得:,整理得:,解得:,(不符合题意,舍去).答:剪去的正方形的边长为.故选:.10.(4分)正方形,正方形,正方形按如图方式排列,点、、在直线上,点、、在轴上,则正方形的边长为 A .B .C .D .【解答】解:直线与轴交于点,,,当时,,,,当时,,,,,的边长,故选:.11.(4分)如图,菱形的顶点、在直线上,点在轴上,点的坐标为,则点的坐标为 162(8)2x x cm -=-(122)(8)48x x --=222720x x -+=12x =212x =2cm B 111OA C B 1222A A C B 2333A A C B ⋯1B 2B 3B ⋯2y x =+1A 2A 3A ⋯x 2023202420242024A A C B ()20242202422-2023220252 2y x =+y 1B 1(0,2)B ∴1122OB ==2x =4y =2(2,4)B ∴21242A B ==6x =8y =3(6,8)B ∴32382A B ==⋅⋅⋅20232024A B 20242=A ABCD A D 36y x =--A x C (2,4)B ()A .B .C .D .【解答】解:四边形是菱形,,,直线的解析式为,,设直线的解析式为,点,,解得,直线的解析式为,设出,,,,,解得,,.故选:.12.(4分)对于整式列,,第一次操作:将中相邻两个整式之和插入,之间,得到新整式列整式列,,;第二次操作:将中相邻两个整式之和依次插入,3(4,)2-(4,2)-95(,)22-9(,2)2- ABCD //AD BC ∴AB BC = AD 36y x =--(2,0)A ∴-BC 3y x b =-+ (2,4)C 324b ∴-⨯+=10b =∴BC 310y x =-+(,310)B a a -+(2,0)A - (2,4)B AB BC =2222(2)(310)(2)(4310)a a a a ∴++-+=-++-4a =31012102a ∴-+=-+=-(4,2)B ∴-B :3A x 3m x -A 3x 3m x -1:3A x m 3m x -1A 3x 3m x-之间,得到新整式列,,,;类似的,第三次操作后得到新整式列,,,,;以此类推.现有以下结论:①第四次操作后的整式列,,,,,;②将整式列中相邻两个整式的乘积之和记为,当时,有;③若中所有整式之和记为,中所有整式之和记为,,中所有整式之和为记为,,若系数不大于1024,则所有符合条件的之和为10.其中正确的结论有 个.A .0B .1C .2D .3【解答】解:,,;,,,一30;,,,,,,,,,,故①正确;,,故,故②正确;,,,故的系数为而,若的系数不大于1024,则,.解得:,又为正整数,符合条件的有:1,2,3,4;,故③正确;2:3A x 3x m +23m x -3m x -3:3A x 6x m +3m 36m x -3m x -⋯4:3A x 9x m +64x m +66m x -49m x -3m x -3A ()F x 2()14F x m =16x m =1A 1B 2A 2B ⋯n A n B 1231n n n T B B B B B -=⋅⋅⋅⋯⋅n T n ()1:3A x m 3m x -12B m=2:3A x 32m +230m -m 24B m=3:3A x 6x m +3m 36m x -33:8m x B m-=4:3A x 9x m +64x m +66m x -49m x -43:16m x B m -=()3(6)(6)33(36)(36)F x x x m x m m m m x m x =++++-+-(3)m x -22236151214x m xm m =+-=2236120x xm m ∴-+=2(62)0m ∴-=16x m =12B m =222B m =332B m =2nn B m=n T ∴2312345..(1)2.2.2 (212345222)n n n n++++++=+++++=1010242=n T (1)102n n+…2200n n +-…(4)(5)0n n -+…54n -……n ∴n 123410+++=故选:.二、填空题(共8个题,每小题4分,共32分)13.(4分)若关于的函数是正比例函数,则的值为 3 .【解答】解:是关于的正比例函数,,即故答案为:3.14.(4分)如果是方程的一个根,那么代数式的值为 8 .【解答】解:把代入方程,得到,所以代数式;故答案为:8.15.(4分)花园中学规定学生的学期体育成绩满分为100分,其中大课间自编操成绩占,体育模块化成绩占,期末体考项目成绩占,小桂同学三项体育成绩(百分制)依次95分、90分、88分,则小桂同学这学期的体育成绩是 90 分.【解答】解:根据题意得:(分,小桂同学这学期的体育成绩是90分.故答案为:90.16.(4分)如图,直线与直线相交于点,点的纵坐标为4,则关于的不等式的解集为 .【解答】解:点代入,,D x 73y x a =+-a 73y x a =+- x 30a ∴-=3a =m 2340x x --=226m m -m 2340x x --=234m m -=22262(3)248m m m m -=-=⨯=20%30%50%9520%9030%8850%⨯+⨯+⨯192744=++90=)∴1:3l y x =+2:l y kx b =+P P x 3kx b x ++…1x …(,4)P m 3y x =+1m ∴=,结合图象可知关于的不等式的解集为;故答案为:.17.(4分)如图,在中,,,点从点出发,沿射线运动,速度为,点从点出发,沿线段运动,速度为,连接.、两点同时出发,当点到达点时,点也停止运动,请问经过 4或6 后,的面积恰为.【解答】解:过作于,如图:设运动时间为,中,,,,根据题意得: ,,, ,的面积恰为,,解得或,经过或后,的面积恰为.故答案为:4或6.(1,4)P ∴x 3kx b x ++…1x …1x …Rt ABC ∆30BAC ∠=︒5BC cm =E A AB 2/cm s F C CA 1/cm s EF E F F A E s AEF ∆212cm E EH AC ⊥H ts Rt ABC ∆ 30BAC ∠=︒5BC cm =210AC BC cm ∴==2AE t =cm CF tcm =(10)AF t cm ∴=-12EH AE t ==cm AEF ∆ 212cm ∴1(10)122t t -=4t =6t =∴4s 6s AEF ∆212cm18.(4分)若关于的一元二次方程有两个不相等实数解,且关于的分式方程有整数解,那么满足条件的所有整数的和为 .【解答】解:关于的一元二次方程有两个不相等实数解,,且,即且,解关于的分式方程,可得且,且,,,为整数,,,,足条件的所有整数的和为:.故答案为:.19.(4分)如图,中,,为的中点,将沿折叠得,点的对应点为点,连接,与交于点,,则的长为 .【解答】延长,作,垂足为,,,,由折叠的性质得:,,是中点,.设,x 2(2)420m x x --+=x 3222my y y y+=---m 4- x 2(2)420m x x --+=2(4)4(2)20m ∴--⨯-⨯>20m -≠4m <2m ≠y 3222my y y y +=---41y m =-2y ≠4m < 3m ≠2m ≠1m ≠y 0m ∴=1-3-∴m 0134--=-4-ABC ∆AC =D BC ABD ∆AD AED ∆B E CE AE BC F 135BAC AFC ∠=∠=︒AB 2-BA CM BA ⊥M 135BAC AFC ∠=∠=︒ ACF BCA ∠=∠1ABC ∴∠=∠BD ED =21ABC ∠=∠=∠D BC BD CD ED ∴==3α∠=,,,,,由折叠的性质得,,,,,,,,在中,是等腰直角三角形,,在中,,,设,,,,或(合去),,故答案为:.20.(4分)若一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则称这个四位数为“乐蜀数”,则最大乐蜀数与最小乐蜀数之差为 7943 ,若,,、、为整数,且,,且、均为“乐蜀数”,记,、的各个数位的数字之和分别记为、.当为整数,且取最小值时,的值为 .180319022DEC DCE α︒-∠∴∠=∠==︒-18045AFD AFC ∠=︒-∠=︒ 2345AFD ∴∠=∠+∠=︒2145ABC α∴∠=∠=∠=︒-1803180BDE α∠=︒-∠=︒- 36019022BDE ADB ADE C ︒-∠∠=∠==︒+12∠=∠ //AC DE ∴43α∴∠=∠=14902CAD BDA ∴∠=∠-∠=︒-13902ADC ADE α∠=∠-∠=︒-CAD ADC ∴∠=∠CD AC BD ∴===Rt ACM ∆18045CAM BAC ∠=︒-∠=︒ACM ∴∆2CM AM ∴===Rt BCM ∆BC BD CD =+=2CM =AB x =2BM x =+222(2)2x ∴++=24240x x ∴+-=2x ∴=-2x =--2AB ∴=25M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 22(,)11M N b n F M N -+-=M N ()G M ()G N (,)F M N ()()G M G N M N +【解答】解:一个四位数的千位数字与个位数字之和为8,百位数字与十位数字之差为2,则最大乐蜀数是8970,最小乐蜀数是1027,则最大乐蜀数与最小乐蜀数之差为:;,,、、为整数,且,,且、均为“乐蜀数”,,,且、均为“乐蜀数”,,,,所以的取值范围是到,即2.68到24.19.因为是整数,所以的可能取值是3、4、4、6、7,2.68到24.19因为是整数,所以的可能取值是3、4、4、6、73、9、11、13、15、17、19、21、23:第四步,因为:因为的定义是””,所以的结果是干位和十位99数字的差乘以100,然后相减,所以千位和百位数字的和等于十位和个位数字的和;第五步,因为和都是小于10的正整数,最小值为,所以和的取值范围是1到9;第六步,因为,的取值范围是4到8,所以;第七步,因为是“中庸数”,百位数字是8,个位数字是0.故答案为:7943;5040.三、解答题(共7个题,22题8分,27题12分,其余每题10分,共70分)21.(10分)解方程:(1);(2).【解答】解:(1),,,,,或,8970102747943-=5M abc =1000100103N x m n x =++-(x m n 0m …9n …16)x ……M N 5M abc =1000100103N x m n x =++-M N 3c ∴=8m n +=22229220921978x x +=k 2442:90921978909-k k k k 18()72x P n +=()P n n n '-x y 10811107882x x -=-x x y >y 5x =n 22(23)9(2)x x -=+261x x -=22(23)9(2)x x -=+22(23)9(2)0x x --+=[(23)3(2)][(23)3(2)]0x x x x -++--+=(53)(9)0x x +--=530x ∴+=90x --=,;(2),,即,,,22.(8分)学习了菱形的知识后,爱思考的小蜀同学发现,过平行四边形其中一条对鱼线中点且满足某个特殊条件的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点,形成的图形恰好是一个菱形.根据他的思路,完成以下作图与填空.已知:在中,点为对角线上一点,且;(1)尺规作图:请用无刻度直尺和圆规,过点作的垂线,分别交、于点、,连接、;(保留作图痕迹)(2)求证:四边形为菱形.证明:在中,① , ,,在和中,,,又,四边形为平行四边形,③ ,四边形为菱形.通过小蜀的上述探究过程,我们可以得出以下真命题:过平行四边形④ 的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.135x ∴=-29x =-261x x -=26919x x -+=+2(3)10x -=3x ∴-=13x ∴=23x =ABCD O BD OB OD =O BD AD BC E F BE DF BEDF ABCD //AD BC OD OB =EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO EOD FOB ∠=∠⎧⎪⎨⎪∠=∠⎩②()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF ∴BEDF【解答】(1)解:图形如图所示:(2)证明:在中,,,,在和中,,,又,四边形为平行四边形,,四边形为菱形.过平行四边形对角线的交点与一条对角线垂直的直线与平行四边形的一组对边相交于两点,顺次连接这两个交点与刚才那条对角线的两个端点形成的四边形为菱形.故答案为:,;;,对角线的交点与一条对角线垂直.23.(10分)某校初二年级数学组为了解学生数学错题整理的效果,决定在全年级开展错题重做比赛,数学组选择了近一个月作业中部分易错题,制作了一张比赛测试卷,共100分,张老师为了解、两个班级的易错题整理效果,从、两个班级各随机抽取了10人的测试成绩数据,并对数据进行整理、描述和分析(测试成绩用表示,共分为四个等级:不合格:,合格:,良好:,优秀:,下面给出部分数据信息:ABCD //AD BC OD OB =EDO FBO ∴∠=∠EDO ∆FBO ∆EDO FBO OD OBEOD FOB ∠=∠⎧⎪=⎨⎪∠=∠⎩()EDO FBO ASA ∴∆≅∆OE OF ∴=OB OD = ∴BEDF EB ED = ∴BEDF //AD BC OD OB =OD OB =EB ED =A B A B x 70x <7080x <…8090x <…90100)x ……班10名学生的测试成绩:72,60,64,80,86,80,90,98,100,80.班10名学生的测试成绩中,等级为“良好”的所有数据为:82,84,84.抽取两个班的学生测试成绩统计表:班级平均数中位数众数班8180班8184请根据以上信息,解答下列问题:(1)根据上述图表填空: 80 , , ;(2)根据以上数据,你认为哪个班级的错题整理效果更好?请说明理由(写出一条理由即可);(3)根据抽取的两个班的学生测试成绩情况,估计该校初二年级840名同学中错题整理成绩为“优秀”的有多少名?【解答】解:(1)班成绩出现次数最多的是80,因此众数是,班不合格和合格的人数为(人,所以班的中位数是,班良好所占的百分比为,,;故答案为:80,83,30;(2)班级的错题整理效果更好,理由:两个班的平均数一样,但班的中位数、众数都比班的大,所以班级的错题整理效果更好;(3)(名,答:估计该校初二年级840名同学中错题整理成绩为“优秀”的有252名.24.(10分)如图,四边形中,,,,,连接,点A B A a B b a =b =m =A 80a =B 10(20%20%)4⨯+=)B 8284832b +==B 3100%30%10⨯=%120%20%30%30%m ∴=---=30m ∴=B B A B 338402521010+⨯=+)ABCD //AD BC BC CD ⊥24BC AD ==3CD =AC P从点出发,沿着折线运动,到点时停止运动,连接,设点的运动路程为,的面积为.(1)请直接写出关于的函数关系式并注明自变量的取值范围;(2)在给定的平面直角坐标系中画出的函数图象,并写出该函数的一条性质;(3)当的函数图象与直线有两个交点时,请直接写出的取值范围为 .【解答】解:(1)当时,;当时,;综上所述,;(2)函数图形如图所示;,当时,随的增大而减小;(3)的函数图象与直线有两个交点,当直线经过时,即,当直线经过时,即,B B C D →→D AP P x ACP ∆y y x x y y 12y x b =+b 122b -<<-04x ……113(4)36222y PC CD x x =⋅=-⨯=-47x <…11(4)2422y CP AD x x =⋅=-⨯=-36(04)24(47)x x y x x ⎧-⎪=⎨⎪-<⎩………04x ……y x y 12y x b =+∴12y x b =+(4,0)2b =-12y x b =+(7,3)1372b =⨯+,当的函数图象与直线有两个交点时,的取值范围为,故答案为:.25.(10分)某智能家电经销商销售、两种智能空调,其中一台种空调的销售价格比一台种空调的销售价格高1500元,已知4月份种空调的销量是种空调销量的,且4月份种空调的销售总额为120万元,种空调的销售总额为225万元.(1)请问、两种智能空调的销售单价分别为多少元?(2)5月份气温回升、该经销商对两种空调进行了降价促销活动,已知种空调降价元、种空调降价元.经销商发现5月的第一周内:种空调的销量就已经与4月份种空调的总销量相同,种空调的销量比4月份种空调的总销量增加了台,5月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,请求出的值.【解答】解:(1)设种智能空调的销售单价分为元,则种智能空调的销售单价为元,根据题意得:,解得,经检验,是原方程的解,也符合题意,,种智能空调的销售单价分为3000元,种智能空调的销售单价为4500元;(2)由(1)知,4月份种空调的总销量为(台,种空调的总销量为(台,月第一周内、两种空调的销售总额刚好和4月份、两种空调的销售总额相同,,解得(舍去)或,的值为6.26.(10分)如图1,直线AB 交x 轴于点A (﹣4,0),交y 轴于点B ,且OA =OB ,直线BC :4交x 轴于点C ,点D 为AB 的中点.(1)求直线CD 的解析式;12b ∴=-∴y 12y x b =+b 122b -<<-122b -<<-A B B A A B 45A B A B A 70a B 100a A A B B 20a A B A B a A m B (1500)m +12000002250000415005m m =⨯+3000m =3000m =1500300015004500m ∴+=+=A ∴B A 12000004003000=)B 22500005004500=)5 A B A B 400(300070)(50020)(4500100)12000002250000a a a ∴-++-=+0a =6a =a ∴(2)如图2,点E在线段CB上,过E作EF∥y轴交CD于点F,过E作EG∥x轴交AB于点G,连接DE,当时,求△BED的面积;(3)点H(m,1﹣2m)为平面内一点,且满足∠ABH=∠OBC,请直接写出点H的坐标.【解答】解:(1)∵OA=OB,A(﹣4,0),∴B(0,4),当﹣x+4=0时,x=3,∴C(3,0),∵A(﹣4,0),D为AB中点,∴D(﹣2,2),设CD解析式为y=kx+b,∴,解得,∴CD的解析式为y=﹣x+.(2)∵A(﹣4,0),B(0,4),∴直线AB的解析式为:y=x+4,设E(m,﹣m+4),F(m,﹣m+),G(﹣m,﹣m+4),∴EF=﹣m+4﹣(﹣m+)=﹣m+,EG=m,∵EF+EG=,∴﹣m++m=,解得m=2,此时E(2,),如图,作EQ∥y轴交AB于点Q.则Q(2,6),∴EQ=,∴S△BDE=EQ•(x B﹣x D)=××2=.(3)∵点H坐标是(m,1﹣2m),∴点H在直线y=﹣2x+1上,①当点H在AB左侧时,如图所示作∠ABM=∠OBC,AM⊥BM于点H,过M作GN∥y轴交x轴于点N,过B作BG∥x轴交GN于点G,∴△BAM∽△BCO,∵OC=3,OB=4,∴,易证△BGM∽△MNA,∴,∵OB=OA=4,∴MN=,BG=,∴M(﹣,)∵B(0,4)∴直线BM的解析式为y=x+4,∵点H坐标是(m,1﹣2m),∴1﹣2m=m+4,解得m=﹣,此时H的坐标为(﹣,);②当点H在AB右侧时,同理可得H(﹣,).综上,H 1(﹣,),H 2(﹣,).27.(12分)如图,等腰中,,,点是射线上一点,连接,过点作于点,.(1)如图1,点在上,,,求的长;(2)如图2,点在延长线上,点为的中点,过点作于点,连接,求证:;(3)如图3,点在的延长线上,,,点在的延长线上,点在的延长线上,且,连接、,当取得最小值时,请直接写出的面积.【解答】解:(1)如图1,过点作于点,Rt ACB ∆90ACB ∠=︒AC BC =D CA BD C CF BD ⊥E //AF BD D AC 75CAF ∠=︒4BD =BC D CA F CE F FH BC ⊥HEH HB HF +=D CA 30CDB ∠=︒4AC =N BA M AC AM BN =BMDN BM AN -BDN ∆D DH AB ⊥H,,,,,,在中,,在中,,在中,(2)如图2,过点作交延长线于点,,,,,,,,,,,是的中点,,,//AF BD 75CDB CAF ∴∠=∠=︒90ACB ∠=︒ AC BC =45DAB ∴∠=︒30DBA ∠=︒Rt ADH ∆2AH DH ==Rt BDH ∆BH =2AB ∴=+∴Rt ABC ∆BC AB ==+E EM EH ⊥CB M //AF BD CE BD ⊥90AFC CEB ∴∠=∠=︒90ACB ∠=︒ 90ACF BCE CBE BCE ∴∠+∠=∠+∠=︒ACF CBE ∴∠=∠AC BC = 90AFC CEB ∠=∠=︒()AFC CEB AAS ∴∆≅∆BE CF ∴=F CE CF EF BE ∴==90FEH BEH BEM BEH ∠+∠=∠+∠=︒,,,,,,,,,,即.(3)如图3,取,作,.,,,,,,,,,,,,FEH BEM ∴∠=∠FH BC ⊥ 90FHC ∴∠=︒90FCH CFH FCH CBE ∴∠+∠=∠+∠=︒CFH CBE ∴∠=∠HFE MBE ∴∠=∠()FEH BEM ASA ∴∆≅∆HE ME ∴=FH BM =∴HM HB BM HB HF ==+=+HB HF +=BG AB =NI BG ⊥AH NI ⊥AC BC = BAM NBG ∴∠=∠AM BN = AB BG =()ABM BGN SAS ∴∆≅∆BM GN ∴=NG BI ⊥ 45BNI NBI ∴∠=∠=︒AH NH ⊥ 45ANH HAN ∴∠=∠=︒NH ∴=BM AN NG NH HI ∴-=…如图4,当,重合时,取最小值,此时,过作于点,,,I G BG BA ==8BN =D DK BN ⊥K 8BD = DK ∴=-12BDN S BN DK ∆∴=⋅=-。
广西南宁市第二中学2023-2024学年八年级下学期期中语文试题(解析版)
南宁市第二中学2024年春季学期八年级语文期中测试卷(考试时间:150分钟满分:120分)注意事项:1.答题前,考生务必将姓名、准考证号、座位号填写在试卷和答题卡上。
2.考生作答时,请在答题卡上作答,在本试卷上作答无效。
一、积累(21分)校文学社正在开展“寻民俗之美,扬文化自信”的主题活动,请你完成以下任务。
【春晚记忆】春晚见证了百姓的生活喜乐,它之所以成为中国的新民俗的原因,是因为春晚凝结着百姓的过年记忆。
春晚独具仪式感,已在不知不觉中衍化为一种新民俗,一年一度地等待着我们去品鉴、去守望。
【视听盛宴】今年的春晚注重从中华优秀传统文化中汲取创作灵感,为全国观众献上了一场精彩纷呈的文化盛宴。
节目《锦鲤》,舞蹈演员身着红白色衣裙,仿佛自由自在的锦鲤,时而鱼翔浅底,时而翩然起舞,让人目不暇接,叹为观止。
西安会场上演的《山河诗长安》,千人齐诵《将进酒》的场面令人震hàn(),当声音戛然而止的那一刻,观众热血沸腾。
创演秀《年锦》选取汉、唐、宋、明四个朝代富有代表性的纹样,织出一幅跨越千载的纹样变迁图卷。
【文化自信】2024年春节晚会无疑是一场展现中华优秀传统文化的文化盛实。
它激发了海内外华夏儿女的民族自豪感,蕴含着中国人朴素的家国情感,其影响力也是非同寻常的,是中国文化走向全球的品牌名片。
1. 根据拼音写汉字,给加点字注音。
(1)震hàn()(2)戛然而止()2. 解释语段中画波浪线的词语。
(1)翩然:____________________________(2)叹为观止:________________________3. 【视听盛宴】中有不少成语,除了以上第1、2题中出现的成语外,请你再写出其中的3个。
4. 根据对联的要求,从以下句子中选出有关春节的对联,按上下联顺序填写序号。
①节至人间万象新②赓续文化基因③近水远山皆有情④春临大地百花艳⑤清风明月本无价⑥厚植文化自信上联:_______________________下联:_______________________5. 下列从语段中选出来的句子,有语病的一项是()A. 春晚见证了百姓的生活喜乐,它之所以成为中国的新民俗的原因,是因为春晚凝结着百姓的过年记忆。
人教版英语八年级下册第二学期期中 达标测试卷(含答案)
第二学期期中达标测试卷一、听说应用(本大题共30小题,每小题1分,共30分;A、B、C、D部分为听力理解,E部分为情景对话)A. 听句子(本题共5小题,每小题1分,共5分)请根据所听内容,选择符合题意的图画回答问题。
每个句子听两遍。
()1. Where does the speaker volunteer to help others?()2. What was Tom's mother doing when Tom came back?()3. What is the speaker's advice?()4. What does Mary help her mother do every day?()5. Why did Lily feel terrible yesterday?B. 听对话(本题共10小题,每小题1分,共10分)请根据每段对话的内容回答问题,从每小题所给的三个选项中选出一个最佳答案。
每段对话听两遍。
听第一段对话,回答第6小题。
()6. What happened to the boy?A. He fell down.B. He got hit on the head.C. He cut himself.听第二段对话,回答第7小题。
()7. What is broken?A. The computer.B. The phone.C. The bike.听第三段对话,回答第8小题。
()8. What are they going to do today?A. To fly kites.B. To climb the mountain.C. To play badminton.听第四段对话,回答第9小题。
()9. How will the boy go to the V olunteer Service Center?A. On foot.B. By bike.C. By car.听第五段对话,回答第10小题。
