高中数学课时跟踪检测二独立性检验的基本思想及其初步应用新人教A版选修1_2

合集下载

高中数学 1-2《独立性检验的基本思想及其初步应用》同步 新人教A版选修1-2

高中数学 1-2《独立性检验的基本思想及其初步应用》同步 新人教A版选修1-2

根据列联表中所给的数据,有 a=38,b=442,c=6,
d=514,a+b=480,c+d=520,a+c=44,b+d=956,n
=1000,得 K2 的观测值
k=(a+b)(cn+(add-)(ab+c)c2)(b+d)

1000×(38×514-442×6)2 480×520×44×956
本节重点:理解独立性检验的基本思想及实 施步骤.
本节难点:(1)了解独立性检验的基本思想.
(2)了解随机变量K2的含义.
在学习中要多从实际问题考虑,对一些典型 案例的数据的处理,了解和使用一些常用的 统计方法,树立应用数学的意识,树立数学 为实践服务的思想.
1.2×2列联表是传统的调查研究中最常用 的方法之一,用于研究两个变量之间相互独 立还是存在某种关联性,它适用于分析两个 变量之间的关系.
一般地,假设两个分类变量X和Y,它们的取值分 别为{x1,x2} 和 {y1,y2},其样本频数列联表(也称 为2×2列联表)为下表.
x1
x2 总计
y1 a
c a+c
y2 b
d b+d
总计 a+b c+d a+b+c+d
2.等高条形图
(1)等高条形图与表格相比,更能直观地反映 出两个分类变量间是否 互相影响 , 常 用 等 高
2.在实际问题中,判断两个分类变量的关 系的可靠性时,一般利用随机变量K2来确定, 而不利用三维柱形图和二维条形图.
1.分类变量和列联表
(1)分类变量
变量的不同“值”表示个体所属的不同类别 , 像 这样的变量称为分类变量.
(2)列联表 ①定义:列出的两个分类变量的 频数表 称 为 列 联表.
②2×2列联表
[例2] 下面2×2列联表的K2的值为________. [答案] 1.780

高中数学选修1-2《1.2 独立性检验的基本思想及其初步应用》课后作业本(人教A版,pdf版,含答案)

高中数学选修1-2《1.2 独立性检验的基本思想及其初步应用》课后作业本(人教A版,pdf版,含答案)

认为性 别 与 喜 欢 饮 酒 有 关 的 正 确 性 的 概 率 为
若两个分类变量 # 与 $ 的列联表为 ( !
独立性检验的基本思想及其初步应用 第一章 统计案例 下表 是 某 地 区 的 一 种 传 染 病 与 饮 用 水 的 调 0 查表
已知 ' !
)
/ 0 +" * * * "% '! 0
)

" 根 据 表 中 的 数 据 计 算% 得到 # * / ) / * * #% *
&% - / ! # (% )) 0 * .
)
!
) " ) + *3 ! # * #3) *5# ) !3! " 则 # + "% # ) ) "3. "3# ! .3# ! !
独立性检验的基本思想及其初步应用 第一章 统计案例
第三课时
班级 姓名 时间 ! " 分钟 某班主任对全班" # *名学生进行了作业量的 数据如下表 ( 调查 %
认为作业多 男生 女生 总计 # / / ) . 认为作业不多 + # " ) ! 总计 ) 0 ) " *
试作统计分析推 断 得 病 是 否 与 饮 用 不 干 净 水 有关

#
)
总计 ) " " . / #
# )
总计
# * ! * " *
# " # . #
则* 这个结论出错的可能 # 与$ 之间有关系 + 性为 列表 ( "
'! ) ! * " * *" ! *

2020高中数学 1.2独立性检验的基本思想及其初步应用教材分析 新人教A版选修1-2

2020高中数学 1.2独立性检验的基本思想及其初步应用教材分析 新人教A版选修1-2

2020高中数学 1.2独立性检验的基本思想及其初步应用教材分析新人教A版选修1-2教材分析:本节内容是数学与实际生活相关联的典型代表,课程标准把最基本的数据处理和统计的知识等作为新的数学基础知识和基本技能,具备一些统计知识已成为现代人应具备的一种数学素养。

