量纲分析法

合集下载

数学模型与数学建模 第4章 量纲分析法

数学模型与数学建模 第4章 量纲分析法
= -X-AV+F0 其中,因v0=x0w0 , w0=
K m
K
原方程变形为
dV AV F0 X dT
优点:
1. 减少了参数的个数; 2. 方程中的变量X、V、T都是无量纲量.
量纲分析是20世纪初提出的在物理领域中 建立数学模型的一种方法.
对所设问题有一定了解,在实验和经验的 基础上利用量纲齐次原则来确定各物理量之 间的关系. 例4.2.1 单摆运动 将质量为m 的一个小球系在长度为l 的线的 一端,稍偏离平衡位置后小球在重力mg的作用
其中 [质量]=[ m ]=M, [长度]=[ l ]=L, [时间]=[ t ]=T,
称为 基本量 纲
ds 例4.1.1 [速度]=[ v ]=[ ] = =LT-1 ; dt [加速度]=[ a ] =LT-2 ;
因为力 F=ma, 故 [ F ]=[ m ][ a ] =MLT-2;
部分物理常数也有量纲,如万有引力定律 m1m 2 f K 2 r 中的引力常数K的量纲为
量纲不变性:无量纲量在模型和原型中保持不变
模型中的各物理量: f , l , h, v , , , g 原型中的各物理量: f , l , h, v, , , g 有
l , v , lv ) f l v ( h lg 2 2
fl v
当无量纲量
l h
量纲齐次原则: 任一有意义的物理方程必定是量
纲一致的,即有
[左边] = [右边]
1. 对数学模型和模型的解进行量纲一致性检验.
2. 无量纲化方法减少参数个数.
例4.1.2 非线性震荡运动方程
2
dx m Kx C F 2 dt dt
d x

量纲分析法

量纲分析法

量纲分析法量纲分析法是科学研究和工程实践中一种常用的方法,用于简化和分析复杂的物理方程。

通过引入合适的量纲和无量纲量,可以减少物理方程的数量和复杂性,从而更容易理解和应用。

量纲是衡量物理量的属性,可以理解为物理量的尺度或单位。

常见的量纲有长度、质量、时间、温度等。

在科学领域,量纲的统一是一项基本原则,它要求所有参与物理方程运算的物理量必须具有相同的量纲。

例如,在牛顿定律中,质量的量纲是质量,加速度的量纲是长度除以时间的平方,力的量纲是质量乘以加速度。

无量纲量是指除去量纲后的物理量。

通过合适的变量代换和无量纲化操作,可以将含有多个物理量的复杂方程转化为只涉及少数几个无量纲量的简化形式。

这样做的好处是降低了方程的复杂性,使得我们可以更清晰地理解和研究方程的行为。

量纲分析法的基本思想是通过量纲的统一和无量纲化的技巧,将物理方程从具体的数值问题转化为一般的函数关系问题。

这样一来,可以用较少的实验和计算来研究和验证一类问题的特性,从而节省时间和资源。

量纲分析法在研究新领域的物理学问题、模拟和优化工程设计等方面发挥了重要作用。

量纲分析法的步骤通常包括以下几个方面:第一步是选择物理量,并通过其量纲建立物理方程。

在建立方程时,需要确保所选物理量之间的关系是正确的,并符合基本的物理定律。

第二步是确定主要影响因素,即哪些物理量对方程起主导作用。

对于复杂的问题,这一步可能会需要经验和专业知识的支持。

第三步是进行量纲分析,即将方程中的各个物理量转化为无量纲形式。

这一步需要根据物理量的量纲关系进行变量代换和无量纲化运算。

第四步是根据无量纲方程进行简化和分析。

通过缩小问题的数量级和去除复杂的单位,我们可以更容易地理解方程,并得到问题的一般解。

第五步是进行数值模拟和实验验证。

通过选择合适的数值和实验条件,我们可以验证和应用无量纲方程,并得到具体问题的解。

总的来说,量纲分析法是一种简化和分析物理方程的有效方法。

通过量纲的统一和无量纲化的技巧,我们可以将复杂的问题转化为一般的函数关系问题,从而更容易理解和应用。

量纲分析

量纲分析

第一节量纲分析方法1.1量纲当对一个物理概念进行定量描述时,总离不开它的一些特性,比如,时间、质量、密度、速度、力等等,这种表示不同物理特性的量,称之为具有不同的“量纲”。

概括来说,将一个物理导出量用若干个基本量的乘方之积表示出来的表达式,称为该物理量的量纲式,简称量纲(dimension)(量纲又称为因次)。

它是在选定了单位制之后,由基本物理量单位表达的式子。

在国际单位制(I)中,七个基本物理量长度、质量、时间、电流、热力学温度、物质的量、发光强度的量纲符号分别是L、M、T、I、Q、N和J 速度v = ds/dt 量纲: = 加速度a = dv/dt 量纲: 力F = ma 量纲: 压强P = F/S 量纲:实际中,也有些量是无量纲的,比如等,此时记为。

