量纲分析法建模

合集下载

数学模型与数学建模 第4章 量纲分析法

数学模型与数学建模 第4章 量纲分析法
= -X-AV+F0 其中,因v0=x0w0 , w0=
K m
K
原方程变形为
dV AV F0 X dT
优点:
1. 减少了参数的个数; 2. 方程中的变量X、V、T都是无量纲量.
量纲分析是20世纪初提出的在物理领域中 建立数学模型的一种方法.
对所设问题有一定了解,在实验和经验的 基础上利用量纲齐次原则来确定各物理量之 间的关系. 例4.2.1 单摆运动 将质量为m 的一个小球系在长度为l 的线的 一端,稍偏离平衡位置后小球在重力mg的作用
其中 [质量]=[ m ]=M, [长度]=[ l ]=L, [时间]=[ t ]=T,
称为 基本量 纲
ds 例4.1.1 [速度]=[ v ]=[ ] = =LT-1 ; dt [加速度]=[ a ] =LT-2 ;
因为力 F=ma, 故 [ F ]=[ m ][ a ] =MLT-2;
部分物理常数也有量纲,如万有引力定律 m1m 2 f K 2 r 中的引力常数K的量纲为
量纲不变性:无量纲量在模型和原型中保持不变
模型中的各物理量: f , l , h, v , , , g 原型中的各物理量: f , l , h, v, , , g 有
l , v , lv ) f l v ( h lg 2 2
fl v
当无量纲量
l h
量纲齐次原则: 任一有意义的物理方程必定是量
纲一致的,即有
[左边] = [右边]
1. 对数学模型和模型的解进行量纲一致性检验.
2. 无量纲化方法减少参数个数.
例4.1.2 非线性震荡运动方程
2
dx m Kx C F 2 dt dt
d x

建模 第九章量纲分析

建模 第九章量纲分析

五、大作业(以队为单位完成)



题目:每个队从2005或2006年竞赛题中任选一个题目,采取三人合作方 式完成一篇论文.成员之间要有效的分工和合作,队长要发挥核心领导 和组织作用.论文上注明三个成员的姓名. 在9月8日前交到我的邮箱 这次作业的目的: 熟悉赛题 熟悉论文写作格式 培养团队协作精神 熟悉建模的每个环节(选题-查阅文献资料-分析题意-做出模型假设建立模型和求解模型-改进模型-评价模型-(应用模型)等. 培养攻关意识 提示:可以参考参考甚至 模仿已有的论文。
其中k是常数,下面列出变量和对应的量纲 变量 | F k v A ρ -------------------------------------------------量纲 | MLT -2 M0L0T0 LT-1 L2 M L-3
就量纲而言,由假设(2)得, MLT 2 =(M 0 L0T 0 )(LT 1 ) a (L2 ) b (ML3 ) c ,
THE END
变量 | v r g ρ μ ----------------------------------------------------2 -1 -3 -1 -2 量纲 | LT L LT M L ML T
.
(3)确定无量纲乘积,由Buckingham(布金汉) 定理,列出线性方程组
在变量中间找出所有的无量纲乘积,其形式 必为va r b g c d e (1) 故量纲为(LT 1 )a (L) b (LT 2 )c (ML3 ) d (ML1T 1 ) e , 因为(1)式是无量纲的, 所以, a+b+c-3d-e=0 -a-2c-e=0 d+e=0
T M 1L 1 2T 2 1

量纲分析法建模案例

量纲分析法建模案例
三、案例-原子弹爆炸的能量估计
1、问题的提出 1945年7月16日,美国科学家在墨西哥州阿拉 莫戈多沙漠进行了“三位一体实验”,试爆了全球 第一颗原子弹。人们想了解这次爆炸的威力究竟有 多大。英国物理学家Taylor(1886-1975)通过研究 爆炸时的录像带,建立数学模型对这次爆炸所释放 的能量进行了估计,得到的结果为19.2千吨。这次 爆炸所释放的实际能量为21千吨。 那么,Taylor是如何对原子弹爆炸的能量进行 估计的呢?
r (t , E, , p)
记作更一般的形式
(1)
f (r, t , E, , p) 0
(2)
取3个基本量纲:长度L,质量M和时间T,(2) 中各个物理量的量纲分别是
[r ] L,[t ] T ,[ E] L2 MT 2 ,[ ] L3M ,[ P] L1MT 2
边取对数作线性最小二乘拟合,取=1.25kg/m3 , 有 5 1 E log10 r log10 t log10 ( ) (9) 2 2
x
c
5 1 E y c, y log10 r x, x log10 t , c log10 ( ) 2 2
c 6.9038
t E 6 5 t P 1/ 5 6 / 5 2 / 5 3/ 5 2 r E P ( 2 3 ) E 且存在某个函数F使得
1 rt
2 / 5
E
1/ 5

1/ 5
r(

2
)1/ 5
(3)
(4)
F( 1 , 2 )=0 由(3)(4)有
(5)
与(2)等价。取(5)的特殊形式 1 =( 2 ),
(10)
由c和容易算出E 8.0276 1013 焦耳