人教版八年级下册数学《期中检测题》及答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.使二次根式3a -有意义的的取值范围是( ) A. 3a > B. 3a < C. 3a ≥ D. 3a ≤2.下列各式中,是最简二次根式是( )A. 12 B. 5 C. 18 D. 2a3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为()A. 1B. 3C. 5D. 34.下列运算正确的是( )A. 325+=B. 326⨯=C. 2(31)31-=-D. 225353-=-5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 46.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =,则AB 长为( )A. 2B. 3C. 4D. 438.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A 278cmB. ()24330cm + C. 21210cm D. 22410cm 10.如图,在□ABCD 中,ABAC ,若AB=4,AC=6,则BD 的长是( )A. 11B. 10C. 9D. 811.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A. B. C. D.13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 210D. 814.将四根长度相等细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22二、填空题15.若23a =-,则241a a -+的值为__________.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC 经过两次折叠,得到边AB ,BC ,CA 上的点D ,E ,F .折叠方法如下:如图2,(1)AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;(2)C点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .则下列结论:①四边形DECF 一定是矩形,②四边形DECF 一定是菱形,③四边形DECF 一定是正方形.其中错误的是__________(填序号)三、解答题20.计算:(1)148(12)3-+ (2)2(221)243-+÷21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n + 2mn ;②当3m =,3n =时,m n + 2mn ;③当12m =,12n =时,m n + 2mn ; ④当4m =,1n =时,m n + 2mn ;⑤当5m =,3n =时,m n + 2mn ;⑥当13m =,12n =时,m n + 2mn ;则关于m n +与2mn 之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值. 25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH与AE的数量关系,并证明.答案与解析一、选择题1.有意义的取值范围是( )A. 3a >B. 3a <C. 3a ≥D. 3a ≤[答案]D[解析][分析]根据二次根式有意义的条件可得30a -≥,再解不等式即可.[详解]由题意得:30a -≥,解得:3a ≤,故选:D .[点睛]本题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 2.下列各式中,是最简二次根式的是( )[答案]B[解析][分析]判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.[详解](1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.[点睛]本题考查最简二次根式的定义,掌握相关知识是解题关键.3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为( )A. 1B. 3C. 5D. 3[答案]A[解析][分析] 先根据正方形的性质得出∠B =90°,BC 2=3,然后在Rt △BCE 中,利用勾股定理即可求出EB 的长.[详解]解:解:∵四边形ABCD 是正方形,∴∠B =90°,∴EB 2=EC 2-BC 2,又∵正方形ABCD 的面积=BC 2=3,2EC =, ∴2231EB =-=故选:A .[点睛]本题主要考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.4.下列运算正确的是( ) 325=326=C. 231)31-=- 225353-=-[答案]B[解析][分析]根据二次根式的性质、运算法则及完全平方公式对各选项进行分析即可.[详解]解:A 、32+无法计算,故此选项不合题意; B 、326⨯=,正确; C 、2(31)3231423-=-+=-,故此选项不合题意; D 、2253164-==,故此选项不合题意.故选:B .[点睛]此题主要考查了二次根式的性质、运算法则及完全平方公式的应用,正确化简二次根式是解题关键. 5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 4[答案]B[解析] ∵点,分别是边AB ,CB 的中点,114222DE AC ∴==⨯= .故选B. 6.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°[答案]C[解析] 试题分析:根据勾股定理即可得到AB,BC,AC 的长度,进行判断即可. 试题解析:连接AC,如图:根据勾股定理可以得到:510.∵525210)2.∴AC 2+BC 2=AB 2.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .考点:勾股定理.7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =则AB 长为( )A. 2B. 3C. 4D. 3[答案]C[解析][分析]根据 cos AC A AB∠=计算. [详解]解:∵∠A=30°,∠C=90°,AC=3 ∴ 3cos cos30,2AC A AB ∠=︒== ∴23 4.3AB == 故选:.[点睛]本题考查了三角函数,熟练运用三角函数关系是解题的关键8.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A. 278cmB. (24330cm C. 210cm D. 22410cm [答案]D[解析][分析] 根据题意利用正方形的面积公式即可求得大正方形的边长,则可求得阴影部分的面积进而得出答案.[详解]从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,+=+,大正方形的边长是30483043留下部分(即阴影部分)的面积是:()2+--=++--=(cm2).304330483083034830482410故选:D.[点睛]本题主要考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.10.如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是()A. 11B. 10C. 9D. 8[答案]B[解析][分析]利用平行四边形的性质可知AO=3,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=10.[详解]解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=3.在Rt△ABO中,利用勾股定理可得:22+=345∴BD=2BO=10.故选B.[点睛]本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD[答案]B[解析][分析]根据矩形的性质即可判断;[详解]解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B . [点睛]本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A.B. C. D.[答案]B[解析][分析]求出∠AFE=∠AEF ,推出AE=AF ,求出BE ,根据勾股定理求出AE ,即可求出AF ,即可求出答案[详解]∵四边形ABCD 是矩形,∴AD=BC=8,AD ∥BC ,∴∠AFE=∠FEC ,∵EF 平分∠AEC ,∴∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AE=AF ,∵E 为BC 中点,BC=8,∴BE=4,在Rt △ABE 中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD−AF=8−5=3故选:B[点睛]本题考查了矩形的性质, 等腰三角形的判定与性质, 直角三角形中利用勾股定理求边长. 13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 10D. 8[答案]A[解析][分析]连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.[详解]解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .[点睛]本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.14.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22[答案]A[解析][分析] 图(1)中根据有一个角是60°的等腰三角形是等边三角形即可求得BC ,图2中根据勾股定理即可求得正方形的对角线的长.[详解]如图(1)中,连接AC ,∵∠B=60°,AB=BC ,∴△ABC 为等边三角形,∴AC=AB=BC=3,如图(2)中,连接AC ,∵AB=BC=CD=DA=3,∠B=90°,∴四边形ABCD 是正方形,∴22223332AB BC ++=故选:A .[点睛]本题考查了正方形的性质和判定,菱形的性质,勾股定理以及等边三角形的判定和性质,利用等边三角形的判定确定边长是关键.二、填空题15.若23a =-,则241a a -+的值为__________.[答案]0[解析][分析]利用完全平方公式变形得:()224123a a a -+=--,再代入求值即可得到答案.[详解]解:()224123a a a -+=--, ()22323330,=---=-=故答案为:[点睛]本题考查是利用因式分解求代数式的值,同时考查了二次根式的乘法的运算,掌握完全平方公式的变形是解题的关键.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.[答案]50°[解析][分析]由平行四边形ABCD 中,易得∠C =∠A ,又因为DB =DC ,所以∠DBC =∠C ,根据三角形内角和即可求出CDB ∠.[详解]解:∵四边形ABCD 是平行四边形,∴∠C =∠A =65°,∵DB =DC ,∴∠DBC =∠C =65°,∴180218026550CDB C ∠=︒-∠=︒-⨯︒=︒,故答案为:50°.[点睛]此题是平行四边形的性质与等腰三角形的性质的综合,解题时注意特殊图形的性质应用.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.[答案]()13,0- [解析][分析]根据勾股定理求得PO 的长度,从而确定点A 的坐标.[详解]解:由题意可知:222313OP OA ==+= ∴A 点坐标为:()130-,故答案:()130-,. [点睛]本题考查实数与数轴,掌握勾股定理计算公式,利用数形结合思想解题是关键.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.[答案2[解析][分析]根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC ,从而可求∠EBC=30°,在Rt △BCE 中可求EC 值,由DE=EC 可求DE 的长.[详解]∵四边形ABCD是菱形,∴CD=BC=AB=6,∴∠EDC=∠EBC,∵DE=CE,∴∠EDC=∠ECD,∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴3BC tan30623EC=⋅︒=⨯=,∴DE=EC=2,故答案为:2.[点睛]本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC经过两次折叠,得到边AB,BC,CA上的点D,E,F.折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C 点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.则下列结论:①四边形DECF一定是矩形,②四边形DECF一定是菱形,③四边形DECF一定是正方形.其中错误的是__________(填序号)[答案]①③[解析][分析]根据折叠的性质可知,CD和EF互相垂直且平分,即可得到结论.详解]解:连接DF、DE,DC、EF相交于点O,根据折叠的性质得,CD ⊥EF ,且OD=OC ,OE=OF ,∴四边形DECF 是菱形.菱形DECF 因条件不足,无法证明是正方形.故答案为:①③[点睛]本题考察了菱形的判定以及折叠的性质,灵活运用即可.三、解答题20.计算:(114812)3(2)2(221)243+[答案](153;(2)922- [解析][分析](1)先化简成最简二次根式,再根据二次根式加减法法则计算即可;(2)先利用完全平方公式展开,再根据二次根式混合运算法则计算即可得答案. [详解](1481(12)3-+=3323-=533; (2)2(221)243+=28=942+22=922-. [点睛]本题考查了二次根式的运算,熟练掌握运算法则是解题关键.21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.[答案](1)25;(2)37[解析][分析](1)根据勾股定理计算,得到答案;(2)作CD ⊥AB 交BA 的延长线于点D ,根据直角三角形的性质求出AD ,根据勾股定理求出CD ,再根据勾股定理计算即可.[详解]解:(1)在Rt △ABC 中,∠C =90°, ∴AB =222242AC BC +=+=25;(2)作CD ⊥AB 交BA 的延长线于点D ,∵∠BAC =120°,∴∠DCA =30°,∴AD =12AC =3,∴CD =22AC AD -=226333-=,∵BD =AD+AB =6,∴在Rt △CDB 中,BC =2237CD BD +=.[点睛]本题考查的是勾股定理、含30°的直角三角形的性质,解题关键在于正确做出辅助线,求线段长度. 22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.[答案]30[解析][分析]利用基本作图作BH 平分∠ABC ,则∠ABH =∠CBH ,再利用平行四边形的性质得到CD ∥AB ,AB=CD ,AD=BC=6,接着证明∠CBH =∠BHC 得到CH =BC =6,所以DH=3,然后计算平行四边形ABCD 的周长.[详解]如图,BH 为所作.∵BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 为平行四边形,∴CD ∥AB ,AB =CD ,AD =BC =6,∴∠ABH =∠BHC ,∴∠CBH =∠BHC ,∴CH =BC =6,∵DH =12CH , ∴DH =3,∴平行四边形ABCD 周长=2(BC+CD )=2×(6+9)=30.[点睛]本题考查了作图-基本作图和平行四边形的性质,等腰三角形的判定和性质.解决本题的关键是熟记平行四边形的性质.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 是平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.[答案](1)见解析;(2)3[解析][分析](1)首先利用ASA 得出△DCF ≌△EBF ,进而利用全等三角形的性质得出CD =BE ,即可得出四边形CDBE 是平行四边形;(2)由BD ⊥AC ,四边形CDBE 是平行四边形,可推出四边形CDBE 是矩形,由F 为BC 的中点,求出BC ,根据勾股定理即可求得CE ,由矩形面积公式即可求得结论.[详解](1)证明:∵BE ∥AC ,∴∠ACB =∠CBE ,在△DCF 和△EBF 中,DCF EBF FC FBCFD BFE ∠∠⎧⎪=⎨⎪∠∠⎩==, ∴△DCF ≌△EBF (ASA ),∴CD =BE ,∵BE ∥CD ,∴四边形CDBE 是平行四边形;(2)∵BD ⊥AC ,四边形CDBE 是平行四边形,∴四边形CDBE 是矩形,在Rt △CEB 中,F 为BC 的中点,∴BC=DE=2EF=10,∴CE 2=BC 2BE 2=10252=75,∴CE =∴四边形CDBE 的面积=BEEC =.[点睛]本题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定和性质,勾股定理的应用,得出△DCF ≌△EBF 是解题关键.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n +②当3m =,3n =时,m n +③当12m =,12n =时,m n +④当4m =,1n =时,m n +⑤当5m =,3n =时,m n +⑥当13m =,12n =时,m n +则关于m n +与之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.[答案](1)①=,②=,③=,④>,⑤>,⑥>, m n +≥,≥);(2)见解析;(3)4[解析][分析](1)①-⑥分别代入数据进行计算即可得解;(2)根据非负数的性质,(m n -)2≥0,再利用完全平方公式展开整理即可得证; (3)镜框为正方形时,周长最小,然后根据正方形的面积求出边长,即可得解. 探究证明:根据非负数的性质, [详解](1)①当m =2,n =2时,由于224+=,2224⨯=,所以m n +=2mn ;②当m =3,n =3时,由于336+=,2336⨯=,所以m n +=2mn ;③当m =14,n =14时,由于111442+=,1112442⨯=,所以m n +=2mn ; ④当m =4,n =1时,由于415+=,2414⨯=,所以m n +>2mn ;⑤当m =5,n =12时,由于111522+=,125102⨯=,所以m n +>2mn ; ⑥当m =13,n =6时,由于119633+=,126223⨯=,所以m n +>2mn ; 则关于2m n +与mn 之间数量关系的猜想是m n +≥2mn (≥,≥); (2)证明:根据非负数的性质(m n -)2≥0,∴m2mn +n≥0,整理得,m n +≥2mn ;(3)面积为1平方米的长方形镜框长与宽相等,即为正方形时,周长最小,所以,边长为1,周长为1×4=4.[点睛]本题考查了二次根式的应用,完全平方公式的应用,准确进行运算判断出两个算式的大小关系是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.[答案](1)见解析;(2)见解析.[解析][分析](1)根据题目连接AC ,按要求分别作出BM 、CN 即可解答;(2)过点D 作DG //AB ,由平行四边形判定和性质可得CE =CE ,DG //CE ,再证明△GDF ≌△CEF (ASA )即可得出结论.[详解](1)解:如图所示:连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(2)证明:过点D 作DG //AB ,∵AD //BC ,DG //AB ,∴四边形ADGB 是平行四边形,∴AB =DG ,∵BE //AC ,AB //CE ,∴四边形BACE 是平行四边形,∴CE =AB ,DG //CE∴DG =CE ,∠GDF =∠CEF ,∵在△GDF 和△CEF 中,GDF CEF GFD CFE DG CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△GDF ≌△CEF (AAS ),∴DF =EF .[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.[答案](1)证明见解析;(2)BH=2AE ,理由见解析.[解析][分析](1)连接DF .根据对称的性质可得AD FD =.AE FE =.证明ADE FDE △≌△,根据全等三角形的性质得到DAE DFE ∠=∠.进而证明Rt DCG △≌Rt DFG △,即可证明.(2)在AD 上取点M 使得AM AE =,连接ME .证明DME ≌EBH △,根据等腰直角三角形的性质即可得到线段BH 与AE 的数量关系.[详解](1)证明:连接DF .∵,关于DE 对称.∴AD FD =.AE FE =.在ADE 和FDE 中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =. (2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴11145222EDG EDF GDF ADF CDF ADC ∠=∠+∠=∠+∠=∠=︒∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME 和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME ≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME∴BH .[点睛]本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.。
八年级语文下学期期中考试语文试卷(含答案)
八年级语文下学期期中考试语文试卷(含答案)2023初二(下)期中语文(满分100分,考试时间120分钟)一、基础·积累(共14分)学校要开展“所学课文知多少”活动,请你完成以下任务。
1. 阅读《社戏》选段,完成小题。
两岸的豆麦和河底的水草所发散出来的清香,夹杂在水气中扑面的吹来;月色便朦胧在这水气里。
淡黑的起伏的连山,仿佛是踊跃的铁的兽脊似的,都远远地向船尾跑去了,但我却还以为船慢。
他们换了四回手,渐望见依稀的赵庄,而且似乎听到歌吹了,还有几点火,料想便是戏台,但或者也许是渔火。
那声音大概是横笛,宛转,悠扬,使我的心也沉静,然而又自失起来,觉得要和他①在含着豆麦蕴藻之香的夜气里。
……最惹眼的是屹立在庄外临河的空地上的一座戏台,模胡在远处的月夜中,和空间几乎分不出界限,我疑心画上见过的仙境,就在这里出现了。
这时船走得更快,不多时,在台上显出人物来,红红绿绿的动,近台的河里一望乌黑的是看戏的人家的船②。
……月还没有落,仿佛看戏也并不很久似的,而一离赵庄,月光又显得格外的皎洁。
……不多久,松柏林早在船后了,船行也并不慢,但周围的黑暗只是浓,可知已经到了深夜。
……离平桥村还有一里模样,船行却慢了,摇船的都说很疲乏,因为太用力,而且许久没有东西吃。
这回想出来的是桂生,说是罗汉豆正旺相,柴火又现成,我们可以偷一点来煮吃的。
大家都赞成,立刻近岸停了船……(1)加点字读音全都正确的一项是()A.兽脊(jí)模样(mú)B.兽脊(jí)模样(mó)C.兽脊(jǐ)模样(mú)D.兽脊(jǐ)模样(mó)(2)文段①②处选填词语和汉字全都正确的一项是()A. ①弥漫②篷____________B.①弥散②蓬C. ①弥漫②蓬____________D.①弥散②篷(3)根据文意解释画线句“……船行也并不慢,但周围的黑暗只是浓……”中“浓”的意思。
(____________ )2. 阅读《大自然的语言》选段,完成小题。
人教版数学八年级下册《期中检测题》附答案解析
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( ) A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 1,2,3 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形5. 如图,已知在△ABC中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E,BC=5,DE=2,则△BCE的面积等于( )A 10 B. 7 C. 5 D. 46.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 27.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( 2)cm .A. 28B. 49C. 98D. 1478.如图,分别以直角ABC 斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论:①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A ①②③ B. ②③④ C. ①③④ D. ①②④二、填空题9.若直角三角形的两直角边的长分别为a 、b ,3a -(b ﹣4)2=0,则该直角三角形的斜边长为_____. 10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED =____度.12.如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是_______.13.如图:在Rt ABC ∆中,CD 是斜边AB 上中线,若20A ∠=︒,则BDC ∠=_________.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.18.已知:如图,GB =FC ,D 、E 是BC 上两点,且BD =CE ,作GE ⊥BC ,FD ⊥BC ,分别与BA 、CA 的延长线交于点G ,F .求证:GE =FD .19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.20.如图,已知四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE=DF .求证:AE ∥CF .21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.22.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG//DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求证四边形AGBD 是矩形.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.26.如图,在平行四边形ABCD中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在BC 上由点B向点C 出发,速度为每秒2cm;点Q 在边AD上,同时由点D 向点A 运动,速度为每秒1cm ,当点P 运动到点C时,P 、Q 同时停止运动,连接PQ,设运动时间为t秒.(1)当t为何值时四边形ABPQ 为平行四边形?(2)当t为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?(3)连接AP ,是否存在某一时刻t,使∆ABP 为等腰三角形?并求出此刻t的值.答案与解析一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:A、C、D既是轴对称图形,也是中心对称图形,只有B是轴对称图形,但不是中心对称图形.考点:轴对称图形、中心对称图形.2.下列四组线段中,可以构成直角三角形的是()A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 12,3[答案]B[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判断即可.[详解]解:、22261517+≠,该三角形不是直角三角形,不合题意;、222+=,该三角形是直角三角形,符合题意;1.522.5、222+≠,该三角形不是直角三角形,不合题意;51012、222+≠,该三角形不是直角三角形,不合题意.123故选:B[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°[答案]D[解析][分析]两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.[详解]解: 当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A 不是平行四边形; 当三个内角度数依次是88°,104°,108°时,第四个角是60°,故B 不是平行四边形;当三个内角度数依次是88°,92°,92°时,第四个角是88°,而C 中相等的两个角不是对角,故C 不是平行四边形;,当三个内角度数依次是88°,92°,88°时,第四个角是92°,D 中满足两组对角分别相等,故D 是平行四边形. 故选D .[点睛]此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形 [答案]D[解析][分析]根据特殊平行四边形的判定方法判断即可.[详解]解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误.故答案为D[点睛]本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 4[答案]C[解析] 试题分析:如图,过点E 作EF⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .