【解析版】福建省漳州市2014-2015学年八年级上期末数学试卷

合集下载

2014-2015学年八年级(上)期末数学综合检测(二)及答案

2014-2015学年八年级(上)期末数学综合检测(二)及答案

2014-2015学年八年级(上)期末数学综合检测(二)(120分钟 120分)一、选择题(每小题3分,共30分)1.(2014•滨州中考)下列四组线段中,可以构成直角三角形的是 ( ) A .4,5,6 B .1.5,2,2.5 C .2,3,4 D .1,,3B 、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C 、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、12+()2=3≠32,不可以构成直角三角形,故本选项错误.2.(2014•南京中考)下列无理数中,在﹣2与1之间的是 ( )A .﹣B . ﹣C .D .3.(2014•菏泽中考)下列计算中,正确的是 ( )A .a 3•a 2=a 6B .(π﹣3.14)0=1 C .-2﹣1=3 D .=±34.(2014•温州中考)一次函数y =2x +4的图象与y 轴交点的坐标是 ( ) A .(0,﹣4) B .(0,4) C .(2,0) D .(﹣2,0)5.(2014•云南中考)学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:则入围同学决赛成绩的中位数和众数分别是 ( ) A .9.70,9.60B .9.60,9.60C .9.60,9.70D . 9.65,9.606. (2014•襄阳中考)如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°, 则∠1等于( )A .35°B .45°C .55°D .65°7.(2014•毕节中考)若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m n 的值是( ) A .2 B .0 C .﹣1 D .18.(2014·中考昆明,)下列运算正确的是 ( ) A. 532)(a a =; B. 222)(b a b a -=-;C. 3553=-;D.3273-=-9. (2014•天津中考)下列标志中,可以看作是轴对称图形的是 ( )A .B .C .D .10.(2013•眉山中考)若实数a,b,c 满足a +b +c =0,且a <b <c ,则函数y =cx +a 的可能是 ( )二、填空题(每小题3分,共24分)11.(2014•新疆中考)规定用符号[x ]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]= .12.(2013•淮安中考)点A (﹣3,0)关于y 轴的对称点的坐标是 .13.(2014·昆明中考)甲、乙两人进行射击测试,每人10次射击成绩的平均数都是8.5环,方差分别是:22=甲S ,5.12=乙S ,则射击成绩较稳定的是 (填“甲”或“乙”).14.(2014•云南中考)如图,直线a ∥b ,直线a ,b 被直线c 所截,∠1=37°,则∠2= .15.(2014•滨州中考)某公园“6•1”期间举行特优读书游园活动,成人票和儿童票均有较大折扣.张凯、李利都随他们的家人参加了本次活动.王斌也想去,就去打听张凯、李利买门票花了多少钱.张凯说他家去了3个大人和4个小孩,共花了38元钱;李利说他家去了4个大人和2个小孩,共花了44元钱,王斌家计划去3个大人和2个小孩,请你帮他计算一下,需准备 34 元钱买门票. 16.(2013•佛山中考)命题“对顶角相等”的条件是______________.17. (2013•江西中考)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为ABCDx人,到瑞金的人数为y人,请列出满足题意的方程组是.18.(2014•益阳中考)小斌所在的课外活动小组在大课间活动中练习立定跳远,成绩如下(单位:米):1.96,2.16,2.04,2.20,1.98,2.22,2.32,则这组数据的中位数是米.三、解答题(共66分)19. (8分) (2014•温州中考)(1)计算:+2×(﹣5)+(﹣3)2+20140;(2)化简:(a+1)2+2(1﹣a)20.(6分) (2014•滨州中考)解方程组:.21. (8分) 解方程组22. (9分) (2014•益阳中考)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.23. (8分) (2014•温州中考)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)24. (7分) (2013•绍兴中考)某市出租车计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数关系式.(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.25.(10分) (2014•天津中考)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.26. (10分) (2014•新疆中考)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?答案及解析1【解析】选B.A、42+52=41≠62,不可以构成直角三角形,故本选项错误;故选B.2【解析】选B.A.,不成立;B.﹣2,成立;C.,不成立;D.,不成立,故选B.6【解析】选A.如图,∵BC⊥AE,∴∠ACB=90°.∴∠A+∠B=90°.又∵∠B=55°,∴∠A=35°.又CD∥AB,∴∠1=∠B=35°.故选A.7【解析】选D.若﹣2a m b4与5a n+2b2m+n可以合并成一项,,解得,m n=20=1,故选D.12【解析】点A(﹣3,0)关于y轴的对称点的坐标是(3,0),答案:(3,0)13【解析】对甲、乙射击测试来说,射击成绩的方差越小,射击成绩越稳定.答案:乙.14【解析】∵∠3=∠1=37°(对顶角相等),∴a∥b,∴∠2=180°﹣∠3=180°﹣37°=143°.答案:143°.15【解析】设大人门票为x,小孩门票为y,由题意,得:,解得:,则3x+2y=34.即王斌家计划去3个大人和2个小孩,需要34元的门票.答案:34.21【解析】把①代入②得5x+3(2x-7)+2z=2整理得11x+2z=23 ④④×2+③得25x=50,x=2把x=2代入①和③得y=-3,z=∴是原方程的解22【解析】∵EF∥BC,∴∠BAF=180°﹣∠B=100°,∵AC平分∠BAF,∴∠CAF=∠BAF=50°,∵EF∥BC,∴∠C=∠CAF=50°.22【解析】(1)==82.5(分),答:A,B,C,D四位同学成绩的平均分是82.5分.(2)①设E同学答对x题,答错y题,由题意得,解得,答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.24【解析】(1)由图象得:出租车的起步价是8元,;设当x>3时,y与x的函数关系式为y=kx+b,由函数图象,得,解得:,故y与x的函数关系式为:y=2x+2;(2)当y=32时,32=2x+2,x=15答:这位乘客乘车的里程是15km.②由已知可设点F的坐标是(1,t).∴直线OF的解析式为y=tx.设直线EA的解析式为y=cx+dy(c、d是常数,且c≠0).由点E和点F关于点M(1,﹣1)对称,得点E(1,﹣2﹣t).又点A、E在直线EA上,∴,解得,∴直线EA的解析式为:y=(2+t)x﹣2(2+t).∵点P为直线OF与直线EA的交点,∴tx=(2+t)x﹣2(2+t),即t=x﹣2.则有y=tx=(x﹣2)x=x2﹣2x;(Ⅱ)由(Ⅰ)可得,直线OF的解析式为y=tx.直线EA的解析式为y=(t﹣2m)x﹣2(t﹣2m).∵点P为直线OF与直线EA的交点,∴tx=(t﹣2m)x﹣2(t﹣2m),化简,得x=2﹣.有y=tx=2t﹣.∴点P的坐标为(2﹣,2t﹣).∵PQ⊥l于点Q,得点Q(1,2t﹣),∴OQ2=1+t2(2﹣)2,PQ2=(1﹣)2,∵OQ=PQ,∴1+t2(2﹣)2=(1﹣)2,化简,得t(t﹣2m)(t2﹣2mt﹣1)=0.又t≠0,∴t﹣2m=0或t2﹣2mt﹣1=0,解得m=或m=.则m=或m=即为所求.26【解析】(1)这些车的平均速度是:(40×2+50×3+60×4+70×5+80×1)÷15=60(千米/时);(2)70千米/时出现的次数最多,则这些车的车速的众数70千米/时;(3)共有15个,最中间的数是第8个数,则中位数是60千米/时.。