高中物理学习中的数学建模技巧

高中物理学习中的数学建模技巧

高中物理学习中的数学建模技巧在高中物理学习中,数学建模是一项重要的技巧。

通过数学建模,我们可以将物理问题转化为数学问题,并通过数学方法求解,从而更加深入地理解物理现象。

本文将介绍几种高中物理学习中常用的数学建模技巧,并探讨其应用。

一、单位换算与量纲分析在物理学习中,单位换算是一个基本的技巧。

对于不同的物理量,我们常常需要进行单位换算,以便于比较和计算。

例如,当我们需要将速度从米/秒转换为千米/小时时,就需要进行单位换算。

在进行单位换算时,我们需要注意保留正确的数量级,并仔细处理单位之间的关系。

量纲分析是另一个重要的数学建模技巧。

通过对物理量的量纲进行分析,我们可以推断出物理量之间的关系,并建立相应的数学模型。

例如,对于弹簧的周期,我们可以通过量纲分析得到与弹簧常数、质量和弹簧振幅有关的关系式。

通过单位换算与量纲分析,我们可以更好地理解和解决物理问题。

二、函数拟合与数据处理在实验中,我们常常需要通过测量和观察获得一系列数据,然后将这些数据进行处理和分析。

函数拟合是一种常用的数据处理技巧。

通过拟合实验数据与某个数学函数的关系,我们可以得到一个数学模型,从而预测和分析更多的数据。

例如,在光电效应实验中,我们可以通过对实验数据进行指数拟合,得到光电效应的定律,并用该定律解释更多的实验现象。

数据处理是与函数拟合密切相关的一项技巧。

在处理实验数据时,我们需要进行平均值计算、误差分析、线性回归等操作,以得到可靠的结果。

例如,在测量物体的重力加速度时,我们需要通过多次测量得到平均值,并计算出对应的标准差,以评估测量结果的精确度。

三、微分方程与动力学建模在研究物体的运动时,我们常常需要建立微分方程模型,以描述物体的运动规律。

微分方程是一种描述物体变化率的数学工具,通过建立微分方程,我们可以求解出物体的位置、速度和加速度之间的关系。

例如,在自由落体实验中,我们可以通过建立关于时间的二阶微分方程,求解出物体的高度随时间的变化规律。

数学建模的相关问题求解方法

数学建模的相关问题求解方法

数学建模的相关问题求解方法:1.量纲分析法是在物理领域建立数学模型的一种方法,主要是依据物理定律的量纲齐次原则来确定个物理量之间的关系,量纲齐次原则是指一个有意义的物理方程的量纲必须一致的,也就是说方程的两边必须具有相同的量纲,即: dim左=dim右并且,方程中每一边的每一项都必须有相同的量纲。

例子见书《数学建模方法与实践》P17—P232.线性规划法线性规划法是运筹学的一个重要分支应用领域广泛。

从解决各种技术领域中的优化问题,到工农业生产、商业经济、交通运输、军事等的计划和管理及决策分析。

线性规划所解决的问题具有以下共同的特征:(1)每一个问题都有一组未知数(x1,x2,……,xn)表示某一方案;这些未知数的一组定值就代表一个具体方案。

由于实际问题的要求,通常这些未知数取值都是非负的。

(2)存在一定的限制条件(即约束条件),这些条件是关于未知数的一组线性等式或线性不等式来表示。

(3)有一个目标要求,称为目标函数。

目标函数可表示为一组未知数的线性函数。

根据问题的需要,要求目标函数实现最大化或最小化。

例子见书《数学建模方法与实践》P26—P303.0—1规划法用于解决指派问题,是线性规划的特殊情况。

例子见书《数学建模方法与实践》P314.图解法用于求解二维线性规划的一种几何方法,其方法步骤见书《数学建模方法与实践》P345.单纯形法也是一种求解线性规划的常用方法,其基本原理和方法见书《数学建模方法与实践》P37——P39,计算步骤P40。

6.非线性规划法在目标函数和(或)约束条件很难用线性函数表示时,如果目标函数或约束条件中,有一个或多个是变量的非线性函数,则称这种规划问题为非线规划问题。

例子见书《数学建模方法与实践》P44——P457.最短路及狄克斯特拉算法狄克斯特拉算法是图论中用于计算最短路的一种方法,详见书《数学建模方法与实践》P588.克罗斯克尔算法克罗斯克尔算法是用来求解一个连通的赋权图的最小生成树的方法,详见书《数学建模方法与实践》P599.普莱姆算法同上10.欧拉回路及弗洛来算法欧拉回路是指若存在一条回路。