考点:角平分线的性质;三角形的面积公式.6.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 2[答案]A[解析][分析]首先根据翻折的性质得到ED=BE,用AE表示出ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE 的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.[详解]解:∵将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知:AB2+AE2=BE2.∴32+AE2=(9﹣AE)2.解得:AE=4cm.∴△ABE的面积为:12×3×4=6(cm2).故选:A.[点睛]此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是(2)cm.A. 28B. 49C. 98D. 147[答案]D[解析][分析]根据勾股定理即可得到正方形A 的面积加上B 的面积等于E 的面积,同理,C,D 的面积的和是F 的面积,E,F 的面积的和是M 的面积.即可求解.[详解]解:根据勾股定理可得:S A +S B =S E ,S C +S D =S M ,S E +S F =S M所以,所有正方形的面积的和是正方形M 的面积的3倍:即49×3=147cm 2.故选D[点睛]理解正方形A,B 的面积的和是E 的面积是解决本题的关键.若把A,B,E 换成形状相同的另外的图形,这种关系仍成立.8.如图,分别以直角ABC 的斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论: ①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A. ①②③B. ②③④C. ①③④D. ①②④[答案]C[解析][分析] 根据已知先判断ABC EFA ∆≅∆,则AEF BAC ∠=∠,得出EF AC ⊥,由等边三角形的性质得出30BDF ∠=︒,从而证得DBF EFA ∆≅∆,则AE DF =,再由FE AB =,得出四边形ADFE 为平行四边形而不是菱形,根据平行四边形的性质得出4AD AG =,从而得到答案.[详解]解:ACE ∆是等边三角形,60EAC ∴∠=︒,AE AC =,30BAC ∠=︒,90FAE ACB ∴∠=∠=︒,2AB BC =, F 为AB 的中点,2AB AF ∴=,BC AF ∴=,ABC EFA ∴∆≅∆,FE AB ∴=,30AEF BAC ∠=∠=︒,又∵60EAC ∠=︒,EF AC ∴⊥,故①正确,EF AC ⊥,90ACB ∠=︒,//HF BC ∴, F 是AB 的中点,12HF BC ∴=, 12BC AB =,AB BD =, 14HF BD ∴=,故④说法正确;AD BD =,BF AF =,90DFB ∴∠=︒,30BDF ∠=︒,90FAE BAC CAE ∠=∠+∠=︒,DFB EAF ∴∠=∠,EF AC ⊥,30AEF ∴∠=︒,BDF AEF ∴∠=∠,()DBF EFA AAS ∴∆≅∆,AE DF ∴=,FE AB =,四边形ADFE 为平行四边形,AE EF ≠,四边形ADFE 不是菱形;故②说法不正确;∵四边形ADFE 为平行四边形,12AG AF ∴=, 14AG AB ∴=, AD AB =,则4AD AG =,故③说法正确,综上所述:正确结论的是①③④.故选.[点睛]本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.二、填空题9.若直角三角形的两直角边的长分别为a 、b ,(b ﹣4)2=0,则该直角三角形的斜边长为_____. [答案]5[解析][分析]直接利用偶次方的性质以及二次根式的性质得出a ,b 的值,再利用勾股定理得出斜边长.[详解]()240b -=, 3,4a b ∴==.5=.故答案为5.[点睛]本题主要考查了勾股定理以及二次根式的性质,正确得出a ,b 的值是解题关键.10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .[答案[解析]分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=22cm.23=13故答案为13.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED=____度.[答案]45[解析][分析]根据正三角形和正方形的性质可得∠EAB=150°,AE=AB,,从而得出∠AEB的大小,进而得出∠BE D的大小.[详解]∵四边形ABCD是正方形,△AED是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°[点睛]本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE.12.如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是_______.[答案]9.[解析][详解]试题分析:解:∵E 为AD 中点,四边形ABCD 是平行四边形,∴DE=AD=BC ,DO=BD ,AO=CO ,∴OE=CD , ∵△BCD 的周长为18,∴BD+DC+BC=18,∴△DEO 的周长是DE+OE+DO=(BC+DC+BD )=×18=9,故答案为9.考点:平行四边形的性质;三角形中位线定理.13.如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.[答案]40︒[解析][分析] 先根据直角三角形斜边中线的性质得出12CD AD AB ==,则有20DCA A ∠=∠=︒,最后利用三角形外角的性质即可得出答案.[详解]∵在Rt ABC ∆中,CD 是斜边AB 上的中线,, ∴12CD AD AB ==.∵20A ∠=︒,∴20DCA A ∠=∠=︒,∴40BDC DCA A ∠=∠+∠=︒.故答案为:40︒.[点睛]本题主要考查直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质,掌握直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质是解题的关键.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).[答案]不能[解析][分析]根据梯子的长度得到梯子距离墙面的距离,然后用勾股定理求出梯子的顶端距离地面的高度后与8.5比较即可作出判断.[详解]解:∵梯子底端离墙约为梯子长度的13,且梯子的长度为9米, ∴梯子底端离墙约为梯子长度为9×13=3米,==∵8.5<,∴梯子的顶端不能到达8.5米高的墙头.故答案为:不能.[点睛]本题考查了勾股定理的应用,解题的关键是根据习惯和告诉的梯子的长度求出梯子的底端距离墙面的距离.15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.[答案]①③④⑤[解析][分析]当把完全重合含有30角的两块三角板拼成的图形有三种情况:①把短直角边重合拼图;②把长直角边重合拼图;③把斜边重合拼图;可得六种拼图,进行判断即可.[详解]解:如图,把完全重合的含有30角的两块三角板拼成的图形共有六种情况,其中可以拼出等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形(不含矩形、菱形).故答案为:①③④⑤.[点睛]本题考查了图形的剪拼接,关键是在解题时要注意分类讨论,得出拼成的所有图形.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.[答案]20152[解析][分析] 根据勾股定理和已知条件,找出线段长度的变化规律,从而求出2014OP 的长度,然后根据三角形的面积公式求面积即可.[详解]解:∵OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 12212OP PP +=再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2221123OP PP +=又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3222234OP P P +=∴P n P n+1=1,OP n 1n +∴P 2014P 2015=1,OP 2014201412015+=∴20142015OP P S ∆=12P 2014P 2015·OP 20142015故答案为:20152.[点睛]此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.[答案]8边形,每一个内角为135°[解析][分析]先根据内外角和的关系,得出内角和,再利用内角和公式确定边数,最后得出每一个内角大小.[详解]∵内角和比外角和多720°∴内角和=720°+360°=1080°设多边形的边数为n则:(n-2)×180=1080解得:n=8∵是正多边形∴每个内角=1080135 8︒=︒[点睛]本题考查多边形的内角和公式,解题关键是通过外角和求解出内角和的大小.18.已知:如图,GB=FC,D、E是BC上两点,且BD=CE,作GE⊥BC,FD⊥BC,分别与BA、CA的延长线交于点G,F.求证:GE=FD.[答案]见详解[解析][分析]根据“HL ”证明Rt △GEB ≌Rt △FDC ,问题得证.[详解]解:证明:∵BD=CE ,∴BE=CD ,∵GE ⊥BC ,FD ⊥BC ,∴∠GEB=∠FDC=90°,∵GB =FC ,∴Rt △GEB ≌Rt △FDC ,∴GE =FD .[点睛]本题考查了三角形全等的证明,当三角形为直角三角形时,直角可以作为一个条件应用,也可以考虑用“HL ”进行证明.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.[答案]40BAO ∠=︒[解析][分析]先证明四边形BECD 是平行四边形,得到50ABO E ∠=∠=︒,再根据菱形性质得到AC BD ⊥,根据直角三角形两锐角互余得到40BAO ∠=︒.[详解]证明:四边形ABCD 是菱形,AB CD ∴=,//AB CD ,又BE AB =,BE CD ∴=,//BE CD ,四边形BECD 是平行四边形,//BD CE ∴,50ABO E ∴∠=∠=︒,又四边形ABCD 是菱形,AC BD ∴⊥,9040BAO ABO∴∠=︒-∠=︒.[点睛]本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE∥CF.[答案]AE∥CF(过程见详解)[解析][分析]根据平行四边形的对边相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“SAS”证明△ABE和△CDF全等,根据全等三角形对应角相等证明即可.[详解]解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,∵AB CDABE CDF BE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS).∴∠E=∠F,∴AE∥CF.[点睛]本题考查平行四边形的性质;全等三角形的判定和性质及平行线的判定.21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.[答案](1)见解析;(2)14.[解析][分析](1)根据中心对称的定义,找到各点的对应点,然后顺次连接即可;(2)根据平行四边形的面积公式求解即可.[详解](1)如图;(2)由图可知:AB=A 1B 15A 1B=AB 1=7,∴四边形11ABA B 是平行四边形,∴四边形11ABA B 的面积是72⨯=14.[点睛]本题考查了中心对称的性质,以及平行四边形的判定与性质,熟练掌握中心对称的性质是解答本题的关键.22.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG//DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求证四边形AGBD是矩形.[答案](1)见详解;(2)见详解.[解析][分析](1)证三角形全等根据边角边即可证明;(2)先证明ADBG是平行四边形再证明有一个角是直角的平行四边形是矩形即可证明;[详解](1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠C,AD//BC,又∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,∴△ADE≌△CBF(SAS);(2)∵AD//BC,AG//DB,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴BE=DE,∵E、F分别为边AB、CD的中点, ∴AE=BE,∴BE=DE=AE,∴∠ADE=∠EAD,∠EDB=∠EBD,∵∠EAD+∠EDA+∠EDB+∠EBD=180°,∴∠EDA+∠EDB=90°,∴∠ADB=90°,∴四边形ADBG是矩形,[点睛]本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.[答案](1)见解析;(2)16秒.[解析][分析](1)过点A作AC⊥ON,求出AC的长,即可判断是否受影响;(2)设当火车到B点时开始对A处有噪音影响,直到火车到D点噪音才消失,根据勾股定理即可求出BD的长,即可求出影响的时间.[详解](1)如图,过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200,故受到火车的影响,(2)当火车到B点时开始对A处有噪音影响,此时AB=200,∵AB=200,AC=120,利用勾股定理得出BC=160,同理CD=160.即BD=320米,∴影响的时间为3201620秒.[点睛]此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.[答案](1)见解析;(2)45°[解析][分析](1)根据正方形的性质四条边都相等可得BC=CD,对角线平分一组对角,可得∠ACB=∠ACD,然后利用“边角边”证明△PBC和△PDC全等,根据全等三角形对应边相等可得PB=PD,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC,根据等边对等角可得∠PBC=∠PEB,从而得到∠PDC=∠PEB,再根据∠PEB+∠PEC=180°,求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE是等腰直角三角形,根据等腰直角三角形的性质求解即可.[详解](1)∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,∵BC CDACB ACD PC PC=∠=∠=⎧⎪⎨⎪⎩,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°−(∠PDC+∠PEC)−∠BCD=360°−180°−90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.[点睛]本题主要考查正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质,熟练掌握正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质是解题的关键.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.[答案](1)①DG=2PC,理由见解析;②见解析;(2)四边形PEFD是菱形,理由见解析.[解析][分析](1)①结论:DG=2PC,如图1中,作PM⊥AD于M.只要证明四边形PMDC是矩形,推出PC=DM,再证明MG=MD即可解决问题.②由四边形PMDC是矩形得CD=PM,由△ADF≌△MPG,推出PG=PF,进而可得DP=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,再结合PD=PE即可证明四边形PEFD是菱形;(2)如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE =PF,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.[详解]解:(1)①结论:DG=2PC.理由:如图1中,作PM⊥AD于M.∵四边形ABCD是正方形,∴∠C=∠CDM=∠DMP=90°,AD=CD,∴四边形DCPM是矩形,∴PC=DM,∵PD=PG,PM⊥DG,∴MG=MD,∴DG=2PC.线段DG与PC的数量关系为DG=2PC.②∵四边形CDMP 矩形,∴CD =PM ,∵AD =CD ,∴AD =PM ,∵DF ⊥PG ,∴∠DAF =∠PMG =∠GHD =90°,∴∠ADF +∠AFD =90°,∠ADF +∠PGM =90°,∴∠AFD =∠PGM ,在△ADF 和△MPG 中,AFD PGM FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GMP ,∴DF =PG∵PG =PE =PD ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.(2)结论:四边形PEFD 是菱形.理由:如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,∵∠DAF =∠PMG =∠DHG =90°,∴∠ADF +∠AFD =90°,∠G +∠GDH =90°,∵∠ADF =∠GDH ,∴∠AFD =∠G ,∵AD =CD ,CD =PM ,∴AD =PM ,在△ADF 和△MPG 中,AFD G FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△MPG ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.[点睛]本题考查旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型. 26.如图,在平行四边形 ABCD 中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在 BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点 D 向点 A 运动,速度为每秒1cm ,当点 P 运动到点C 时,P 、Q 同时停止运动,连接 PQ ,设运动时间为t 秒.(1)当t 为何值时四边形 ABPQ 为平行四边形?(2)当t 为何值时,四边形 ABPQ 的面积是四边形 ABCD 的面积的四分之三?(3)连接 AP ,是否存在某一时刻t ,使∆ABP 为等腰三角形?并求出此刻t 的值.[答案](1)当4t =时,四边形ABPQ 是平行四边形;(2)当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在,当3t =333,ABP ∆为等腰三角形[解析][分析](1)利用平行四边形的对边相等得AQ BP =,建立方程求解即可;(2)分别表示出四边形ABPQ 和四边形ABCD 面积,利用面积关系即可求出;(3)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.[详解]解:(1)由P 、Q 的运动方式得:(2)=BP t cm ,DQ t =cm ,∵当点P 运动到点C 时,P 、Q 同时停止运动,∴06t <≤,在平行四边形 ABCD 中,BC = 12cm ,∴12AD BC ==cm ,则(12)=-AQ t cm ,若四边形 ABPQ 为平行四边形,则BP AQ =,即212=-t t ,解得:4t =,∴当4t =时,四边形ABPQ 是平行四边形;(2)如图 1,过点作AE BC ⊥于,在Rt ABE △中,30B ∠=︒,6AB =cm ,3AE ∴=cm ,四边形ABCD 是平行四边形,BC = 12cm ,∴12336=⋅=⨯=ABCD S BC AE cm 2,由(1)得:(2)=BP t cm ,(12)=-AQ t cm ,∴S 四边形ABPQ =113()(212)3(18)222+⋅=+-⨯=+BP AQ AE t t t cm 2, 若四边形ABPQ 的面积是四边形ABCD 的面积的四分之三, 即33183624+=⨯t ,解得:6t =, ∴当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在某一时刻t ,使ABP △为等腰三角形,若ABP △为等腰三角形,则AB BP =或AP BP =或AB AP =, ①当AB BP =时,则6BP =cm ,即26t =,解得:3t =;②当AP BP =时, 如图 2 ,过作PM 垂直于AB ,垂足为点M ,∵AP BP =,PM ⊥AB , ∴132==BM AB cm , 30B ∠=︒,∴23BP =cm ,则223=t ,解得:3t =,③当AB AP =时,如图3,∵AB AP =,AE BC ⊥,∴E 为BP 中点,则BP =2BE ,在Rt ABE △中,30B ∠=︒,6AB =cm ,AE =3cm , ∴33BE =,263==BP BE ,则263=t 解得:33t =,所以,当3t =3或33,ABP ∆为等腰三角形.[点睛]本题是四边形综合题,主要考查了平行四边形的性质、含30的直角三角形的性质,等腰三角形的定义,解题的关键是熟练运用这些性质和运用分类讨论的思想思考问题.。
河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题
河北省唐山市迁安市2023-2024学年八年级下学期期中数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列调查中,适合采用抽样调查的是( )A .调查本班同学的数学小测成绩B .调查一批学生饮用奶的微量元素的含量C .为保证载人航天器成功发射,对其零部件进行检查D .对乘坐某班次飞机的乘客进行安检2.如图,在平面直角坐标系中,☆盖住的点的坐标可能是( )A .(3,1)-B .(3,1)--C .(3,1)D .(3,1)- 3.在同一平面直角坐标系内,直线3y x =与直线5y kx =-互相平行,则k 的值( ) A .3- B .13 C .3 D .5-4.一根蜡烛原来长cm a ,点燃后燃烧的时间为t min ,剩余蜡烛的长为cm y ,(cm)y 与(min)t 之间的函数图像正确的是( )A .B .C .D .5.下列说法正确的是( )A .在圆的面积公式2S r π=中,常量是π、r ,变量是SB .加工100个零件,工作效率p 与时间t 之间的关系式是100=pt ,p 、t 都是变量C .以固定的速度0v 向上抛一个小球,小球的高度(m)h 与小球运动的时间t (s )之间的关系式是20 4.9h v t t =-,常量是4.9,变量是h 、tD .在匀速运动公式S vt =中,常量是t ,变量是S 、v6.王老师对本班50名学生的年龄进行了统计,列出如下的统计表,则本班13岁的人数是( )A .30人B .25人C .20人D .18人 7.已知一次函数(31)4=-+-y m x m 图像经过原点,则下列结论正确的是( ) A .4m =- B .2m = C .4m =± D .4m =8.为了了解某校初中学生寒假规范书写情况,随机抽取80名学生20天的每日一篇练字纸,在这个问题中,样本容量是( )A .80B .20C .1600D .1600篇的练字纸 9.在画某一次函数的图像时,小红列表如右图,则下列各点不在其图像上的是( )A .(5,8)-B .(3,6)-C .(7,4)-D .(15,13)- 10.若一次函数(2)1y k x =++的函数值y 随x 的增大而减小,则k 的取值范围( )A .2k <-B .2k >-C .0k >D .0k <11.在平面直角坐标系中,已知点(4,0)A -,O 为坐标原点.若要使OAB V 是直角三角形,则点B 的坐标不可能是( )A .(4,2)-B .(0,4)C .(4,2)D .(2,2)-12.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图中的( )A .B .C .D . 13.小红、小丽假期在同一超市购买同种水果,付款金额y (元)与购买x (千克)之间的函数图象如图所示,小红一次性购买6千克,小丽每次买3千克,连续买2次,小红比小丽少花几元( )A .4B .3C .2D .114.某校举行规范书写大赛,100名参赛同学最后得分(得分取整数)的频数分布直方图如图所示(频数轴刻度等间隔).根据图中的信息写出频数轴每隔代表人数( )A .5B .10C .15D .无法确定二、填空题15.函数321=-y x 自变量x 的取值范围是 . 16.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出不完整的频数分布表(如右图).频数分布表中的组距是 .17.已知y 与x 成正比例函数,当2x =-时,y =-6,当5x =时,y = . 18.在平面直角坐标系中,对于点(,)P x y ,若点Q 的坐标为(,)-+x ay ax y ,则称点Q 是点P 的“a 阶智慧点”(a 为常数,且0a ≠),例如:点(1,3)P 的“2阶智慧点”为点(123,213)-⨯⨯+,即点(5,5)-Q .(1)点(1,2)A --的“3阶智慧点”的坐标为 ;(2)若点(2,13)C m m +-的“5-阶智慧点”到x 轴的距离为1,则m 的值 .三、解答题19.在同一平面直角坐标系内有A 、B 两点.点A 在第二象限,且到x 轴的距离为3,到y 轴的距离为1;点(3,29)--B m m 在第三象限.(1)直接写出点A 的坐标;(2)求m 的取值范围;(3)连接AB ,且AB 垂直于x 轴,求点B 的坐标.20.如图1,在ABC V 中,8BC =,5AD =,动点E 由点C 沿CB 向点B 移动(不与点B 重合),设CE 的长为x ,ABE V 的面积为S .(1)完成表格:(2)在图2所示的平面直角坐标系中画出图像;(3)请写出S 与x 之间的函数关系式;21.某城市部分公共场所位置如图所示,小方格的边长为1个单位长度.已知学校(5,3)A ,体育馆(3,2)B --,火车站O 为坐标原点,文化馆C 与体育馆B 关于x 轴对称,超市D 与点B 关于原点对称.(1)请在图中建立平面直角坐标系,并标出点,O C 的位置;(2)直接写出点D 的坐标;(3)小红从学校出发,先向南走6个单位长度,再向西走3个单位长度,到达图书馆E . ①在图中标出点E ,并写出点E 的坐标________;②连接,,B O E ,则OBE △的面积是________.22.五一黄金周,小红一家驾车出游,出发时油箱内存有一定数量的汽油,行驶若干小时后,到达第一个旅游景点A ,游玩后驾车赶往第二个景点,从第一个景点出发4h 后在途中某一加油站加油,加油5分钟使油箱内汽油的升数与未出发前一致,若汽车从始至终都是以同一速度匀速行驶,图中表示的是该过程中油箱里的剩油量Q (L )与行驶时间t (h )之间的函数关系.(1)油箱内原有汽油________升;在第一个景点游玩________h;(2)A点坐标表示的实际意义________;(3)直接写出C点坐标________;(4)求DC所在直线解析式.23.为了创建书香校园,某校开展“好书伴我成长”的读书活动,为了解全校学生读书情况,随机调查了50名学生读书的册数,并将全部调查结果绘制成三幅不完整的统计图表.请根据图表提供的信息,解答下列问题:a________;(1)表中的(2)请你把条形统计图中“4册”部分补充完整;(3)若该校共有2200名学生,请你根据样本数据,估计该校学生在本次活动中读书不少于3册的人数.24.A,B两地相距48km,甲、乙两车分别从A地和B地同时出发相向而行.他们距A地s和出发后的时间t(h)之间的函数关系的图象如图所示.的路程(km)(1)分别求出甲、乙两车距A地的路程s与时间t的函数关系式;(2)求甲乙两车相遇的时间;(3)直接写出两车相距5千米时t的值;25.一辆中型客车准乘32人(包括一名司机),这辆客车由A地行驶到B地,平均油耗为8升/百公里,现油价7元/升,设乘客有x人,盈利为y元.现有两种路线可供选择路线一:走“国道”全程180公里,每人票价25元,其他运行成本为50元;路线二:走“高速”全程120公里,每人票价30元,高速费60元,其他运行成本50元.(1)分别写出两种路线盈利y(元)与x(人)的函数关系式;(2)应该怎么选择路线,保证盈利最大?。