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷

福建省漳州市八年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2016九上·平凉期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2018七上·瑶海期末) 在下列调查中,适宜采用全面调查的是()A . 了解我省中学生的视力情况B . 了解七(1)班学生校服的尺码情况C . 检测一批电灯泡的使用寿命D . 调查安徽卫视《超级演说家》栏目的收视率3. (2分) (2019七上·蚌埠月考) 2018年合肥市常住总人口约800万,关于“800万”,下列说法正确的是()A . 它精确到个位B . 它精确到百位C . 它精确到万位D . 它精确到百万位4. (2分)(2016·株洲) 如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A . 1B . 2C . 3D . 45. (2分) (2019八上·鄂州期末) 已知点P(a+1,2a -3)关于x轴的对称点在第一象限,则a的取值范围是()A .B .C .D .6. (2分) (2016七上·嘉兴期中) 数轴上的点与下列各数中的什么数一一对应()A . 整数B . 有理数C . 无理数D . 实数7. (2分) (2017八上·上城期中) 下列各组所列条件中,不能判断和全等的是().A . ,,B . ,,C . ,,D . ,,8. (2分) (2016九上·龙湾期中) 下列选项中的事件,属于必然事件的是()A . 掷一枚硬币,正面朝上B . 某运动员跳高的最好成绩是20.1米C . 明天是晴天D . 三角形的内角和是180°9. (2分)三角形两边长为6与8,那么周长l的取值范围()A . 2<l<14B . 16<l<28C . 14<l<28D . 20<l<2410. (2分)甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A . 甲、乙两人的速度相同B . 甲先到达终点C . 乙用的时间短D . 乙比甲跑的路程多二、填空题 (共8题;共9分)11. (1分) (2016八上·盐城期末) 分式有意义的条件是________.12. (1分) (2017九上·潮阳月考) 平面直角坐标系中,P(2,3)关于原点对称的点A 坐标是________.13. (1分) (2019八下·番禺期末) 将一次函数y=2x﹣3的图象沿y轴向上平移3个单位长度,所得直线的解析式为________.14. (1分)在△ABC中,∠A+∠B=150°,∠C=3∠A,则∠A=________ °.15. (1分) (2017八下·老河口期末) 如图,小正方形边长为1,连接小正方形的三个顶点,可得△ABC,则AC边上的高长度为________.16. (1分)(2018·长春) 如图,在平面直角坐标系中,点A、B的坐标分别为(1,3)、(n,3),若直线y=2x 与线段AB有公共点,则n的值可以为________.(写出一个即可)17. (2分)从2001年2月21日零时起,中国电信执行新的固定电话收费标准,其中本地网营业区内通话费是:前3分钟是0.2元(不足3分钟近3分钟计算),以后每分钟加收0.1元(不足1分钟按1分钟科计算),现有一个学生星期天打本地网营业区内电话t分钟(t>3)应交电话费________元.18. (1分) (2017八下·丽水期末) 如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________三、解答题 (共8题;共84分)19. (10分)求下列各式中的x.①x2=25②(x﹣3)3=27.20. (2分) (2020九上·莘县期末) 如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点△ABC的三个顶点A,B,C都在格点上将△ABC绕点A顺时针方向旋转90°得到△AB'C'。

2014-2015学年度第一学期初二数学期末试卷及答案

2014-2015学年度第一学期初二数学期末试卷及答案
„„„„„„„„„„密„„„„封„„„„线„„„„内„„„„不„„„„要„„„„答„„„„题„„„„„„„„„„
2014~2015 学年度第一学期期末考试
八年级数学 2015.2
说明:本卷满分 110 分,考试用时 100 分钟,解答结果除特殊要求外均取精确值,可使 用计算器. 一、选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1. 2 的算术平方根是„„„„„„„„„„„„„„„„„„„„„„„„„„ ( ) A. 2 B.2 C.± 2 D.±2 2. 下面有 4 个汽车商标图案, 其中是轴对称图形的是„„„„„„„„„„„„ ( )
A B
y
A
C
O C
D
F
E
E B
O
x
B
D
C A
D
(第 3 题)
(第 4 题)
(第 7 题)
(第 8 题)
5.已知点(-2,y1),(3,y2)都在直线 y=-x+b 上,则 y1 与 y2 的大小关系是„„( ) A.y1<y2 B.y1=y2 C.y1>y2 D.无法确定 6.如图,直线 l 是一条河,P,Q 是两个村庄.计划在 l 上的某处修建一个水泵站 M, 向 P,Q 两地供水.现有如下四种铺设方案(图中实线表示铺设的管道) ,则所需管道最 短的是„„( )
y A
4
D
B
7 - 2
O
图③
M
C 9
x
初二数学期终试卷 2015.2
第 6 页 共 8 页
2014-2015 学年第一学期八年级数学期末试卷答案及评分标准
(考试时间 100 分钟,共 110 分) 一.选择题: (本大题共 10 小题,每题 3 分,共 30 分) 1.A 2.B 3.B 4.A 5.C 6.D 7.B 8.C 9.D 10.D