量 纲 分 析 法 建 模

量 纲 分 析 法 建 模

§5 量 纲 分 析 法 建 模量纲分析(Dimensional Analysis)是20世纪初提出的在物理领域中建立数学模型的一种方法,它在经验和实验的基础上利用物理定律的量纲齐次原则,确定各物理量之间的关系.本节在一个例子的引导下先介绍量纲齐次原则和著名的BuckinghamPi 定理,然后用这个定理讨论一个力学问题的建模方法,并介绍量纲分析在物理模拟中的应用.最后给出一种简化模型的方法——无量纲化.一、量纲齐次原则许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可 以由基本量纲根据其定义或某些物理定律推导出来.例如在研究动力学问题时常把长度l 、质量m 和时间t 的量纲作为基本量纲,记以相应的大写字母L ,M 和T .于 是速度v 、加速度a 的量纲可以按照其定义分别用1-LT 和2-LT表示,力f 的量纲则应根据牛顿第二定律用质量和加速度量纲的乘积2-LMT 表示.有些物理常数也有量纲,如万有引力定律221r m m k f =中的引力常数k ,由 221m m fr k =可知其量纲应从力f 、距离r 和质量m 的量纲求出,为2-LMT ·2L ·2-M =213--T M L .通常,一个物理量q 的量纲记作[q],于是上述各物理量的量纲为[l]=L ,[m]=M ,[t]=T ,[v]=LT -1,[a ]=LT -2,[f] =LMT -2,[k]= 213--T M L .对于无量纲量α,我们记[α]=1(因为可视为[α]=000T M L ).用数学公式表示一个物理定律时,等号两端必须保持量纲的一致,或称量纲齐次性(Dimensional Homogeneity).量纲分析就是利用量纲齐次原则来寻求理量之间的关系[6,20].在叙述主要定理之前先看一个例子.单摆运动 这是一个熟知的物理现象,质量为m 的小球系在长度为l 的线的一端,稍偏离平衡位置后小球在重力mg 作用下(g 为重力加速度)做往复摆动,忽略阻力.求摆动周期t 的表达式.在这个问题中出现的物理量有t ,m ,l ,g ,设它们之间有关系式其中1α,2α,3α是待定常数,λ是无量纲的比例系数.取(1)式的量纲表达式即[][][][]321αααg l m t =将[t]=T ,[m]=M ,[l]=L ,[g]=LT -2代入得按照量纲齐次原则应有(3)的解为1α=0,2α=1/2,3α=-1/2,代人(1)式得g l t λ= (4) (4)式与用力学规律得到的结果是一致的.为了导出量纲分析建模的一般方法,将这个例子中各个变量之间的关系写作进而假设(5)式形如 π=4321y y y y g l m t (6)其中1y ~4y 是待定常数,π是无量纲常数.将t ,m ,l ,g 的量纲用基本量纲L ,M ,T表示为100][T M L t =,010][T M L m =,001][T M L l =,201][-=T M L l ,则(6)的量纲表达式可写作(注意到000][T M L =π)即 000241243T M L T M L y y y y y =-+ (7)此方程组有一个基本解T T y y y y y )1,1,0,2(),,,(4321-== (9)代回(6)式得 π=-g l t 12 (10)而(5)式等价于0)(=πF (11)(10),(11)两式就是用量纲齐次原则从(5)式得到的结果.前面给出的(4)式只是它的特殊表达形式.把从(5)式到(11)式的推导过程一般化,就是著名的Pi 定理.定理 设有m 个物理量m q q q ,,,21 ,是与量纲单位的选取无关的物理定律*,n X X X ,,,21 是基本量纲,n ≤m . m q q q ,,,21 的量纲可表为m j X q n i ai i ij ,...,2,1,][1==∏= (13)矩阵m n ij a A ⨯=}{称量纲矩阵.若A 的秩r RankA = (14)设线性齐次方程组(y 是m 维向量) 0=Ay (15)的m-r 个基本解为r m s y y y y T sm s s s -==,,2,1,),,,(21 (16)则∏==m j y j i sj q1π为m-r 个相互独立的无量纲量.且与(12)式等价.F 表示一个未定的函数关系.[航船的阻力] 长l 、吃水深度h 的船以速度v 航行,若不考虑风的影响,那么航船受的阻力f除依(8)赖于船的诸变量l ,h ,v 以外,还与水的参数——密度ρ、粘性系数μ,以及重力加速度g 有关.下面用量纲分析方法确定阻力f 和这些物理量之间的关系.我们按照Pi 定理中(12)~(18)式的步骤进行.1.航船问题中涉及的物理量有:阻力f ,船长l ,吃水深度h ,速度v ,水的密度ρ,水的粘性系数μ,重力加速度g ,要寻求的关系式记作2.这是一个力学问题,基本量纲选为L ,M ,T .上述各物理量的量纲表为其中μ的量纲由基本关系xv p ∂∂=μ得到.其中p 是压强(单位面积受的力),所以2][-=LMT p 212---=⋅MT L L ;v 是流速,x 是尺度,所以111---=⋅=⎥⎦⎤⎢⎣⎡∂∂T L LT x v . 并且有n=3<m=7.3.由(20)立即可写出量纲矩阵并且计算 )(3r RankA == (22)4.解齐次方程0=Ay (23)方程(23)有m-r=7—3=4个基本解,可取为5.(24)式给出4个相互独立的无量纲量而(19)式与 等价,Φ是未定的函数,(25)、(26)两式表达了航船问题中各物理量间的全部关系. 6,为得到阻力f 的显示表达式,由(25)及(26)中4π的式子可写出其中ψ表示一个未定函数.在流体力学中无量纲量)(lg 2/12-=πv称Froude 数,)(3πμρ=lv 称Reynold 数(雷诺数),分别记作μρlv v Fr ==Re ,lg (28) 则(27)式又表示为 Re),,1(22Fr hl f ρψυ= (29)这就是用量纲分析方法确定的航船阻力与各物理量之间的关系,这个结果用通常的机理分析是难以得到的.虽然这里函数ψ的形式无从知道,但是在下面将会看到这个表达式在物理模拟中的用途.评注 从上面的例子可以看出,量纲分析方法在建立物理问题的数学模型中能够得到一些重要的、有用的结果,但是也有较大的局限性.在应用和评价这个方法时以下几点值得注意.1.正确确定各物理量 面对一个实际问题将哪些物理量包括在量纲分析的基本关系式f(·)=0中,对所得结果的合理性是至关重要的.对于航船问题,如果在(19)式中忽略了水的密度ρ或粘性系数μ,则得到的结果就会不同.各物理量的确定主要靠经验和物理知识,无法绝对保证所得结果是正确或有用的.2.合理选取基本量纲 基本量纲选少了,无法表示各物理量,当然不行;选多了也会使问题复杂化.在一般情况下力学问题选取L ,M ,T 即可,热学问题加上温度量纲Θ,电学问题加上电量量纲Q .3.恰当构造基本解 线性齐次方程组的基本解可以有许多不同的构造方法,虽然基本解组能够相互线性表出,但是为了特定的建模目的恰当地构造基本解,能够更直接地得到我们所期望的结果.4.结果的效用和局限性 量纲齐次原则和n 定理是具有普遍意义的又是相当初 等的方法,它不需要非常专门的物理知识及高等的数学方法,就可以得到用其他方法 难以得到的结果,如(29)式.一般地说,从未知定律f(m q q q ,,,21 )=0到用量纲分析方法得到的等价形式F(r m -πππ,,,21 )=0,不仅物理量个数减少了r 个,而且原始物理量m q q q ,,,21 ,组合成了一些有用的无量纲量r m -πππ,,,21 ,下面将进一步讨论它们的用途.另一方面,用这个方法得到的结果是有局限的,“不彻底”的.F(·)=0中仍然包含着一些未定函数和常数 (无量纲量),诸如物理定律中经常 出现的三角函数sin(·)、指数函数exp(·)不可能用量纲分析法得到,因为这些函 数的自变量和函数值都是无量纲的.二、量纲分析的应用——物理模拟中的比例模型我们在1.1节曾介绍过物理模型,它是在实验室条件下按照缩小了的比例尺寸构造的,目的是根据相应的比例来研究原型的某些性质.量纲分析的结果可以指导这种比例关系的确定.以本节提到的单摆运动为例.已经得到模型中摆动周期t 与摆长l 的关系为若记原型中相应的各个物理量为t ',l ',g ',因为λ是无量纲量,在模型与原型中不变,又显然有g=g ,,所以由(30)式立即得到这样,如果模型摆的尺寸按照摆长比例l: l ' =1:4设计制造,那么测定了模型摆的周期t 以后,就可以知道原型摆的周期为t '=2t .可以看出,这里主要用了无量纲量在模型和原型中保持不变的性质.下面利用航船问题的结果讨论怎样构造航船模型,以确定原型航船在海洋中受的阻力,并且当速度不大时可以忽略雷诺数Re 的影响.以g v h l f ,,,,,ρ和g v h l f '''''',,,,,ρ,分别记模型和原型中的各物理量,由(28)、(29)式(略去Re)得注意(32),(33)两式中的函数ψ是一样的.当无量纲量成立时,由(32)、(33)式可得只要模型船和原型船的形状相似,就可以保证(34)的第1式成立.而注意到g=g ',(34)的第2式给出如果在模拟中用与海水有相同密度的水,即ρρ'=,则由(35),(36)式可得于是确定了模型船和原型船的比例l l ':,并测得了模型船的阻力f 后,就能够确定原型航船的阻力f 了.三、无量纲化我们不拟对无量纲化方法作一般阐述,而是通过一个例子介绍这种方法如何用来对模型进行简化.抛射问题 在星球表面以初速v 竖直向上发射火箭*,记星球半径为r ,星球表面重力加速度为g ,忽略阻力,讨论发射高度x 随时间t 的变化规律.设J 轴竖直向上,在发射时刻f=0火箭高度x=O(星球表面).火箭和星球的质量分别记作1m 和2m ,则由牛顿第二定律和万有引力定律可得以x=O 时x=-g 代入(38)式,并注意到初始条件,抛射问题满足如下方程(39)的解可以表示为即发射高度x 是以r ,v ,g 为参数的时间f 的函数.这里的目的不是研究这个函数的具体形式(虽然可以通过求解方程(39)直接得到),而是讨论用无量纲化方法简化它的途径.(40)式包含3个独立参数r ,v ,g ,由(40)式得到的进一步的结果,如火箭到达最高点的时间0==x M t t 。