有量纲的物理量都可以进行无量纲化处理量纲有赖于基本量的选择,是外加的有关量的度量手段。

模型所描述的规律应该独立于量纲的影响。

机理模型的深入探讨应该排除量纲的影响,因此机理模型需要无量纲化。

使用无量纲量来描述客观规律。

在量纲表达式中,其基本量量纲的全部指数均为零的量,即无量纲量,也称纯数。

1.无量纲量具有数值的特性,它可以通过两个量纲相同的物理量相除得到,也可由几个量纲不同的物理量通过乘除组合得到。

2.无量纲量具有这样一些特点:①无量纲数既无量纲又无单位,因此其数值大小与所选单位无关。

即无论选择什么单位制计算,其结果总是相同的。

当然,同一问题必须用同一单位制进行计算。

②对数、指数、三角函数等超越函数的运算往往都是对无量纲量来讲的。

③一个力学方程,如果用无量纲数表示的话,它的应用就可以不受单位制的限制。

要正确反映一个物理现象所代表之客观规律,当用数学公式描述已物理量时,等号两端就必须保持量纲的一致性和单位的一致性,即其所遵循的物理方程式各项的量纲必须一致,可以用这一原理来校核物理方程和经验公式的正确性和完整性。

量纲分析就是基于量纲一致的原则来分析物理量之间关系的一种方法。

量纲分析法

量纲分析法

量纲分析法量纲分析法是一种工程数学方法,用于处理含有多个变量的物理问题。

这种方法非常有用,因为在实际应用中,我们通常需要考虑许多不同的变量和参数,这些参数可能具有不同的单位和量纲,使得问题变得复杂和难以处理。

利用量纲分析法,可以将各个参数转换为无量纲形式,从而简化问题并提高计算精度。

1. 什么是量纲首先,我们需要明确什么是量纲。

量纲是一个物理量所具有的度量属性,通常包括基本量纲,比如长度、时间、质量、电流等等。

每个量纲都有一个标准单位,比如米、秒、千克、安培等等。

通过组合不同的基本量纲和单位,我们可以得到其他物理量的单位和量纲。

比如速度可以表示为长度/时间,加速度可以表示为长度/时间^2。

在处理物理问题时,量纲是非常重要的,因为它们决定了各个物理量之间的关系和单位的选择。

2. 如何运用量纲分析法量纲分析法是一种基于量纲的数学方法,用于研究变量之间的关系和有效参数的数量。

在使用这种方法时,我们需要将所有涉及的物理量和参数转换为无量纲形式,然后通过比较各个无量纲参量的数量级和变化趋势来分析问题。

这种方法可用于许多不同的物理问题,例如流体力学、热传递、电路分析等等。

下面我们以流体力学为例来讲解量纲分析法的应用过程。

首先,我们考虑一个典型的流体力学问题:水从一根直管中流出的速度是多少?公司设计师可以运用以下方程式解决此题: v = (P1 - P2) / ρL其中v是水的速度,P1和P2是入口和出口处的压力,ρ是水的密度,L是管道长度。

我们观察到这个公式涉及四个参数,每个参数都有自己的单位和量纲。

在使用量纲分析法时,我们需要将它们都转换为无量纲形式。

我们可以定义以下五个无量纲参量:F1 = v L / νF2 = (P1 - P2) / (0.5ρv^2)F3 = D / LF4 = ε/ D其中,ν是水的动力粘度,D是管道的直径,ε是管道壁面粗糙度。

这里表示F1 代表惯性力,F2 代表压力力,F3 代表管道长度比,F4 代表管道细度等无量纲参量。

量纲分析法

量纲分析法

量纲分析法3、量纲分析法量纲分析是20世纪初提出的, 在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上, 利用物理定律的量纲齐次原则,确定各物理量之间的关系。

3.1 量纲齐次原则与Pi定理许多物理量是有量纲的,有些物理量的量纲是基本的,另一些物理量的量纲则可以由基本量纲根据其定义或某些物理定律推导出来。

例如在动力学中,把长度l, 质量和时间的tm量纲作为基本量纲,记为,1,2,,,,; 而速度的量纲可表示为. v,LT,f,MLT,,,,,,l,L,m,M,t,Tv,力f在国际单位制中,有7个基本量:长度、质量、时间、电流、温度、光强度和物质的,量,它们的量纲分别为L、M、T、I、、J、和N;称为基本量纲。