2014年福建省漳州市中考数学试卷(含解析版).doc

2014年福建省漳州市中考数学试卷(含解析版).doc

2014年福建省漳州市中考数学试卷一、单项选择题(共10小题,每小题4分,满分40分)1.(4分)(2014年福建漳州)如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点CC.点B与点D D.点B与点C2.(4分)(2014年福建漳州)如图,∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角3.(4分)(2014年福建漳州)下列计算正确的是()A.=±2 B.3﹣1=﹣C.(﹣1)2014=1 D. |﹣2|=﹣2 4.(4分)(2014年福建漳州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.(4分)(2014年福建漳州)若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B.0 C.1 D. 26.(4分)(2014年福建漳州)如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D. 5个7.(4分)(2014年福建漳州)中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对大度8.(4分)(2014年福建漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A.7盒B.8盒C.9盒D. 10盒9.(4分)(2014年福建漳州)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0 B.C.D. 110.(4分)(2014年福建漳州)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()A.B.C.D.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2014年福建漳州)若菱形的周长为20cm,则它的边长是cm.12.(4分)(2014年福建漳州)双曲线y=所在象限内,y的值随x值的增大而减小,则满足条件的一个数值k为.13.(4分)(2014年福建漳州)在《中国梦•我的梦》演讲比赛中,将5个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是分.14.(4分)(2014年福建漳州)如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是.15.(4分)(2014年福建漳州)水仙花是漳州市花,如图,在长为14m,宽为10m 的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为m.16.(4分)(2014年福建漳州)已知一列数2,8,26,80.…,按此规律,则第n 个数是.(用含n的代数式表示)三、解答题(共9小题,满分86分)17.(8分)(2014年福建漳州)先化简,再求值:(x+1)(x﹣1)﹣x(x﹣1),其中x=.18.(8分)(2014年福建漳州)解不等式组:.19.(8分)(2014年福建漳州)如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)20.(8分)(2014年福建漳州)如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是度和度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有个等腰三角形,其中有个黄金等腰三角形.21.(8分)(2014年福建漳州)某中学组织网络安全知识竞赛活动,其中七年级6个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15人,并制作成如图所示不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是班;(2)若二班获奖人数占班级参赛人数的32%,则全年级参赛人数是人;(3)若该年级并列第一名有男、女同学各2名,从中随机选取2名参加市级比赛,则恰好是1男1女的概率是.22.(10分)(2014年福建漳州)将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm).(参考数据:≈1.73,≈1.41)23.(10分)(2014年福建漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)24.(12分)(2014年福建漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB 边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.25.(14分)(2014年福建漳州)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M 的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.2014年福建省漳州市中考数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题4分,满分40分)1.(4分)(2014年福建漳州)如图,数轴上有A、B、C、D四个点,其中表示互为相反数的点是()A.点A与点D B.点A与点CC.点B与点D D.点B与点C【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:2与﹣2互为相反数,故选:A.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(4分)(2014年福建漳州)如图,∠1与∠2是()A.对顶角B.同位角C.内错角D.同旁内角【考点】同位角、内错角、同旁内角.【分析】根据同位角的定义得出结论.【解答】解:∠1与∠2是同位角.故选:B.【点评】本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.(4分)(2014年福建漳州)下列计算正确的是()A.=±2 B.3﹣1=﹣C.(﹣1)2014=1 D. |﹣2|=﹣2【考点】算术平方根;绝对值;有理数的乘方;负整数指数幂.【分析】根据算术平方根的定义,负整数指数次幂等于正整数指数次幂的倒数,有理数的乘方,绝对值的性质对各选项分析判断利用排除法求解.【解答】解:A、=2,故本选项错误;B、3﹣1=,故本选项错误;C、(﹣1)2014=1,故本选项正确;D、|﹣2|=2,故本选项错误.故选C.【点评】本题考查了算术平方根的定义,有理数的乘方,绝对值的性质,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记概念与性质是解题的关键.4.(4分)(2014年福建漳州)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:A、此图形是中心对称图形,不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选C.【点评】此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.5.(4分)(2014年福建漳州)若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B.0 C.1 D. 2【考点】因式分解-提公因式法.【分析】利用提取公因式法分解因式的方法得出即可.【解答】解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选;B.【点评】此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.6.(4分)(2014年福建漳州)如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使△ABC的面积为3,则这样的点C共有()A.2个B.3个C.4个D. 5个【考点】坐标与图形性质;三角形的面积.【分析】根据点A、B的坐标判断出AB∥x轴,然后根据三角形的面积求出点C 到AB的距离,再判断出点C的位置即可.【解答】解:由图可知,AB∥x轴,且AB=3,设点C到AB的距离为h,则△ABC的面积=×3h=3,解得h=2,∵点C在第四象限,∴点C的位置如图所示,共有3个.故选B.【点评】本题考查了坐标与图形性质,三角形面积,判断出AB∥x轴是解题的关键.7.(4分)(2014年福建漳州)中学生骑电动车上学给交通安全带来隐患,为了解某中学2500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是()A.调查方式是普查B.该校只有360个家长持反对态度C.样本是360个家长D.该校约有90%的家长持反对大度【考点】全面调查与抽样调查;总体、个体、样本、样本容量.【分析】根据抽查与普查的定义以及用样本估计总体解答即可.【解答】解:A.共2500个学生家长,从中随机调查400个家长,调查方式是抽样调查,故本项错误;B.在调查的400个家长中,有360个家长持反对态度,该校只有2500×=2250个家长持反对态度,故本项错误;C.样本是360个家长对“中学生骑电动车上学”的态度,故本项错误;D.该校约有90%的家长持反对态度,本项正确,故选:D.【点评】本题考查了抽查与普查的定义以及用样本估计总体,这些是基础知识要熟练掌握.8.(4分)(2014年福建漳州)学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A.7盒B.8盒C.9盒D. 10盒【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:易得第一层有4碗,第二层最少有2碗,第三层最少有1碗,所以至少共有7盒.故选A.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.(4分)(2014年福建漳州)如图,有以下3个条件:①AC=AB,②AB∥CD,③∠1=∠2,从这3个条件中任选2个作为题设,另1个作为结论,则组成的命题是真命题的概率是()A.0 B.C.D. 1【考点】列表法与树状图法;平行线的判定与性质;等腰三角形的判定与性质;命题与定理.【专题】计算题.【分析】根据题意找出组成命题的所有等可能的情况数,找出组成的命题是真命题的情况数,即可求出所求的概率.【解答】解:所有等可能的情况有3种,分别为①②⇒③;①③⇒②;②③⇒①,其中组成命题是真命题的情况有:①②⇒③;①③⇒②;②③⇒①,则P=1,故选D【点评】此题考查了列表法与树状图法,平行线的性质与判定,等腰三角形的判定与性质,以及命题与定理,弄清题意是解本题的关键.10.(4分)(2014年福建漳州)世界文化遗产“华安二宜楼”是一座圆形的土楼,如图,小王从南门点A沿AO匀速直达土楼中心古井点O处,停留拍照后,从点O沿OB也匀速走到点B,紧接着沿回到南门,下面可以近似地刻画小王与土楼中心O的距离s随时间t变化的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】从A→O的过程中,s随t的增大而减小;直至s=0;从O→B的过程中,s随t的增大而增大;从B沿回到A,s不变.【解答】解:如图所示,当小王从A到古井点O的过程中,s是t的一次函数,s随t的增大而减小;当停留拍照时,t增大但s=0;当小王从古井点O到点B的过程中,s是t的一次函数,s随t的增大而增大.当小王回到南门A的过程中,s等于半径,保持不变.综上所述,只有C符合题意.故选:C.【点评】主要考查了动点问题的函数图象.此题首先正确理解题意,然后根据题意把握好函数图象的特点,并且善于分析各图象的变化趋势.二、填空题(共6小题,每小题4分,满分24分)11.(4分)(2014年福建漳州)若菱形的周长为20cm,则它的边长是5cm.【考点】菱形的性质.【分析】由菱形ABCD的周长为20cm,根据菱形的四条边都相等,即可求得其边长.解答:解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵菱形ABCD的周长为20cm,∴边长为:20÷4=5(cm).故答案为:5.【点评】此题考查了菱形的性质,注意掌握菱形四条边都相等定理的应用是解此题的关键,比较容易解答.12.(4分)(2014年福建漳州)双曲线y=所在象限内,y的值随x值的增大而减小,则满足条件的一个数值k为3(答案不唯一).【考点】反比例函数的性质.【专题】开放型.【分析】首先根据反比例函数的性质可得k+1>0,再解不等式即可.【解答】解:∵双曲线y=所在象限内,y的值随x值的增大而减小,∴k+1>0,解得:k>﹣1,∴k可以等于3(答案不唯一).故答案为:3(答案不唯一).【点评】此题主要考查了反比例函数的性质,关键是掌握对于反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x 的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.13.(4分)(2014年福建漳州)在《中国梦•我的梦》演讲比赛中,将5个评委对某选手打分情况绘成如图的统计图,则该选手得分的中位数是9分.【考点】中位数.【分析】将所有成绩排序后找到中间位置的数就是这组数据的中位数.【解答】解:5个数据分别为:8,8,9,9,10,位于中间位置的数为9,故中位数为9分,故答案为:9.【点评】考查了中位数的定义,正确的排序是解答本题的关键,难度较小.14.(4分)(2014年福建漳州)如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是∠BOC.【考点】余角和补角.【分析】因为是一幅三角尺,所以∠AOB=∠COD=90°,再利用∠AOD=∠AOB ﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,同角的余角相等,可知与∠AOD始终相等的角是∠BOC.【解答】解:∵∠AOB=∠COD=90°,∴∠AOD=∠AOB﹣∠BOD=90°﹣∠BOD,∠BOC=∠COD﹣∠BOD=90°﹣∠BOD,∴∠AOD=∠BOC.故答案为:∠BOC.【点评】本题主要考查了余角和补角.用到同角的余角相等.15.(4分)(2014年福建漳州)水仙花是漳州市花,如图,在长为14m,宽为10m 的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为16m.【考点】二元一次方程组的应用.【专题】几何图形问题.【分析】设小长方形的长为xm,宽为ym,由图可知,长方形展厅的长是(2x+y)m,宽为(x+2y)m,由此列出方程组求得长、宽,进一步解决问题.【解答】解:设小长方形的长为xm,宽为ym,由图可得解得x+y=8,∴每个小长方形的周长为8×2=16m.故答案为:16.【点评】此题考查二元一次方程组的运用,看清图意,正确利用图意列出方程组解决问题.16.(4分)(2014年福建漳州)已知一列数2,8,26,80.…,按此规律,则第n 个数是3n﹣1.(用含n的代数式表示)【考点】规律型:数字的变化类.【分析】根据观察等式,可发现规律,根据规律,可得答案.【解答】解;已知一列数2,8,26,80.…,按此规律,则第n个数是3n﹣1,故答案为:3n﹣1.【点评】本题考查了数字的变化类,规律是第几个数就是3的几次方减1.三、解答题(共9小题,满分86分)17.(8分)(2014年福建漳州)先化简,再求值:(x+1)(x﹣1)﹣x(x﹣1),其中x=.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=x2﹣1﹣x2+x=x﹣1,当x=时,原式=﹣1=﹣.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的计算和化简能力,题目比较好,难度适中.18.(8分)(2014年福建漳州)解不等式组:.【考点】解二元一次方程组.【专题】计算题.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:由①得:x<2;由②得:x>1,则不等式组的解集为1<x<2.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.(8分)(2014年福建漳州)如图,点C,F在线段BE上,BF=EC,∠1=∠2,请你添加一个条件,使△ABC≌△DEF,并加以证明.(不再添加辅助线和字母)【考点】全等三角形的判定.【专题】开放型.【分析】先求出BC=EF,添加条件AC=DF,根据SAS推出两三角形全等即可.【解答】AC=DE.证明:∵BF=EC,∴BF﹣CF=EC﹣CF,∴BC=EF,在△ABC和△DEF中∴△ABC≌△DEF.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,题目是一道开放型的题目,答案不唯一.20.(8分)(2014年福建漳州)如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是108度和36度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.【考点】作图—应用与设计作图;黄金分割.【分析】(1)利用等腰三角形的性质以及∠A的度数,进而得出这2个等腰三角形的顶角度数;(2)利用(1)种思路进而得出符合题意的图形;(3)利用当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形,进而得出规律求出答案.【解答】解:(1)如图1所示:∵AB=AC,∠A=36°,∴当AE=BE,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC中画n条线段,则图中有2n个等腰三角形,其中有n个黄金等腰三角形.故答案为:2n,n.【点评】此题主要考查了应用作图与设计以及等腰三角形的性质,得出分割图形的规律是解题关键.21.(8分)(2014年福建漳州)某中学组织网络安全知识竞赛活动,其中七年级6个班组每班参赛人数相同,学校对该年级的获奖人数进行统计,得到每班平均获奖15人,并制作成如图所示不完整的折线统计图.(1)请将折线统计图补充完整,并直接写出该年级获奖人数最多的班级是四班;(2)若二班获奖人数占班级参赛人数的32%,则全年级参赛人数是300人;(3)若该年级并列第一名有男、女同学各2名,从中随机选取2名参加市级比赛,则恰好是1男1女的概率是.【考点】折线统计图;列表法与树状图法.【专题】数形结合.【分析】(1)共有15×6=90人获奖,然后用90分别减去其他5个班的获奖人数即可得到三班获奖人数,然后将折线统计图补充完整,并且可得到四班有17人获奖,获奖人数最多;(2)先计算出二班参赛人数,然后乘以6即可得到全年级参赛人数;(3)先画树状图展示所有12种等可能的结果数,再找出恰好是1男1女所占的结果数,然后根据概率公式求解.【解答】解:(1)三班获奖人数=6×15﹣14﹣16﹣17﹣15﹣15=13,折线统计图如图,该年级获奖人数最多的班级为四班;(2)二班参赛人数=16÷32%=50(人),所以全年级参赛人数=6×50=300(人);(3)画树状图为:,共有12种等可能的结果数,其中恰好是1男1女占8种,所以恰好是1男1女的概率==.【点评】本题考查了折线统计图:折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.折线图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况.也考查了列表法与树状图法.22.(10分)(2014年福建漳州)将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm).(参考数据:≈1.73,≈1.41)【考点】解直角三角形的应用.【分析】根据题意得出AP,BP的长,再利用三角形面积求法得出NP的长,进而得出容器中牛奶的高度.【解答】解:过点P作PN⊥AB于点N,由题意可得:∠ABP=30°,AB=8cm,则AP=4cm,BP=AB•cos30°=4cm,∴NP×AB=AP×BP,∴NP===2(cm),∴9﹣2≈5.5(cm),答:容器中牛奶的高度为:5.5cm.【点评】此题主要考查了解直角三角形以及三角形面积求法等知识,得出PN的长是解题关键.23.(10分)(2014年福建漳州)杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设第一批杨梅每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批杨梅所购件数是第一批的2倍;(2)设剩余的杨梅每件售价y元,由利润=售价﹣进价,根据第二批的销售利润不低于320元,可列不等式求解.【解答】解:(1)设第一批杨梅每件进价x元,则×2=,解得x=120.经检验,x=120是原方程的根.答:第一批杨梅每件进价为120元;(2)设剩余的杨梅每件售价打y折.则:×150×80%+×150×(1﹣80%)×0.1y﹣2500≥320,解得y≥7.答:剩余的杨梅每件售价至少打7折.【点评】本题考查分式方程、一元一次不等式的应用,关键是根据数量作为等量关系列出方程,根据利润作为不等关系列出不等式求解.24.(12分)(2014年福建漳州)阅读材料:如图1,在△AOB中,∠O=90°,OA=OB,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF=OA.(此结论不必证明,可直接应用)(1)【理解与应用】如图2,正方形ABCD的边长为2,对角线AC,BD相交于点O,点P在AB边上,PE⊥OA于点E,PF⊥OB于点F,则PE+PF的值为.(2)【类比与推理】如图3,矩形ABCD的对角线AC,BD相交于点O,AB=4,AD=3,点P在AB 边上,PE∥OB交AC于点E,PF∥OA交BD于点F,求PE+PF的值;(3)【拓展与延伸】如图4,⊙O的半径为4,A,B,C,D是⊙O上的四点,过点C,D的切线CH,DG相交于点M,点P在弦AB上,PE∥BC交AC于点E,PF∥AD于点F,当∠ADG=∠BCH=30°时,PE+PF是否为定值?若是,请求出这个定值;若不是,请说明理由.【考点】圆的综合题;等边三角形的判定与性质;矩形的性质;正方形的性质;弦切角定理;相似三角形的判定与性质.【专题】压轴题;探究型.【分析】(1)易证:OA=OB,∠AOB=90°,直接运用阅读材料中的结论即可解决问题.(2)易证:OA=OB=OC=0D=,然后由条件PE∥OB,PF∥AO可证△AEP∽△AOB,△BFP∽△BOA,从而可得==1,进而求出EP+FP=.(3)易证:AD=BC=4.仿照(2)中的解法即可求出PE+PF=4,因而PE+PF是定值.【解答】解:(1)如图2,∵四边形ABCD是正方形,∴OA=OB=OC=OD,∠ABC=∠AOB=90°.∵AB=BC=2,∴AC=2.∴OA=.∵OA=OB,∠AOB=90°,PE⊥OA,PF⊥OB,∴PE+PF=OA=.(2)如图3,∵四边形ABCD是矩形,∴OA=OB=OC=OD,∠DAB=90°.∵AB=4,AD=3,∴BD=5.∴OA=OB=OC=OD=.∵PE∥OB,P F∥AO,∴△AEP∽△AOB,△BFP∽△BOA.∴,.∴==1.∴+=1.∴EP+FP=.∴PE+PF的值为.(3)当∠ADG=∠BCH=30°时,PE+PF是定值.理由:连接OA、OB、OC、OD,如图4.∵DG与⊙O相切,∴∠GDA=∠ABD.∵∠ADG=30°,∴∠ABD=30°.∴∠AOD=2∠ABD=60°.∵OA=OD,∴△AOD是等边三角形.∴AD=OA=4.同理可得:BC=4.∵PE∥BC,PF∥AD,∴△AEP∽△ACB,△BFP∽△BDA.∴,.∴==1.∴=1.∴PE+PF=4.∴当∠ADG=∠BCH=30°时,PE+PF=4.。