人教版数学八年级下册《期中测试卷》(含答案)
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共40分)1.下列式子中为最简二次根式的是( ) A. 8 B. 0.5 C. 12D. 15 2.下列计算正确的是( ) A. 3+3=6 B. 33=23⨯ C. 3+3=23D. 2+3=233.以下各组数据为三角形的三边长,能构成直角三角形的是( )A. 2,2,4B. 2,3,4C. 2,2,1D. 4,5,3 4.如图,已知其中两个正方形面积为20和69,那么正方形的边长为( )A. 5B. 6C. 7D. 89 5.在ABCD 中,220A C ∠+∠=︒,则A ∠为( )A. 70︒B. 110︒C. 65︒D. 55︒ 6.能判定一个四边形是平行四边形的条件是( )A. 一组对角相等B. 两条对角线互相平分C. 一组对边相等D. 两条对角线互相垂直7. 下列关于矩形的说法中正确的是( )A. 对角线相等四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分四边形是矩形D. 矩形的对角线互相垂直且平分8.如图所示,在数轴上点A 所表示的数为,则的值为( )A. 5-B. 15-C. 15--D. 15-+9.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A. 51-B. 51+C. 31-D. 31+10.如图,ABCD 、AEFC 都是矩形,而且点B 在EF 上,这两个矩形的面积分别是S 1,S 2,则S 1,S 2的关系是()A. S 1>S 2B. S 1<S 2C. S 1=S 2D. 3S 1=2S 2二.填空题(共24分)11.要使二次根式3x -有意义,则的取值范围是________.12.若一个直角三角形的三边分别为x ,4,5,则x =_____.13.“矩形的对角线相等”的逆命题是_____命题(填“真”或“假”).14.实数在数轴上的对应位置如图所示,化简()()2223x x -+-=______.15.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是__________.16.如图,在直角坐标系中,已知点()30A -,、()0,4B ,对OAB ∆连续作旋转变换,则第100个三角形的直角顶点的坐标为______.三.解答题(共86分)17.计算:(1)127382÷+⨯ (2)()()()2535252--+- 18.先化简,再求值:22x x 11x 2x 1x 1+⎛⎫÷+ ⎪-+-⎝⎭,其中x 21=+. 19.如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形.20.已知---2142b b ac x =a ,--2242b +b ac x =a,若,,===-322a b c ,试求12x x +值. 21.已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:(1)在第一张表格中,作边长为17的正方形; (2)在第二张表格中,作一个三条边长分别为5,10,13的三角形.22.如图,在两面墙之间有一个底端在点的梯子,当它靠在左侧墙上时,梯子的顶端在点;当它靠在右侧墙上时,梯子的顶端在点.已知60BAC ∠=︒,45DAE ∠=︒,点到地面的垂直距离42DE =.(1)求梯子的长度;(2)求BC 和CE 的长度.23.如图1,AD 是ABC ∆边BC 上的中线.(1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当90BAC ∠=︒时,求证:12AD BC =.24.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)求证:四边形EFGH是平行四边形;(2)当AD⊥BC时,四边形EFGH是哪种特殊的平行四边形?25.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=1BC,连接DE,CF.2(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=10,∠B=60°,求DE的长.答案与解析一.选择题(共40分)1.下列式子中为最简二次根式的是()A. B. C.D.[解析][分析]利用最简二次根式定义判断即可.[详解]解:A=不是最简二次根式;B=不是最简二次根式;C=不是最简二次根式;D,故选:D.[点睛]此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.2.下列计算正确的是( )D. [答案]C[解析][分析]利用二次根式的加减法对A、C、D进行判断;根据二次根式的乘法法则对B进行判断.[详解]解:A=故不正确;B3,故不正确;C故是正确的;D选项:2和3不能直接合并,故不正确;故选C.[点睛]本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.3.以下各组数据为三角形的三边长,能构成直角三角形的是( )A. 2,2,4B. 2,3,4C. 2,2,1D. 4,5,3[答案]D[解析]分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形可得答案.详解:A、22+22≠42,不符合勾股定理的逆定理,故此选项不合题意;B、22+32≠42,不符合勾股定理的逆定理,故此选项不合题意;C、12+22≠22,不符合勾股定理的逆定理,故此选项不合题意;D、32+42=52,符合勾股定理的逆定理,故此选项符合题意.故选D.点睛:考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.如图,已知其中两个正方形的面积为20和69,那么正方形的边长为()A. 5B. 6C. 7D. 89[答案]C[解析][分析]根据勾股定理,可得20+正方形的面积=69,求出正方形的面积即可解决问题.[详解]解:根据勾股定理,可得:20+正方形的面积=69,∴正方形的面积=49,∴正方形的边长为7,故选:C .[点睛]本题考查了勾股定理,此题所给的图中,以直角三角形两直角边为边所作的正方形的面积和等于以斜边为边所作的正方形的面积.5.在ABCD 中,220A C ∠+∠=︒,则A ∠为( )A. 70︒B. 110︒C. 65︒D. 55︒[答案]B[解析][分析]由平行四边形的性质得出∠A =∠C ,结合已知条件即可求出∠A .[详解]解:∵四边形ABCD 是平行四边形,∴∠A =∠C ,∵∠A +∠C =220°,∴∠A =110°,故选:B .[点睛]本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键. 6.能判定一个四边形是平行四边形的条件是( )A. 一组对角相等B. 两条对角线互相平分C. 一组对边相等D. 两条对角线互相垂直 [答案]B[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]A. 两组对角分别相等的四边形是平行四边形,故本选项错误;B. 两条对角线互相平分的四边形是平行四边形,故本选项正确;C. 两组对边分别相等的四边形是平行四边形,故本选项错误;D. 对角线互相平分的四边形才是平行四边形,而对角线互相垂直的四边形不一定是平行四边形,故本选项错误.故选B.[点睛]本题考查平行四边形的判定,定理有:①两组对角分别相等的四边形是平行四边形,②两组对边分别相等的四边形是平行四边形,③对角线互相平分的四边形是平行四边形,④有一组对边相等且平行的四边形是平行四边形.7. 下列关于矩形的说法中正确的是( )A. 对角线相等的四边形是矩形B. 矩形的对角线相等且互相平分C. 对角线互相平分四边形是矩形D. 矩形的对角线互相垂直且平分[答案]B[解析]试题分析:A.对角线相等的平行四边形才是矩形,故本选项错误;B.矩形的对角线相等且互相平分,故本选项正确;C.对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D.矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.考点:矩形的判定与性质.8.如图所示,在数轴上点A所表示的数为,则的值为( )A. 5-B. 15-C. 15--D. 15-+[答案]C[解析] 分析:根据勾股定理求出直角三角形的斜边,即可得出答案.详解:如图:由勾股定理得:BC=221+2=5,即AC=BC=5, ∴a=-1-5, 故选C .点睛:本题考查了数轴和实数,勾股定理的应用,能求出BC 的长是解此题的关键. 9.如图,在ABC ∆中,90C ∠=︒,2AC =,点在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )5151 31 31[答案]B[解析][分析] 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则51.[详解]解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB ∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+故选B [点睛]本题考查勾股定理应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.10.如图,ABCD 、AEFC 都是矩形,而且点B 在EF 上,这两个矩形的面积分别是S 1,S 2,则S 1,S 2的关系是( )A. S 1>S 2B. S 1<S 2C. S 1=S 2D. 3S 1=2S 2[答案]C[解析][分析] 由于矩形ABCD 的面积等于2个△ABC 的面积,而△ABC 的面积又等于矩形AEFC 的一半,所以可得两个矩形的面积关系.[详解]解:矩形ABCD 的面积S=2S △ABC ,而S △ABC =12S 矩形AEFC ,即S 1=S 2. 故选:C .[点睛]本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题. 二.填空题(共24分)11.3x -有意义,则的取值范围是________.[答案]x ≥3[解析][分析]根据二次根式被开方数为非负数进行求解.x-≥,[详解]由题意知,30解得,x≥3,故答案为:x≥3.[点睛]本题考查二次根式有意义的条件,二次根式中的被开方数是非负数.12.若一个直角三角形的三边分别为x,4,5,则x=_____.[答案]3[解析][分析]本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边5既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即5是斜边或直角边的两种情况,然后利用勾股定理求解.[详解]解:设第三边为x,(1)若5是直角边,则第三边x是斜边,由勾股定理得:52+42=x2,∴x(2)若5是斜边,则第三边x为直角边,由勾股定理得:32+x2=52,∴x=3;∴第三边的长为3故答案为:3[点睛]本题主要考查的是勾股定理的简单应用,需注意解答时有两种情况.13.“矩形的对角线相等”的逆命题是_____命题(填“真”或“假”).[答案]假[解析]试题分析:根据互逆命题的关系,可知其逆命题为“对角线相等的四边形为矩形”,而对角线互相平分且相等的四边形是矩形,可知是假命题.故答案为假.14.实数在数轴上的对应位置如图所示,化简()()2223x x -+-=______.[答案]1[解析][分析]根据二次根式的性质化简即可.[详解]解:由数轴可得:2<x <3,∴()()()2223231x x x x -+-=-+-=,故答案为:1.[点睛]本题考查了二次根式的性质与化简,熟知2a a =是解题关键.15.如图, 利用四边形的不稳定性改变矩形ABCD 的形状,得到A 1BCD 1,若A 1BCD 1的面积是矩形ABCD 面积的一半,则∠A 1BC 的度数是__________.[答案]30°[解析]过A 1作BC 的垂线交BC 于点E,平行四边形A 1BCD 1的面积是矩形ABCD 面积的一半,从而推出A 1E=12AB,AB=A 1B,A 1E=12A 1B,根据在直角三角形中, 30°角所对的边等于斜边的一半∴∠A 1BC 的度数是30°解:过A 1作BC 的垂线交BC 于点E,∵平行四边形A 1BCD 1的面积是矩形ABCD 面积的一半,∴A 1E=12AB, 又∵AB=A 1B∴A 1E=12A 1B, ∴∠A 1BC 的度数是30°16.如图,在直角坐标系中,已知点()30A -,、()0,4B ,对OAB ∆连续作旋转变换,则第100个三角形的直角顶点的坐标为______.[答案](396,0)[解析][分析]观察不难发现,每三次旋转为一个循环组依次循环,第100个直角三角形的直角顶点与第99个直角三角形的直角顶点重合,然后求出一个循环组旋转过的距离,即可得解.[详解]解:由图可知,每三次旋转为一个循环组依次循环,∵()30A -,、()0,4B , ∴OA=3,OB=4,∴AB 22345+=,∴一个循环组经过的长度为4+5+3=12,∵100÷3=33…1, ∴第100个直角三角形的直角顶点与第99个直角三角形的直角顶点重合,∵12×33=396, ∴第100个三角形的直角顶点的坐标为(396,0).故答案为:(396,0).[点睛]本题考查了图形旋转的变化规律和勾股定理,观察出每三次旋转为一个循环组依次循环,并且下一组的第一个直角三角形与上一组的最后一个直角三角形的直角顶点重合是解题的关键,也是本题的难点.三.解答题(共86分)17.计算:(1(2))222-[答案](1)5;(2)7-[解析][分析](1)根据二次根式的乘除法则计算,然后再合并同类二次根式;(2)利用完全平方公式和平方差公式进行计算即可.[详解]解:(1)原式325==+=;(2)原式53547=+-+=-.[点睛]本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.先化简,再求值:22x x 11x 2x 1x 1+⎛⎫÷+ ⎪-+-⎝⎭,其中x 1=.[答案]2[解析]分析]原式除数括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x 的值代入进行二次根式化简.[详解]解:原式=()()()()()()()()()22222x x 1x 1x 1xx 1x 1x x 1x 1x 1x 1x x 1x 1x 1x 1x 1++-++-÷=÷=⋅=-+-+----. 当x 21=+时,原式11222112===+-. 19.如图,在平行四边形ABCD 中,BF=DE .求证:四边形AFCE 是平行四边形.[答案]证明见解析.[解析]试题分析:可由已知求证AF=CE,又有AF∥CE ,根据一组对边平行且相等的四边形是平行四边形,可得四边形AFCE 是平行四边形.试题解析:∵四边形ABCD 是平行四边形,∴AB∥CD ,AB=CD .∵BF=DE ,∴AF=CE .∵在四边形AFCE 中,AF∥CE ,AF=CE,∴四边形AFCE 是平行四边形.考点:平行四边形的判定与性质.20.已知---214b b ac x =,--224b +b ac x =,若,,===-322a b c ,试求12x x +的值. [答案]23-[解析][分析]首先利用12x x +,代入进行化简,在代入参数计算.[详解]解:原式 2244b b ac b b ac ----+- =b a - =23-[点睛]本题主要考查分式的化简计算.21.已知,每个小正方形的边长为1,以格点为顶点,只用一把无刻度的直尺,按要求作图:(1)在第一张表格中,作边长为17的正方形;(2)在第二张表格中,作一个三条边长分别为5,10,13的三角形.[答案](1)见解析;(2)见解析.[解析][分析](1)根据勾股定理确定出边长的画法,然后作图即可;(2)根据勾股定理确定出三角形的三边即可.[详解]解:(1)如图所示,即为所作的正方形,(2)如图所示,即为所作的三角形.[点睛]本题考查了利用勾股定理作图,熟练掌握网格特点和勾股定理是解题关键.22.如图,在两面墙之间有一个底端在点的梯子,当它靠在左侧墙上时,梯子的顶端在点;当它靠在右侧墙上时,梯子的顶端在点.已知60BAC ∠=︒,45DAE ∠=︒,点到地面的垂直距离42DE =.(1)求梯子长度;(2)求BC 和CE 的长度.[答案](1)梯子的长度为8;(2)43BC=CE=4+42 [解析][分析](1)在Rt △ADE 中,运用勾股定理可求出梯子的长度;(2)在Rt △ABC 中,根据含30度角的直角三角形的性质和勾股定理求出AC 和BC 即可解决问题.[详解]解:(1)在Rt △ADE 中,∠DAE =45°,∴AE =DE =42∴222242428AD AE DE ,即梯子的长度为8;(2)在Rt △ABC 中,∠BAC =60°,AB =AD =8,∴∠ABC =30°,∴AC =12AB =4,∴22228443BC AB AC ,∴CE=AC+AE=4+42.[点睛]本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.23.如图1,AD 是ABC ∆的边BC 上的中线.(1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;② 若,64AB =AC =,求AD 的取值范围;(2)如图2,当90BAC ∠=︒时,求证:12AD BC =.[答案](1)①详见解析;②1<AD <5;(2)详见解析[解析][分析](1)①首先利用尺规作图,使得DE=AD ,在连接CE ,②首先利用ADB ∆≌EDC ∆可得AB=CE ,在ACE ∆中,确定AE 的范围,再根据AE=2AD ,来确定AD 的范围.(2)首先延长延长AD 到点,使DE AD =,连接CE 和BE ,结合BD DC =,可证四边形ABEC 是平行四边形,再根据90BAC ∠=︒,可得四边形ABEC 是矩形,因此可证明12AD BC =. [详解](1)①用尺规完成作图:延长AD 到点,使DE AD =,连接CE ;②∵BD DC =,DE AD =,ADB EDC ∠=∠∴ADB ∆≌EDC ∆∴EC AB =∴6-4<AE <6+4,即2<AE <10又∵2AE AD =∴1<AD <5(2)延长AD 到点,使DE AD =,连接CE BE ,∵BD DC =∴四边形ABEC 是平行四边形∵90BAC ∠=︒∴四边形ABEC 是矩形∴AE BC = ∴1122AD AE BC ==. [点睛]本题主要考查直角三角形斜边中线是斜边的一半,关键在于构造矩形,利用矩形的对角线相等. 24.如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点.(1)求证:四边形EFGH 是平行四边形;(2)当AD ⊥BC 时,四边形EFGH 是哪种特殊的平行四边形?[答案](1)见详解;(2)平行四边形EFGH 是矩形,理由见详解[解析][分析](1)根据三角形中位线定理得到EF=12AD,EF∥AD,GH=12AD,GH∥AD,得到EF=GH,EF∥GH,根据平行四边形的判定定理证明;(2)根据有一个角是直角的平行四边形是矩形解答.[详解](1)证明:∵E、F分别是AB、BD的中点, ∴EF是△BAD的中位线,∴EF=12AD,EF∥AD,同理,GH=12AD,GH∥AD,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形;(2)平行四边形EFGH是矩形,理由如下:∵EF∥AD,∴∠FEB=∠DAB,∵EH∥BC,∴∠HEA=∠ABC,∵AD⊥BC,∴∠DAB+∠ABC=90°,∴∠HEF=90°,∴平行四边形EFGH是矩形.[点睛]本题考查的是三角形中位线定理、矩形的判定,掌握平行四边形和矩形的判定定理是解题的关键.25.如图,在▱ABCD中,F是AD的中点,延长BC到点E,使CE=12BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=10,∠B=60°,求DE的长.[答案](1)见详解;(2)21DE[解析][分析](1)由“平行四边形的对边平行且相等”的性质推知AD∥BC,且AD=BC;然后根据中点的定义、结合已知条件推知四边形CEDF的对边平行且相等(DF=CE,且DF∥CE),即四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H,构造含30度角的直角△DCH和直角△DHE.通过解直角△DCH和在直角△DHE中运用勾股定理来求线段ED的长度.[详解]证明:(1)在▱ABCD中,AD∥BC,且AD=BC.∵F是AD的中点,∴DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF∥CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在▱ABCD中,∵∠B=60°,AD∥BC,∴∠B=∠DCE,∴∠DCE=60°.∵AB=4,∴CD=AB=4,∴CH=12CD=2,DH=3在▱CEDF中,CE=DF=12AD=5,则EH=3.∴在Rt△DHE中,根据勾股定理知23(23)321+=[点睛]本题考查了平行四边形的判定与性质、勾股定理.平行四边形的判定方法共有4种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.。
人教版八年级下册数学《期中测试卷》附答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:1. 不等式-3x+6>0的正整数解有( ).A. 1个B. 2个C. 3个D. 无数多个2.等腰三角形的一个内角是70°,则它顶角的度数是( ) A. 70︒ B. 70︒或40︒ C. 70︒或50︒ D. 40︒3.下列图形中,既是中心对称图形,又是轴对称图形个数是( )A. 1B. 2C. 3D. 44.下列从左边到右边的变形,是因式分解的是( )A. (a+3)(a ﹣3)=a 2﹣9B. x 2+x ﹣5=x(x+1)﹣5C. x 2+1=x(x+1x) D. x 2+4x+4=(x+2)2 5.如图所示, ABC ∆和DCE ∆都是边长为2的等边三角形,点,,B C E 在同一条直线上,连接BD ,则BD 的长为( )A. 3B. 23C. 33D. 36.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A 出发爬到B ,则( )A. 乙比甲先到B. 甲和乙同时到C. 甲比乙先到D. 无法确定7.如图,一次函数y kx b =+的图象交轴于点()0,2A ,则不等式2kx b +<的解集为( )A 0x < B. 0x > C. 1x <- D. 1x >-8.如图是一个不等式组解集在数轴上的表示,则该不等式组的解集是( )A. 10x <≤B. 01x <≤C. 01x ≤<D. 01x <<9.如图, 90ABC ∠=︒,15C ∠=︒,线段AC 的垂直平分线DE 交AC 于,交BC 于,为垂足, 10CE cm =,则AB = ( )A. 4 cmB. 5 cmC. 6cmD. 不能确定10.如图,在△ABC 中,∠C =90°,∠BAC =70°,将△ABC 绕点A 顺时针旋转70°,B 、C 旋转后的对应点分别是B '和C ',连接BB ',则∠BB 'C '的度数是( )A. 35°B. 40°C. 45°D. 50°二、填空题11.ABC 中, ::1:2:3A B C ∠∠∠=,最小边4BC cm =,则最长边AB 的长为__________.12.若不等式()a b x a b ->-的解集是1x <,则与的大小关系__________.13.已知,在ABC ∆中, 90ACB ∠=︒,点为ABC ∆的三条角平分线的交点,,,OD BC OE AC OF AB ⊥⊥⊥,点D E F 、、是垂足,且17,15AB BC ==,则OF OE OD 、、的长度分别是__________.14.若x 2+3x=2,则代数式2x 2+6x -4的值为 ____________.15.如图将直角三角形ABC 沿AB 方向平移AD 距离得到△DEF ,已知∠ABC=90°,BE=5,EF=8,CG=3,则图中阴影部分的面积为__________.16.若不等式30x a -≤的正整数解是1,2,3,则的取值范围是____.17.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ABE 绕点A 顺时针旋转90°后,得到△ACF ,连接DF ,下列结论中:①∠DAF =45°②△ABE ≌△ACD ③AD 平分∠EDF ④BE 2+DC 2=DE 2;正确的有_____(填序号)三、解答题:18.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本?19.如图,在ABC 中, 90C ∠︒=(1)用尺规作图,在AC 边上找一点,使DB DC AC += (保留作图痕迹,不要求写作法和证明);(2)在(1)条件下若6,8AC AB ==,求DC 的长.20.已知点()1,0A -和点()1,3B ,将线段AB 平移至'AB ,点于点对应,若点的坐标为()1,3-.(1) AB 是怎样平移的;(2)求点的坐标.21. 如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE⊥AB 于E,DF⊥AC 于点F .(1)请写出与A 点有关的三个正确结论;(2)DE 与DF 在数量上有何关系?并给出证明.22.已知方程组713x y m x y m +=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围.(2)在m 的取值范围内,当m 为何整数时,不等式2mx+x <2m+1的解为x >1.23.如图,已知△ABC 中,∠C=90°,2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B,求C′B的长度.24.某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?25. 如图,正方形ABCD中,CD=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.(1)求证:①△ABG≌△AFG;②求GC长;(2)求△FGC的面积.答案与解析一、选择题:1. 不等式-3x+6>0的正整数解有( ).A. 1个B. 2个C. 3个D. 无数多个[答案]A[解析]试题分析:解不等式得到x<2,所以x可取的正整数只有1.故选A.考点:不等式的解法.2.等腰三角形的一个内角是70°,则它顶角的度数是( )A. 70︒B. 70︒或40︒C. 70︒或50︒D. 40︒[答案]B[解析][分析]首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.[详解]解:本题可分两种情况:︒-⨯︒=︒;①当70︒角为底角时,顶角为18027040②70︒角为等腰三角形的顶角;因此这个等腰三角形的顶角为40︒或70︒.故选:B.[点睛]本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.3.下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A. 1B. 2C. 3D. 4[答案]B[解析]A 为中心对称图形,B 为中心对称、轴对称图形,C 为中心对称轴对称图形,D 为轴对称图形.故选B.4.