独立性检验对考查学生“获取信息、应用信息以及数据处理能力”和“应用意识与创新意识”起到了非常重要的作用。

1、课标定位:了解独立性检验的基本思想、方法及其简单应用(只要求2x2列联表);2、主要内容:2x2列联表;独立性检验的思想与一般步骤;教学重点:独立性检验的思想与一般步骤;3、知识基础:(1)样本频率估计总体;(2)小概率事件的意义;(3)读图识图能力;(4)反证法原理与步骤;4、本课特点:贴近生活实际,但理论抽象,难度较大1、教学思路清晰,知识的呈现和生成自然。

从引入分类变量到直观感知两分类变量的关系,再到引入统计量K2进行定量的描述,层层递进,步步为营,设计合理有效。

从课堂学生反映来看,学生掌握的知识是系统的,有效的。

2、重难点突出,教学方法得当。

本课的教学目标是理解分类变量的含义,体会两个分类变量之间可能具有相关性;通过对典型案例的探究,了解独立性检验(只要求2×2列连表)的基本思想、方法、步骤及应用;教学重点和难点在于独立性检验的思想和一般步骤。

王老师在本课中牢牢抓住这一目标,放手让学生探索引例中两分类变量的相关性,同时引领学生逐步感知直观判断相关性的方法,又通过信息技术手段进一步让学生明确问题的实质,最后让学生在类比回归分析中相关指数和波动大小中方差的引入,自然过渡到随机变量K2的出现,同时通过引领学生阅读分析以及类比反证法的思路,进一步突破难点。

3、注重知识生成,体系构建合理完整。

板书的设计体现了整堂课的知识体系,让学生在最后时刻更加清晰的明确本节课的知识重点,很有启发性。

4、重视“学生主体、教师主导”的课堂教学原则。

人教A版高中数学选修1-2《独立性检验的基本思想及其初步应用》共7页word资料

人教A版高中数学选修1-2《独立性检验的基本思想及其初步应用》共7页word资料

课题:独立性检验的基本思想及其初步应用教材:人教A版·普通高中课程标准实验教科书·数学·选修1-2一、教学任务分析1. 在统计学中,独立性检验就是检验两个分类变量是否相关的一种统计方法. 高中数学研究的是两个分类变量各取2个值即2×2列联表的情况:2. 独立性检验与回归分析都可以判断两个变量的相关关系. 两者既有联系又有区别,回归分析适用于定量变量的问题,独立性检验适用于分类变量的问题.二、教学目标(1)能够用列联表、三维柱形图、二维条形图、等高条形图直观地判断两个分类变量是否相关.(2)了解独立性检验的基本思想,能够按照独立性检验的步骤去检验两个分类变量的关系.(3)通过独立性检验的学习,了解数学在统计与概率中的确定性思维特点,体会直观与抽象、感性与理性的联系.三、教学重点、难点教学重点:理解独立性检验的基本思想及实施步骤.教学难点:(1)了解独立性检验的基本思想.(2)了解随机变量卡方的含义.四、教学方法与手段采用“活动(课前)→问题→解决问题→总结”的教学方法,即:在教师的引导下,通过开放性问题的设置来启发学生思考,在思考中体会数学概念的形成过程中所蕴涵的数学思想和方法,加强学生能力的培养.利用计算器进行数据计算,通过Excel软件作图,通过制作的课件呈现更丰富的教学素材.五、课前准备(1)布置实习作业学完《§1.1回归分析的基本思想及其初步应用》后,让学生完成判断两个变量是否相关的题目,一类是可以用回归分析解决的(如问题一),另一类则不行(如问题二). 把这两类问题以实习作业的形式要求学生进行收集数据、整理分析数据、得出结论并进行估计与预测. 作业要求思路清晰、图文并茂、言之有理.(2)本节课前的实习作业问题一:课外学习时间与学习成绩的关系问题二:高中学生是否喜欢音乐与性别的关系这里是我的一个实习作业的范例。