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014--2015学年八年级上册期末考试数学试题及答案【新课标人教版】

2014-2015上册期末考试八年级数学试题一、选择题:1.如下书写的四个汉字,是轴对称图形的有( )个。

A.1 B2 C.3 D.42.与3-2相等的是( )A.91B.91- C.9D.-9 3.当分式21-x 有意义时,x 的取值范围是( )A.x <2B.x >2C.x ≠2D.x ≥2 4.下列长度的各种线段,可以组成三角形的是( )A.1,2,3B.1,5,5C.3,3,6D.4,5,6 5.下列式子一定成立的是( )A.3232a a a =+ B.632a a a =• C. ()623a a = D.326a a a =÷6.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.97.空气质量检测数据pm2.5是值环境空气中,直径小于等于2.5微米的颗粒物,已知1微米=0.000001米,2.5微米用科学记数法可表示为( )米。

A.2.5×106B.2.5×105C.2.5×10-5D.2.5×10-68.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为( )。

A.50° B.80° C.50°或80° D.40°或65° 9.把多项式x x x +-232分解因式结果正确的是( )A.2)1(-x xB.2)1(+x xC.)2(2x x x - D.)1)(1(+-x x x 10.多项式x x x +--2)2(2中,一定含下列哪个因式( )。

A.2x+1B.x (x+1)2C.x (x 2-2x ) D.x (x-1) 11.如图,在△ABC 中,∠BAC=110°,MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是( ) A.20° B.40° C.50° D.60°12.如图,∠ACB=90°,AC=BC ,BE ⊥CE ,AD ⊥CE 于D 点,AD=2.5cm,DE=1.7cm ,则BE 的长为( )A.0.8B.1 C .1.5 D.4.213.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是( )A.12B.10C.8D.614. 如图,从边长为(a+4)cm 的正方形纸片中剪去一个边长为(a+1)cm 的正方形,剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则拼成的矩形的面积是( )cm 2.A .a a 522+ B.3a+15 C .(6a+9) D .(6a+15)15.艳焕集团生产某种精密仪器,原计划20天完成全部任务,若每天多生产4个,则15天完成全部的生产任务还多生产10个。

【解析版】福建省漳州市2014-2015学年七年级上期末数学试卷(新课标人教版 小学 七年级上 数学试卷)

【解析版】福建省漳州市2014-2015学年七年级上期末数学试卷(新课标人教版 小学 七年级上 数学试卷)