任一个物理量q的量纲都可以表成基本量纲的幂次之积,,,,,,,, ,,q,LMTI,NJ量纲齐次性原则:用数学公式表示一个物理定律时,等式两端必须保持量纲一致。

量纲分析就是在保证量纲一致的原则下,分析和探求物理量之间关系;先看一个具体的例子,再给出量纲分析的一般方法。

l例3—1: 单摆运动,质量为的小球系在长度为的线的一端,线的另一端固定,小m球偏离平衡位置后,在重力作用下做往复摆动,忽略阻力,求摆动周期的表达式。

mgtt,m,l,g解:在这个问题中有关的物理量有设它们之间有关系式,,,312t,,mlg ---------------(3.1) 1其中为待定常数,入为无量纲的比例系数,取(3(1)式的量纲表达式有 ,,,,,23,,,,,,,2,,1232331T,MLT 整理得: --------------(3.2) ,,,,,,,,t,mlg 由量纲齐次原则应有,,0,1,,,,,0 ---------------(3.3) ,23,,2,,13,11l,,0,,,,,,,,解得: 代入(3(1)得 -------(3.4) t,,123g22(3.4)式与单摆的周期公式是一致的下面我们给出用于量纲分析建模的 Buckingham Pi定理,定理:设n个物理量之间存在一个函数关系 x,x,??,x12n--------------(3.5) ,,fx,x,??,x,012n为基本量纲,m,n。

量纲分析法

量纲分析法
步骤 4:用独立变量的待定幂指数乘积形式与其余变量中的每个变量组成无
量纲数 j j n k , n,并代入变量的量纲组成量纲关系式。
如在该问题中,有:
4 h A1 d A2 A3
5

g B1
d B2 B3
步骤 5:对量纲关系式中的每一个基本量纲令等式两边的幂
量纲分析法
一、量纲
1. 量纲的定义 是用来描述物体或系统物理状态的可测量性质,如长度、质量、速度、 加速度。 2. 基本量纲
彼此无关的量纲,如长度、质量和时间。 3. 导出量
最终要用基本量纲的组合来确定的量纲,如速度、加速度、动量等。 国际单位制中基本量纲为:
[L]、[t]、[M]、[T]。
二、量纲分析法—π定理
为无量纲的量,所以有
ML1T 2 L x LT 1 y ML3 z M z Lx y3zT y
z 1, y 2, x 0


p
2
同理有,分别有:
ML1T 1 L x4 LT 1 y4 ML3 z4 M L T z4 x4 y4 3z4 y4
2
2g
hf

P
g
2
g
f 1 , l , Re d d
莫迪图
hf
Re , l
dd
2
2g
例题: 在层流情况下,流过一小等边三角形截面的孔(边长为 b
,孔长为 L )的体积流量 Q 为动力粘性系数 、单位长度上的压降
p / L 及 b 的函数。试将此关系写成无因次式。在其他条件不变的
z4 1, y4 1, x4 1
4

量纲分析法

量纲分析法

量纲分析法
量纲分析法是一种评估数据确实性的有效方法。

它使用量纲来组织,比较,分
析和制定多个变量的关系。

通过量纲分析确定数据的完整性和准确性,从而辅助决策。

首先,量纲分析方法用于分析具有多个变量之间相关联的参数。

例如,在政策
决策中,通过检测多个因素对决策产生的不同影响,可以帮助政策制定者快速准确地分析经济变量之间的关系,以及各方面决策相互依赖的关系。

其次,量纲分析法有助于改进决策的质量,准确判断决策的结果。

有效地分析
参与决策的因素及它们之间的联系将有利于长期可持续的决策过程,同时也有助于更准确地估算决策的结果,以便更真实、切实地反映未来的情况,给出准确的决策支持。