量纲分析模型

量纲分析模型

量纲分析法来构造模型一、基本概念:在表达一个物理量时,总是用数和量这两个概念在一起来度量该物理量的某种属性,因此,许多物理量都是有量纲的,例如:质量的量纲是:克(g );千克(kg ) 速度的量纲是:厘米/秒;公里/时 热量的量纲是:卡def :量纲:在对物理对象进行分析时用来表示物理特性的量称之为量纲,例如:长度、密度、速度等。

用数学公式描述一个规律时,等号两端都必须保持量纲的一致。

def :量纲分析:在量纲一致的原则下,分析物理量之间关系的一种方法称为量纲分析。

例如:用数学公式描述一个物理规律时等式两边必须保持量纲的一致,同时也保持单位的一致。

def :量纲分析法:用量纲分析法来建立数学模型的一种方法。

def :基本量纲:在物理学或力学中有一些物理量的量纲是基本的,其他物理量的量纲可以由这些基本量纲推导出来,这些基本的量纲叫基本量纲,例如:力学中基本量纲为:m (质量),l (长度),t (时间),分别记成:[]M ,[]L ,[]T ,其他量纲可由此推出来。

例如:速度 1[][]V LT -=;加速度 2[][]a LT -=,力22[][][][][][]f M a M LT MLT --=== .有些物理常数也有量纲,例如:万有引力定律 122m m f K r= 中的引力常数K 的量纲也可推出来:222132132[][][][][][][][]MLT K m L K M L T M L T ------=⇒==def :无量纲常数α,记为0[]1, ( [])L M T αα== 二、量纲分析法建模的例子:先从实例讨论出发,再给出一般方法。

例1:单摆运动模型:已知:质量为m 的小球,系在长为l 的线的一端,重力F mg =作用下作简谐运动,求:单摆运动关于周期t 的模型。

解: 1:将可能与t 有关的物理量, , m l g 用关系式(, , )t l m g ϕ= (1)表示出来。

量纲分析法建模[1]

量纲分析法建模[1]
数学建模
量纲分析法
量纲分析法
量纲分析(Dimensional Analysis)是20世 纪初提出的在物理领域中建立数学模型的一种方 法,它在经验和实验的基础上利用物理定律的量 纲齐次原则,确定各物理量之间的关系。
一、量纲齐次原则
长度 l 的量纲记 L=[l] 质量 m的量纲记 M=[m] 时间 t 的量纲记 T=[t]
速度 v 的量纲 [v]=LT-1
加速度 a 的量纲 [a]=LT-2
力 f 的量纲 [f]=LMT-2
引力常数 k 的量纲 [k] =[f][l]2[m]-2=L3M-1T-2
mm f k 1 2
r2
对无量纲量,[]=1(=L0M0T0)
量纲齐次原则
等式两端的量纲一致
量纲分析~利用量纲齐次原则寻求物理量之间的关系
例:单摆运动 求摆动周期 t 的表达式
设物理量 t, m, l, g 之间有关系式
t m l g 1 2 3 (1)
l
1, 2, 3 为待定系数,为无量纲量
(1)的量纲表达式 [t] [m]1 [l]2 [g]3
m
T M L T 1 2 3 23
mg

1 2

1 1
g 2l 2v l 2s
3 g l 1 3 1 f
F=0
3 (1, 2 )
f l3g (1,2 ),
1
v gl
,
2

s l2
未定
量纲分析法的评注
• 物理量的选取
(…) = 0中包括哪些物理量是至关重要的
ys = (ys1, ys2, …,ysm)T s = 1,2,…, m-r
m-r 个无量纲量

数学建模-3.量纲分析法

数学建模-3.量纲分析法

m
q ysj
s
j
j 1
为得到阻力 f 的显式表达式
F(1, 2 ,3 ) = 0与 (g,l,,v,s,f) = 0 等价
1 2
1 1
g 2l 2v l 2s
3
g l1 3
f 1
F=0 3(1,2)
fl3g( 1,2), 1vg,l2ls2 未定
2021/3/18
11
3.2 量纲分析在物理模拟中的应用
R e 2 lv: R e y n o l d n u m b e r ;F r 3 v g l: F r o u d e n u m b e r
2021/3/18
8
量纲分析示例:波浪对航船的阻力
航船阻力 f
航船速度v, 船体尺寸l, 浸没面积 s,
海水密度, 重力加速度g。
f(q 1,q 2, ,q m )0 (g,l,,v,s,f)0
例: 航船阻力的物理模拟
通过航船模型确定原型船所受阻力
已知模 f l 3 g ( 1, 2 )
型船所 受阻力
1
v gl
,
2
s l2
可得原 型船所 受阻力
在国际单位制中,有7个基本量:质量、长度、时间、电流、温度、光强度
和物质的量,它们的量纲分别为 M、L、T、I、 、J、和N;称为基本量纲。
任意一个物理量q的量纲都可以表成基本量纲的幂次之积,
无量纲化(Dimensionless)是根据量纲分析思想,恰当地选择特征尺度, 将有量纲量化为无量纲量达到减少参数,简化模型的效果。
20XX年复习资料
大学复习资料
专 业: 班 级: 科目老师: 日 期:
3.1 量纲分析法与无量纲化