2014-2015学年福建省漳州市七年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2011•深圳)﹣的相反数是()A.B.﹣C. 2 D.﹣2考点:相反数.分析:根据相反数的定义:只有符号不同的两个数叫相反数即可求解.解答:解:根据概念得:﹣的相反数是.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(2014秋•漳州期末)单项式2a3b2的次数是()A. 2 B. 3 C. 5 D. 6考点:单项式.分析:利用一个单项式中所有字母的指数的和叫做单项式的次数求解即可.解答:解:单项式2a3b2的次数是5.故选:C.点评:本题主要考查了单项式,解题的关键是熟记一个单项式中所有字母的指数的和叫做单项式的次数.3.(2014秋•漳州期末)第六次全国人呢口普查总人口约为1370000000人,该数用科学记数法表示为()A. 1.37×109B.13.7×108C.1.37×1010D.1.37×108考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.解答:解:将1370000000用科学记数法表示为1.37×109.故选A点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.4.(2006•泰安)如图是某一立方体的侧面展开图,则该立方体是()A.B.C.D.考点:几何体的展开图.专题:压轴题.分析:由立方体中各图形的位置可知,结合各选项是否符合原图的特征.解答:解:A、两个圆所在的面是相对的,不相邻,故A错误;B、C中空白的圆圈不与白色的三角形相邻,故B、C错误;D、正确.故选D.点评:易错易混点:学生对相关图的位置想象不准确,从而错选,解决这类问题时,不妨动手实际操作一下,即可解决问题.5.(2014秋•漳州期末)如图是学校花圃的一角,有的同学为了省时间图方便,在花圃中踩出了一条小道.这些同学这样做的数学道理是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.两点之间直线最短考点:线段的性质:两点之间线段最短.专题:应用题.分析:直接根据线段的性质进行解答即可.解答:解:∵两点之间线段最短,∴同学为了省时间图方便,在花圃中踩出了一条小道.故选B.点评:本题考查的是线段的性质,熟知“两点之间线段最短”是解答此题的关键.6.(2014秋•漳州期末)如图,C点在线段AB上,点D是AC的中点,若CD=4cm,AB=13cm,则BC的长为()A.4cm B.5cm C.8cm D. 9cm考点:两点间的距离.分析:根据线段中点的性质,可得AC与CD的关系,根据线段的和差,可得CB的长.解答:解:点D是AC的中点,如果CD=4cm,AC=2CD=2×4=8(cm),CD=AB﹣AC=13﹣8=5(cm),故选:B.点评:本题考查了两点间的距离,线段中点的性质解题关键.7.(2014秋•漳州期末)下列说法中错误的是()A.两条平行线倍第三条直线所截,一对内错角的角平分线互相平行B.同角的余角相等C.在同一平面内,不相交的两条线段必平行D.在同一平面内,若a⊥b,b⊥c,则a∥c考点:命题与定理.分析:根据平行线的性质与判定对A进行判断;根据余角的定义对B进行判断;根据直线的位置关系对C进行判断;根据平行线的判定方法对D进行判断.解答:解:A、两条平行线被第三条直线所截,一对内错角的角平分线互相平行,所以A选项的说法正确;B、同角的余角相等,所以A选项的说法正确;C、在同一平面内,不相交的两条线段不一定平行,所以C选项的说法错误;D、在同一平面内,若a⊥b,b⊥c,则a∥c,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.8.(2012•广州)下面的计算正确的是()A.6a﹣5a=1 B.a+2a2=3a3C.﹣(a﹣b)=﹣a+b D.2(a+b)=2a+b考点:去括号与添括号;合并同类项.分析:根据合并同类项法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进行计算,即可选出答案.解答:解:A、6a﹣5a=a,故此选项错误;B、a与2a2不是同类项,不能合并,故此选项错误;C、﹣(a﹣b)=﹣a+b,故此选项正确;D、2(a+b)=2a+2b,故此选项错误;故选:C.点评:此题主要考查了合并同类项,去括号,关键是注意去括号时注意符号的变化,注意乘法分配律的应用,不要漏乘.9.(2014秋•漳州期末)如图,有下列说法:①若AD∥BC,∠1=∠3,则BD是∠ABC的平分线;②若AD∥BC,则∠1=∠4;③若∠A=∠C,则AB∥CD;④若∠C+∠3+∠4=180°,则AD∥BC.其中正确的个数有()A.1个B.2个C.3个D. 4个考点:平行线的判定与性质.分析:根据平行线的性质求出∠2=∠3,求出∠1=∠2,即可判断①;根据平行线的性质即可判断②,根据平行线的判定即可判断③④.解答:解:∵AD∥BC,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2,∴BD是∠ABC的平分线,∴①正确;根据AD∥BC不能推出∠1=∠4,∴②错误;根据∠A=∠C不能推出AB∥CD,∴③错误;∵∠C+∠3+∠4=180°,∴AD∥BC,∴④正确;即正确的个数是2个,故选B.点评:本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键.10.(2014秋•漳州期末)一个点从数轴上的原点开支,先向左移动5个单位到达A点,再向右移动9个单位到达B点,则B点表示的数是()A.10 B.8 C. 6 D. 4考点:数轴.分析:根据向右移动为“+”、向左移动为“﹣”,解方程即可得出答案.解答:解:根据题意得,0﹣5+9=4,则点B表示的数是4,故选:D.点评:本题考查了数轴和有理数的表示方法,注意:数轴上的点向右移动表示为加,向左移动表示为减.11.(2014秋•漳州期末)有一个数值转换器,远离如图所示,若开始输入x的值是5,可发现第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,依次继续下去,则第101次输出的结果是()A. 1 B. 2 C. 3 D. 4考点:代数式求值.专题:图表型.分析:根据题意,可得第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,第4次输出的结果是2,第5次输出的结果是1,第6次输出的结果是4,第7次输出的结果是2,第8次输出的结果是1,第9次输出的结果是4,…,从第3次开始,输出的结果每3个数一个循环,分别是4、2、1,然后用101减去2,再除以3,根据商和余数的情况,判断出第101次输出的结果是多少即可.解答:解:第1次输出的结果是16,第2次输出的结果是8,第3次输出的结果是4,第4次输出的结果是2,第5次输出的结果是1,第6次输出的结果是4,第7次输出的结果是2,第8次输出的结果是1,第9次输出的结果是4,…,从第3次开始,输出的结果每3个数一个循环,分别是4、2、1,∵(101﹣2)÷3=99÷3=33∴第101次输出的结果是1.故选:A.点评:此题主要考查了代数式求值问题,要熟练掌握,解答此题的关键是要明确:从第3次开始,输出的结果每3个数一个循环,分别是4、2、1.12.(2012•重庆)下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为()A.50 B.64 C.68 D. 72考点:规律型:图形的变化类.分析:先根据题意求找出其中的规律,即可求出第⑥个图形中五角星的个数.解答:解:第①个图形一共有2个五角星,第②个图形一共有:2+(3×2)=8个五角星,第③个图形一共有8+(5×2)=18个五角星,…第n个图形一共有:1×2+3×2+5×2+7×2+…+2(2n﹣1)=2[1+3+5+…+(2n﹣1)],=[1+(2n﹣1)]×n=2n2,则第(6)个图形一共有:2×62=72个五角星;故选:D.点评:本题考查了图形变化规律的问题,把五角星分成三部分进行考虑,并找出第n个图形五角星的个数的表达式是解题的关键.二、填空题(共8小题,每小题3分,共24分)13.(3分)(2010•德州)﹣3的倒数是﹣.考点:倒数.分析:根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.解答:解:﹣3的倒数是﹣.点评:本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.14.(3分)(2014秋•漳州期末)在有理数、﹣5、3.14中,负分数是.考点:有理数.分析:利用负分数的意义直接填空即可.解答:解:在有理数、﹣5、3.14中,负分数是.故答案为:.点评:此题主要考查了有理数的有关定义,熟练掌握相关的定义是解题关键.15.(3分)(2014秋•漳州期末)近似数1.61精确到百分位.考点:近似数和有效数字.分析:根据近似数的精确度求解.解答:解:近似数1.61精确到百分位.故答案为百分位.点评:本题考查了近似数与有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.16.(3分)(2014秋•漳州期末)已知∠1与∠2互补,若∠1=99°40′,则∠2=80°20′.考点:余角和补角;度分秒的换算.分析:根据互为补角的和等于180°列式进行计算即可求解.解答:解:∵∠1与∠2互补,∠1=99°40′,∴∠2=180°﹣99°40′=80°20′.故答案为:80°20′.点评:本题考查了互为补角的和等于180°的性质,是基础题,比较简单.17.(3分)(2014秋•漳州期末)在括号内填上适当的项:3xy2﹣2x2+5x3y3﹣7y=3xy2﹣2x2﹣5x3y3+7y.考点:整式的加减.专题:计算题.分析:原式后三项提前﹣1得到结果即可.解答:解:3xy2﹣2x2+5x3y3﹣7y=3xy2﹣(2x2﹣5x3y3+7y),故答案为:2x2﹣5x3y3+7y点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.18.(3分)(2010•曲靖)如图,AB∥CD,AC⊥BC,垂足为C.若∠A=40°,则∠BCD=50度.考点:平行线的性质;直角三角形的性质.专题:计算题.分析:先根据直角三角形两锐角互余求出∠B的度数,再根据两直线平行,内错角相等解答.解答:解:∵∠A=40°,AC⊥BC,∴∠B=90°﹣40°=50°,∵AB∥CD,∴∠BCD=∠B=50°.点评:本题利用直角三角形两锐角互余和平行线的性质求解.19.(3分)(2014秋•漳州期末)如图,∠A=120°,∠B=60°,∠EDA=55°,则∠F=55度.考点:平行线的判定与性质.分析:求出∠A+∠B=180°,根据平行线的判定得出AD∥BC,根据平行线的性质得出∠EDA=∠F 即可.解答:解:∵∠A=120°,∠B=60°,∴∠A+∠B=180°,∴AD∥BC,∴∠EDA=∠F,∵∠EDA=55°,∴∠F=55°,故答案为:55.点评:本题考查了平行线的性质和判定的应用,能正确运用平行线的性质和判定定理进行推理是解此题的关键,注意:两直线平行,同位角相等.20.(3分)(2003•武汉)已知等式:2+=22×,3+=32×,4+=42×,…,10+=102×,(a,b均为正整数),则a+b=109.考点:分式的混合运算.专题:规律型.分析:易得分子与前面的整数相同,分母=分子2﹣1.解答:解:10+=102×中,根据规律可得a=10,b=102﹣1=99,∴a+b=109.点评:此题的关键是找到所求字母相应的规律.三、解答题(共7题,满分52分)21.(8分)(2014秋•漳州期末)(1)()×(﹣22)﹣|﹣4|;(2)﹣32×(﹣2)÷16÷(﹣2)3.考点:有理数的混合运算.分析:(1)先运用乘法分配律及绝对值的定义,再运用有理数混合运算顺序求解;(2)运用有理数混合运算顺序求解即可.解答:解:(1)()×(﹣22)﹣|﹣4|=×(﹣22)﹣×(﹣22)﹣4,=﹣11+14﹣4,=﹣1;(2)﹣32×(﹣2)÷16÷(﹣2)3=﹣9×(﹣2)÷16÷(﹣8),=18÷16÷(﹣8),=﹣.点评:本题主要考查了有理数的混合运算,解题的关键是熟记有理数混合运算顺序.22.(6分)(2014秋•漳州期末)计算:4a2+2(3ab﹣2a2)﹣(7ab﹣1).解:原式=4a2+6ab﹣4a2﹣7ab﹣1…①=(4a2﹣4a2)+(6ab﹣7ab)﹣1…②=﹣ab﹣1…③上述计算过程是否有错误?若有,则从第①步开始出现错误,请在下面写出正确的计算过程.考点:整式的加减.专题:阅读型.分析:第一步出现错误,理由为去括号出错,写出正确的解题过程即可.解答:解:从第①步出现错误,正确解题过程为:原式=4a2+6ab﹣4a2﹣7ab+1=(4a2﹣4a2)+(6ab﹣7ab)+1=﹣ab﹣1.故答案为:①点评:此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.(6分)(2014秋•漳州期末)如图1是由一些完全相同的小正方体所搭几何体的俯视图,其中小正方形中的数字表示该位置的小正方体的个数,请在图2的方格纸中分别画出这个几何体的主视图和左视图.考点:作图-三视图;由三视图判断几何体.分析:利用俯视图上的数字可得出几何体的摆放情况,进而得出主视图与左视图.解答:解:如图所示:.点评:此题主要考查了画三视图以及由三视图判断几何体的形状,想象出结合体的形状是解题关键.24.(8分)(2014秋•漳州期末)先化简,再求值:x﹣(5x﹣)+2(x+2),其中x=﹣1,y=﹣2.考点:整式的加减—化简求值.专题:计算题.分析:原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.解答:解:原式=x﹣5x+y2+x+y2=﹣2x+y2,当x=﹣1,y=﹣2时,原式=2+4=6.点评:此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.25.(8分)(2014秋•漳州期末)如图,直线AB和CD相交于O点,OC⊥OE,OC平分∠AOF,∠EOF=56°,(1)求∠BOD的度数,根据下列解答填空(理由或数学式):解:∵OC⊥OE(已知),∴∠COE=90°,∵∠EOF=56°,(已知)∴∠COF=90°﹣56°=34°,∵OC平分∠AOF(已知),∴∠AOC=∠COF=34°,∴∠BOD=∠AOC=34°对顶角相等.(2)写出图中所有于∠BOE互余的角,它们分别是:∠COF,∠AOC,∠BOD.考点:垂线;余角和补角;对顶角、邻补角.专题:推理填空题.分析:(1)根据垂直的定义,角平分线的性质,即可解答;(2)根据互为余角的定义,即可解答.解答:解:∵OC⊥OE(已知),∴∠COE=90°,∵∠EOF=56°,(已知)∴∠COF=90°﹣56°=34°,∵OC平分∠AOF(已知),∴∠AOC=∠COF=34°,∴∠BOD=∠AOC=34°(对顶角相等).(2)写出图中所有于∠BOE互余的角,它们分别是:∠COF,∠AOC,∠BOD.故答案为:(1)90,COF,COF,AOC,对顶角相等;(2)∠COF,∠AOC,∠BOD.点评:本题考查了垂线、角平分线、余角,解决本题的关键是熟记相关定义.26.(8分)(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费24元;(2)若张红家6月份缴交水费44元,则该月用水量为25吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)考点:整式的加减;列代数式.专题:应用题.分析:(1)判断得到15吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得到6月份用水量在20吨﹣30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.解答:解:(1)∵15<20,∴该月需缴水费为15×1.6=24(元);故答案为:24;(2)设该月用水量为x吨,经判断20<x<30,根据题意得:20×1.5+(x﹣20)×2.4=44,解得:x=25,故答案为:25;(3)20×1.6+10×2.4+(a﹣20﹣10)×4.8=4.8a﹣88;答:该月需缴交水费(4.8a﹣88)元.点评:本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.27.(8分)(2014秋•漳州期末)如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)如图2,将图1中的三角板绕点O逆时针旋转,使边OM在∠BOC的内部,且OM恰好平分∠BOC.此时∠AOM=120度;(2)如图3,继续将图2中的三角板绕点O按逆时针方向旋转,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O以每秒10°的速度沿逆时针方向旋转一周,在旋转的过程中,若直线ON恰好平分∠AOC,则此时三角板绕点O旋转的时间是6或24秒.考点:角的计算.分析:(1)根据OM恰好平分∠BOC,用∠BOC的度数除以2,求出∠BOM的度数,即可求出∠AOM的度数是多少.(2)首先根据∠AOM﹣∠NOC=30°,∠BOC=120°,求出∠A0C=60°,然后根据∠AON=90°﹣∠AOM=60°﹣∠NOC,判断出∠AOM与∠NOC之间满足什么等量关系即可.(3)首先设三角板绕点O旋转的时间是x秒,根据∠BOC=120°,可得∠AOC=60°,∠BON=∠COD=30°;然后根据旋转60°时ON平分∠AOC,可得10x=60或10x=240,据此求出x的值是多少即可.解答:解:(1)∵OM恰好平分∠BOC,∴∠BOM=120°÷2=60°,∴∠AOM=180°﹣120°=60°.(2)如图3,,∠AOM﹣∠NOC=30°,∵∠BOC=120°,∴∠A0C=60°,∵∠AON=90°﹣∠AOM=60°﹣∠NOC,∴∠AOM﹣∠NOC=30°.(3)设三角板绕点O旋转的时间是x秒,∵∠BOC=120°,∴∠AOC=60°,∴∠BON=∠COD=30°,∴旋转60°时ON平分∠AOC,∵10x=60或10x=240,∴x=6或x=24,即此时三角板绕点O旋转的时间是6或24秒.故答案为:120、6或24.点评:此题主要考查了角的计算,考查了分类讨论思想的应用,以及角平分线的性质和应用,要熟练掌握.。