最后,量纲分析在一定程度上有助于诊断问题及其原因,准确认识决策过程环境,更好地判断多变量关系。

例如,在数据分析领域,可以利用量纲分析技术对数据进行研究,以提供虚假数据的分析指标,这样可以有效地判断一组数据的准确性和有效性。

量纲分析法是准确分析数据的有效工具,是快速实施合理科学决策的重要支撑。

通过量纲分析法,可以组织,比较,分析多个变量相互依赖的动态关系,从而辅助决策改进决策质量,更准确地预测决策结果,以及诊断问题及其原因。

量纲分析法

量纲分析法

量纲分析法在我们探索自然科学和工程技术的广阔领域时,量纲分析法宛如一把神奇的钥匙,帮助我们解开复杂现象背后的神秘面纱。

它不是某种高深莫测的魔法,而是一种基于物理量基本性质的强大工具,让我们能够在看似混沌的世界中找到秩序和规律。

那么,究竟什么是量纲分析法呢?简单来说,量纲就是物理量的单位类别。

比如长度的量纲是米(m),时间的量纲是秒(s),质量的量纲是千克(kg)。

而量纲分析法,就是通过研究物理量的量纲之间的关系,来揭示物理现象的内在规律。

为了更好地理解量纲分析法的重要性,让我们先来思考一个简单的例子。

假设我们要研究一个物体自由下落的运动。

我们知道,影响物体下落速度的因素可能有物体的质量、下落的高度以及重力加速度。

那么,这些因素之间到底存在着怎样的定量关系呢?如果我们盲目地进行实验或者复杂的数学推导,可能会陷入无尽的迷茫。

但量纲分析法却能为我们指明方向。

我们先写出速度 v、质量 m、高度 h 和重力加速度 g 的量纲:速度v 的量纲是长度除以时间,即 L/T;质量 m 的量纲是 M;高度 h 的量纲是 L;重力加速度 g 的量纲是长度除以时间的平方,即 L/T²。

接下来,我们假设速度 v 与质量 m、高度 h 和重力加速度 g 之间存在一个函数关系 v = f(m, h, g)。

根据量纲分析的原理,这个函数关系必须在量纲上是和谐的,也就是说,等式两边的量纲必须相同。

我们可以通过量纲的运算来推测这个函数的形式。

假设 v 与 m 的 a次方、h 的 b 次方、g 的 c 次方成正比,那么可以写出 L/T = M^a ×L^b × L/T²^c 。

经过量纲的运算和分析,我们可以得出 a = 0,b = 1/2 ,c = 1/2 。

于是,我们得到 v 与 h 和 g 的关系为 v ∝ √(gh) 。

这只是量纲分析法的一个简单应用,但已经足以展现它的强大威力。

在更复杂的物理问题中,比如流体力学中的湍流现象、热传递过程等,量纲分析法同样能够发挥重要作用。

量纲分析法

量纲分析法

量纲分析法量纲分析法是求解物理问题的一种常用方法,它是建立在物理量之间存在着量纲关系的基础上的。

我们都知道,物理量是有量纲的,例如长度有米(m)、质量有千克(kg)等等。

物理量之间可能存在着各种复杂的关系,但是它们之间的量纲关系却是简单明了的。

在这个基础上,我们可以通过对物理量之间的量纲关系进行分析,得到大致的物理规律和关系式。

量纲分析法的应用范围广泛,可以用于求解机械、电学、热学等方面的问题。

特别是对于那些难以通过精确计算求得解析解的问题,量纲分析法常常能够给出很好的近似解。

量纲和单位的概念在进一步介绍量纲分析法之前,我们需要先了解一下量纲和单位的概念。

量纲是指物理量所具有的性质或特征。

例如,长度、质量、时间等都是物理量的量纲。

一般来说,我们用中括号表示一个物理量的量纲,例如$[L]$表示长度的量纲,$[M]$表示质量的量纲。

单位是指用来度量某一物理量的标准。

对于同一物理量,不同的国家或文化可能使用不同的单位。

例如,长度可以使用米、英尺、码等作为单位,质量可以使用克、千克、磅等作为单位。

物理量之间的量纲关系物理量之间的量纲关系非常重要,因为它们是建立任何物理公式或关系式的基础。

对于任意一个物理量,我们都可以通过对其进行基本量的组合或者一些次幂等数学运算,得到它的量纲式。

例如,对于单位长度的物理量,我们可以用基本物理量长度$L$表示它,那么它的量纲式为:$$[L]^1$$同理,对于单位速度$v$,由速度的定义可以得到:$$[L]^1\text{T}^{-1}其中,T表示时间的量纲。

通常情况下,我们将同一物理量的所有单位转化为相同的标准单位后,再进行量纲关系的分析。

例如,对于长度这一物理量,我们选用标准单位米(m)作为计量单位,则长度的量纲为$[L]$,而英尺的长度则可以表示为$0.3048\text{m}$。

量纲分析的基本原理和步骤量纲分析的基本原理是“对等量纲式进行运算时,只能加减,不能乘除”。

第一讲 1关于量纲分析法

第一讲 1关于量纲分析法

第一讲 1关于量纲分析法量纲分析法是一种解决物理、化学和工程问题的方法,它可以通过分析问题中的物理量的量纲关系,将问题简化,较为准确地估算出某些物理量的数量关系。