下列从左边到右边的变形,是因式分解的是( )A. (a+3)(a ﹣3)=a 2﹣9B. x 2+x ﹣5=x(x+1)﹣5C. x 2+1=x(x+1x) D. x 2+4x+4=(x+2)2 [答案]D[解析][分析]根据分解因式就是把一个多项式化为几个整式的积的形式的定义,利用排除法求解.[详解]A 、是多项式乘法,不是因式分解,错误;B 、x 2+x ﹣5=x(x+1)﹣5,右边不是积的形式,错误;C 、不是因式分解,错误;D 、是因式分解,右边是积的形式,正确;故选D .[点睛]这类问题的关键在于能否正确应用分解因式的定义来判断.5.如图所示, ABC ∆和DCE ∆都是边长为2的等边三角形,点,,B C E 在同一条直线上,连接BD ,则BD 的长为( )A. 3B. 23C. 33D. 43[答案]B[解析][分析] 根据等边三角形的性质、等腰三角形的性质和三角形的外角的性质可以发现90BDE ∠=︒,再进一步根据勾股定理进行求解.[详解]解:ABC ∆和DCE ∆都是边长为2的等边三角形,60DCE CDE ∴∠=∠=︒,2BC CD ==.BDC CBD ∴∠=∠且60BDC CBD DCE ∠+∠=∠=︒30BDC CBD ∴∠=∠=︒.90BDE BDC CDE ∴∠=∠+∠=︒.2223BD BE DE ∴=-=.故选:B .[点睛]此题综合运用了等边三角形的性质、等腰三角形的性质、三角形的外角的性质和勾股定理. 6.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A 出发爬到B ,则( )A. 乙比甲先到B. 甲和乙同时到C. 甲比乙先到D. 无法确定[答案]B[解析][分析] 根据平移可得出两蚂蚁行程相同,结合二者速度相同即可得出结论.[详解]如图:根据平移可得两只蚂蚁的行程相同,∵甲、乙两只蚂蚁的行程相同,且两只蚂蚁的速度相同,∴两只蚂蚁同时到达.故选B.[点睛]本题考查了生活中的平移现象,结合图形找出甲、乙两只蚂蚁的行程相等是解题的关键. 7.如图,一次函数y kx b =+的图象交轴于点()0,2A ,则不等式2kx b +<的解集为( )A. 0x <B. 0x >C. 1x <-D. 1x >-[答案]A[解析][分析] 利用函数图象,写出函数图象在轴左侧所对应的自变量的范围即可.[详解]解:根据图象得,当0x <时,2kx b +<,所以不等式2kx b +<的解集为0x <.故选:A .[点睛]本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线y kx b =+在轴上(或下)方部分所有的点的横坐标所构成的集合.8.如图是一个不等式组的解集在数轴上的表示,则该不等式组的解集是( )A. 10x <≤B. 01x <≤C. 01x ≤<D. 01x <<[答案]B[解析][分析] 本题可根据数轴性质“实心圆点包括该点用“”,“”表示,空心圆圈不包括该点用“”, “”表示,大于向右小于向左.”解出不等式的解集,[详解]解:不等式的解集表示0与1以及1之间的数.因而解集是01x <.故选:B .[点睛]本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“”, “”要用实心圆点表示;“”, “”要用空心圆点表示. 9.如图, 90ABC ∠=︒,15C ∠=︒,线段AC 的垂直平分线DE 交AC 于,交BC 于,为垂足, 10CE cm =,则AB = ( )A. 4 cmB. 5 cmC. 6cmD. 不能确定[答案]B[解析][分析] 根据线段的垂直平分线的性质得到EA EC =,根据等腰三角形的性质得到EAC C ∠=∠,根据直角三角形的性质解答.[详解]解:DE 是线段AC 的垂直平分线,10EA EC ∴==,15EAC C ∴∠=∠=︒,30AEB ∴∠=︒,又90ABC ∠=︒ 15()2AB AE cm ∴==, 故选:B .[点睛]本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.10.如图,在△ABC 中,∠C =90°,∠BAC =70°,将△ABC 绕点A 顺时针旋转70°,B 、C 旋转后的对应点分别是B '和C ',连接BB ',则∠BB 'C '的度数是( )A. 35°B. 40°C. 45°D. 50°[答案]A[解析][分析] 首先在△ABB'中根据等边对等角,以及三角形内角和定理求得∠ABB'的度数,然后在直角△BB'C 中利用三角形内角和定理求解.[详解]∵AB =AB ',∴∠ABB '=∠AB 'B =180BAB'1807022︒-∠︒-︒= =55,在直角△BB 'C 中,∠BB 'C =90﹣55=35.故选:A .[点睛]本题考查了旋转的性质,在旋转过程中根据旋转的性质确定相等的角和相等的线段是关键. 二、填空题11.ABC 中, ::1:2:3A B C ∠∠∠=,最小边4BC cm =,则最长边AB 的长为__________.[答案]8cm[解析][分析]根据已知条件结合三角形的内角和定理求出三角形中角的度数,然后根据含30度角的直角三角形的性质进行求解即可.[详解]设∠A =x ,则∠B =2x ,∠C =3x ,由三角形内角和定理得∠A+∠B+∠C =x+2x+3x =180°,解得x =30°,即∠A =30°,∠C =3×30°=90°,此三角形为直角三角形,故AB =2BC =2×4=8cm ,故答案为:8cm .[点睛]本题考查了三角形内角和定理,含30度角的直角三角形的性质,熟练掌握“直角三角形中30°的角所对的直角边等于斜边的一半”是解题的关键.12.若不等式()a b x a b ->-的解集是1x <,则与的大小关系__________.[答案]a b <[解析][分析]本题需先根据不等式()a b x a b ->-的解集是1x <,得出-a b 的关系,即可求出答案.[详解]解:不等式()a b x a b ->-的解集是1x <,0a b ∴-<,a b ∴<,则与的大小关系是a b <.故答案为:a b <.[点睛]本题主要考查了不等式的解集,在解题时要注意不等式两边同时乘以同一个负数时,不等号的方向改变.13.已知,在ABC ∆中, 90ACB ∠=︒,点为ABC ∆的三条角平分线的交点,,,OD BC OE AC OF AB ⊥⊥⊥,点D E F 、、是垂足,且17,15AB BC ==,则OF OE OD 、、的长度分别是__________.[答案]3,3,3[解析][分析]由角平分线的性质易得OE OF OD ,AE AF =,CE CD =,BD BF =,设OE OF OD x ===,则CE CD x ==,15BD BF x ==-,8AF AE x ==-,所以81517x x -+-=,解答即可.[详解]解:如图,连接OB ,点为ABC ∆的三条角平分线的交点,OD BC ,OE AC ⊥,OF AB ⊥,点、、分别是垂足, OE OF OD , 又OB 是公共边,Rt BOF Rt BOD(HL)∴∆≅∆,BD BF ∴=,同理,AE AF =,CE CD =,90C ∠=︒,OD BC ,OE AC ⊥,OF AB ⊥,OD OE =,OECD ∴是正方形,在ABC ∆中, 90ACB ∠=︒且17,15AB BC == 由勾股定理可知:228AC AB BC =-=设OE OF OD x ===,则CE CD x ==,15BD BF x ==-,8AF AE x ==-,17BF FA AB ∴+==,即81517x x -+-=,解得3x =.则3OE OF OD ===,故答案为:3,3,3.[点睛]此题综合考查角平分线的性质、全等三角形的判定和性质和正方形的判定等知识点,设未知数,并用未知数表示各边是关键.14.若x 2+3x=2,则代数式2x 2+6x -4的值为 ____________.[答案]0[解析][分析]将代数式2x 2+6x -4变形为2(x 2+3x )-4,再把x 2+3x=2代入求值即可.[详解]∵x 2+3x=2,∴2x 2+6x -4=2(x 2+3x )-4=2×2-4=0. 故答案为0.[点睛]此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.如图将直角三角形ABC 沿AB 方向平移AD 距离得到△DEF ,已知∠ABC=90°,BE=5,EF=8,CG=3,则图中阴影部分的面积为__________.[答案]652[解析][详解]由平移性质得DEF ABC ≅,∴EF=BC=8,∴ABC DBG DEF DBG S S S S -=-∴ACGD BEFG S S 四边形梯形=∵CG=3∴BG=BC-CG=8-3=5, 1165()(58)5222BEFG S BG EF BE =+⋅=+⨯=梯形 则图中阴影部分面积为652 . 故答案为652. [点睛]本题考查了平移的基本性质:(1)平移不改变图形的形状和大小;(2)经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等,同时考查了梯形的面积公式.16.若不等式30x a -≤的正整数解是1,2,3,则的取值范围是____.[答案]9≤a <12[解析][分析]解不等式3x−a ≤0得x ≤3a ,其中,最大的正整数为3,故3≤3a <4,从而求解. [详解]解:解不等式3x−a ≤0,得x ≤3a , ∵不等式的正整数解是1,2,3,∴3≤3a <4, 解得9≤a <12.故答案为:9≤a <12.[点睛]本题考查了一元一次不等式的解法.先解含字母系数的不等式,再根据正整数解的情况确定字母的取值范围.17.如图,在Rt △ABC 中,AB =AC ,D 、E 是斜边BC 上两点,且∠DAE =45°,将△ABE 绕点A 顺时针旋转90°后,得到△ACF ,连接DF ,下列结论中:①∠DAF =45°②△ABE ≌△ACD ③AD 平分∠EDF ④BE 2+DC 2=DE 2;正确的有_____(填序号)[答案]①③④[解析][详解]由旋转性质得△ABE≌△ACF,所以∠BAE=∠CAF,因为∠DAE=45°,∠BAC=90°,所以∠BAE+∠CAD=45°,所以∠CAF+∠DAC=45°,即∠DAF=45°,则①正确;只有AB=AC,∠B=∠C,不能得到△ABE≌△ACD,则②错误;因为∠DAE=45°,∠DAF=45°,所以AD平分∠EDF,则③正确;易证△AED≌△AFD,所以DE=DF,又△ABE≌△ACD,所以BE=CF,∠ACF=∠B=45°,所以∠DCF=90°,所以BE2+DC2=DE2,则④正确,故答案①③④.三、解答题:18.小明用30元钱买笔记本和练习本共30本,已知每个笔记本4元,每个练习本4角,那么他最多能买多少本笔记本[答案]他最多能买5本笔记本[解析][分析]设他可买x本笔记本,根据题意列出一元一次不等式,求解即可.[详解]设他可买x 本笔记本,由题意可得:40.4(30)30x x +-≤,解得:5x ≤,∵ 满足5x ≤的最大整数是5,∴他最多可买5本笔记本[点睛]本题考查了一元一次不等式在实际问题中的应用,根据题意列出一元一次不等式,是解题的关键. 19.如图,在ABC 中, 90C ∠︒=(1)用尺规作图,在AC 边上找一点,使DB DC AC += (保留作图痕迹,不要求写作法和证明);(2)在(1)的条件下若6,8AC AB ==,求DC 的长.[答案](1)点D 作法见解析;(2)23CD =[解析][分析](1)作AB 边的垂直平分线交AC 于点D ,点D 即为所求;(2)计算BC 的长度,设CD x =,表示DB=AD=6x -,在Rt BCD ∆中,使用勾股定理可得结果.[详解](1)如图,点D 为所作:(2)∵6,8AC AB == ∴22228627BC AB AC =-=-=设CD x =,则BD AD AC CD x ==-=-6在Rt BCD ∆中,由222BC CD BD +=∴222(6)(27)x x -=+,∴23x = 即CD 的长为23. [点睛]本题考查了垂直平分线的作法,及使用勾股定理求线段长度,熟知垂直平分线的作法,及勾股定理的运算是解题的关键.20.已知点()1,0A -和点()1,3B ,将线段AB 平移至'AB ,点于点对应,若点的坐标为()1,3-.(1) AB 是怎样平移的;(2)求点的坐标.[答案](1)先向右平移2个单位,再向下平移3个单位;(2)(3,0)B '[解析][分析](1)点的平移遵从“左减右加,下减上加”原则,由此可得AB 的平移方法;(2)根据(1)中AB 的平移方法,按步平移可得B′的坐标.[详解](1)点的平移遵从“左减右加,下减上加”原则(1,0)A -,平移后所对应的(1,3)A '-,平移方法为:先向右平移2个单位,再向下平移3个单位;(2)点()1,3B ,按照(1)的方法进行平移后得:先向右平移2个单位得(3,3),再向下平移3个单位得(3,0)B '; 所以的坐标为(3,0).[点睛]本题考查了点在坐标系中的平移,熟知点的平移规则是解题的关键.21. 如图,在△ABC 中,AB=5,AD=4,BD=DC=3,且DE⊥AB 于E,DF⊥AC 于点F .(1)请写出与A 点有关的三个正确结论;(2)DE 与DF 在数量上有何关系?并给出证明.[答案]①AD⊥BC ,②AD 平分∠BAC ,③AB=AC ,④△ABE 是等腰三角形,⑤△AED≌△AFD ;(2) DE=DF .证明详见解析.[解析][分析](1)先运用勾股定理的逆定理证明△ABD为直角三角形,且∠ADB=90°,再运用勾股定理求出AC=5,则AB=AC,然后利用等腰三角形的性质即可求解;(2)根据角平分线性质即可得出DE=DF.[详解](1)AD⊥BC,∠BAD=∠CAD,AB=AC等.理由如下:∵AB=5,AD=4,BD=3,∴42+32=52.∴△ABD为直角三角形,且∠ADB=90°.∵CD=3,∴5=,∴AB=AC,又∵BD=CD,∴AD⊥BC,∠BAD=∠CAD;(2)DE=DF,理由如下:∵∠BAD=∠CAD,DE⊥AB于E,DF⊥AC于点F,∴DE=DF.22.已知方程组713x y mx y m+=--⎧⎨-=+⎩的解满足x为非正数,y为负数.(1)求m的取值范围.(2)在m的取值范围内,当m为何整数时,不等式2mx+x<2m+1的解为x>1.[答案](1)﹣2<m≤3;(2)-1.[解析]分析: (1)解方程组得出x、y,由x为非正数,y为负数列出不等式组,解之可得;(2)由不等式的性质求出m的范围,结合(1)中所求范围可得答案.详解:(1)解方程组713x y mx y m+=--⎧⎨-=+⎩,得:324x my m=-⎧⎨=--⎩,根据题意,得:30 240 mm-≤⎧⎨--<⎩,解得﹣2<m≤3;(2)由(2m+1)x<2m+1的解为x>1知2m+1<0,解得m<﹣1 2 ,则在﹣2<m<﹣12中整数﹣1符合题意.点睛:本题主要考查解二元一次方程组和一元一次不等式组的能力,熟练掌握加减消元法和解不等式组的能力是解题的关键.23.如图,已知△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,求C′B的长度.[答案]3−1[解析][分析]连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD−C′D 计算即可得解.[详解]如图,连接BB′,∵△ABC 绕点A 顺时针方向旋转60°得到△AB ′C ′,∴AB =AB ′,∠BAB ′=60°,∴△ABB ′是等边三角形,∴AB =BB ′,在△ABC ′和△B ′BC ′中,AB BB AC B C BC BC ='⎧⎪'=''⎨⎪'='⎩,∴△ABC ′≌△B ′BC ′(SSS ),∴∠ABC ′=∠B ′BC ′,延长BC ′交AB ′于D ,则BD ⊥AB ′,∵∠C =90°,AC =BC,∴AB2=AB’, ∴AD=112AB = ∴BD =C ′D =12AB’=12×2=1, ∴BC ′=BD−C ′D .[点睛]本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC ′在等边三角形的高上是解题的关键,也是本题的难点. 24.某商店准备销售甲、乙两种商品共80件,已知甲种商品进货价为每件70元,乙种商品进货价为每件35元,在定价销售时,2件甲种商品与3件乙种商品的售价相同,3件甲种商品比2件乙商品的售价多150元.(1)每件甲商品与每件乙商品的售价分别是多少元?(2)若甲、乙两种商品的进货总投入不超过4200元,则至多进货甲商品多少件?(3)若这批商品全部售完,该商店至少盈利多少元?[答案](1)90,60(2)a≤40(3)当b=40时,M 取得最小值1800元[解析](1)可设甲种商品的销售单价x 元,乙种商品的销售单价y 元,根据等量关系:①2件甲种商品与3件乙种商品的销售收入相同,②3件甲种商品比2件乙种商品的销售收入多150元,列出方程组求解即可;(2)可设销售甲种商品a 万件,根据甲、乙两种商品的销售总收入不超过4200元,列出不等式求解即可;(3)设进货乙商品b 件,利润为M 元.可得M 与b 的关系式,从而可得结论.[详解](1)设每件甲商品与每件乙商品的售价分别是x 、y 元.2x 3y 3x-2y 150=⎧⎨=⎩ 解得x 90y 60=⎧⎨=⎩ (2)设进货甲商品a 件,则乙商品(80-a )件.70a+35(80-a )≤4200 解得a≤40(3)设进货乙商品b 件,利润为M 元.由(2)得a≤40,则b≥40M=(90-70)(80-b )+(60-35)b=5b+1600∵5>0∴M 随b 的增大而增大∴当b=40时,M 取得最小值5×40+1600=1800元 [点睛]本题考查一元一次不等式的应用、方程组的应用以及一次函数的应用,解题的关键是明确题意,列出相应的方程组、不等式和一次函数关系式.25. 如图,正方形ABCD 中,CD=6,点E 在边CD 上,且CD=3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G,连结AG 、CF .(1)求证:①△ABG≌△AFG; ②求GC 的长;(2)求△FGC 的面积.[答案](1)①证明详见解析;②3;(2)185. [解析](1)①利用翻折变换对应边关系得出AB=AF,∠B=∠AFG=90°,利用HL定理得出△ABG≌△AFG即可;②利用勾股定理得出GE2=CG2+CE2,进而求出BG即可;(2)首先过C作CM⊥GF于M,由勾股定理以及由面积法得,CM=2.4,进而得出答案.[详解](1)①在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,∵{AG AG AB AF==,∴△ABG≌△AFG(HL);②∵CD=3DE∴DE=2,CE=4,设BG=x,则CG=6﹣x,GE=x+2 ∵GE2=CG2+CE2∴(x+2)2=(6﹣x)2+42,解得x=3∴BG=3,又∵AB=6,∴BG= GC=3;(2)过C作CM⊥GF于M,∵BG=GF=3,∴CG=3,EC=6﹣2=4,∴GE=5, CM•GE=GC•EC, ∴CM×5=3×4, ∴CM=2.4,∴S△FGC=12GF·CM=36.考点:1.翻折变换(折叠问题)2.勾股定理3.正方形的性质.。
人教版八年级下册数学《期中检测试卷》及答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是( ) A. 222()-=-B.284⨯=C.2810+= D. 222-=2.下列四组线段中,能构成直角三角形的是( ) A. a =1,b =2,c =3 B. a =2,b =3,c =4 C. a =2,b =4,c =5D. a =3,b =4,c =53.函数y=2x ﹣5的图象经过( ) A. 第一、三、四象限 B. 第一、二、四象限 C. 第二、三、四象限D. 第一、二、三象限 4.关于数据-4,1,2,-1,2,下面结果中,错误的是( ) A. 中位数为1B. 方差为26C. 众数为2D. 平均数为05.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A 向左平移3个单位 B. 向右平移3个单位 C. 向下平移3个单位D. 向上平移3个单位6.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=2,则AC 的长为( )A. 2B. 4C. 6D. 87.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y =B. 12y y <C. 12>y yD. 不能确定8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :队员1 队员2 队员3 队员4 平均数(秒) 51 50 51 50 方差2s (秒2) 3.53.514.515.5根据表中数据,要从中选择一名成绩好又发挥稳定运动员参加比赛,应该选择( ) A. 队员1B. 队员2C. 队员3D. 队员49.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-10.21025x x -+5﹣x ,则x 的取值范围是( ) A. 为任意实数B. 0≤x≤5C. x≥5D. x≤511.直角三角形的面积为 ,斜边上的中线为 ,则这个三角形周长为 ( ) A22d S d +B. 2d S d -C. 22d S d ++D. )22d S d +12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩二.填空题(每小题4分,共24分)13.若x 2+在实数范围内有意义,则x 的取值范围是______.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____. 15.计算3393aaa a +-=__________. 16.如图,两张等宽纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解: 点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By Cd A B++=+如:求:点()P 1,1到直线2x 6y 90+-=的距离. 解:由点到直线的距离公式,得222161910d 204026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离. 则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.三.解答题:(本大题共7小题,共78分)19.0201827233(2π)(1)--+-20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示. (1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好; (3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定. 22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围; (3)求MOP △的面积.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)答案与解析一.选择题:(每小题4分,共48分)1.下列各式中,运算正确的是()A.=- B. 4= C. = D. 2= 2[答案]B[解析][分析],=a≥0,b≥0),被开数相同的二次根式可以合并进行计算即可.[详解]A2=,故原题计算错误;B=,故原题计算正确;C=故原题计算错误;D、2不能合并,故原题计算错误;故选B.[点睛]此题主要考查了二次根式的混合运算,关键是掌握二次根式乘法、性质及加减法运算法则.2.下列四组线段中,能构成直角三角形的是()A. a=1,b=2,c=3B. a=2,b=3,c=4C. a=2,b=4,c=5D. a=3,b=4,c=5[答案]D[解析][分析]根据勾股定理的逆定理对各选项进行逐一分析即可.[详解]解:A、∵12+22=5≠32,∴不能构成直角三角形,故本选项错误;B、∵22+32=13≠42,∴不能构成直角三角形,故本选项错误;C、∵22+42=20≠52,∴不能构成直角三角形,故本选项错误;D、∵32+42=25=52,∴能构成直角三角形,故本选项正确.故选:D.[点睛]本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.函数y=2x﹣5的图象经过( )A. 第一、三、四象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、二、三象限[答案]A[解析][分析]先根据一次函数的性质判断出此函数图象所经过的象限,再进行解答即可.[详解]∵一次函数y=2x-5中,k=2>0,∴此函数图象经过一、三象限,∵b= -5<0,∴此函数图象与y轴负半轴相交,∴此一次函数的图象经过一、三、四象限,不经过第二象限.故选A.[点睛]本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,函数图象经过一、三象限,当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.4.关于数据-4,1,2,-1,2,下面结果中,错误的是( )A. 中位数为1B. 方差为26C. 众数为2D. 平均数为0[答案]B[解析][详解]A.∵从小到大排序为-4,-1,,1,2,2,∴中位数为1,故正确;B.412125x-++-+==,()()()()222224010102022655s--+--+-+-⨯==,故不正确;C.∵众数是2,故正确;D.412125x-++-+==,故正确;故选B.5.要得到函数y=2x+3的图象,只需将函数y=2x的图象()A. 向左平移3个单位B. 向右平移3个单位C. 向下平移3个单位D. 向上平移3个单位[答案]D[解析][分析]平移后相当于x不变y增加了3个单位,由此可得出答案.[详解]解:由题意得x值不变y增加3个单位应向上平移3个单位.故选D.[点睛]本题考查一次函数图象的几何变换,注意平移k值不变的性质.6.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为( )A. 2B. 4C. 6D. 8[答案]B[解析][分析]已知四边形ABCD是矩形,∠AOD=120°,AB=2,根据矩形的性质可证得△AOB是等边三角形,则OA=OB=AB=2,AC=2OA=4.[详解]∵四边形ABCD是矩形∴AC=BD,OA=OC,OB=OD∴OA=OB∵∠AOD=120° ∴∠AOB=60°∴△AOB 是等边三角形 ∴OA=OB=AB=2 ∴AC=2OA=4 故选:B[点睛]本题考查了矩形的基本性质,等边三角形的判定和性质.7.已知()()12223,,2,P y P y -是一次函数1y x =--的图象上的两个点,则12,y y 的大小关系是( ) A. 12y y = B. 12y y <C. 12>y yD. 不能确定[答案]C [解析] [分析]根据()()12223,,2,P y P y -是一次函数y=-x-1图象上的两个点,由-3<2,结合一次函数y=-x-1在定义域内是单调递减函数,判断出12,y y 的大小关系即可.[详解]∵()()12223,,2,P y P y -是一次函数y=−x−1的图象上的两个点,且−3<2, ∴12>y y . 故选C[点睛]此题考查一次函数图象上点的坐标特征,解题关键在于结合一次函数y=-x-1在定义域内是单调递减函数8.2022年将在北京-张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差2s :根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )A. 队员1B. 队员2C. 队员3D. 队员4[答案]B[解析][分析]据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.[详解]因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定. 故选B .[点睛]考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.