3.1量纲分析法

3.1量纲分析法
设物理量 t, m, l, g 之间有关系式
t = λm l g
α1 α 2
α1 α2
1
α3
(1)
l m
α1, α2, α3 为待定系数,λ为无量纲量 为待定系数,
(1)的量纲表达式 的量纲表达式
[t ] = [ m ] [l ] [ g ] 2α α α +α T =M L T
α3
3 2
3
mg 对比
π s = ∏qj
j =1
m
ysj
为得到阻力 f 的显式表达式
π = g l v 1 π 2 = l 2 s π = g 1l 3 ρ 1 f 3 π 3 = ψ (π1,π 2 ) F=0
1 2 1 2
f = l gρψ(π1,π2 ),
3
v s π1 = , π2 = 2 l gl
3.1 物 理 量 的 量 纲
量纲分析法建模
动力学中 基本量纲 M, L, T 导出量纲
质量 m的量纲记 M=[m] 的量纲记 长度 l 的量纲记 L=[l] 时间 t 的量纲记 T=[t] 速度 v 的量纲 [v]=LT-1 加速度 a 的量纲 [a]=LT-2 力 f 的量纲 [f]=MLT-2
ψ 未定
3.2 量纲分析在物理模拟中的应用
例: 航船阻力的物理模拟 通过航船模型确定原型船所受阻力 3 ′ ′ f1 = l13g1ρ1ψ (π1,π 2 ) f = l gρψ (π1,π 2 ) 可得原 已知模 型船所 π = v , π = s 型船所 π1 = v1 , π 2 = s1 ′ ′ 2 1 2 2 受阻力 l1 g1l1 受阻力 l gl
T
πs = ∏qj
j=1
m

数学建模-量纲分析建模

数学建模-量纲分析建模
2)、任何物理量的量纲是唯一的,但单位可以有多个。
如速度的量纲是LT 1, 但其单位可以是(m / s) 也可以是(km/ s), 还可以是(km/ h).
3)、有的量可以没有量纲,但它可能有单位。如角度
4)、物理量的量纲及其相互关系反映了各量之间的内在属 性,这是量纲关系能用于建立数学模型的理论基础。
L T M 12 33 4 5 6 -2 24 5 26 3 4 5
L0T0M 0
由此得一六个未知量的方程组 其系数矩阵为
1 2 33 4 5 6 0

3 4 5
0
-2
24 5 26 0
则可等价地写出1 h( 2,3),即. p v2h( 2,3).
量纲分析法建模的工作步骤
一、找出含目标因素在内的各主要相关因素。
二、写出含目标因素在内的各主要相关因素的量纲积。
三、
写出含目标因素在内的各主要相关因素的无量纲量

i
量纲表达式 该表达式的指数为待定常数。
四、 利用量纲齐次性原理得到齐次线性方程组, 并求基础解系
摩尔
符号 m kg s A K cd
mol
3、量纲
定义:一物理量与基本物理量之间的规定关系,称为该量的 量纲。这种规定关系常以基本物理量的幂指乘积形式表示, 因此也称为量纲积。即任一物理量的量纲皆可表示成
Q L1 M T I 2 3 4 5 J 6 N 7
许多物理问题的研究只涉及M , L,T三个基本量纲,
§5.1 量纲分析建模
一、单位与量纲 1、单位
数学建模的目的是解决实际问题,而实际问题中的量都有 相应的单位。数学中纯粹的数在实际问题中不具有明确的含义。 如在实际问题中谈某个长度量,在关注其数值的同时还必须关 注其单位,否则,我们便没有把这个量完全弄清楚。但实际问 题中的诸多量并非全是相互独立的,其中一些量能起到基本量 的作用,其它量是这些基本量的符合某种规律的组合,如速度 是长度与时间这两个基本量的一种规定的组合。