量纲是描述物理量的属性的量,它体现在物理量的单位上。

例如,长度的单位是米,质量的单位是千克,时间的单位是秒等等。

在物理、化学和工程问题中,一个物理量的单位需要严格保持一致,因为这个单位可以影响到任何计算结果的准确性。

量纲分析方法可以帮助工程师和科学家在一些情况下,快速地估算某些物理量的数量关系,而不必依靠实验数据或进行复杂的计算。

使用该方法需要首先确定问题中哪些物理量是重要的,然后将它们表示成独立的基本物理量的乘积形式,例如,长度、质量和时间。

接下来,将这些物理量进行量纲分析,确定它们之间的关系,得到以基本物理量的某些函数表示的量纲方程。

该方程描述了物理量之间的数量关系,并且可以用来估算未知的物理量。

例如,当需要知道管道中水流速度的数量关系时,可以使用量纲分析方法来估算它的大小,而不必测量或计算它。

量纲分析法的一个重要应用是在建立数学模型时的物理量选择和相似性问题。

例如,当设计一个飞机模型时,需要考虑到飞机原型中的物理量之间的相似性关系,这可以通过使用量纲分析方法来实现。

该方法还可以帮助工程师和科学家预先估算某些物理量的变化范围,这对于解决实际问题非常有用。

总之,量纲分析法是工程和科学领域中重要的方法之一,它可以帮助工程师和科学家更快速地解决问题。

它的应用范围非常广泛,包括飞机设计、渗透透过、化学反应等等。

然而,该方法仅仅是一个审慎预估的工具,它必须与实验和计算相结合,以确定物理量之间的真实关系。

量 纲 分 析 法

量  纲  分  析  法

2013-5-10
注意: 无量纲的量,指在一个量的量纲表达式中,所有的量纲指数为零。 否则为有量纲的量。无量纲的量与纯数不同,具有特定的物理意义和量 的特性。 有量纲量的数值随单位的不同而变,无量纲量的数值不随单位不同 而变。
2013-5-10
三、七大基本量纲
物理量
长度 时间
量纲
L T
国际单位制
米(m) 秒(s)
质量
2013-5-10
引入比例常数泊肃叶定律写为QV=kr4η-1 (Δp/ΔL)。在式中各量的单位制已经作出规定的 情况下,比例常数只有通过实验测定,实验测出 k=π/8,因而,泊肃叶定律可表表示为 QV=π8r4ηΔpΔL对泊肃叶定律的推导,可以清晰的 看到数学运算并不多,但逻辑思考和定性理解相对 更重要。与大多数教材采用微积分的方法推导相比 而言,量纲分析的方法不但推算简洁,而且物理意 义更易理解和掌握.
2013-5-10
二、量纲与量纲
量纲,是指物理量类别。同一类量具有相同的量纲。
将一个物理导出量用若干个基本量的乘方之积表示出来的表达式, 称为该物理量的量纲式,简称量纲(dimension)。 量纲又称为因次。即量 纲系指在量制中用基本量的幂积表示的数值系数为的量的表达式。某个量 的量纲只表示该量的性属,而不表示该量的大小。
热力学温度 电流
M
Q I
千克(kg)
开尔文(k) 安培(A)
物质的量
发光强度
2013-5-10
N
J
摩尔(mol)
坎德拉(cd)
★“笑傲江湖”--------应用实例
一、泊肃叶定律的推导
流体力学中泊肃叶定律是由法国医生泊肃叶于1840年研 究动物血液在毛细血管中的流动时发现的,这一规律在后来 的管道流体工程中有着重要的作用。 从动力学的观点上看,要使管内的流体做匀速运动,必 须有外力抵消粘滞力,这个外力就是来自管子两端的压强差 Δp。现在以长为L、半径为r的水平直圆管中流体做层流运 动为例来讨论不可压缩粘滞流体(粘度为η)的流动,令QV 为体积流率(量)。经过简单的物理分析可知,在稳定流动 中的体积流率QV仅与管道半径r、粘度η、管道中的压强梯 度Δp/ΔL有关。