六、教学流程(一)创设情景,问题引入(二)观察感知,启发引导(三)自主探究,体会思想(四)例题学习,变式巩固(五)知识应用,尝试练习(六)解决疑问,尝试小结(七)课后作业,自主学习板书设计八、教学反思1. 注重系统学习,课后作业为下一节课作铺垫.课前作业(即前面学习的作业)的中“问题二”与熟悉的问题有些类似,都是两个变量的相关关系,但却不能使用回归分析的方法来做. 尽管如此,学生还是能够利用比例、图形去解决问题,为新课学习提供了很好的铺垫. 本节课的作业,除了巩固所学知识,也要为下一节课作铺垫.2. 解决疑问,尝试小结在教学设计过程中,预留时间给学生提出自己的问题,尝试自己去小结,可让学生做到自主学习,进行课堂复习,有时还能克服学生在下课前的疲劳状态.给时间学生思考本节课还不懂的问题,可写在小纸上. 对于学生提出的问题,适当解决. 这样可方便进行教学反思,也为下一节课的设计提供一些材料.独立性检验的基本思想及其初步应用的教案说明教材:人教A版·普通高中课程标准实验教科书·数学·选修1-2 针对所教班级的数学基础比较弱,本节课通过之前准备的两个实习作业,让学生在一定的感性认识的基础上,带着问题与好奇心,感受数学从感性认识上升到理性认识,共同经历从定性描述到定量描述的过程,从中认识数学解决问题的方法. 根据新课程的特点,本课以学生发展为本,遵循学生的认知规律,体现循序渐进、共同探究与启发式的教学原则,充分发挥学生的主体作用与教师在适当环节的引导作用.一、对教学目标和教学重难点的认识:根据数学学科的特点、学生身心发展的合理需要,本节课从认知、能力、情感等层面确定了相应的教学目标.重点是理解独立性检验的基本思想及实施步骤;而难点是了解独立性检验的基本思想及随机变量卡方的含义二、教学方法的选择:采用“活动(课前)→问题→解决问题→总结”的教学方法,即:在教师的引导下,通过开放性问题的设置来启发学生思考,在思考中体会数学概念的形成过程中所蕴涵的数学思想和方法,加强学生能力的培养.三、教学手段的利用:采用多媒体技术,通过各种素材的呈现,提高学生学习兴趣、激活学生思维、加深理解.四、教学过程的说明:针对学生已有的体验以及学生的认知水平,把教学过程分为了七个环节:。

2019-2020学年高中数学(人教版选修1-2)课时跟踪检测(二) 独立性检验的基本思想及其初步应用 Word版含

2019-2020学年高中数学(人教版选修1-2)课时跟踪检测(二) 独立性检验的基本思想及其初步应用 Word版含

课时跟踪检测(二) 独立性检验的基本思想及其初步应用一、选择题1.判断两个分类变量是彼此相关还是相互独立的常用的方法中,最为精确的是( )A.2×2列联表 B.独立性检验C.等高条形图 D.其他解析:选B A、C只能直观地看出两个分类变量x与y是否相关,但看不出相关的程度.独立性检验通过计算得出相关的可能性,较为准确.2.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B k越大,“X与Y没有关系”的可信程度越小,则“X与Y有关系”的可信程度越大.即k 越小,“X与Y有关系”的可信程度越小.故选B.3.利用独立性检验对两个分类变量是否有关系进行研究时,若在犯错误的概率不超过0.005的前提下认为事件A和B有关系,则具体计算出的数据应该是( )A.k≥6.635 B.k<6.635C.k≥7.879 D.k<7.879解析:选C 犯错误的概率为0.5%,对应的k0的值为7.879,由独立性检验的思想可知应为k≥7.879.4.(江西高考)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )表1表2表3表4A .成绩B .视力C .智商D .阅读量解析:选D 因为k1=-16×36×32×20=52×8216×36×32×20,k2=-16×36×32×20=52×112216×36×32×20,k3=-16×36×32×20=52×96216×36×32×20,k4=-16×36×32×20=52×408216×36×32×20,则有k 4>k 2>k 3>k 1,所以阅读量与性别关联的可能性最大.5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K2=-++++算得,观测值k=-60×50×60×50≈7.8.附表:A.有99%以上的把握认为“爱好该项运动与性别有关”B.有99%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”解析:选A 由k≈7.8及P(K2≥6.635)=0.010可知,在犯错误的概率不超过1%的前提下认为“爱好该项运动与性别有关”,也就是有99%以上的把握认为“爱好该项运动与性别有关”.二、填空题6.下列关于K2的说法中,正确的有________(填序号).①K2的值越大,两个分类变量的相关性越大;②K2的计算公式是K2=-++++;③若求出K2=4>3.841,则有95%的把握认为两个分类变量有关系,即有5%的可能性使得“两个分类变量有关系”的推断出现错误;④独立性检验就是选取一个假设H0条件下的小概率事件,若在一次试验中该事件发生了,这是与实际推断相抵触的“不合理”现象,则作出拒绝H0的推断.解析:对于①,K2的值越大,只能说明我们有更大的把握认为二者有关系,却不能判断相关性大小,故①错;对于②,(ad-bc)应为(ad-bc)2,故②错;③④对.答案:③④7.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:).解析:因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,即b a +b =1858,d c +d =2742,两者相差较大,所以经直观分析,收看新闻节目的观众与年龄是有关的.答案:是8.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:________(填“能”或“不能”).解析:根据列联表中的数据,可以求得K 2的观测值k =-68×324×196×196≈1.779.K 2<2.072的概率为0.85.不能作出这两种手术对病人又发作心脏病的影响有差别的结论.答案:1.779 不能 三、解答题9.巴西医生马廷恩收集犯有各种贪污、受贿罪的官员与廉洁官员寿命的调查资料:500名贪官中有348人的寿命小于平均寿命,152人的寿命大于或等于平均寿命;590名廉洁官员中有93人的寿命小于平均寿命,497人的寿命大于或等于平均寿命.这里,平均寿命是指“当地人均寿命”.能否在犯错误的概率不超过0.01的前提下认为官员在经济上是否清廉与他们寿命的长短之间有关系?解:据题意列2×2列联表如下:由公式得K 2的观测值k =8×497-500×590×441×649≈325.635.因为325.635>6.635,因此,在犯错误的概率不超过0.01的前提下认为官员在经济上是否清廉与他们寿命的长短之间是有关系的.10.某地震观测站对地下水位的变化和发生地震的情况共进行1 700次观测,列联表如下:者有关系.解:相应的等高条形图如图所示.图中两个阴影条的高分别表示水位有变化和水位无变化的样本中有震的频率.由图可看出,水位有变化样本中有震的频率与水位无变化样本中有震的频率相差不大,因此不能判断地震与水位变化有关系.根据列联表中的数据,得K 2的观测值为k =8×618-1 000×700×180×1 520≈1.594<2.072,所以题中数据没有充分的证据显示地下水位的变化与地震的发生有关系,但也不能认为二者无关系.。