2014---2015年八年级数学期末试卷及答案

2014---2015年八年级数学期末试卷及答案

2014—2015学年上期期末学业水平测试八年级数学试题卷注意: 本试卷分试题卷和答题卡两部分, 考试时间90分钟, 满分100分, 学生应先阅读答题卡上的文字信息, 然后在答题卡上用蓝色笔或者黑色笔作答, 在试题卷上作答无效, 交卷时只交答题卡。

题号 一 二 三 总分分数一、选择题(每小题3分, 共24分)1. 的算术平方 根是( C ) 2、A. 4 B. 2C. D.在﹣2, 0, 3,A . ﹣2B . 0C . 3D .这四个数中, 最大的数是( C )3.如图, 直线a ∥b, AC ⊥AB, AC 交直线b 于点C, ∠1=60°, 则∠2的度数是( D )A . 50°B . 45°C . 35°D . 30°4.一次函数y=﹣2x+1的图象不经过下列哪个象限( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5、若方程mA . 4,2B . 2,4C . ﹣4, ﹣2D . ﹣2, ﹣4阅卷人 得分………试…………题……………卷………………不…………………装………………订…………位: 度), 下列说法错误的是( C )7、下列四组线段A . 4, 5, 6B . 1.5, 2, 2.5C . 2, 3, 4D . 1, , 3中, 可以构成直角三角形的是( B )8、图象中所反映的过程是: 张强从家跑步去体育场, 在那里锻炼了一阵后, 又去早餐店吃早餐, 然后散步走回家.其中x 表示时间, y 表示张强离家的距离. 根据图象提供的信息, 以下四个说法错误的是( C )A . 体育场离张强家2.5千米B . 张强在体育场锻炼了15分钟C.体育场离早餐店4千米D.张强从早餐店回家的平均速度是3千米/小时选择题(每小题3分, 共21分)9、计算: 1 。