量纲分析法

量纲分析法

量纲分析方法倪致祥主讲为了能够应用数学来描述物理对象,我们需要对其定量化。

物理对象的定量化需要有单位和数值,单位是作为度量标准的某个物理量。

被测物理量的数值大小不仅取决于其本身,而且取决于所选用的单位。

例如为了描述一块地的范围,需要确定其面积的单位和数值的大小。

我们可以说这是块大小为1平方公里的地,也可以说这是块大小为1000000平方米的地。

离开了单位,仅根据数值我们无法判断一块地的大小。

单位的选取往往带有任意性,比如说度量长短可以选用米为单位,也可以选用厘米、分米、公里甚至光年为单位。

然而这些单位都是用来度量同一个物理量—长度的,它们之间可以相互换算,具有某种统一性。

我们把这种统一性称为量纲。

一般来说,测量同一个物理量可以有不同的单位,但是它的量纲是唯一的。

例如,测量长度可以用厘米、分米、公里甚至光年为单位,但是决不能用公斤或吨为单位。

不同量纲的物理量之间有本质的区别,相互不能换算。

说一根木头长度为2⨯10-16光年虽然很不合适,但是并没有原则性错误;如果说一根木头长度为100公斤,就要让人笑掉大牙。

通常用[量]来表示物理量的量纲,不同的物理量往往有不同的量纲:长度的量纲记为L,时间的量纲记为T,质量的量纲记为M,无单位的物理量的量纲记为1。

一个具体的物理对象往往要有许多不同的物理量来描述其不同的特性,我们可以把其中的一些看成是基本量,其他的是导出量。

基本量的量纲称为基本量纲,其他量的量纲可以由基本量纲导出。

例如,我们取基本的量纲为L、T 和M,那么面积的量纲为L2,速度的量纲为LT-1,加速度的量纲为LT-2。

由于物理量是有量纲的,因此用数学公式来描述任何一个客观规律时,等式两边的量纲必须一致,这个要求称为量纲一致原则。

根据量纲一致原则和牛顿第二运动定律,我们可以导出力的量纲为MLT-2。

在量纲一致的原则下,问题中物理量之间关系的分析称为量纲分析。

量纲分析是应用物理理论解决实际问题的一个有力工具,可以用来合理地组合变量从而简化问题的处理,导出新知识和获得新信息。

量纲分析法

量纲分析法

最纲分析法量纲分析法在流体力学和模型试验等领域被广泛应用,成为一种有效的研究手段。

量纲分析常用于:(1)物理量量纲的推导;(2)根据量纲和谐原理,校核由理论分析推导出的代数形式方程各项因次是否正确;(3)量纲分析基于表达自然现象的物理规律,不取决于所用量纲的单位,因而,在表达这些规律的公式中,可用无量纲组合的形式来表示,从而使方程形式简化;(4)用于确定模型实验的相似条件,指导整理实验资料、把无量纲数组合整理成含有待定系数的函数式,这个函数式可将模型参数换算、推广至原型,其中待定系数由实验确定。

在量纲和谐原理基础上发展起来的量纲分析法有两种:一种称瑞利(Rayleigh)法,适用于比较简单的问题;另一种称定理,是一种具有普遍性的方法。

一、瑞利法瑞利法的基本原理是某一物理过程同n个物理量有关其中的某个物理量可表示为其它物理量的指数乘积(9-3)写出量纲式为=K·dim()dimqi将量纲式中各物理量按式(9-1)表示为基本量纲的指数乘积形式,并根据量纲和谐原理,确定指数,就可得出表达该物理过程的方程式。

用瑞利法求力学方程,在有关物理不超过4 个,待求的量纲指数不超过3个时,可直接根据量纲和谐条件,求出量纲指数,建立方程。

二、定理定理是量纲分析更为普遍的原理,由美国物理学家布金汉(Buckingham)1915年提出,又称为布金汉定理。

定理指出,若某一物理过程包含n个物理量,即其中有m个基本量(量纲独立,不能相互导出的物理量),则该物理过程可由n个物理量构成的(n-m)个无量纲项所表达的关系式来描述,即(9-4)由于无量纲项用表示,定理由此得名。

定理可用数学方法证明。

定理的应用步骤:(1)找出物理过程有关的物理量(2)从n个物理量中选取m个基本量,不可压缩流体运动通常选取速度以及密度、特征长度三个基本量。

(3)基本量依次与其余物理量组成项………(4)满足为无量纲项,定出各项基本量的指数a、b、c。

量纲分析法

量纲分析法

f (q1, q2 ,, qm ) 0
rank A = r
Ay = 0 有m-r个基本解
(g,l, , v, s, f ) 0
rank A = 3 Ay=0 有m-r=3个基本解
ys = (ys1, ys2, …,ysm)T s = 1,2,…, m-r
m-r 个无量纲量
y1 ( 1/ 2,1/ 2,0, 1, 0, 0)T
单摆运动中 t, m, l, g 的一般表达式 f (t, m, l, g ) 0
t m l g y1 y2 y3 y4 y1~y4 为待定常数, Δ为无量纲量
[t] L0M 0T 1 [m] L0M 1T 0 [l] L1M 0T 0 [g] L1M 0T 2
航船阻力模型的意义
以我们上面得出的最后模型为例:
在设计制造舰船、飞机、汽车等产品时,研究人员需要先制 作出非常逼真的仿真实物模型,然后对实物模型进行阻力、 运动特征实验,以此来验证设计是否合理。
f模

s模
v
2 模


(
1
,

2
)
如果我们能使模型船的 中两个数据与真实船
f实 s实v实2 实 ( 1 , 2 ) 相同,则得到:
t m l g 1 2 3 (1)
1, 2, 3 为待定系数,为无量纲量 (1)的量纲表达式
[t] [m]1 [l]2 [g]3
T M L T 1 2 3 23
1 0 2 3 0

2 3

1
1 0 2 1/ 2 3 1/ 2
[g] = LT-2, [l] = L, [] = L-3M,
[v] = LT-1,, [s] = L2, [f] = LMT-2