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

学业分层测评(建议用时:分钟)[学业达标]一、选择题.如果在犯错误的概率不超过的前提下认为事件和有关,那么具体算出的数据满足( ).<.>.<.>【解析】对应(≥)的临界值表可知,当>时,在犯错误的概率不超过的前提下认为事件与有关.【答案】.通过随机询问名性别不同的大学生是否爱好某项运动,得到如下的列联表:=≈.附表:.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别有关”.在犯错误的概率不超过的前提下,认为“爱好该项运动与性别无关”.有以上的把握认为“爱好该项运动与性别有关”.有以上的把握认为“爱好该项运动与性别无关”【解析】根据独立性检验的思想方法,正确选项为.【答案】.下列关于等高条形图的叙述正确的是( ).从等高条形图中可以精确地判断两个分类变量是否有关系.从等高条形图中可以看出两个变量频数的相对大小.从等高条形图中可以粗略地看出两个分类变量是否有关系.以上说法都不对【解析】在等高条形图中仅能粗略判断两个分类变量的关系,故错.在等高条形图中仅能够找出频率,无法找出频数,故错.【答案】.分类变量和的列联表如下,则( ).-越大,说明与的关系越强.(-)越大,说明与的关系越强.(-)越接近于,说明与的关系越强【解析】结合独立性检验的思想可知-越大,与的相关性越强,从而(-)越大,说明与的相关性越强.【答案】.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过的前提下认为这个结论是成立的.下列说法中正确的是( ).个心脏病患者中至少有人打鼾.个人患心脏病,则这个人有的概率打鼾.个心脏病患者中一定有打鼾的人.个心脏病患者中可能一个打鼾的人都没有【解析】这是独立性检验,在犯错误的概率不超过的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为.根据概率的意义可知答案应选.【答案】.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了名高中生,通过问卷调查,得到以下数据:。