10、命题“相等的角是对顶角”是假命题(填“真”或“假”)。

若+(b+2)2=0, 则点M(a, b)关于y轴的对称点的坐标为(﹣3, ﹣2)。

八年级上册漳州数学期末试卷测试卷附答案

八年级上册漳州数学期末试卷测试卷附答案

八年级上册漳州数学期末试卷测试卷附答案一、八年级数学全等三角形解答题压轴题(难)1.取一副三角板按图()1拼接,固定三角板60,()30ADC D ACD ∠=∠=,将三角板45()ABC BAC BCA ∠=∠=绕点A 依顺时针方向旋转一个大小为a 的角00)45(a ≤≤得到ABM ,图()2所示.试问:()1当a 为多少时,能使得图()2中//AB CD ?说出理由,()2连接BD ,假设AM 与CD 交于,E BM 与CD 交于F ,当00)45(a ≤≤时,探索DBM CAM BDC ∠+∠+∠值的大小变化情况,并给出你的证明.【答案】(1)15°;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105,证明见解析.【解析】【分析】(1)由//AB CD 得到30BAC C ∠=∠=,即可求出a ;(2)DBM CAM BDC ∠+∠+∠的大小不变,是105︒,由FEM CAM C ∠=∠+∠,30C ∠=︒, EFM BDC DBM ∠=∠+∠, 45M ∠=︒,即可利用三角形内角和求出答案.【详解】()1当a 为15时,//AB CD ,理由:由图()2,若//AB CD ,则30BAC C ∠=∠=, 453015a CAM BAM BAC ∴=∠=∠-∠=-︒=︒,所以,当a 为15时,//AB CD .注意:学生可能会出现两种解法:第一种:把//AB CD 当做条件求出a 为15,第二种:把a 为15当做条件证出//AB CD ,这两种解法都是正确的.()2DBM CAM BDC ∠+∠+∠的大小不变,是105︒证明: ,30FEM CAM C C ∠=∠+∠∠=︒,30FEM CAM ∴∠=∠+︒,EFM BDC DBM ∠=∠+∠,DBM CAM BDC EFM CAM ∴∠+∠+∠=∠+∠,180,45EFM FEM M M ∠+∠+∠=∠=︒,3045180BDC DBM CAM ∴∠+∠+∠+︒+︒=︒,1803045105DBM CAM BDC ∴∠+∠+∠=︒--=︒,所以,DBM CAM BDC ∠+∠+∠的大小不变,是105.【点睛】此题考查旋转的性质,平行线的性质,三角形的外角定理,三角形的内角和,(2)中将角度和表示为三角形的外角是解题的关键.2.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .(1)若AB AC =,90BAC ∠=︒①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF与BD的位置关系.【答案】(1)①CF⊥BD,证明见解析;②成立,理由见解析;(2)CF⊥BD,证明见解析.【解析】【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF⊥BD.【详解】解:(1)①∵∠BAC=90°,△ADF是等腰直角三角形,∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,∴∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠ABD=45°,∵∠ACB=45°,∴∠FCB=90°,∴CF⊥BD;②成立,理由如下:如图2:∵∠CAB=∠DAF=90°,∴∠CAB+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,∵AB=AC,∠CAF=∠BAD,AD=AF,∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF ⊥BD ;(2)如图3,过点A 作AE ⊥AC 交BC 于E ,∵∠BCA=45°,∴△ACE 是等腰直角三角形,∴AC=AE ,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD ,在△ACF 和△AED 中,∵AC=AE ,∠CAF=∠EAD ,AD=AF ,∴△ACF ≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF ⊥BD .【点睛】本题考查全等三角形的动点问题,综合性较强,有一定难度,需要熟练掌握全等三角形的判定和性质进行综合运用.3.已知4AB cm =,3AC BD cm ==.点P 在AB 上以1/cm s 的速度由点A 向点B 运动,同时点Q 在BD 上由点B 向点D 运动,它们运动的时间为()t s .(1)如图①,AC AB ⊥,BD AB ⊥,若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP △与BPQ 是否全等,请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2)如图②,将图①中的“AC AB ⊥,BD AB ⊥”为改“60CAB DBA ∠=∠=︒”,其他条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP △与BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【答案】(1)全等,PC 与PQ 垂直;(2)存在,11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS 证得△ACP ≌△BPQ ,得出∠ACP=∠BPQ ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP ≌△BPQ ,分两种情况:①AC=BP ,AP=BQ ,②AC=BQ ,AP=BP ,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP 和△BPQ 中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BPQ (SAS ).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t=⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等.【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)问题发现:如图(1),已知:在三角形ABC ∆中,90BAC ︒∠=,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点,D E ,试写出线段,BD DE 和CE 之间的数量关系为_________________.(2)思考探究:如图(2),将图(1)中的条件改为:在ABC ∆中, ,,,AB AC D A E =三点都在直线l 上,并且BDA AEC BAC α∠=∠=∠=,其中α为任意锐角或钝角.请问(1)中结论还是否成立?若成立,请给出证明;若不成立,请说明理由.(3)拓展应用:如图(3),,D E 是,,D A E 三点所在直线m 上的两动点,(,,D A E 三点互不重合),点F 为BAC ∠平分线上的一点,且ABF ∆与ACF ∆均为等边三角形,连接,BD CE ,若BDA AEC BAC ∠=∠=∠,试判断DEF ∆的形状并说明理由.【答案】(1)DE=CE+BD ;(2)成立,理由见解析;(3)△DEF 为等边三角形,理由见解析.【解析】【分析】(1)利用已知得出∠CAE=∠ABD ,进而根据AAS 证明△ABD 与△CAE 全等,然后进一步求解即可;(2)根据BDA AEC BAC α∠=∠=∠=,得出∠CAE=∠ABD ,在△ADB 与△CEA 中,根据AAS 证明二者全等从而得出AE=BD ,AD=CE ,然后进一步证明即可;(3)结合之前的结论可得△ADB 与△CEA 全等,从而得出BD=AE ,∠DBA=∠CAE ,再根据等边三角形性质得出∠ABF=∠CAF=60°,然后进一步证明△DBF 与△EAF 全等,在此基础上进一步证明求解即可.【详解】(1)∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA=∠AEC=90°,∴∠BAD+∠ABD=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∴∠CAE=∠ABD ,在△ABD 与△CAE 中,∵∠ABD=∠CAE ,∠BDA=∠AEC ,AB=AC ,∴△ABD ≌△CAE(AAS),∴BD=AE ,AD=CE ,∵DE=AD+AE,∴DE=CE+BD,故答案为:DE=CE+BD;(2)(1)中结论还仍然成立,理由如下:∠=∠=∠=,∵BDA AEC BACα∴∠DBA+∠BAD=∠BAD+∠CAE=180°−α,∴∠CAE=∠ABD,在△ADB与△CEA中,∵∠ABD=∠CAE,∠ADB=∠CEA,AB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE,即:DE=CE+BD,∆为等边三角形,理由如下:(3)DEF由(2)可知:△ADB≌△CEA,∴BD=EA,∠DBA=∠CAE,∵△ABF与△ACF均为等边三角形,∴∠ABF=∠CAF=60°,BF=AF,∴∠DBA+∠ABF=∠CAE+CAF,∴∠DBF=∠FAE,在△DBF与△EAF中,∵FB=FA,∠FDB=∠FAE,BD=AE,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.【点睛】本题主要考查了全等三角形性质与判定的综合运用,熟练掌握相关概念是解题关键. 5.(1)如图(a)所示点D是等边ABC边BA上一动点(点D与点B不重合),连接DC,以DC为边在BC上方作等边DCF,连接AF.你能发现线段AF与BD之间的数量关系吗?并证明.(2)如图(b)所示当动点D运动至等边ABC边BA的延长线上时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?(直接写出结论)(3)①如图(c)所示,当动点D在等边ABC边BA上运动时(点D与点B不重合),连接DC,以DC为边在BC上方、下方分别作等边DCF和等边DCF',连接AF、BF',探究AF、BF'与AB有何数量关系?并证明.②如图(d)所示,当动点D在等边ABC边BA的延长线上运动时,其他作法与(3)①相同,①中的结论是否成立?若不成立,是否有新的结论?并证明.【答案】(1)AF=BD ,理由见解析;(2)AF=BD ,成立;(3)①AF BF AB '+=,证明见解析;②①中的结论不成立新的结论是AF AB BF '=+,理由见解析【解析】【分析】(1)根据等边三角形的三条边、三个内角都相等的性质,利用全等三角形的判定定理SAS 可证得BCD ACF △≌△,然后由全等三角形的对应边相等知AF BD = .(2)通过证明BCD ACF △≌△,即可证明AF BD =.(3)①'AF BF AB += ,利用全等三角形BCD ACF △≌△的对应边BD AF = ,同理'BCF ACD △≌△ ,则'BF AD = ,所以'AF BF AB +=;②①中的结论不成立,新的结论是'AF AB BF =+ ,通过证明BCF ACD △≌△,则'BF AD =(全等三角形的对应边相等),再结合(2)中的结论即可证得'AF AB BF =+ .【详解】(1)AF BD = 证明如下:ABC 是等边三角形,BC AC ∴=,60BCA ︒∠=.同理可得:DC CF =,60DCF ︒∠=.BCA DCA DCF DCA ∴∠-∠=∠-∠.即BCD ACF ∠=∠.BCD ACF ∴△≌△.AF BD ∴=.(2)证明过程同(1),证得BCD ACF △≌△,则AF BD =(全等三角形的对应边相等),所以当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF BD =依然成立.(3)①AF BF AB '+=证明:由(1)知,BCD ACF △≌△.BD AF ∴=.同理BCF ACD '△≌△.BF AD '∴=.AF BF BD AD AB '∴+=+=.②①中的结论不成立新的结论是AF AB BF '=+;BC AC =,BCF ACD '∠=∠,F C DC '=,BCF ACD '∴△≌△.BF AD '∴=.又由(2)知,AF BD =.AF BD AB AD AB BF '∴==+=+.即AF AB BF '=+.【点睛】本题考查了三角形的综合问题,掌握等边三角形的三条边、三个内角都相等的性质、全等三角形的判定定理、全等三角形的对应边相等是解题的关键.6.已知点P 是线段MN 上一动点,分别以PM ,PN 为一边,在MN 的同侧作△APM ,△BPN ,并连接BM ,AN .(Ⅰ)如图1,当PM =AP ,PN =BP 且∠APM =∠BPN =90°时,试猜想BM ,AN 之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM ,△BPN 都是等边三角形时,(Ⅰ)中BM ,AN 之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB 得到图3,当PN =2PM 时,求∠PAB 度数.