量纲分析法

量纲分析法

L, T ;

[x] L [t] T [r] L [v] LT 1 [g] LT 2
所谓无量纲化是指,对(3.18)式中的 x 和 t 分别构造且有相同的参数组合 xc 和 tc ,使得
新变量
x x x0
t t t0
为无量纲量,其中 xc , tc 称为特征尺度或参考尺度;把方程(3.18)化为 x 对
q L M T I N J
量纲齐次性原则:用数学公式表示一个物理定律时,等式两端必须保持量纲一致。 量纲分析就是在保证量纲一致的原则下,分析和探求物理量之间关系;先看一个具体 的例子,再给出量纲分析的一般方法。
例 3—1: 单摆运动,质量为 m 的小球系在长度为 l 的线的一端,线的另一端固定, 小球偏离平衡位置后,在重力 mg 作用下做往复摆动,忽略阻力,求摆动周期 t 的表达式。
--------------(3.2)
由量纲齐次原则应有 (3.3)
1 2
0 3
0
23 1
---------------
解得:1 0 ,
2
1 2
,
3
1 2
,
代入(3.1)得
t
l g
-------
(3.4) (3.4)式与单摆的周期公式是一致的 下面我们给出用于量纲分析建模的 Buckingham Pi 定理,
lv Fr ; 称为 Reynold 数,记为 Re , 因此(3.10)又可写为
f l 2v2 ( l h , Fr, Re)
------------------(3.11) 4. 下面我们利用物理模拟进一步确定航船在水中的阻力。
设: f、l、h、v、、、g 和 f 、l、h、v、 、、g 分别表示模型和原型中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

又因为矩阵 0 2 2 0 1 2 1 0 的秩为3
1 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1
3个线性独立物理量:m,k,g
0 2 2 1 1 0 0
00 1
寻找剩余物理量对应的无量纲量 lnl x1 lnm x2 lnk x3 lng
这个现象的各个物理量及其关系式 f (q1, q2 ,..., qn ) 0
(2)确定基本变量:从n个物理量中选取m个基本物理量
q x1a1 x2a2 ...xmam lnq a1 lnx1 a2 lnx2 ...am lnxm
可以把它看成是m维空间的正交基矢,则 a1, a2,..., am 就是矢量
规律的影响;
(3)可进行超越函数运算:
由于有量纲量只能做简单的代数运算,做对数、指数、三
角函数等超越函数的运算是没有意义的。只有无量纲化才能
进行超越函数运算。如气体等温压缩计算式:W

p1V1
ln

V2 V1

量纲分析与无量纲化
研概究念方与法意义
量纲分析法
方法一:瑞利法(Rayleigh) ——量纲和谐原理的直接应用
例题一:
如图所示,质点做单摆运动,求摆动周期 t 的表达式
(1)找出同 t有关的物理量:m, l, g ,即 f t, m, l, g 0
(2)写出指数乘积关系式 t m1l2 g3
1, 2, 3 为待定系数,为无量纲量
(3)写出量纲式 [t] [m]1 [l]2 [g]3

q x1 j 1
q2 x2 j ... qm xmj ( j 1,2,...,n m)
qm j

q x1 1
j
q2
x2
j
...qm
xmj
qm
j
(
m j )
(5)整理方程式,写成相应无量纲的形式 F (1, 2,..., nm ) 0
例题二:
例:将质点悬挂在劲度系数为k的弹簧下端,将质 点从未伸长的弹簧下端由静止释放,求弹簧长度x 随时间t的变化。
两个具有相同量纲的物理量相比; 几个有量纲物理量乘除组合,使组合量的量纲指数为零。
意义
(1)无量纲量的大小与所选单位无关,具有客观性:
凡有量纲的物理量,都有单位,同一物理量,因选取的度
量单位不同,数值也不同,运动方程式的计算结果会受人主
观选取单位的影响;
(2)不受运动规律的影响:
无量纲量是常数,数值大小与度量单位无关,也不受运动
量纲分析与无量纲化
概念与意义
量纲分析法
计算模拟
量纲:撇开单位的大小,表征物理量的性质和 类别。
物 长度 l 的量纲记 L=[l] 理 质量 m的量纲记 M=[m] 量 时间 t 的量纲记 T=[t]
的 速度 v 的量纲 [v]=LT-1 量 加速度 a 的量纲 [a]=LT-2 纲 力 F 的量纲 [F]=LMT-2
若某一物理过程包含n个物理量,即 f (q1, q2 ,..., qn ) 0
其中有m个基本量(量纲独立,不能相互导出的物理量)
则该物理过程可由n个物理量构成的(n-m)个无量纲项所表达
的关系式来描述 ,即 F (1, 2 ,..., nm ) 0
定理的解题步骤
(1)确定关系式:根据对所研究的现象的认识,确定影响
(1)牛顿运动方程:
m
d2x dt 2