《数学建模课程》第三章 量纲分析法

《数学建模课程》第三章 量纲分析法

;; };Q
QdP T T }TP
Q
>TM @
; D LM L
M
P
L
$
^D `
UDQN $
U
LM
u Q P
$\ PU
\V \V \V «\VP 7 V « PU
P
S T\VM
PU

V
M
M
) S S« SPU I T T } TP

H H Y UJ
°­ [ ®
H H[
Y UJ
°¯[ [


[ [ W H

²²
H
H
Y
UJ
UJ u u P V !! Y H


°­H[ ®
H [
Y UJ
°¯[ [
H
H
[
[ [
[
H

­ ° °° ®
[ [

[



°
° °¯
[

H H Y UJ

°­ [ ®
H H[
Y UJ
°¯[ [
H [ [
[ [

S
c

V O

I V O Y U J
a
I
I VYUM SS
S
Y JO

S

V O
I
VY
UM ScS
c

Sc
Y JO

S
c

V O

量 纲 分 析 法 建 模

量 纲 分 析 法 建 模

§5 量 纲 分 析 法 建 模量纲分析(Dimensional Analysis)是20世纪初提出的在物理领域中建立数学模型的一种方法,它在经验和实验的基础上利用物理定律的量纲齐次原则,确定各物理量之间的关系.本节在一个例子的引导下先介绍量纲齐次原则和著名的BuckinghamPi 定理,然后用这个定理讨论一个力学问题的建模方法,并介绍量纲分析在物理模拟中的应用.最后给出一种简化模型的方法——无量纲化.一、量纲齐次原则许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可 以由基本量纲根据其定义或某些物理定律推导出来.例如在研究动力学问题时常把长度l 、质量m 和时间t 的量纲作为基本量纲,记以相应的大写字母L ,M 和T .于 是速度v 、加速度a 的量纲可以按照其定义分别用1-LT 和2-LT表示,力f 的量纲则应根据牛顿第二定律用质量和加速度量纲的乘积2-LMT 表示.有些物理常数也有量纲,如万有引力定律221r m m k f =中的引力常数k ,由 221m m fr k =可知其量纲应从力f 、距离r 和质量m 的量纲求出,为2-LMT ·2L ·2-M =213--T M L .通常,一个物理量q 的量纲记作[q],于是上述各物理量的量纲为[l]=L ,[m]=M ,[t]=T ,[v]=LT -1,[a ]=LT -2,[f] =LMT -2,[k]= 213--T M L .对于无量纲量α,我们记[α]=1(因为可视为[α]=000T M L ).用数学公式表示一个物理定律时,等号两端必须保持量纲的一致,或称量纲齐次性(Dimensional Homogeneity).量纲分析就是利用量纲齐次原则来寻求理量之间的关系[6,20].在叙述主要定理之前先看一个例子.单摆运动 这是一个熟知的物理现象,质量为m 的小球系在长度为l 的线的一端,稍偏离平衡位置后小球在重力mg 作用下(g 为重力加速度)做往复摆动,忽略阻力.求摆动周期t 的表达式.在这个问题中出现的物理量有t ,m ,l ,g ,设它们之间有关系式其中1α,2α,3α是待定常数,λ是无量纲的比例系数.取(1)式的量纲表达式即[][][][]321αααg l m t =将[t]=T ,[m]=M ,[l]=L ,[g]=LT -2代入得按照量纲齐次原则应有(3)的解为1α=0,2α=1/2,3α=-1/2,代人(1)式得g l t λ= (4) (4)式与用力学规律得到的结果是一致的.为了导出量纲分析建模的一般方法,将这个例子中各个变量之间的关系写作进而假设(5)式形如 π=4321y y y y g l m t (6)其中1y ~4y 是待定常数,π是无量纲常数.将t ,m ,l ,g 的量纲用基本量纲L ,M ,T表示为100][T M L t =,010][T M L m =,001][T M L l =,201][-=T M L l ,则(6)的量纲表达式可写作(注意到000][T M L =π)即 000241243T M L T M L y y y y y =-+ (7)此方程组有一个基本解T T y y y y y )1,1,0,2(),,,(4321-== (9)代回(6)式得 π=-g l t 12 (10)而(5)式等价于0)(=πF (11)(10),(11)两式就是用量纲齐次原则从(5)式得到的结果.前面给出的(4)式只是它的特殊表达形式.把从(5)式到(11)式的推导过程一般化,就是著名的Pi 定理.定理 设有m 个物理量m q q q ,,,21 ,是与量纲单位的选取无关的物理定律*,n X X X ,,,21 是基本量纲,n ≤m . m q q q ,,,21 的量纲可表为m j X q n i ai i ij ,...,2,1,][1==∏= (13)矩阵m n ij a A ⨯=}{称量纲矩阵.若A 的秩r RankA = (14)设线性齐次方程组(y 是m 维向量) 0=Ay (15)的m-r 个基本解为r m s y y y y T sm s s s -==,,2,1,),,,(21 (16)则∏==m j y j i sj q1π为m-r 个相互独立的无量纲量.且与(12)式等价.F 表示一个未定的函数关系.[航船的阻力] 长l 、吃水深度h 的船以速度v 航行,若不考虑风的影响,那么航船受的阻力f除依(8)赖于船的诸变量l ,h ,v 以外,还与水的参数——密度ρ、粘性系数μ,以及重力加速度g 有关.下面用量纲分析方法确定阻力f 和这些物理量之间的关系.我们按照Pi 定理中(12)~(18)式的步骤进行.1.航船问题中涉及的物理量有:阻力f ,船长l ,吃水深度h ,速度v ,水的密度ρ,水的粘性系数μ,重力加速度g ,要寻求的关系式记作2.这是一个力学问题,基本量纲选为L ,M ,T .上述各物理量的量纲表为其中μ的量纲由基本关系xv p ∂∂=μ得到.其中p 是压强(单位面积受的力),所以2][-=LMT p 212---=⋅MT L L ;v 是流速,x 是尺度,所以111---=⋅=⎥⎦⎤⎢⎣⎡∂∂T L LT x v . 并且有n=3<m=7.3.由(20)立即可写出量纲矩阵并且计算 )(3r RankA == (22)4.解齐次方程0=Ay (23)方程(23)有m-r=7—3=4个基本解,可取为5.(24)式给出4个相互独立的无量纲量而(19)式与 等价,Φ是未定的函数,(25)、(26)两式表达了航船问题中各物理量间的全部关系. 6,为得到阻力f 的显示表达式,由(25)及(26)中4π的式子可写出其中ψ表示一个未定函数.在流体力学中无量纲量)(lg 2/12-=πv称Froude 数,)(3πμρ=lv 称Reynold 数(雷诺数),分别记作μρlv v Fr ==Re ,lg (28) 则(27)式又表示为 Re),,1(22Fr hl f ρψυ= (29)这就是用量纲分析方法确定的航船阻力与各物理量之间的关系,这个结果用通常的机理分析是难以得到的.虽然这里函数ψ的形式无从知道,但是在下面将会看到这个表达式在物理模拟中的用途.评注 从上面的例子可以看出,量纲分析方法在建立物理问题的数学模型中能够得到一些重要的、有用的结果,但是也有较大的局限性.在应用和评价这个方法时以下几点值得注意.1.正确确定各物理量 面对一个实际问题将哪些物理量包括在量纲分析的基本关系式f(·)=0中,对所得结果的合理性是至关重要的.对于航船问题,如果在(19)式中忽略了水的密度ρ或粘性系数μ,则得到的结果就会不同.各物理量的确定主要靠经验和物理知识,无法绝对保证所得结果是正确或有用的.2.合理选取基本量纲 基本量纲选少了,无法表示各物理量,当然不行;选多了也会使问题复杂化.在一般情况下力学问题选取L ,M ,T 即可,热学问题加上温度量纲Θ,电学问题加上电量量纲Q .3.恰当构造基本解 线性齐次方程组的基本解可以有许多不同的构造方法,虽然基本解组能够相互线性表出,但是为了特定的建模目的恰当地构造基本解,能够更直接地得到我们所期望的结果.4.结果的效用和局限性 量纲齐次原则和n 定理是具有普遍意义的又是相当初 等的方法,它不需要非常专门的物理知识及高等的数学方法,就可以得到用其他方法 难以得到的结果,如(29)式.一般地说,从未知定律f(m q q q ,,,21 )=0到用量纲分析方法得到的等价形式F(r m -πππ,,,21 )=0,不仅物理量个数减少了r 个,而且原始物理量m q q q ,,,21 ,组合成了一些有用的无量纲量r m -πππ,,,21 ,下面将进一步讨论它们的用途.另一方面,用这个方法得到的结果是有局限的,“不彻底”的.F(·)=0中仍然包含着一些未定函数和常数 (无量纲量),诸如物理定律中经常 出现的三角函数sin(·)、指数函数exp(·)不可能用量纲分析法得到,因为这些函 数的自变量和函数值都是无量纲的.二、量纲分析的应用——物理模拟中的比例模型我们在1.1节曾介绍过物理模型,它是在实验室条件下按照缩小了的比例尺寸构造的,目的是根据相应的比例来研究原型的某些性质.量纲分析的结果可以指导这种比例关系的确定.以本节提到的单摆运动为例.已经得到模型中摆动周期t 与摆长l 的关系为若记原型中相应的各个物理量为t ',l ',g ',因为λ是无量纲量,在模型与原型中不变,又显然有g=g ,,所以由(30)式立即得到这样,如果模型摆的尺寸按照摆长比例l: l ' =1:4设计制造,那么测定了模型摆的周期t 以后,就可以知道原型摆的周期为t '=2t .可以看出,这里主要用了无量纲量在模型和原型中保持不变的性质.下面利用航船问题的结果讨论怎样构造航船模型,以确定原型航船在海洋中受的阻力,并且当速度不大时可以忽略雷诺数Re 的影响.以g v h l f ,,,,,ρ和g v h l f '''''',,,,,ρ,分别记模型和原型中的各物理量,由(28)、(29)式(略去Re)得注意(32),(33)两式中的函数ψ是一样的.当无量纲量成立时,由(32)、(33)式可得只要模型船和原型船的形状相似,就可以保证(34)的第1式成立.而注意到g=g ',(34)的第2式给出如果在模拟中用与海水有相同密度的水,即ρρ'=,则由(35),(36)式可得于是确定了模型船和原型船的比例l l ':,并测得了模型船的阻力f 后,就能够确定原型航船的阻力f 了.三、无量纲化我们不拟对无量纲化方法作一般阐述,而是通过一个例子介绍这种方法如何用来对模型进行简化.抛射问题 在星球表面以初速v 竖直向上发射火箭*,记星球半径为r ,星球表面重力加速度为g ,忽略阻力,讨论发射高度x 随时间t 的变化规律.设J 轴竖直向上,在发射时刻f=0火箭高度x=O(星球表面).火箭和星球的质量分别记作1m 和2m ,则由牛顿第二定律和万有引力定律可得以x=O 时x=-g 代入(38)式,并注意到初始条件,抛射问题满足如下方程(39)的解可以表示为即发射高度x 是以r ,v ,g 为参数的时间f 的函数.这里的目的不是研究这个函数的具体形式(虽然可以通过求解方程(39)直接得到),而是讨论用无量纲化方法简化它的途径.(40)式包含3个独立参数r ,v ,g ,由(40)式得到的进一步的结果,如火箭到达最高点的时间0==x M t t 。