(新课程)高中数学1.2 独立性检验的基本思想及其初步应用教案 新人教A版选修1-2

(新课程)高中数学1.2 独立性检验的基本思想及其初步应用教案 新人教A版选修1-2

1.2独立性检验的基本思想及其初步应用(二)教学要求:通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题,并借助样本数据的列联表、柱形图和条形图展示在吸烟者中患肺癌的比例比不吸烟者中患肺癌的比例高,让学生亲身体验独立性检验的实施步骤与必要性.教学重点:理解独立性检验的基本思想及实施步骤.教学难点:了解独立性检验的基本思想、了解随机变量2K 的含义.教学过程:教学过程:一、复习准备:独立性检验的基本步骤、思想二、讲授新课:1. 教学例1:例1 在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶. 分别利用图形和独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论在什么范围内有效?① 第一步:教师引导学生作出列联表,并分析列联表,引导学生得出“秃顶与患心脏病有关”的结论;第二步:教师演示三维柱形图和二维条形图,进一步向学生解释所得到的统计结果; 第三步:由学生计算出2K 的值;第四步:解释结果的含义.② 通过第2个问题,向学生强调“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其它的证据表明可以进行这种推广.2. 教学例2:例2 为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机由表中数据计算得到的观察值. 在多大程度上可以认为高中生的性别与是否数学课程之间有关系?为什么?(学生自练,教师总结)强调:①使得2( 3.841)0.05P K ≥≈成立的前提是假设“性别与是否喜欢数学课程之间没有关系”.如果这个前提不成立,上面的概率估计式就不一定正确;②结论有95%的把握认为“性别与喜欢数学课程之间有关系”的含义;③在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算2K 的值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.3. 小结:独立性检验的方法、原理、步骤 三、巩固练习: 某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表:请问有多大把握认为“高中生学习状况与生理健康有关”?。