如图,函数3y x b =+和3y ax =-的图像交于点(2,5)P --,则根据图像可得不等式33x b ax +>-的解集是( )A. 5x >-B. 3x >-C. 2x >-D. 2x <-[答案]C[解析][分析] 根据一次函数的图象和两函数的交点坐标即可得出答案[详解]解:从图象得到,当x >-2时,3y x b =+的图象在函数y=ax-3的图象上∴不等式3x+b>ax-3的解集是x>-2,故选:C[点睛]此题考查一次函数和一元一次不等式的应用,解题关键在于看懂函数图象10.5﹣x,则x的取值范围是( )A. 为任意实数B. 0≤x≤5C. x≥5D. x≤5 [答案]D[解析][分析]根据二次根式的性质得出5-x≥0,求出即可.[详解]|5|5x x==-=-,∴5-x≥0,解得:x≤5,故选D.[点睛]本题考查了二次根式的性质的应用,注意:当a≥0时,当a≤0时.11.直角三角形的面积为,斜边上的中线为,则这个三角形周长为()2d dC. dD. )2d[答案]D[解析][分析]根据直角三角形的性质求出斜边长,根据勾股定理、完全平方公式计算即可.[详解]解:设直角三角形的两条直角边分别为x、y,∵斜边上的中线为d,∴斜边长2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面积为S,∴12S xy=,则2xy=4S,即(x+y)2=4d2+4S,∴x y+=∴这个三角形周长为:)2d ,故选D. [点睛]本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2. 12.设max 表示两个数中的最大值,例如:max{0,2}2=,max{12,8}12=,则关于的函数max{3,21}y x x =+可表示为( )A. 3y x =B. 21y x =+C. 3(1)21(1)x x y x x <⎧=⎨+≥⎩D. 21(1)3(1)x x y x x +<⎧=⎨≥⎩[答案]D[解析][分析]由于3x 与21x +的大小不能确定,故应分两种情况进行讨论.[详解]当321x x ≥+,即1x ≥时,{}3,213y max x x x =+=;当321x x <+,即1x <时,{}3,2121y max x x x =+=+.故选D .[点睛]本题考查的是一次函数的性质,解答此题时要注意进行分类讨论. 二.填空题(每小题4分,共24分)13.,则x 的取值范围是______.[答案]x≥-2[解析]分析:根据二次根式有意义条件:被开方数为非负数,列不等式求解即可.详解:∵x+2≥0∴x≥-2.故答案为x≥-2.点睛:此题主要考查了二次根式有意义的条件,明确被开方数为非负数是解题关键.14.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是_____.[答案]4[解析][分析]平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.[详解]一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有15(x 1+x 2+x 3+x 4+x 5)=2, 那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是15(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4. 故答案是:4.[点睛]考查的是样本平均数的求法及运用,解题关键是记熟公式:12n x nx x x ++⋯+=. 15.计算3393a a a a +-=__________. [答案]3a[解析]分析:先把各根式化简,然后进行合并即可得到结果.详解:原式=333a a a +-=3a点睛:本题主要考查二次根式的加减,比较简单.16.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.[答案]2[解析][分析]首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.[详解]解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E,∵AB ∥CD,AD ∥BC,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE,∵两纸条宽度相同,∴AF=AE,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE,∴AD=AB,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2[点睛]本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.17.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.[答案]①③④[解析][分析]根据y 1=kx+b 和y 2=x+a 图象可知:k <0,a <0,所以当x >3时,相应的x 的值,y 1图象均低于y 2的图象.[详解]根据图示及数据可知:①k <0正确;②a <0,原来的说法错误;③方程kx+b=x+a 的解是x=3,正确;④当x >3时,y 1<y 2正确.故答案是:①③④.[点睛]考查一次函数的图象,考查学生的分析能力和读图能力,一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.18.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点()00P x ,y 到直线Ax By C 0++=的距离()d 公式是:0022Ax By C d A B ++=+ 如:求:点()P 1,1到直线2x 6y 90+-=的距离.解:由点到直线的距离公式,得222161910d 4026⨯+⨯-===+ 根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线1l :2x 3y 8+=和2l :2x 3y 180++=间的距离是______.[答案]13[解析][分析]根据题意在1l :238x y +=上取一点()4,0P ,求出点P 到直线2l :23180x y ++=的距离d 即可.[详解]在1l :238x y +=上取一点()4,0P ,点P 到直线2l :23180x y ++=的距离d 即为两直线之间的距离:d ==故答案为[点睛]本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.三.解答题:(本大题共7小题,共78分)19.02018π)(1)--+- [答案]1.[解析][分析]首先计算乘方、开方,然后计算乘法,最后从左向右依次计算即可[详解02018)(1)π--+-,=1=.[点睛]本题考查了实数的运算,解题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.20.某学校要对如图所示的一块地进行绿化,已知4m AD =,3m CD =,AD DC ⊥,13m AB =,12m BC =,求这块地的面积.[答案]24m 2.[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,根据△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]解:连接AC∵AD DC ⊥∴90ADC ∠=︒在Rt ADC ∆中,根据勾股定理 2222435(m)AC AD CD =+=+=在ABC ∆中,∵22222251213AC BC AB +=+==ABC ∆是直角三角形∴()25123424m 22ABC AC A CD D B S S S ∆∆⨯⨯=-=-=四边形.[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键.同时考查了直角三角形的面积公式.21.某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.[答案](1)填表:初中平均数为85(分),众数85(分);高中部中位数80(分);(2)初中部成绩好些;(3)初中代表队选手成绩较为稳定.[解析][分析](1)根据成绩表加以计算可补全统计表;根据平均数、众数、中位数的统计意义回答;(2)根据平均数和中位数的统计意义分析得出即可;(3)分别求出初中、高中部的方差即可.[详解]解:(1)填表:(1)填表:初中平均数为:15(75+80+85+85+100)=85(分), 众数85(分);将高中部的数据从小到大进行排列得:70,75,80,100,100,∴高中部中位数80(分);(2)初中部成绩好些,因为两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些;(3)∵21s =15[(75﹣85)2+(80﹣85)2+(85﹣85)2+(85﹣85)2+(100﹣85)2]=70, 22s =15[(70﹣85)2+(100﹣85)2+(100﹣85)2+(75﹣85)2+(80﹣85)2]=160. ∴21s <22s ,因此,初中代表队选手成绩较为稳定.[点睛]此题主要考查了平均数、众数、中位数、方差的统计意义,找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.22.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的的取值范围;(3)求MOP △的面积.[答案](1)一次函数表达式为y=2x-2;正比例函数为y=x ;(2)x<2;(3)1.[解析][分析](1)将(0,-2)和(1,0)代入y ax b =+解出一次函数的解析式,将M(2,2)代入正比例函数y kx =解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.[详解]()1y ax b =+经过()1,0和()0,2-,0=2k b b+⎧∴⎨-=⎩ 解得k 2=,b 2=-,一次函数表达式为:y 2x 2=-;把()M 2,m 代入y 2x 2=-得m 2222∴=⨯-=,点()M 2,2,直线y kx =过点()M 2,2,22k ∴=,k 1∴=,正比例函数解析式y x =.()2由图象可知,当x 2=时,一次函数与正比例函数相交;x 2<时,正比例函数图象在一次函数上方, 故:x 2<时,x 2x 2>-.()3如图,作MN 垂直x 轴,则MN 2=,OP 1=,MOP ∴的面积为:11212⨯⨯=.[点睛]本题考查了一次函数的图象和性质问题,解题的关键是根据待定系数法解出解析式.23.如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.3连接OE,交CD 于点F,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=2OF=2,求出菱形的面积即可.[详解]()1证明:CE //OD ,DE //OC ,四边形OCED 是平行四边形,矩形ABCD,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,四边形OCED 菱形;()2在矩形ABCD 中,ABC 90∠=,BAC 30∠=,AC 4=,BC 2∴=,AB DC 23∴==,连接OE,交CD 于点F,四边形OCED 为菱形,F ∴为CD 中点,O 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 [点睛]本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y (千米)与行驶时间x (小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发92小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.[答案](1)y=100(03)2754080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)=40y x乙(0≤x≤152);(3)两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[解析][分析](1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于274小时是一次函数.可根据待定系数法列方程,求函数关系式;(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了92小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解;(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.[详解](1)当0≤x≤3时,是正比例函数,设为y=kx,当x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤274时,是一次函数,设为y=kx+b,代入两点(3,300)、(274,0),得3300274k bk b+=⎧⎪⎨+=⎪⎩,解得80540kb=-⎧⎨=⎩,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=100(03)27 54080(3)4x xx x≤≤⎧⎪⎨-<≤⎪⎩;(2)当x=92时,y甲=540﹣80×92=180;乙车过点(92,180),=40y x乙.(0≤x≤152)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=157;②当3<x≤274时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第157小时,第二次相遇时间为第6小时.[点睛]本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.25.现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板两直角边所在直线分别与直线BC、CD交于点M、N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是;(2)如图2,若点O在正方形的中心(即两对角线交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4,是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说明)[答案](1)OM=ON;(2)成立.(3)O在移动过程中可形成线段AC;(4)O在移动过程中可形成线段AC. [解析]试题分析:(1)根据△OBM与△ODN全等,可以得出OM与ON相等的数量关系;(2)连接AC、BD,则通过判定△BOM≌△CON,可以得到OM=ON;(3)过点O作OE⊥BC,作OF⊥CD,可以通过判定△MOE≌△NOF,得出OE=OF,进而发现点O在∠C的平分线上;(4)可以运用(3)中作辅助线的方法,判定三角形全等并得出结论.试题解析:(1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF(AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.考点:四边形综合题;全等三角形的判定与性质;角平分线的性质;探究型;操作型;压轴题.。
2023—2024学年度第二学期期中质量监测八年级生物试题
2023—2024学年度第二学期期中质量监测生物学试卷注意事项:1.本试卷总分60分,考试时间60分钟。
2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡的相应位置。
3.所有答案均在答题卡上作答,在本试卷或草稿纸上作答无效。
答题前请仔细阅读答题卡上的“注意事项”按照“注意事项”的规定答题。
4.答选择题时,用2B铅笔将答题卡上对应题目的答案标号涂黑;答非选择题时,请在答题卡上对应题目的答题区内答题。
5.考试结束时,请将本试卷和答题卡一并交回。
一、选择题(本大题包括25 小题,每小题1分,共25分。
在每小题提供的四个选项中,只有一项最符合题目的要求。
)1.下列生物新个体的产生,哪些是属于无性生殖( )①草莓植物苗的组织培养②试管婴儿的产生③月季的扦插④玉米种子种下长出玉米植株⑤马铃薯的块茎发芽生根A.①②③B.①③⑤C.①③④⑤D.①②④2.如图为绿色开花植物不同结构层次的变化过程示意图,下列叙述错误的是A. a是指细胞分裂B. b是指细胞分化C.丁属于器官D.戊属于系统3.如图为大豆生长发育过程的示意图,下列叙述正确的是A.甲中的胚由胚珠发育而来B.乙图种子萌发时首先突破种皮的是胚芽C.丁花中最重要的结构是花瓣D.戊果实由种子和果皮组成4.有关下图所示几种动物的说法中,错误的是A.家蚕是节肢动物,成虫的体表有坚韧的外骨骼B.麻雀体温恒定,飞行时利用气囊辅助呼吸C.蚯蚓由许多相似的体节组成,只依靠刚毛进行运动D.蜥蜴体表有角质的鳞片,可减少体内水分的蒸发5.小明是个爱动脑筋的好孩子,他假期到姥姥家玩时,经常随姥爷下地干活,下面是他和姥爷进行农作物种植后的有关叙述,请你利用所学知识进行判断,其中错误的是A.播种前要对土壤进行耕和耙,是因为种子萌发需要充足的空气B.播种时要给土壤施农家肥,主要是为了给植物生长提供有机物C.播种后要用地膜覆盖,是为了控制温度,有利于种子提早萌发D.要适时给庄稼松土,是为了给植物根的呼吸作用提供充足的氧气6.海姆立克急救法,由美国医生亨利·海姆立克发明,是主要针对异物卡喉的急救方法。
人教版数学八年级下册《期中检测试卷》(含答案)
人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。
人教版八年级下册数学《期中测试题》含答案
人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列各式是二次根式是( ) A.3-B.2C.33D.3π-2.在直角三角形中,若勾为3,股为4,则弦为( ) A. 5B. 6C. 7D. 83.式子1x -在实数范围内有意义,则的取值范围是( ) A 0x >B. 1x -C. 1xD. 1x ≤4.下列线段不能组成直角三角形的是( ) A. a =6,b =8,c =10 B. a =1,b =2,c =3 C. a =1,b =1,c =2D. a =2,b =3,c =65.在平行四边形ABCD 中,5AB =,3BC =.则平行四边形ABCD 的周长是( ). A. 16B. 13C. 10D. 86.下列各式中,计算不正确的是( ) A. 2(3)3=B.2(3)3-=- C. 2(3)3-= D. 2(3)3--=-7.在▱ABCD 中,∠A :∠B :∠C :∠D 可能是( ) A. 1:2:3:4B. 2:3:2:3C. 2:2:1:1D. 2:3:3:28.如图,在▱ABCD 中,下列结论一定成立的是( )A. AC ⊥BDB. ∠BAD +∠ABC =180°C. AB =ADD. ∠ABC =∠BCD9.如图,数轴上的点表示的数是-1,点表示的数是1,CB AB ⊥于点,且2BC =,以点为圆心,AC 为半径画弧交数轴于点,则点表示的数为( )A. 221-B. 22C. 2.8D. 221+10.已知在同一平面内,直线a ,b ,c 互相平行,直线a 与b 之间的距离是3cm ,直线b 与c 之间的距离是5cm ,那么直线a 与c 的距离是( ) A. 2cmB. 8cmC. 8或2cmD. 不能确定二.填空题(共8小题)11.计算12的结果是______.12.如果一个无理数a 与8的积是一个有理数,写出a 的一个值是______.13.如图,△ABC 中,∠ACB =90°,以它的各边为边向外作三个正方形,面积分别为S 1,S 2,S 3,已知S 1=6,S 2=8,则S 3=_____.14.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 周长为_____.15.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行__________米.16.如图,点D ,E ,F 分别是△ABC 的AB ,BC ,CA 边的中点.若△DEF 的周长为10,则△ABC 的周长为_____.17.如图,将一张矩形纸片沿着AE 折叠后,点D 恰好与BC 边上的点F 重合,已知AB =6cm ,BC =10cm ,则EC 的长度为_____cm .18.如图,▱ABCD 的对角线AC,BD 交于点O,AE 平分∠BAD 交BC 于点E,且∠ADC=60°,AB =12BC,连结OE.下列结论:①∠CAD=30°;②S ▱ABCD =AB·AC;③OB=AB ;④OE =14BC,成立结论有______.(填序号)三.解答题(共7小题)19.计算:(1036|21|(3)π++- (2)(24827)3÷20.计算252)52)(52)+-21.如图,▱ABCD 的对角线AC ,BD 相交于O ,AE =CF .求证:DE =BF .22.已知:如图,△ABC中,AB=4,∠ABC=30°,∠ACB=45°,求△ABC的面积.23.如图,点E是平行四边形ABCD边CD上的中点,AE、BC的延长线交于点F,连接DF,求证:四边形ACFD 为平行四边形.24.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=1BC.若2AB=12,求EF的长.25.规定:[m]为不大于m的最大整数;(1)填空:[3.2]=,[﹣4.8]=;(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a取值范围;(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.答案与解析一.选择题(共10小题)1.下列各式是二次根式的是( ) A.B.C.D.[答案]B [解析] [分析]二次根式有意义的条件是被开方数是非负数,即可判断.[详解]解:A 、﹣3<0,,故选项不符合题意; B 、符合二次根式,符合题意; C 、是三次根式,故选项不符合题意;D 、3﹣π<0,,故选项不符合题意. 故选:B .[点睛],必须有a≥0.2.在直角三角形中,若勾为3,股为4,则弦为( ) A. 5 B. 6C. 7D. 8[答案]A [解析]分析:直接根据勾股定理求解即可. 详解:∵在直角三角形中,勾为3,股为4,故选A .点睛:本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.3.,则的取值范围是( ) A. 0x > B. 1x -C. 1xD. 1x ≤[答案]C[分析]根据二次根式有意义的条件进行求解即可. [详解]由题意得:x-1≥0, 解得:x ≥1, 故选C.[点睛]本题考查了二次根式有意义的条件,熟知二次根式的被开方数为非负数是解题的关键. 4.下列线段不能组成直角三角形的是( )A. a =6,b =8,c =10B. a =1,b ,cC. a =1,b =1,cD. a =2,b =3,c[答案]D [解析] [分析]根据勾股定理的逆定理对四个选项进行逐一分析即可.[详解]解:A 、∵62+82=102,∴能组成直角三角形,故本选项不符合题意;B 、∵12+)2=2,∴能组成直角三角形,故本选项不符合题意;C 、∵12+12=2,∴能组成直角三角形,故本选项不符合题意;D 、∵22+32≠)2,∴不能组成直角三角形,故本选项符合题意. 故选:D .[点睛]本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.5.在平行四边形ABCD 中,5AB =,3BC =.则平行四边形ABCD 的周长是( ). A. 16 B. 13C. 10D. 8[答案]A [解析]根据平行四边形的性质:平行四边形的对边相等可得DC=5,AD=3,然后再求出周长即可. [详解]∵四边形ABCD 是平行四边形, ∵AB=CD ,AD=BC , ∵AB=5,BC=3, ∴DC=5,AD=3,∴平行四边形ABCD 的周长为:5+5+3+3=16, 故选A .[点睛]此题主要考查了平行四边形的性质,关键是掌握平行四边形的对边相等. 6.下列各式中,计算不正确的是( )A. 23= 3=-C. 2(3=D. 3=-[答案]B [解析] [分析]按照根式的运算规则运算即可.[详解]解:A. 23=,正确,B.3=-,错误,3=,C. 2(3=,正确,D. 3=-,正确, 所以选B.[点睛]a =的运用.7.在▱ABCD 中,∠A :∠B :∠C :∠D 可能是( ) A. 1:2:3:4 B. 2:3:2:3C. 2:2:1:1D. 2:3:3:2[答案]B [解析]由平行四边形的对角相等得出∠A =∠C ,∠B =∠D ,即可得出结果. [详解]解:∵四边形ABCD 是平行四边形, ∴∠A =∠C ,∠B =∠D ,∴∠A :∠B :∠C :∠D 可能是2:3:2:3; 故选:B .[点睛]本题考查了平行四边形的对角相等的性质;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.8.如图,在▱ABCD 中,下列结论一定成立的是( )A. AC ⊥BDB. ∠BAD +∠ABC =180°C. AB =ADD. ∠ABC =∠BCD[答案]B [解析] [分析]根据平行四边形的性质判断即可.[详解]解:A 、∵四边形ABCD 是菱形,∴AC ⊥BD ,选项不能成立; B 、∵四边形ABCD 是平行四边形,∴∠BAD+∠ABC =180°,选项成立; C 、∵四边形ABCD 是菱形,∴AB =AD ,选项不能成立;D 、∵四边形ABCD 是平行四边形,∴∠ABC+∠BCD =180°,选项不成立; 故选:B .[点睛]本题考查了平行四边形性质;熟练掌握平行四边形的性质是解题的关键.9.如图,数轴上的点表示的数是-1,点表示的数是1,CB AB ⊥于点,且2BC =,以点为圆心,AC 为半径画弧交数轴于点,则点表示的数为( )A. 221B. 22C. 2.8D. 221[答案]A[解析][分析]根据勾股定理求出AC,根据实数与数轴的概念求出点D表示的数.[详解]解:由题意得,AB=2,由勾股定理得,AC2222AB BC,2222∴AD=2则OD=2,即点D表示的数为22,故选A.[点睛]本题考查的是勾股定理、实数与数轴,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.已知在同一平面内,直线a,b,c互相平行,直线a与b之间的距离是3cm,直线b与c之间的距离是5cm,那么直线a与c的距离是( )A. 2cmB. 8cmC. 8或2cmD. 不能确定[答案]C[解析][分析]分(1)直线a在直线b、c外,(2)直线a在直线b、c之间两种情况,画出图形(1)(2),根据图形进行计算即可.[详解]解:有两种情况:如图(1)直线a与c的距离是3厘米+5厘米=8厘米;(2)直线a与c的距离是5厘米-3厘米=2厘米.故选C.[点睛]本题考查平行线之间的距离,注意需分两种情况讨论求解是解题的关键.二.填空题(共8小题)11.12______.[答案]3[解析][分析]根据二次根式的乘法公式化简即可.[详解]12434323⨯==故答案为:3[点睛]此题考查的是二次根式的化简,掌握二次根式的乘法公式是解决此题的关键.12.如果一个无理数a8,写出a的一个值是______.[答案2.[解析][分析]=一个无理数a与22,那么即可判断a2是同类二次根式,即可写出a的值, 82答案不唯一.=∴由题意得一个无理数a与2的积是有理数,[详解]82∴a与2是同类二次根式,答案不唯一.故答案为:2.[点睛]本题主要考查实数的性质以及同类二次根式的性质,解题的关键是掌握有理数和无理数的基本定义以及同类二次根式的积为有理数即可.13.如图,△ABC中,∠ACB=90°,以它的各边为边向外作三个正方形,面积分别为S1,S2,S3,已知S1=6,S2=8,则S3=_____.[答案]14.[解析][分析]根据勾股定理即可得到结论.详解]解:∵∠ACB=90°,S1=6,S2=8,∴AC2=6,BC2=8,∴AB2=14,∴S3=14,故答案为:14.[点睛]本题考查了勾股定理,正方形的面积,正确的识别图形是解题的关键.14.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.