第三章(1)量纲分析与轮廓模型

第三章(1)量纲分析与轮廓模型

y
s 1, , m r
T
1 [ p s ] [q j sj ]
y j1 j1
m
m
X
i 1
n
a ij y sj i
n a ij y sj X i j1
m
ys (ys1, ,..., , ysm ) , s 1, ,, m r
i 1
m 0 i 1,..., n j1 a ij y sj 0,
dt 2

l
sin x 0
总结:Buckingham 定理 由m个物理量{q1, ,qm}构成一个物理系统, 其数学表达式 F(q1, ,qm) = 0 是量纲齐 次的,当且仅当它可以表示为由m-r个相互独 立的无量纲量{p1, , pm-r}构成的函数关系 式 f(p1, , pm-r) = 0,其中
0 0 2 0 1 0 1 0 0 1 0 0
60. 写出无量纲量p
将方程的解代入加项 p 的表达式,可得2个函 的表达式 可得2个函 数无关项 p1 = t1 l-1/2 g1/2 , p2 = x . 0 7 . 建模 单摆运动的规律F(t,l,m,g,x)= 0. 可以表示成 f (p1 , p2) = 0,解出 p1 可得 1/2g-1/2 1/2 = k (x) p1 = k1(p ( 2) ,即 t l-1/2 1( ) ,
是线性齐次方程组AY=0的基本解, 其中nm矩阵 A=(aij) 秩为r,其第j列元素是物理量 j qj 的量纲指数
[q j]
事实上

n
X
a ij i
,
i1
j 1, , n
其中 X1, …,X Xn 是基本量。称 是基本量 称A为量纲矩阵。 为量纲矩阵

数学建模的主要建模方法

数学建模的主要建模方法

主要建模方法1、类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型2、量纲分析是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

在国际单位制中,有七个基本量:质量、长度、时间、电流、温度、光强度和物质的量,它们的量纲分别为M、L、T、I、H、J和N,称为基本量纲。

量纲分析法常常用于定性地研究某些关系和性质,利用量纲齐次原则寻求物理量之间的关系,在数学建模过程中常常进行无量纲化,无量纲化是根据量纲分析思想,恰当地选择特征尺度将有量纲量化为无量纲量,从而达到减少参数、简化模型的效果。

3.差分法差分法的数学思想是通过taylor级数展开等方法把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的方程组,将微分问题转化为代数问题,是建立离散动态系统数学模型的有效方法。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有以下几种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

差分法的解题步骤为:建立微分方程;构造差分格式;求解差分方程;精度分析和检验4、变分法较少5、图论法数学建模中的图论方法是一种独特的方法,图论建模是指对一些抽象事物进行抽象、化简,并用图来描述事物特征及内在联系的过程。

图论是研究由线连成的点集的理论。

一个图中的结点表示对象,两点之间的连线表示两对象之间具有某种特定关系(先后关系、胜负关系、传递关系和连接关系等)。

量纲分析法建模案例

量纲分析法建模案例

r (t , E, , p)
记作更一般的形式
(1)
f (r, t , E, , p) 0
(2)
取3个基本量纲:长度L,质量M和时间T,(2) 中各个物理量的量纲分别是
[r ] L,[t ] T ,[ E] L2 MT 2 ,[ ] L3M ,[ P] L1MT 2
边取对数作线性最小二乘拟合,取=1.25kg/m3 , 有 5 1 E log10 r log10 t log10 ( ) (9) 2 2
x
c
5 1 E y c, y log10 r x, x log10 t , c log10 ( ) 2 2
c 6.9038
由此得到量纲矩阵为
A35
1 0 2 3 1 0 0 1 1 1 0 1 2 0 2
齐次方程 Ay=0的基本解为 y (1,2 / 5,1 / 5,1 / 5,0)T
y (0,6 / 5,2 / 5,3 / 5,1)
T
根据量纲分析的Bucking-ham Pi定理,由这2个 基本解可以得到2个无量纲量
(10)
由c和容易算出E 8.0276 1013 焦耳
1千吨TNT的核子能量=4.184 1012 焦耳
原子弹爆炸能量的实际值21千吨
原子弹爆炸 的能量是 19.1863千吨
0.80 34.2 0.94 36.3 1.08 38.9 1.22 41.0 1.36 42.8
1.50 44.4 1.65 46.0 1.79 46.9 1.93 48.7 3.26 59.0
3.53 61.1 3.80 62.9
15.0 106.5 25.0 130.0 34.0 145.0 53.0 175.0 62.0 185.0