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

高中数学人教A版选修1-2学业分层测评2 独立性检验的基本思想及其初步应用 Word版含解析

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.如果在犯错误的概率不超过0.05的前提下认为事件A和B有关,那么具体算出的数据满足()A.K2>3.841 B.K2<3.841C.K2>6.635 D.K2<6.635【解析】对应P(K2≥k0)的临界值表可知,当K2>3.841时,在犯错误的概率不超过0.05的前提下认为事件A与B有关.【答案】 A2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K2=(a+b)(c+d)(a+c)(b+d)算得,k=110×(40×30-20×20)260×50×60×50≈7.8.附表:A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”【解析】根据独立性检验的思想方法,正确选项为C.【答案】 C3.下列关于等高条形图的叙述正确的是()A.从等高条形图中可以精确地判断两个分类变量是否有关系B.从等高条形图中可以看出两个变量频数的相对大小C.从等高条形图中可以粗略地看出两个分类变量是否有关系D.以上说法都不对【解析】在等高条形图中仅能粗略判断两个分类变量的关系,故A错.在等高条形图中仅能够找出频率,无法找出频数,故B错.【答案】 C3.分类变量X和Y的列联表如下,则()B.ad-bc越大,说明X与Y的关系越强C.(ad-bc)2越大,说明X与Y的关系越强D.(ad-bc)2越接近于0,说明X与Y的关系越强【解析】结合独立性检验的思想可知|ad-bc|越大,X与Y的相关性越强,从而(ad-bc)2越大,说明X与Y的相关性越强.【答案】 C4.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是()A.100个心脏病患者中至少有99人打鼾B.1个人患心脏病,则这个人有99%的概率打鼾C.100个心脏病患者中一定有打鼾的人D.100个心脏病患者中可能一个打鼾的人都没有【解析】这是独立性检验,在犯错误的概率不超过0.01的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为99%.根据概率的意义可知答案应选D.【答案】 D5.为了解高中生作文成绩与课外阅读量之间的关系,某研究机构随机抽取了60名高中生,通过问卷调查,得到以下数据:确的是()【导学号:19220006】A.没有充足的理由认为课外阅读量大与作文成绩优秀有关B.有0.5%的把握认为课外阅读量大与作文成绩优秀有关C.有99.9%的把握认为课外阅读量大与作文成绩优秀有关D.有99.5%的把握认为课外阅读量大与作文成绩优秀有关【解析】根据临界值表,9.643>7.879,在犯错误的概率不超过0.005的前提下,认为课外阅读量大与作文成绩优秀有关,即有99.5%的把握认为课外阅读量大与作文成绩优秀有关.【答案】 D二、填空题6.在吸烟与患肺病是否相关的判断中,有下面的说法:①若K2的观测值k>6.635,则在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系,那么在100个吸烟的人中必有99人患有肺病;②从独立性检验可知在犯错误的概率不超过0.01的前提下,认为吸烟与患肺病有关系时,若某人吸烟,则他有99%的可能患有肺病;③从独立性检验可知在犯错误的概率不超过0.05的前提下,认为吸烟与患肺病有关系时,是指有5%的可能性使得推断错误.其中说法正确的是________.(填序号)【解析】K2是检验吸烟与患肺病相关程度的量,是相关关系,而不是确定关系,是反映有关和无关的概率,故说法①错误;说法②中对“确定容许推断犯错误概率的上界”理解错误;说法③正确.【答案】③6.为了探究电离辐射的剂量与人体的受损程度是否有关,用两种不同剂量的电离辐射照射小白鼠.在照射后14天内的结果如表所示:【解析】由独立性检验的步骤知第一步先假设两分类变量无关,即假设电离辐射的剂量与小白鼠的死亡无关.【答案】假设电离辐射的剂量与小白鼠的死亡无关7.为研究某新药的疗效,给50名患者服用此药,跟踪调查后得下表中的数据:,从0而得出结论:服用此药的效果与患者的性别有关,这种判断出错的可能性为________.【解析】由公式计算得K2的观测值k≈4.882,∵k>3.841,∴有95%的把握认为服用此药的效果与患者的性别有关,从而有5%的可能性出错.【答案】 4.8825%8.在对某小学的学生进行吃零食的调查中,得到如下表数据:【解析】由公式可计算得k=102×(27×29-34×12)2 39×63×61×41≈2.334.【答案】 2.334三、解答题9.为了解铅中毒病人与尿棕色素为阳性是否有关系,分别对病人组和对照组的尿液作尿棕色素定性检查,结果如下:无差别,铅中毒病人与尿棕色素为阳性是否有关系.【解】等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.由图可以直观地看出铅中毒病人与对照组相比较尿棕色素为阳性差异明显,因此铅中毒病人与尿棕色素为阳性有关系.10.(2016·江西吉安高二检测)对某校小学生进行心理障碍测试得到如下表列联表:有心理障碍没有心理障碍总计女生1030男生7080总计20110附:P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.072 2.706 3.841 5.024 6.6357.87910.828 【解】将列联表补充完整如下:有心理障碍没有心理障碍总计女生102030男生107080总计2090110k=110×(10×70-20×10)230×80×20×90≈6.366>5.024,所以有97.5%的把握认为心理障碍与性别有关.[能力提升]1.(2016·玉溪高二检测)某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算K2≈3.918,经查临界值表知P(K2≥3.841)≈0.05.则下列表述中正确的是() A.有95%的把握认为“这种血清能起到预防感冒的作用”B.若有人未使用该血清,那么他一年中有95%的可能性得感冒C.这种血清预防感冒的有效率为95%D.这种血清预防感冒的效率为5%【解析】根据随机变量K2的意义知A正确.【答案】 A2.有两个分类变量X,Y,其一组观测值如下面的2×2列联表所示:为X,Y有关,则a的值为()A.8B.9C.8,9 D.6,8【解析】根据公式,得k=65×[a(30+a)-(15-a)(20-a)]2 20×45×15×50=13×(13a-60)220×45×3×2>3.841,根据a>5且15-a>5,a∈Z,求得a=8,9满足题意.【答案】 C3.某班主任对全班50名学生作了一次调查,所得数据如下表:能”)在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与作业多有关.【解析】查表知若要在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关,则临界值k0=6.635.本题中,k≈5.059<6.635,所以不能在犯错误的概率不超过0.01的前提下认为喜欢玩电脑游戏与认为作业多有关.【答案】不能3.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:K2=________(保留三位小数),所以判定________(填“有”或“没有”)95%的把握认为主修统计专业与性别有关系.(参考公式:)K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d);【解析】根据提供的表格,得k=50(13×20-7×10)223×27×20×30≈4.844>3.841,∴可以判定有95%的把握认为主修统计专业与性别有关系.【答案】有4.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下表:(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.【解】(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)k=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男女的比例,再把老年人分成男女两层,并采用分层抽样方法比采用简单随机抽样方法更好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