[答案]14[解析][分析]根据平行四边形的性质,三角形周长的定义即可解决问题;[详解]解:∵四边形ABCD是平行四边形,∴AD=BC=6,OA=OC,OB=OD,∵AC+BD=16,∴OB+OC=8,∴△BOC的周长=BC+OB+OC=6+8=14,故答案为14.点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15.如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行__________米.[答案]10[解析][分析]从题目中找出直角三角形并利用勾股定理解答.[详解]解:过点D作DE⊥AB于E,连接BD.在Rt△BDE中,DE=8米,BE=8−2=6米.根据勾股定理得BD=10米.故填:10.[点睛]注意作辅助线构造直角三角形,解题的关键是熟知勾股定理的应用.16.如图,点D,E,F分别是△ABC的AB,BC,CA边的中点.若△DEF的周长为10,则△ABC的周长为_____.[答案]20[解析][分析]先根据中位线性质得:AB=2EF,BC=2DF,AC=2DE,由周长得:EF+DE+DF=10,所以2EF+2DE+2DF=20,即AB+BC+AC=20.[详解]∵点D,E,F分别是△ABC的AB,BC,CA边的中点,∴EF、DE、DF为△ABC的中位线,∴AB=2EF,BC=2DF,AC=2DE,∵△DEF的周长为10,∴EF+DE+DF=10,∴2EF+2DE+2DF=20,∴AB+BC+AC=20,∴△ABC的周长为20.故答案为:20.[点睛]本题考查了三角形中位线的性质,解题的关键在于根据中位线等于第三边的一半转换求解.17.如图,将一张矩形纸片沿着AE折叠后,点D恰好与BC边上的点F重合,已知AB=6cm,BC=10cm,则EC 的长度为_____cm.[答案]3.[解析][分析]先根据翻折变换的性质得出Rt△ADE≌Rt△AEF,再先设EC的长为x,则AF=10cm,EF=DE=(8﹣x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,已知AB、AF的长可求出BF的长,又CF=BC﹣BF=10﹣BF,在Rt△ECF中由勾股定理可得:EF2=EC2+CF2,即:(8﹣x)2=x2+(10﹣BF)2,将求出的BF的值代入该方程求出x的值,即求出了EC的长.[详解]解:∵△AEF由△ADE翻折而成,∴Rt△ADE≌Rt△AEF,∴∠AFE=90°,AD=AF=10cm,EF=DE,设EC=xcm,则DE=EF=CD﹣EC=(8﹣x)cm,在Rt△ABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102,∴BF=6cm,∴CF=BC﹣BF=10﹣6=4(cm),在Rt△ECF中由勾股定理可得:EF2=EC2+CF2,即(8﹣x)2=x2+42,∴64﹣16x+x2=x2+16,∴x=3(cm),即EC=3cm,故答案为:3.[点睛]本题考查是图形的翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.18.如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=12BC,连结OE.下列结论:①∠CAD=30°;②S▱ABCD=AB·AC;③OB=AB;④OE=14BC,成立的结论有______.(填序号)[答案]①②④[解析][分析]由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=12BC,得到AE=12BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=12BC,OB=12BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=12AB,于是得到OE=14BC,故④正确.[详解]∵四边形ABCD是平行四边形, ∴∠ABC=∠ADC=60°,∠BAD=120°, ∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=12 BC,∴AE=12 BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=12BC,OB=12BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=12AB , ∴OE=14BC ,故④正确. 故答案为①②④.[点睛]本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.三.解答题(共7小题)19.计算:(10|1|(3)π+-(2)÷[答案](1);(2)2[解析][分析](1)直接利用二次根式的乘法运算法则以及绝对值的性质、零指数幂的性质分别计算得出答案;(2)直接化简二次根式进而利用二次根式的除法运算法则计算得出答案.[详解]解:(10|1|(3)π+-=1+1=;(2)÷=()==2.[点睛]此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.计算22)2)+-[答案][解析][分析]直接利用乘法公式计算得出答案.[详解]解:(5+2)2+(5+2)(5﹣2)=5+4+45+5﹣4=10+45.[点睛]此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.21.如图,▱ABCD的对角线AC,BD相交于O,AE=CF.求证:DE=BF.[答案]详见解析[解析][分析]根据平行四边形的性质可得BO=DO,AO=CO,再利用等式的性质可得EO=FO,然后再利用SAS定理判定△BOE≌△DOF,进而利用平行四边形的判定和性质解答即可.[详解]证明:连接BF,DE,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO,∵AE=CF,∴AO﹣AE=CO﹣FO,∴EO=FO,在△BOE和△DOF中,0B DO BOE DOF EO FO =⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (SAS ),∴BE =DF ,∠AEB =∠CFD ,∴∠BEO =∠DFO ,∴BE ∥DF ,∴四边形BEDF 是平行四边形,∴BF =DE .[点睛]此题主要考查了平行四边形的性质、全等三角形的判定与性质,熟练掌握平行四边形的对角线互相平分,证明三角形全等是解题的关键.22.已知:如图,△ABC 中,AB =4,∠ABC =30°,∠ACB =45°,求△ABC 的面积.[答案]3[解析][分析]作AD ⊥BC 于D ,利用30°的直角三角形的性质即可求得BD 、再根据勾股定理可求得AD 长,利用∠C =45°可求得AD=CD ,进而求得CD 的长度,即可得到BC 的长,然后利用三角形的面积公式即可求解.[详解]解:作AD ⊥BC 于D ,则∠ADB=∠ADC=90°, ∵∠B =30°,∠ADB=90°,∴AD =12AB =4; BD 22-AB AD 3∵∠C =45°,∠ADC=90°,∴∠DAC =∠C =45°,∴DC =AD =2,∴BC =BD +CD =3+2∴S △ABC =12AD •BC =23+2[点睛]本题考查了30°的直角三角形的性质,勾股定理,等腰三角形的判定,正确作出辅助线把三角形转化成两个直角三角形是关键.23.如图,点E 是平行四边形ABCD 边CD 上的中点,AE 、BC 的延长线交于点F ,连接DF ,求证:四边形ACFD 为平行四边形.[答案]证明见解析.[解析][分析]根据平行四边形的性质证出∠ADC=∠FCD ,然后再证明△ADE ≌△FCE 可得AD=FC ,根据一组对边平行且相等的四边形是平行四边形可得结论.[详解]证明:∵在▱ABCD 中,AD ∥BF .∴∠ADC=∠FCD .∵E 为CD 的中点,∴DE=CE .在△ADE 和△FCE 中,{AED FECADE FCE DE CE∠=∠∠=∠=,∴△ADE ≌△FCE(ASA)∴AD=FC .又∵AD ∥FC,∴四边形ACFD 是平行四边形.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形两组对边分别平行.24.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.若AB=12,求EF的长.[答案]5[解析][分析]如图,连接DC,根据三角形中位线定理可得,DE=12BC,DE∥BC,又因CF=12BC,可得DE=CF,进而得出四边形DEFC是平行四边形,即可得出答案.[详解]解:连接DC,∵点D,E分别是边AB,AC的中点,∴DE=12BC,DE∥BC,∵CF=12 BC,∴DE=CF,∴四边形CDEF是平行四边形, ∴DC=EF,DC=12AB=5,所以EF=DC=5.考点:三角形中位线定理;平行四边形的判定与性质;直角三角形斜边上的中线.25.规定:[m]为不大于m的最大整数;(1)填空:[3.2]=,[﹣4.8]=;(2)已知:动点C在数轴上表示数a,且﹣2≤[a]≤4,则a的取值范围;(3)如图:OB=1,AB⊥OB,且AB=10,动点D在数轴上表示的数为t,设AD﹣BD=n,且6≤[n]≤7,求t的取值范围.[答案](1)3,-5;(2)﹣2≤a<5;(3)﹣134≤t<﹣54或134<t≤193.[解析][分析](1)根据[m]为不大于m的最大整数数即可求解;(2)根据[m]为不大于m的最大整数,可得﹣2≤a<5即可求解;(3)分两种情形:当点D在点B右边时,当点D在点B的左边时分别求解即可.[详解]解:(1)[3.2]=3,[﹣4.8]=﹣5.故答案为3,﹣5.(2)∵﹣2≤[a]≤4∴﹣2≤a<5.(3)如图,当点D在点B的右边时,∵6≤[n]≤7,∴6≤n<8,当n=8时(t﹣1)=8,解得t=134,当n=6时(t﹣1)=8,解得t=193,观察图象可知,134<t≤193.当点D在点B的左边时,同法可得﹣134≤t<﹣54,综上所述,满足条件t的值为﹣134≤t<﹣54或134<t≤193.[点睛]本题考查实数与数轴,勾股定理,无理方程等知识,解题的关键是理解题意,学会结合新定义考查估算无理数的大小,灵活运用所学知识解决问题.。
重庆市沙坪坝区2023-2024学年八年级下学期期中考试数学试题(含答案)
重庆市沙坪坝区2023–2024学年下期期中调研测试八年级数学试题卷一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.下列二次根式中,是最简二次根式的是( )ABCD2.已知函数,则自变量x 的取值范围是()A .x >-3B .x≥-3C.x ≠-3D .x ≤-33.下列计算,正确的是( )A B .C.D .4的运算结果应在( )A .2到3之间B .3到4之间C .4到5之间D .5到6之间5.下列命题正确的是()A .一组对边平行另一组对边相等的四边形是平行四边形B .对角线相等的四边形是矩形C .对角线相等的平行四边形是菱形D .有一个角是直角的菱形是正方形6.如图,用正方形按规律依次拼成下列图案.由图知,第①个图案中有2个正方形;第②个图案中有4个正方形;第③个图案中有7个正方形.按此规律,第8个图案中正方形的个数为()A .16B .22C .29D .377.正比例函数y =kx (k ≠0)的函数值y 随着x 增大而减小,则一次函数y =x +k 的图象大致是()A .B .C .D .y ==1-=)221-=54+=1-8.如图,5个阴影四边形都是正方形,所有三角形都是直角三角形,若正方形A 、C 、D 的面积依次为4、5、20,则正方形B 的面积为()A .8B .9C .10D .119.如图,在正方形ABCD 中,E 为对角线AC 上与A ,C 不重合的一个动点,过点E 作EF ⊥AB 与点F ,EG ⊥BC 于点G ,连接DE ,FG ,若∠AED =α,则∠EFG =()A .a -90°B .180°-aC .a -45°D .2a -90°10.将自然数1,2,3,4,5,6分别标记在6个形状大小质地等完全相同的卡片上,随机打乱之后一一摸出,并将摸出的卡片上的数字分别记为,记,以下3种说法中:①A 最小值为3;②A 的值一定是奇数;③A 化简之后一共有5种不同的结果.说法正确的个数为( )A .3B.2C .1D .0二、填空题(本大题8个小题,每小题4分,共32分)11.计算:______.12.已知一次函数y =-2x +1的图象经过,若,则______(填“>”“<”或“=”).13.如图,□ABCD 对角线AC 、BD 相交于点O ,E 为AB 中点,AE =3,OE =4,则□ABCD 的周长为______.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,且∠OAD =55°.则∠ODC =______.123456,,,,,a a a a a a 123456A a a a a a a =-+-+-()2π1--=1122(,),(,)A x y B x y 12x x >1y 2y15.如图,两个边长均为6的正方形ABCD 、正方形OGFE 有一部分堆叠在一起,O 恰为AC 中点,则图中阴影部分的面积为______.16.若关于x 的一次函数y =x +2a -5的图象经过第二象限,且关于y的分式方程的解为非负整数,则所有满足条件的整数a 的值之和为______.17.如图,将一个长为9,宽为3的长方形纸片ABCD 沿EF 折叠,使点C 与点A 重合,则EF 的长为______.18.若一个四位自然数,满足A ,B ,C ,D 互不相同且A -D =B -C >0;若,规定.(1)当N =1234,且F (M *N)为整数时,A +B-C -D =______;(2)若,且F (M *N )是一个立方数(即某一个整数的立方),则满足条件的M 的最小值为______.三、解答题(本大题8个小题,19题8分,其余题各10分,共78分)19.计算:(2).20.如图,四边形ABCD 是矩形,连接AC 、BD 交于点O ,AE 平分∠BAO 交BD 于点E .210122y a y y y+--=--M ABCD =N abcd =()*5Aa Bb Cc DdF M N +++=N DCBA =))2111++(1)用尺规完成基本作图:作∠ACD 的角平分线交BD 于点F ,连接AF ,EC ;(保留作图痕迹,不写作法与结论)(2)求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是矩形,∴AO =OC ,,∴ ① .∵AE 平分∠BAO ,CF 平分∠DCO ,∴,∴ ② .∵在△AEO 和△CFO 中,∴△AEO ≌△CFO (ASA ),∴ ④ .又∵AO =CO ,∴四边形AECF 是平行四边形( ⑤ ).21.已知在Rt △ABC 中,∠ACB =90°,AC =9,AB =15,BD =5,过点D 作DH ⊥AB 于点H .(1)求CD 的长;(2)求DH 的长.22.随着人口的增加和城市化进程的加快,为了预防污水排放量不断增加而导致水体污染,高新区进行了污水治理,现需铺设一段全场为4600米的污水排放管道,铺了1600米后,为了尽量减少施工对城市交通所造成的影响,承包商安排工人每天加班,每天的工作量比原来提高了25%,共用50天完成了全部任务.(1)求原来每天铺设多少米管道?(2)若承包商安排工人加班后每天支付给工人工资增加了20%,完成整个工程后承包商共支付工人工资224000元,请问安排工人加班前每天需支付工人工资多少元?AB CD ∥11,22EAO BAO FCO DCO ∠=∠∠=∠EAO FCOAO CO ∠=∠⎧⎪=⎨⎪⎩③23.如图,在□ABCD 中,AD =6,CD =4,∠ADC =30°,动点P 以每秒1个单位的速度从点B 出发沿折线B →A →D 运动(含端点),在运动过程中,过点P 作PH ⊥BC 于点H ,设点P 的运动时间为x 秒,点P 到直线BC 的距离与点P 到点A 的距离之和记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)请直接写出当y 为3时x 的值.24.如图,在△ABC 中,,AD 是BC 边上的中线,F 为AC 右侧一点,连接AF 、CF ,恰好满足,连接BF 交AD 于E .(1)求证:四边形ADCF 是菱形;(2)若AB =6,AE =2,求四边形ADCF 的面积.25.如图,在平面直角坐标系中,函数y =-2x +12的图象分别交x 轴、y 轴于A 、B 两点,过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的函数解析式;(2)若点C 是直线AM 上一点,且,求点C 的坐标;(3)点P 为x 轴上一点,当,∠PBA =∠BAM 时,请直接写出满足条件的点P的坐标.90BAC ∠=︒,AF BC CF AD ∥∥23ABC AMO S S =△△26.正方形ABCD 对角线AC ,BD 相交于点O ,E 为线段AO 上一点,连接BE .(1)如图1,若,求AB 的长度;(2)如图2,F 为BC 上一点,连接DF ,G 为DF 上一点,连接OG ,CG ;若∠DOG =∠BEO ,∠FGC =∠BDF ,AE =CG ,求证:BE =2CG ;(3)如图3,若正方形ABCD 边长为2,延长BE 交AD 于F ,在AD 上截取DG =AF ,连接CG 交BD 于H ,连接AH 交BF 于K ,连接DK ,直接写出DK 的最小值.重庆市沙坪坝区2023—2024学年度下期期中调研测试八年级数学试题参考答案及评分意见一、选择题:题号12345678910答案ABCBDDADCB二、填空题:11.2; 12.<; 13.28; 14.35°; 15.9; 16.14; 1718.10;6721.三、解答题:19.;解:原式.BE AE==22=+=+-=(2)解:原式20.(1)如图:(2)①∠BAO =∠DCO . ②∠EAO =∠FCO . ③∠AOE =∠COF . ④OE =OF .⑤对角线互相平分的四边形是平行四边形.21.解:(1)∵∠ACB =90°,AC =9,AB =15,∴Rt △ABC 中,由勾股定理得:,∴CD =CB -BD =12-5=7.(2)∵DH ⊥AB ,∴,∴,∴DH =3.22.解:(1)设原来每天铺设x 米管道,由题意得.解得:x =80.经检验,x =80是原方程的解,且符合题意;答:原来每天铺设80米管道.(2)设安排工人加班前每天应支付工人y 元,由题意得.解得:y =4000.答:安排工人加班前每天应支付工人4000元.))2111++31619=-+-=-12BC ===1122ADB S AB DH BD AC =⋅=⋅△11155922DH ⨯⋅=⨯⨯()1600300050125%x x+=+()160030120%22400080y y ⋅++=23.解:(1)(2)性质:当0<x <4时,y 随x 增大而减小;当4<x <10时,y 随x 增大而增大.(3)x =2或5.24.解:(1)证明:∵,∴四边形ADCF 是平行四边形;∵∠BAC =90°,AD 是BC 边上的中线,∴CD =DA =BD ,∴四边形ADCF 是菱形.(2)如图,连接DF 交AC 于O ;∵四边形ADCF 是平行四边形,∴CD =AF ,∵BD =CD ,∴BD =AF ;∵,∴四边形BDAF 是平行四边形,∴E 为DA 中点,DF =AB =6;∴AD =2AE =4,∴BC =2AD =8;∵在Rt △BAC 中,∠BAC =90°,∴由勾股定理得:∴25.解:(1)在函数y =-2x +12中,令x =0得y =12;∴B (0,12).令y =0得x =6;∴A (6,0).∵M 为OB 中点,∴M (0,6).设直线AM 解析式为y =kx +b ,()140422(410)x x y x x ⎧-+≤≤⎪=⎨⎪-<≤⎩//,//AM BC CF AD //BD AF AC ===11622ADCF S DF AC =⋅⋅=⨯⨯=菱形将A(6,0),M(0,6)代入得:解得∴直线AM解析式为y=-x+6.(2)如图,过点C作CD⊥x轴于N,交直线AB于D,设C(c,-c+6),则D(c,-2c+12),∴∴;∵,∴;∴3|c-6|=12,∴c=10或2,∴C(10,-4)或(2,4).(3)P(12,0)或.26.解:(1)如图,过点E作EH⊥AB于H,60,06k bk b+=⎧⎨⋅+=⎩16kb=-⎧⎨=⎩()()62126CD c c c=-+--+=-ABC ADC BDCS S S=-△△△1122CD AN CD NO=⋅⋅-⋅()1116636 222CD AN NO CD AO c c=⋅-=⋅⋅=⨯⋅-=-11661822AMOS AO MO=⋅⋅=⨯⨯=△22181233ABC AMOS S=⨯=⨯=△△12,07⎛⎫⎪⎝⎭∵四边形ABCD 为正方形,∴∠BAE =∠ABO =45°,∴△AHE 为等腰直角三角形,∴.∴在Rt △BHE 中,由勾股定理得:,∴AB =AH +HB =1+2=3.(4分)(2)证明:如图,过点C 作直线,交DG 延长线于M ,交OG 延长线于N ,连接BM .∵四边形ABCD 是正方形,∴AB =BC ,AC ⊥BD ,BO =DO ,∠BAE =∠DBC =45°;∵,∴∠BDG =∠1,∠BCM =∠DBC =45°=∠BAE ;∵∠BDG =∠CGF ,∴∠1=∠CGF ,∴CG =CM ;∵AE =CG ,∴AE =CM ;∴在△BAE 与△BCM 中,∴,∴∴BE =BM ,∠ABE =∠2.∵∠DBM =∠2+45°,∠DOG =∠BEO =45°+∠ABE ,∴∠DBM =∠DOG ,∴,∴四边形BONM 是平行四边形,∴BO =MN ,∴DO =MN ;∴在△ODG 与△NMG 中,∴,∴∴OG =GN ,G 为O 中点,∵∠OCN =90°,∴CG =OG ,∵BE =BM =2OG ,∴BE =2G C.1AH HE AE ====2BH ===//MN BD //MN BD AB CBBAE BCM AE CG =⎧⎪∠=∠⎨⎪=⎩()SAS BAE BCM △≌△//BM OG 1DOG OGD NGM OD MN ∠=∠⎧⎪∠=∠⎨⎪=⎩()SAS ODG NMG △≌△(简释,如图:,取AB 中点T ,连接TK ,TD ,则)1-90AHO CHO HAO HCOEBO AKE ⇒∠=∠=∠⇒∠=︒△≌△112DK DT KT AB AB ≥-=-=-。
四川省成都市石室中学2023-2024学年八年级下学期期中考试英语试题(原卷版)
英语A 卷(共100分)第一部分 听力测试(共 30 小题,计 30 分)一、听句子,根据所听到的内容选择正确答语。
每小题念两遍。
(共5小题,每小题1分,计5分)1. A. OK!B. I’m fine.C. I have a cold.2. A. I’m sorry.B. Have a good time.C. That’s a good idea.3. A. It was heavy.B. So was I.C. In the afternoon.4. A. Yes, sure.B. No, thank you.C. I see.5. A. Don’t worry. B. No problem. C. I agree.二、听句子,选择与所听句子内容相符的图片,每小题念两遍。
(共5小题,每小题1分,计5分)A. B. C. D. E.6. ________7. ________8. ________9. ________ 10. ________三、听对话,根据对话内容及问题选择正确答案。
每小题念两遍。
(共10小题,每小题1分,计10分)11. A. Grace. B. Mary. C. Bob.12. A. Cleaning his room. B. Meeting his friends C. Washing the clothes.13. A. At 7:30. B. At 7:40. C. At 7:45.14. A. In the morning. B. In the afternoon. C. In the evening.15. A. To the history museum. B. To the animal hospital. C. To the old people’s home.16 A. At home. B. At the school. C. At the hospital.17. A. Teacher and parent. B. Brother and sister. C. Classmates.18. A. On Wednesday. B. On Thursday. C. On Friday.19. A. To walk the dog. B. To set the table C. To cook dinner.20. A. Surprised. B. Angry. C. Excited.四、听短文,根据短文内容选择正确答案,短文念两遍。
【人教版】数学八年级下学期《期中考试试题》(附答案解析)