2:量纲分析法 数学建模

2:量纲分析法 数学建模
量纲分析的原理 是:当度量量纲的基本单位改变时,公式 本身并不改变,例如,无论长度取什么单位,矩形的面积 总等于长乘宽,即公式 S=ab并不改变。此外,在公式中只 有量纲相同的量才能进行加减运算,例如面积与长度是不 允许作加减运算的,这些限止在一定程度上限定了公式的 可取范围,即一切公式都要求其所有的项具有相同的量纲, 具有这种性质的公式被称为 是“量纲齐次”的。
v为流速,x吃水度度 所以
v 1 1 1 [ ] LT L T x
量纲矩阵为:
A 37
1 1 1 1 3 1 1 1 0 0 0 1 1 0 2 0 0 1 0 1 2
f l h v r u g
(L) (M) (T)
是与量纲单位选取无关的物理定律 X 1,X 2 ........ X n 是基本的量纲,n《m q1 , q2 , q3 ,...... qm的量纲可表示为 [q j ] X i ij , j 1,2,..... m
a i 1 n
1--6
矩 阵A {a ij } nm 称 为 量 纲 矩 阵 , 若A的 秩R(A) r 设线性齐次方程组 Ay 0的m - r个 基 本 解 为 y s ( y s1 , y s 2 ,.....y sm ) , s 1,2,....m r
T
2 3
按照量纲齐次原则应有:
1 0 2 3 0 2 3 1
1--5
可得出其解为
1 1 1 0, 2 , 3 2 2
量纲齐次定理: q1 , q2 , q3 ,...... qm

l t g

设有m个物理量 f ( q1 , q2 , q3 ,...... qm ) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量纲分析法
一、基本概念
量纲分析(Dimensional Analysis )是20世纪初提出的在物理领域建立数学模型的一种方法,它主要是利用物理量的量纲所提供的信息,根据量纲齐次法则来确定物理量之间的关系。

所谓量纲齐次法则是指作为一个数学模型或物理规律,其数学表达式的每一个加项的量纲必须是一致的或每一项都是无量纲。

也就是说,当描述实际现象时,只有量纲相同的项才能相比较或相加减,这个法则应该是自明的。

许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可以由基本量纲根据其定义或某些物理定律推导出来。

如力学中,常把质量m 、长度l 、时间t 的量纲作为基本量纲,分别计为[]M m =、[]L l =和[]T t =。

于是速度的量纲是[]1-=LT v ,加速度的量纲是[]2-=LT a ,力的量
纲是[]2-=MLT f 。

二、实例——单摆周期运动
首先,我们研究一个简单的例子——单摆周期运动,由此例子看看如何用量纲分析法建立数学模型,然后再给出量纲分析法的主要内容,即著名的Buckingham Pi 定理。

单摆运动是一个熟知的物理现象,即用细线悬挂的小球离开其平衡位置后在重力的作用下所做的平面往复运动。

为了简化问题,我们做如下假设:
模型假设:⒈ 小球运动过程中不考虑空气的阻力。

⒉ 忽略地球自转对单摆运动的影响。

⒊ 摆线是刚体,在单摆运动过程中不发生变形。

⒋ 摆轴部分没有摩擦。

模型分析与建立:在上述假设下可知,与单摆运动有关的物理量有:运动的周期t 、摆线长l 、球的质量m 和重力加速度g ,其量纲分别为:T 、L 、M 和2-LT。

设t 、l 、m 和g 之间的关系式为: (1) 321αααλg l m t =
其中321,,ααα是待定常数,λ是无量纲的比例系数。

取(1)式的量纲表达式,即
[][][][]321αααg l m t =
将[][][][]2,,,-====LT g L l M m T t 代入得
(2) 33212αααα-+=T L M T
按照量纲齐次原则应有
⎪⎩
⎪⎨⎧=-=+=(3)
120 03321αααα (3)式的解为2
1,21,0321-===ααα。

代入(1)式得 (4)
g l t λ
= (4)式与用力学规律得到的结果是一致的。

如果考虑得更精细些,周期t 应与小球偏离平衡位置的初始角度θ有关。

但因θ是无量纲量(弧度),所以它的影响反映在系数λ内,即为)(θλ。

事实上,)(θλ是以θ参量的第一类椭圆积分,当θ很小时,它的值近似于2π。

三、一般方法:为了导出量纲分析法建模的一般方法,将这个例子中的各变量之间的关系写作
(5) 0),,,(=g l m t f
进一步假设(5)式的形式为
(6) 4321π=y y y y g l m t
其中)4,3,2,1(=i y i 是待定常数,π是无量纲常数。

将t 、m 、l 和g 的量纲用基本量纲T 、L 、M 表示为
[][][][](7) 2010010101
00⎪⎪⎩⎪⎪⎨⎧====-T
M L g T
M L l T M L m T M L t 则(6)式的量纲表达式可写作(注意[]000T M L =π)
0002010010101004321)()()()(T M L T M L T M L T M L T M L y y y y =- 即 000241243T M L T M L y y y y y =-+
由量纲齐次原则,有
(8)
02 0041243⎪⎩⎪⎨⎧=-==+y y y y y 此方程组的一个基本解
(9) )1,1,0,2(),,,(4321T T y y y y y -==
代入(6)式得
(10) 12π=-g l t
而(5)式等价于
(11) 0)(=πF
(10)、(11)式就是用量纲齐次原则从(5)式得到的结果,前面给出的(4)式只是它的特殊表达形式。

把从(5)式到(11)式的推导过程一般化,就是著名的Buckingham Pi 定理。

定理 设有m 个物理量m q q q ,,,21 ,
(12) 0),,,(21=m q q q f
是与量纲单位的选择无关的物理定律,n X X X ,,,21 是基本量纲,m n ≤。

m q q q ,,,21 的量纲可表为
m j X q ij a
i n i j ,,2,1][1 ==∏=, (13)
矩阵m n ij ⨯=)(αA 称为量纲矩阵。

若A 的秩
(14) r =A Rank
设齐次方程组
(15) 0=y A
的m -r 个基本解为
(16) r m ,1,2,s ),,,(21-== T sm s s s y y y y

∏==m j y j s sj
q 1
π (17) 为m -r 个相互独立的无量纲量,且存在函数关系F 使
0),,,(21=-r m F πππ
(18) 与(12)式等价。

F 表示一个未定的函数关系。

相关文档
最新文档