——教学资料参考参考范本——高中数学课时跟踪检测二独立性检验的基本思想及其初步应用新人教A版选修1_2______年______月______日____________________部门层级一学业水平达标1.以下关于独立性检验的说法中,错误的是( )A.独立性检验依赖于小概率原理B.独立性检验得到的结论一定准确C.样本不同,独立性检验的结论可能有差异D.独立性检验不是判断两事物是否相关的唯一方法解析:选B 根据独立性检验的原理可知得到的结论是错误的情况是小概率事件,但并不一定是准确的.2.观察下列各图,其中两个分类变量之间关系最强的是( )解析:选D 在四幅图中,D图中两个阴影条的高相差最明显,说明两个分类变量之间关系最强,故选D.3.在列联表中,下列哪两个比值相差越大,两个分类变量有关系的可能性就越大( )A.与B.与ac+dC.与 D.与cb+c解析:选C 由等高条形图可知与的值相差越大,|ad-bc|就越大,相关性就越强.4.对于分类变量X与Y的随机变量K2的观测值k,下列说法正确的是( )A.k越大,“X与Y有关系”的可信程度越小B.k越小,“X与Y有关系”的可信程度越小C.k越接近于0,“X与Y没有关系”的可信程度越小D.k越大,“X与Y没有关系”的可信程度越大解析:选B K2的观测值k越大,“X与Y有关系”的可信程度越大.因此,A、C、D都不正确.5.考察棉花种子经过处理跟生病之间的关系得到下表数据:种子处理种子未处理总计得病32101133不得病61213274总计93314407根据以上数据,可得出( )A.种子是否经过处理跟是否生病有关B.种子是否经过处理跟是否生病无关C.种子是否经过处理决定是否生病D.以上都是错误的解析:选B 由K2=≈0.164<2.706,即没有把握认为是否经过处理跟是否生病有关.6.在一项打鼾与患心脏病的调查中,共调查了1 671人,经过计算K2的观测值k=27.63,根据这一数据分析,我们有理由认为打鼾与患心脏病是________的.(填“有关”或“无关”)解析:∵K2的观测值k=27.63,∴k>10.828,∴在犯错误的概率不超过0.001的前提下认为打鼾与患心脏病是有关的.答案:有关7.如果根据性别与是否爱好运动的列联表得到K2≈3.852>3.841,则判断性别与是否爱好运动有关,那么这种判断犯错的可能性不超过________.解析:∵P(K2≥3.841)≈0.05.∴判断性别与是否爱好运动有关,出错的可能性不超过5%.答案:5%8.统计推断,当________时,在犯错误的概率不超过0.05的前提下认为事件A与B有关;当________时,认为没有充分的证据显示事件A与B是有关的.解析:当k>3.841时,就有在犯错误的概率不超过0.05的前提下认为事件A与B有关,当k≤2.706时认为没有充分的证据显示事件A与B是有关的.答案:k>3.841 k≤2.7069.为了调查胃病是否与生活规律有关,在某地对540名40岁以上的人进行了调查,结果是:患胃病者生活不规律的共60人,患胃病者生活规律的共20人,未患胃病者生活不规律的共260人,未患胃病者生活规律的共200人.(1)根据以上数据列出2×2列联表;(2)在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关系吗?为什么?解:(1)由已知可列2×2列联表:患胃病未患胃病总计生活规律20200220生活不规律60260320总计80460540(2)根据列联表中的数据,由计算公式得K2的观测值k=220×320×80×460≈9.638.∵9.638>6.635,因此,在犯错误的概率不超过0.01的前提下认为40岁以上的人患胃病与否和生活规律有关.10.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球不喜爱打篮球合计男生 a b=5女生c=10 d合计50已知在全部50人中随机抽取1人抽到爱打篮球的学生的概率为.(1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜爱打篮球与性别有关;请说明理由.附参考公式:K2=,其中n=a+b+c+d.P(K2≥k0)0.150.100.050.0250.010.0050.001k 02.0722.7063.8415.0246.6357.87910.828解:(1)列联表补充如下:喜爱打篮球不喜爱打篮球合计男生20525女生101525合计302050(2)∵K2=≈8.333>7.879,∴有99.5%的把握认为喜爱打篮球与性别有关.层级二应试能力达标1.在第29届北京奥运会上,中国健儿取得了51金、21银、28铜的好成绩,稳居金牌榜榜首,由此许多人认为中国进入了世界体育强国之列,也有许多人持反对意见,有网友为此进行了调查,在参加调查的2 548名男性中有1 560名持反对意见,2 452名女性中有1 200名持反对意见,在运用这些数据说明性别对判断“中国进入了世界体育强国之列”是否有关系时,用什么方法最有说服力( ) A.平均数与方差B.回归直线方程C.独立性检验 D.