k(x
l)

mg
初始条件为: x l, dx 0(t 0) dt
(2)涉及的所有物理量的量纲
m
kg
l
t
d 2x dx dt2 dt
x
T0
-2 -2
0
1
-2 -1
0
M1
1
0
0
0
0
0
0
L0 0 1 1 0 1 1 1
0 l
m mg
例题二:
可以把这六个物理量看成是三维空间的矢量,所有其基本 量最多可以选三个(线性无关)
——“质”的表征。 基本量纲
(动力学中L, M, T)
导出量纲
量纲公式
某物理量q的量纲[q]可用3个基本量纲的指数乘积表示
[q] M LT
分 类
无量纲量:
几何学量纲: = 0,0,=0 运动学量纲: = 0,0,0 动力学量纲:0,0,0
对无量纲量q,[q]=1(=L0M0T0) 0
q2 x2 j ... qm xmj ( j 1,2,...,n m)
ln qm j x1 j lnq1 x1 j lnq2 ... xmj lnqm
1

q4 q q q a1m x1 j a1,m j
具 1、 确定与所研究的物理现象有关的n 个物理量;
体 2、 写出各物理量之间的指数乘积的形式,如:
分 析
qi Kq1aq2b...qnp1
步 3、 根据量纲和谐原理,即等式两端的量纲应该相同,
骤 确定物理量的指数a,b,……p,代入指数方程式即得
: 各物理量之间的关系式。
qi q1aq2 b ...qn1p
t 2l 1g F ( ) 0 (t l / g )
方法二:布金汉(Buckingham)定理(定理)
一般情况下,瑞利法要求相关物理量个数 n 不超过4个, 待求量纲指数不超过3个。当有关物理量超过4个时,需要归并 有关物理量或选待定系数,以求得量纲指数。
定理是量纲分析更为普遍的原理,由美国物理学家布金汉提出:
结束
g
g
例题一:
单摆运动中 t, m, l, g 的一般表达式 f (t, m, l, g ) 0
t m l g y1 y2 y3 y4
y1~y4 为待定常数, 为无量纲量
[t] L0M 0T 1 [m] L0M 1T 0 [l] L1M 0T 0 [g] L1M 0T 2
由公式得: 0 2 2 x1 0
1 1 0 x2 0
0 0 1 x3 1
x1 1

x2

1
x3 1
l m k x1 x2 g x3l kl mg
选择基本变量的原则:
定理应用范围:
对相关物理量个数 n 没有限制,应用更为普遍。
(1)基本变量与基本量纲相对应: 即若各物理量中基本量纲(M,L,T)出现三个,那么
基本变量也选三个;倘若基本量纲只出现两个,则基本变量 只须选择两个。 (2)选择基本变量时,应选择重要的变量:
不要选择次要的变量作为基本变量,否则次要的变量在 大多数项中出现,往往使问题复杂化,甚至要重新求解。 (3)不能有任何两个基本变量的量纲是完全一样的:
换言之,基本变量应在每组量纲中只能选择一个。
ln[q]在各个基矢量上的投影。则物理量q的“量纲”可以记做:
lnq a1, a2,..., am lnqi a1i , a2i ,..., ami (i 1,2,..., n)
如:一般取m=3,取基矢量q1、 q2、 q3
q1 M a1 Lb1 T c1 q2 M a2 Lb2 T c2 q3 M a3 Lb3 T c3
(L0M 0T 1 ) y1 (L0M 1T 0 ) y2 (L1M 0T 0 ) y3 (L1M 0T 2 ) y4 L0M 0T 0
L M T L M T y3y4
y2 y1 2 y4
0 00
y3 y4 0

y 2

0

y 1

2y 4

0
y1 2, y2 0, y3 1, y4 1
a1 b1 c1 a2 b2 c2 0 a3 b3 c3
满足基本量量纲 独立的条件是量 纲式中的指数行 列式不等于0
定理的解题步骤
(3)基本变量依次与其余物理量组成(n-m)个无量纲项( 项),即
qm1, qm2 ,..., qn
qm j

q x1 j 1
l m
(4)以基本量纲表示 T M 1 L2 LT 2 3 M L T 1 2 3 23
mg
(5)根据量纲和谐原理
1 0 2 3 0 23 1
1 0 2 1/ 2 3 1/ 2
t l 对比 t 2 l
将其写出分量的形式: a21 a22 ... a2m x2 j a2,m j
... ... ... ... x3 j a3,m j
(4)满足π为无量纲项,
am1 am2 ... amm x4 j a4,m j
定出上面各项中基本量的指数ai , bi , ci
qm j
相关文档
最新文档