人教版八年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个 2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( ) A . 1683-B. 1283-+C. 843-D. 423- 4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 2B. 2C. 8D. 66. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y (米)与 时间x (秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________. 8. 若二次根式25x +与3能合并,则x 可取的最小正整数是_________.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.11. 如图,在菱形ABCD 中,点E 为AB 上一点,DE =AD ,连接EC .若∠ADE =36°,则∠BCE 的度数为_____.12. 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________________.三.解答题(共11小题)13. 计算:(1)1 21231263+-⨯(2)8123|265|2-÷+--14. 已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.15. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是千米;乙车到达B地所用的时间a的值为;(3)行驶过程中,两车出发多长时间首次后相遇?17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:322)2,善于思考的小明进行了以下探索:设2)2(其中a、b、m、n均为整数),则有2=m2+2n22.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7+43化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:2.a b20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.23. 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.答案与解析一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据二次根式的定义形如a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【详解】解:在所列式子中是二次根式的有 3.14π-,22a b +,21m +,||ab 这4个, 故选:B .【点睛】本题主要考查二次根式的定义.准确记忆二次根式的定义是解题的关键2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 【答案】B【解析】【分析】 对于直角三角形的判定我们可以从角的方面去判断,也可以利用勾股定理的逆定理来进行判断.【详解】解: A 、∠A+∠C=∠B ,则∠B=90°,则为直角三角形;B 、当三边比值为1:2:3时,则无法构成三角形;C 、根据题意可知:222+=a b c ,满足勾股定理的逆定理,则这个三角形就是直角三角形;D 、根据题意可知()()()22222222mn m n m n -+=+,满足勾股定理的逆定理,则这个三角形就是直角三角形.3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )A. 1683-B. 1283-+C. 843-D. 423-【答案】B【解析】【分析】 分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为12=23,宽为1612423-=-,∴面积=()23423=83-12-故选:B .【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b 【答案】C【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 82B. 42C. 8D. 6【答案】C【解析】【分析】首先由正方形ABCD的对角线长为22,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【详解】解:∵正方形ABCD的对角线长为22,即2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠2×22=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.【点睛】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.6. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】 【详解】在100秒时甲,乙的距离是0,则起跑后100秒甲追上乙,故②说法正确;甲每100秒比乙多跑100m ,所以经过50秒时甲乙相距50米,故③说法正确;甲每100秒比乙多跑100m ,则在400秒时,相距300米,④说法正确;甲的速度为2000÷400=5m/s ,故可以得出甲的速度为5m/s ,故①正确. 故选A .【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.【答案】k>12. 【解析】【分析】根据正比例函数的图像和性质进行解答即可.【详解】解:∵正比例函数(21)y k x =-的图像经过原点和第一、第三象限,∴2k-1>0,∴k>12. 故答案为: k>12. 【点睛】本题考查正比例函数的性质,解题关键是掌握正比例函数的图像经过第一、第三象限时,比例系数k>0的性质.8. 25x +3x 可取的最小正整数是_________.【分析】根据题意,它们化简后的被开方数相同,列出方程求解即可【详解】∵二次根式25x +与3能合并,∴253x +=,解得–1x = (舍去),2512x +=,解得 3.5x = (舍去),2527x +=,解得11x =.即当x 取最小正整数11时,二次根式25x +与3能合并.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解,【详解】如图所示:AB=22+=.345故答案是:5.【点睛】考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.11. 如图,在菱形ABCD中,点E为AB上一点,DE=AD,连接EC.若∠ADE=36°,则∠BCE的度数为_____.【答案】18°.【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形∴AD=CD,∠A=∠BCD,CD∥AB∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°∵CD∥AB∴∠CDE =∠DEA =72°,且DE =DC =DA∴∠DCE =54°∵∠DCB =∠DAE =72°∴∠BCE =∠DCB ﹣∠DCE =18°故答案为:18°【点睛】本题考查了菱形的性质,等腰三角形的性质.熟练掌握菱形边及对角线的性质,等腰三角形的性质是解题的关键.12. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=8,E 为AD 中点,点P 在x 轴上移动.若△POE 为等腰三角形,请写出所有符合要求的点P 的坐标________________.【答案】(2.5,0)或(-2.5,0)或(4,0)或(2516,0). 【解析】【分析】 根据菱形的对角线互相垂直平分求出OA 、OD ,再利用勾股定理列式求出AD ,然后根据直角三角形斜边上的中线等于斜边的一半求出OE ,然后分①OE=OP 时,求出点P 的坐标,②OE=PE 时点P 和点D 重合,③OP=OE 时,点P 在OE 的垂直平分线上,求出OP 的长度,然后写出点P 的坐标即可.【详解】解:∵在菱形ABCD 中对角线AC=6,BD=8,∴OA=3,OD=4,∴22OA OD +22345+=,∵E 为AD 中点,∴OE=12AD=12×5=2.5, ①OE=OP 时,OP=2.5,∴点P的坐标为(2.5,0)或(-2.5,0),②OE=PE时点P和点D重合,P(4,0),③③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=12OA=32,∴OK=2,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:52=54:2,解得:OP=25 16,∴点P(2516,0),综上所述,点P的坐标为(2.5,0)或(-2.5,0)或(4,0)或(2516,0).故答案为:(2.5,0)或(-2.5,0)或(4,0)或(2516,0).【点睛】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,等腰三角形的性质,难点在于要分情况讨论.三.解答题(共11小题)13. 计算:(1)1 21231263(28123|2652-【答案】(1)(22+【解析】【分析】(1)先化简二次根式,进行乘法计算,再进行减法计算;(2)先根据二次根式和绝对值进行化简得到22(2+-,再去括号进行有理数的加减计算即可得到答案.【详解】(1)=3==(2|2-=22(2-=222+-+=2【点睛】本题考查二次根式的化简、有理数的四则运算和绝对值,解题的关键是掌握二次根式的化简、有理数的四则运算和求绝对值.14. 已知y ﹣3与2x ﹣1成正比例,且当x =1时,y =6.(1)求y 与x 之间的函数解析式.(2)当x =2时,求y 的值.(3)若点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上,且y 1>y 2,试判断x 1,x 2的大小关系.【答案】(1)y =6x ;(2)12;(3)12x x >.【解析】【分析】(1)利用正比例函数的定义得到y ﹣3=k (2x ﹣1),然后把已知的对应值代入求出k ,从而得到y 与x 之间的函数解析式;(2)把x =2代入(1)中的解析式中计算出对应的函数值;(3)利用61x >62x ,可得到1x ,2x 的大小关系.【详解】解:(1)设y ﹣3=k (2x ﹣1),把x =1,y =6代入得6﹣3=k (2×1﹣1),解得k =3,则y ﹣3=3(2x ﹣1), 所以y 与x 之间的函数解析式为y =6x ;(2)由(1)知,y =6x∴当x =2x 时,y =62⨯=12;(3)∵11226,6y x y x ==,而12y y >,∴1266x x >∴12x x >【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征等知识,一次函数图象上的点的坐标都满足该函数的解析式15. 如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【解析】【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•A C=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B 地所用的时间a 的值为 ; (3)行驶过程中,两车出发多长时间首次后相遇?【答案】(1)60y x =;(2)68,5.4;(3)4.5小时【解析】 试题分析:(1)由题意设函数关系式为,根据待定系数法即可求得结果;(2)把x=2.8代入(1)中的函数关系式即可得到甲车的路程,从而得到甲、乙两车之间的距离;先求出乙车开始的行驶速度,即可得到修好后乙车的行驶速度,从而得到a 的值;(3)设修好后乙车距离A 地的路程(千米)与行驶时间(时)的函数关系式为,根据待定系数法求得函数关系式后,再与(1)中的函数关系式组成方程组求解即可.(1)设函数关系式为 ∵图象过点(6,360) ∴,∴甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式为60y x =;(2)在60y x =中,当x=2.8时,千米;则甲、乙两车之间的距离由图可得乙车开始的行驶速度为千米/时则修好后乙车的行驶速度为千米/时所以;(3)设修好后乙车距离A地的路程(千米)与行驶时间(时)的函数关系式为∵图象过点(2.8,100),(5.4,360)∴,解得∴函数关系式为由题意得,解得答:行驶过程中,两车出发4.5小时时间首次后相遇.考点:一次函数的应用点评:一次函数是常用的解答实际问题的数学模型,本题即是利用一次函数的有关知识解答实际应用题,是中考的常见题型.17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AC,BD交于点O,连接EO并延长交CD于点F,则点F即为所求;(2)连接AC,交BD于点O,延长AE交CD于点G,连接GO并延长交AB于点H,连接HC交BD于点F,则四边形AFCE即为所画的菱形.【详解】解:(1)如图,点F即为所求;(2)如图,四边形AFCE即为所画的菱形.【点睛】本题主要考查无刻度直尺作图,掌握正方形的性质和菱形的判定方法是解题的关键.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,如图1,∵AB ∥CD∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∠BDC =∠M =∠ACD .在△ACD 和△BDC 中,===AC BD ACD BDC CD DC ⎧⎪∠∠⎨⎪⎩,∴△ACD ≌△BDC (SAS ),∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,如图2,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12, ∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.【点睛】此题考查中点四边形和三角形中位线定理,平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解题的关键.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3)2,善于思考的小明进行了以下探索:设)2(其中a、b、m、n均为整数),则有=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7(3)若a是216的立方根,b是16【答案】(1)m2+3n2;2mn;(2)7+)2;(3)2.【解析】【分析】(1)根据完全平方公式展开,根据题意寻找恒等对应关系;(2)根据完全平方公式,从积的2倍入手,将看成2⨯,从而确定“首平方”底数和“尾平方”底数;(3)先求出a、b的值,再代入求值.【详解】解:(1)2am+=+(,22332a b m n+=++2232.a m nb mn∴=+=,(2)22272222+=++⨯=+(;(3)21616a b是的立方根,是的平方根,64a b∴==±,,2===±【点睛】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.【答案】(1)证明见解析;(2)2【解析】试题分析:(1)由△BEC≌△DFA得到BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BE C与△DFA中,∵∠BEC=∠DFA,∠BCE=∠DAF,BC=AD,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图,∵AB⊥AC,AB=4,BC=213,∴AC=6,∴AO=3,∴Rt△BAO 中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?【答案】(1)4cm;(2)6cm2;(3)15cm2;(4)17秒【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=3cm,可以计算出△ABP的面积,即可得到a的值;(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CD,DE,AF的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+F A的长度,又由P的速度,计算可得b的值.【详解】解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=1cm/秒×4秒=4cm;故图甲中的BC长是4cm.(2)由(1)可得,BC=4cm,则:a=12×BC×AB=6cm2;图乙中的a是6cm2.(3)由图可得:CD=2×1=2cm,DE=1×3=3cm,则AF=BC+DE=7cm,又由AB=3cm,则甲图的面积为AB×AF﹣CD×DE=3×7﹣2×3=15cm2,图甲中的图形面积为15cm2.(4)根据题意,动点P共运动了BC+CD+DE+EF+F A=4+2+3+1+7=17cm,其速度是1cm/秒,则b=171=17秒,图乙中的b是17秒.【点睛】本题主要考查动点问题的函数图象,能够从图象中获取信息是解题的关键.22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【答案】(1)32)菱形,理由见解析(3)t=5.2或t=7时,△BEM为等腰三角形【解析】【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【详解】(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC223AD CD又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×33(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=43.∵点M为AC的中点,∴CM=23.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(23)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°−30°−90°=60°.∴∠ABG =30°.∴AG =12AB =2,BG. ∵点E 的运动速度为每秒1个单位,运动时间为t 秒,∴CE =t ,BE =8−t .在△CEM 和△AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEM ≌△AFM .∴ME =MF ,CE =AF =t .∴HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∵EH =BG =∴在Rt △EHF 中,ME =12EF =1212∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM =BM .∵在Rt △DBG 中,DG =AD +AG =10,BG =∴=故BM =12×= 要使△BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t=,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,△BEM 为等腰三角形.【点睛】本题主要考查的是平行四边形的性质、菱形的性质和判定、全等三角形的性质和判定、含30度直角三角形的性质、等腰三角形的性质、勾股定理的应用,分三种情况EB =EM ,EB =BM ,EM =BM 讨论是解题的关键.23. 在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°. (1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF≌△ABG ,则DF=BG ,再证明△AEG≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,{45AG AFGAE FAE AE AE=∠===,∴△AGE≌△AFE (SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,2,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,22,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题。
江苏省无锡市锡东片2023-2024学年八年级下学期期中语文试题(解析版)
2023—2024第二学期锡东片初二语文期中测试卷2024.4本试卷分试题和答题卡两部分,所有答案一律写在答题卡上。
考试时间为150分钟。
试卷满分为130分。
在“行走”中,孔子带领弟子周游列国,实践理想;在“行走”中,庄子亲近自然,顺其自然,物我合一;在“行走”中,我们既可以求知求学,也可以感受曼妙的自然风光。
八年级将开展“行走的课堂”主题学习活动。
请你来参加:一、积累与运用(26分)1. 古诗句默写。
行走,让你遇见万千景象,遇见陶渊明的桃花源:“芳草鲜美,①________”,“②_________,鸡犬相闻”;遇见孟浩然笔下的汹涌澎湃的洞庭湖:“③________,④_________”。
行走,让你听见王勃唱离别之歌时的昂扬高亢:“⑤________,⑥__________”;听见女子徘徊城头轻轻吟叹:“一日不见,⑦________”的绵绵深情;听见君子“悠哉悠哉,⑧_______”的艾艾愁肠……漫步诗丛,你肯定收获满满,那么记下这一路的芬芳吧。
浩瀚典籍渺如大海,文海拾贝也乐趣无穷。
【答案】①. 落英缤纷②. 阡陌交通③. 气蒸云梦泽④. 波撼岳阳城⑤. 海内存知己⑥. 天涯若比邻⑦. 如三月兮⑧. 辗转反侧【解析】【详解】本题考查名篇背诵。
课文原句填空作答时,一是要深刻理解诗文内容;二是要认真审题找出符合题意的诗文的语句;三是作答内容要准确,做到不加字、不少字、不写错字。
注意易错字词:落、缤纷、阡陌、蒸、撼、涯、兮、辗。
2. 阅读以下文字,按要求答题。
山花烂漫的季节,在行走间,遇见靓丽锡东。
行走在九里河畔,看海táng()花开,看浪漫花坡与碧波柳岸交相辉映。
在河水的映衬下,江南水乡的雅致与柔美在这里展现得淋漓尽();行走在映月湖边,看步行舞桥,横跨水面,像一艘轻盈的白色小舟,与岸上的建筑、水上的音乐喷泉相映成趣;当音乐响起,喷泉舞动,亦足以让行走此间的你____ ____。
在这里,时光很慢,既可以追溯()江南古韵,又可以领略现代时尚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、关于惯性,下列说法中正确的是( )A 、静止的物体才有惯性B 、做匀速直线运动的物体才有惯性C 、物体的运动方向改变时才有惯性D 、物体在任何状态下都有惯性2、在匀速直线行驶的火车车厢里,有一位乘客做立定跳远,则他( )A 、向前跳将更远B 、向后跳的更远C 、向旁边跳得更远D 、向前向后跳得一样远3.关于压力,下列说法中正确的是( )A 、压力的方向总是竖直向下的B 、压力的大小总等于物体所受重力的大小C 、压力的方向总是垂直于支持面的D 、任何情况下,压力的大小都与重力无关4.如图13-58所示,将一张明信片沿着其边长弯成弧形放在玻璃台面上,形成一座“拱桥”,当你对着“拱桥”使劲吹气时,你会发现( )A .“纸桥”被吹开较长的距离B .“纸桥”被吹开较短的距离C .“纸桥”被吹得上下跳动几下D .“纸桥”紧贴桌面不动5.我国公安部规定,汽车前排的司机和乘客都应在胸前系上安全带,这主要是为了减轻在下列那种情况出现时,可能对人体造成伤害( )A.车速太快B. 车速太慢C.突然起动D.紧急刹车6.下列说法中正确的是 [ ]A .不可能有105℃的水B .水在90℃时,绝不会沸腾C .气压为768mmHg 时,水的沸点会低于100℃D .以上说法都不正确7.做托里拆利实验时,下述说法中不妥当的是 [ ]A .玻璃管长度应约1m 左右B .玻璃管的粗细必须是均匀的C .操作过程必须严防漏气D .测量时,刻度尺必须竖直8、利用托里拆利实验装置测量大气压强时,当玻璃管内的水银柱稳定后,在玻璃的顶部穿一小孔,那么管内的水银液面将( )A.保持不变B.逐渐下降,最终与管外液面相平C.逐渐上升,最终从小孔中流出D.稍微下降一些9、用塑料管可以把瓶子中的水吸到嘴里,这是由于( )A .人对水产生吸引力的作用B .吸管本身有吸水的作用C .大气压作用在水面上的结果D .水压的作用10、有关大气压的说法正确的是( )A .因为空气受到重力作用,所以空气内部向各个方向都有压强B .在同一地点,大气压是固定不变的C .大气压随高度的增加而增大D .大气压随高度的增加而减小图13-5811.三个底面积相同,高度相同的容器A ,B ,C 盛满同种液体,如图10-10所示. 用pA ,pB ,pC 和FA ,FB ,FC 分别表示液体对容器底面的压强和压力,则( )A .pA=pB=pC FA >FB >FC B .pA=pB=pC FA=FB=FCC .pB >pC >pA FA=FB=FCD .pA >pB >pC FA=FB=FC12.将细木棍下部缠上铁丝后放入水中能直立漂浮,如图所示.若将露出水面的部分木棍剪断,则剩余部分将 ( )A .保持不动B .要下沉一点C .要上浮一点D .不好判断13.如上图一试管中装有某种液体,在试管处于图2所示的甲、乙、丙三位置时,管内液体质量保持不变,则试管底部受到的液体压强( )A .甲位置最大B .乙位置最大C 。
丙位置最大D .三个位置一样大14. (多选题)夏天到了,伟伟在盛有凉开水的杯子中放入冰块做冷饮, 如图所示。
当冰块熔化后,不发生变化的是( )A .杯中水面的高度B .杯子对桌面的压力C .水对杯底的压强D .水对杯底的压力15、下列关于浮力的说法中,错误的是 [ ]A .浮力的方向总是向上的B .浮力起因于液体内部的压强随深度的增加而增大C .只有浸在液体中的物体才受到浮力D .物体受到浮力作用时,向上的压力大于向下的压力。
16、体积相同的铜、铁、铝、木四个小球,放入水中静止后,如图,已知这几种物质的密度关系是:铜>铁>铝>水>木,则下列判断正确的是( )A 铝、木两球一定是实心的,铜、铁两球一定是空心的B 四个小球所受浮力关系是F 铜>F 木>F 铁=F 铝C 四个小球的重力关系是:G 铝>G 铁>G 木>G 铜D 四个小球的质量关系是:m 铝>m 铁>m 铜>m 木17.右图所示,一个质量分布均匀的实心球体恰能悬浮在水中,现将其沿图示虚线切成大小不等的两块,则这两块物体在水中的浮沉情况是( )A 、大的下沉,小的上浮B 、大的上浮,小的下沉C 、大小两块仍悬浮D 、大小两块都上浮18.在远洋轮船的船舷上,都漆着五条“吃水线”,又称“载重线”,如图10-7所示.其中标有W 的是北大西洋载重线,标有S 的是印度洋载重线.当船从北大西洋驶向印度洋时,轮船受到的浮力以及北大西洋与印度洋的海水密度1ρ和2ρ的关系,有( )A .浮力增大,1ρ=2ρB .浮力减小,1ρ=2ρC .浮力不变,1ρ>2ρD .浮力不变,1ρ<2ρ 19、在航天飞行器中处于失重状态的宇航员,其身体 惯性。
(没有/仍具有)铜 木 铁 铝 图10-720、.坐在汽车车箱内靠左侧车窗的乘客,车突然开动时,身体将,当汽车刹车时,身体将,当向右转弯时,身体将 ,转弯时乘客产生这种现象的原因是:。
21.作用在的两个力,如果们、、,这两个力就是的.22〃静止在水平桌面上的一本书,质量为0.2千克,受到力的作用,大小为牛,方向是,此力的施力物体是;同时书还受到力的作用,大小是牛,方向是,此力的施力物体是,这两个力的关系是.23.起重机的钢丝绳吊着5×103牛的重物,当物体以0.5米/秒的速度匀速提升时,钢丝绳对重物的拉力是牛;当物体以1米/秒的速度匀速下降时,钢丝绳对重物的拉力5×103牛;当物体以1.5米/秒的初速度加速提升时,钢丝绳对重物的拉力5×103牛;当物体以1.5米/秒的初速度减速提升时,钢丝绳对重物的拉力5×103牛,当物体静止在半空中时,钢丝绳对重物的拉力5×105牛(选填“大于”、“等于”或“小于”).24、液体内部压强的特点:(1)液体内部向各个方向(填“有”或“没有”)压强。
(2)在液体内部同一深度处,液体向各个方向的压强大小。
(3)液体内部的压强,随深度的增加。
(4)液体内部的压强跟液体的密度。
25.打开自来水龙头,使自来水流过如图13-56所示的玻璃管,在A、B、C三处,水的流速较大的是处,压强较小的是处(选填“ A”“B”或“C”)。
26、叫压力,压力产生的效果与和有关27、如上图,将去盖的雪碧瓶截去底后倒置,放入一乒乓球后压着球向里注水,然后放手,则乒乓球将,再把瓶盖盖紧,则乒乓球将。
28、弹簧测力计下吊着重为14.7N的金属块,当金属块浸没在水中时,弹簧测力计示数为9.8N,则水对金属块的浮力为N,金属块排开水的体积为m3。
29、力的条件:当F浮>G物时,物体将,最后;当F浮<G物时,物体将,最后;当F浮=G物时,物体将。
30、质量条件:当M排>M物时,物体将,最后;当M排<M物时,物体将,最后;当M排=M物时,物体将。
31、密度条件:当ρ排>ρ物时,物体将,最后;当ρ排<ρ物时,物体将,最后;当ρ排=ρ物时,物体将。
32.如图24—6所示,将两块相同的橡皮泥做成实心球形和碗形,分别放入相同的甲、乙两杯水中,静止时甲杯中橡皮泥所受的浮力 乙杯中橡皮泥所受的浮力(大于/小于/等于), 杯中水面升高得多。
33.2007年12月21日,古沉船“南海一号”在广东阳江海域被打捞出水。
打捞时,施工人员首先将未充气的16个气囊分别均匀地安装在水下沉船四周,然后将气囊充足气,借助于气囊的浮力将沉船打捞上来。
若每个气囊充足气后的体积达2m 3,则这些气囊受到海水的浮力约是 N 。
(设海水的密度为1.0×103Kg/m 3,g 取10N/Kg )34.右图所示的容器中装有水,水上漂浮着一块重16N 的木块,木块露出水面的体积占总体积的1/4,则可知木块的密度为 千克/米3。
若将木块露出水面的部分切除,则留在水中的木块将会上浮,木块静止后露出水面的体积占剩余部分总体积的 。
35.甲、乙是两个体积相同而材料不同的实心球,它们静止在某种液体中的情况如图10-5所示,那么两球所受的浮力F 甲 F 乙,两球的密度ρ甲 ρ乙(填“大于”“小于”或“等于”)36.体积为100厘米3的木块A 漂浮在水面上,有1/4露出水面(如图1),现在木块上面放一铁块B ,刚好使木块全部浸入水中(如图2)。
(g 取10N/kg )求:(1)木块浮漂时受到的浮力;(2)木块的密度;(3)铁块的重。
37、我国长江三峡工程是当今世界最大的水利枢纽工程。
至去年6月1日,三峡蓄水达海拔135m 水位。
三峡大坝设有23个泄洪深孔,深孔横截面积63m 2。
(取g=10N /kg)求:(1)设坝区河底海拔高50m ,当水位达135m 时,三峡大坝何处所受长江水的压强最大?最大压强多大?(2)设三峡坝各深孔同时泄洪,水流速v=20m/s ,该大坝每秒钟泄下的洪水是多少吨?38,一个金属块在空气中重3.8N ,将它浸没在盛满水的溢水杯中时有50mL 的水从溢水杯流入到量筒中,求。
(1)金属块的体积.(2)金属块在水中受到的浮力。
(取g =9.8N/kg)(3)金属块在水中时,弹簧测力计的示数.(4)金属块的密度.(1) A AB 图10-5。