概率解析:选C 由于参加调查的人按性别被分成了两组,而且每一组又被分成了两种情况,判断有关与无关,符合2×2列联表的要求,故用独立性检验最有说服力.2.对于独立性检验,下列说法正确的是( )A.K2>3.841时,有95%的把握说事件A与B无关B.K2>6.635时,有99%的把握说事件A与B有关C.K2≤3.841时,有95%的把握说事件A与B有关D.K2>6.635时,有99%的把握说事件A与B无关解析:选B 由独立性检验的知识知:K2>3.841时,有95%的把握认为“变量X与Y有关系”;K2>6.635时,有99%的把握认为“变量X与Y有关系”.故选项B正确.3.想要检验是否喜欢参加体育活动是不是与性别有关,应该检验( )A.H0:男性喜欢参加体育活动B.H0:女性不喜欢参加体育活动C.H0:喜欢参加体育活动与性别有关D.H0:喜欢参加体育活动与性别无关解析:选D 独立性检验假设有反证法的意味,应假设两类变量(而非变量的属性)无关,这时的K2应该很小,如果K2很大,则可以否定假设,如果K2很小,则不能够肯定或者否定假设.4.春节期间,“厉行节约,反对浪费”之风悄然吹开,某市通过随机询问100名性别不同的居民是否能做到“光盘”,得到如下的列联表:做不到“光盘”能做到“光盘”男4510女3015由此表得到的正确结论是( )A.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别有关”B.在犯错误的概率不超过0.01的前提下,认为“该市居民能否做到‘光盘’与性别无关”C.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别有关”D.在犯错误的概率不超过0.1的前提下,认为“该市居民能否做到‘光盘’与性别无关”解析:选C由2×2列联表得到a=45,b=10,c=30,d=15.则a+b=55,c+d=45,a+c=75,b+d=25,ad=675,bc=300,n=100.代入K2=,得K2的观测值k=≈3.030.因为2.706<3.030<3.841.所以在犯错误的概率不超过0.1的前提下认为“该市居民能否做到‘光盘’与性别有关”.5.若两个分类变量X与Y的列联表为:y 1y 2x11015x24016则“X与Y之间有关系”这个结论出错的可能性为________.解析:由题意可得K2的观测值k=≈7.227,∵P(K2≥6.635)≈1%, 所以“x与y之间有关系”出错的可能性为1%.答案:1%6.对196个接受心脏搭桥手术的病人和196个接受血管清障手术的病人进行了3年的跟踪研究,调查他们是否又发作过心脏病,调查结果如下表所示:又发作过心脏病未发作过心脏病合计心脏搭桥手术39157196 血管清障手术29167196合计68324392 试根据上述数据计算K2≈________,能否作出这两种手术对病人又发作心脏病的影响有差别的结论________(填“能”或“不能”).解析:根据列联表中的数据,可以求得K2的观测值k=≈1.779.K2<2.072的概率为0.85.作出这两种手术对病人又发作心脏病的影响有差别的结论.答案:1.779 不能7.甲、乙两机床加工同一种零件,抽检得到它们加工后的零件尺寸x(单位:cm)及个数y,如下表:零件尺寸x 1.011.021.031.041.05零件个数y 甲3789 3 乙7444a由表中数据得y关于x的线性回归方程为=-91+100x(1.01≤x≤1.05),其中合格零件尺寸为1.03±0.01(cm).完成下面列联表,并判断是否有99%的把握认为加工零件的质量与甲、乙有关?合格零件数不合格零件数总计甲乙总计解:x=1.03,y=a+495,由y^=-91+100x知,a+495=-91+100×1.03,所以a=11,由于合格零件尺寸为1.03±0.01 cm,故甲、乙加工的合格与不合格零件的数据表为:合格零件数不合格零件数总计甲24630乙121830总计362460所以K2===10,因K2=10>6.635,故有99%的把握认为加工零件的质量与甲、乙有关.8.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品总计南方学生602080北方学生101020总计7030100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品.现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.P(K2≥k0)0.100.050.010k 02.7063.8416.635解:(1)将2×2列联表中的数据代入公式计算,得K2==≈4.762.由于4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.(其中ai表示喜欢甜品的学生,i=1,2.bj表示不喜欢甜品的学生,j=1,2,3)Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)}.事件A是由7个基本事件组成,因而P(A)=.11 / 11。

相关文档
最新文档