【答案】(1)BM =AN ,BM ⊥AN .(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP ≌△ANP ,得出MB =AN ,∠PAN =∠PMB ,再延长MB 交AN 于点C ,得出MCN 90∠=︒,因此有BM ⊥AN ;(2)根据所给条件可证△MPB ≌△APN ,得出结论BM =AN ;(3) 取PB 的中点C ,连接AC ,AB ,通过已知条件推出△APC 为等边三角形,∠PAC =∠PCA =60°,再由CA =CB ,进一步得出∠PAB 的度数.【详解】解:(Ⅰ)结论:BM =AN ,BM ⊥AN .理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.7.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE,再由AB=AD,AE=AC,根据SAS即可证得△ABC≌△ADE;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB 和△AFG 中,BF F AFB AFG AF AF G =⎧⎪∠=∠⎨⎪=⎩, ∴△AFB ≌△AFG (SAS ),∴AB=AG ,∠ABF=∠G ,∵△BAC ≌△DAE ,∴AB=AD ,∠CBA=∠EDA ,CB=ED ,∴AG=AD ,∠ABF=∠CDA ,∴∠G=∠CDA ,在△CGA 和△CDA 中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.8.如图1,在等边△ABC中,E、D两点分别在边AB、BC上,BE=CD,AD、CE相交于点F.(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)【答案】(1)∠AFE=60°;(2)见解析;(3)75【解析】【分析】(1)通过证明BCE CAD≌得到对应角相等,等量代换推导出60AFE∠=︒;(2)由(1)得到60AFE∠=︒,CE AD=则在Rt AHF△中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF上取一点K使得KF=AF,作辅助线证明ABK和ACF全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC为等边三角形,∴AC=BC,∠BAC=∠ABC=∠ACB=60°,在BCE和CAD中,60BE CDCBE ACDBC CA=⎧⎪∠=∠=︒⎨⎪=⎩,∴BCE CAD≌(SAS),∴∠BCE=∠DAC,∵∠BCE+∠ACE=60°,∴∠DAC+∠ACE=60°,∴∠AFE=60°.(2)证明:如图1中,∵AH⊥EC,∴∠AHF=90°,在Rt△AFH中,∵∠AFH=60°,∴∠FAH=30°,∴AF=2FH,∵EBC DCA≌,∴EC=AD,∵AD=AF+DF=2FH+DF,∴2FH+DF=EC.(3)解:在PF上取一点K使得KF=AF,连接AK、BK,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC , 在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩,∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-= ∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.9.已知:在ABC ∆中,,90AB AC BAC =∠=︒,PQ 为过点A 的一条直线,分别过B C 、两点作,BM PQ CN PQ ⊥⊥,垂足分别为M N 、.(1)如图①所示,当PQ 与BC 边有交点时,求证:MN CN BM =-;(2)如图②所示,当PQ 与BC 边不相交时,请写出线段BM CN 、和MN 之间的数量关系,并说明理由.【答案】(1)见解析;(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-),理由见解析【解析】【分析】(1)根据已知条件先证AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可证得MN CN BM =-;(2)由(1)知AMB CNA ≌∆∆,得到,AM CN BM AN ==,即可确定MN BM CN =+.【详解】证明:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM ∠+∠=∠+∠)∴BAM ACN ∠=∠,在AMB ∆和CNA ∆中,∵AMB CNA BAM ACN AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS ≌∆∆,∴,AM CN BM AN ==,∵MN AM AN =-,∴MN CN BM =-.(2)MN BM CN =+(或BM MN CN =-或CN MN BM =-).理由:∵,BM PQ CN PQ ⊥⊥,∴∠AMB=∠CAN=90︒,∵∠BAC=90︒,∴∠CAN+∠ACN=90︒,∠CAN+∠BAM=90︒(或CAN ACN CAN BAM∠+∠=∠+∠),∴BAM ACN∠=∠,在AMB∆和CNA∆中,∵AMB CNABAM ACNAB CA∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AMB CNA AAS≌∆∆,∴,AM CN BM AN==,∴MN AN AM BM CN=+=+.【点睛】此题考察三角形全等的应用,正确确定全等三角形是解题关键,由此得到对应相等的线段,确定它们之间的和差关系得到BM CN、和MN之间的关系式.10.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.求证:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,求证:△DEF是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB ≌△CEA ,∴AE=BD ,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.二、八年级数学轴对称解答题压轴题(难)11.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线.我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴,如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB,将线段AB沿直线MN对称,我们发现PA与PB完全重合,由此即有:线段垂直平分线的性质定理线段垂直平分线上的点到线段的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点.求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证明PA=PB.定理证明:请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程.定理应用:(1)如图②,在△ABC中,直线m、n分别是边BC、AC的垂直平分线,直线m、n的交点为O.过点O作OH⊥AB于点H.求证:AH=BH.(2)如图③,在△ABC中,AB=BC,边AB的垂直平分线l交AC于点D,边BC的垂直平分线k交AC于点E.若∠ABC=120°,AC=15,则DE的长为.【答案】(1)见解析;(2)5【解析】【分析】定理证明:先证明△PAC≌△PBC,然后再运用三角形全等的性质进行解答即可;(1)连结AO、BO、CO利用线段的垂直平分线的判定和性质即可解答;(2)连接BD,BE,证明△BDE是等边三角形即可解答.【详解】解:定理证明:∵MN⊥AB,∴∠PCA=∠PCB=90°.又∵AC=BC,PC=PC,∴△PAC≌△PBC(SAS),∴PA=PB.定理应用:(1)如图2,连结OA、OB、OC.∵直线m是边BC的垂直平分线,∴OB=OC,∵直线n是边AC的垂直平分线,∴OA=OC,∴OA=OB∵OH⊥AB,∴AH=BH;(2)如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15=AD+DE+EC=3DE,∴DE=5,故答案为:5.【点睛】本题考查了线段的垂直平分线的性质、全等三角形的判定和性质、等边三角形的判定和性质等知识,掌握并灵活运用数学基本知识是解答本题的关键.12.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相交于点 F,且∠CAD=12∠ABE.(1)求证:BF=AC;(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.【答案】(1)答案见详解;(2)45°,(3)4.【解析】【分析】(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.【详解】(1)设∠CAD=x,∵∠CAD=12∠ABE,∠BAC=90º,∴∠ABE=2x,∠BAF=90°-x,∵∠ABE+∠BAF+∠AFB=180°,∴∠AFB=180°-2x-(90°-x)= 90°-x,∴∠BAF =∠AFB,∴BF=AB;∵AB =AC ,∴BF =AC ;(2)由(1)可知:∠CAD=x ,∠ABE=2x ,∠BAC =90º,∴∠AEB=90°-2x ,∵EF =EC ,∴∠EFC=∠ECF ,∵∠EFC+∠ECF=∠AEB=90°-2x ,∴∠EFC=(90°-2x )÷2=45°-x ,∵BF =AB ,∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,∴∠EFD=∠BFA=90°-x ,∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;(3)由(2)可知:EF =EC ,∴设EF =EC =x ,则AC=AE+EC=3+x ,∴AB=BF=AC=3+x ,∴BE=BF+EF=3+x+x=3+2x ,∵∠BAC =90º,∴222AB AE BE +=,∴222(3)3(32)x x ++=+,解得:11x =,23x =-(不合题意,舍去)∴BF=3+x=3+1=4.【点睛】本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.13.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】解:(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE 时,∵2x+x=27°+27°,∴x=18°;②当AD=DE 时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C 为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.14.(1)问题发现.如图1,ACB ∆和DCE ∆均为等边三角形,点A 、D 、E 均在同一直线上,连接BE .①求证:ADC BEC ∆∆≌.②求AEB ∠的度数.③线段AD 、BE 之间的数量关系为__________.(2)拓展探究.如图2,ACB ∆和DCE ∆均为等腰直角三角形,90ACB DCE ∠=∠=︒,点A 、D 、E 在同一直线上,CM 为DCE ∆中DE 边上的高,连接BE .①请判断AEB ∠的度数为____________.②线段CM 、AE 、BE 之间的数量关系为________.(直接写出结论,不需证明)【答案】(1)①详见解析;②60°;③AD BE =;(2)①90°;②2AE BE CM =+【解析】【分析】(1)易证∠ACD =∠BCE ,即可求证△ACD ≌△BCE ,根据全等三角形对应边相等可求得AD =BE ,根据全等三角形对应角相等即可求得∠AEB 的大小;(2)易证△ACD ≌△BCE ,可得∠ADC =∠BEC ,进而可以求得∠AEB =90°,即可求得DM =ME =CM ,即可解题.【详解】解:(1)①证明:∵ACB ∆和DCE ∆均为等边三角形,∴AC CB =,CD CE =,又∵60ACD DCB ECB DCB ∠+∠=∠+∠=︒,∴ACD ECB ∠=∠,∴()ADC BEC SAS ∆∆≌.②∵CDE ∆为等边三角形,∴60CDE ∠=︒.∵点A 、D 、E 在同一直线上,∴180120ADC CDE ∠=︒-∠=︒,又∵ADC BEC ∆∆≌,∴120ADC BEC ∠=∠=︒,∴1206060AEB ∠=︒-︒=︒.③AD BE =ADC BEC ∆∆≌,∴AD BE =.故填:AD BE =;(2)①∵ACB ∆和DCE ∆均为等腰直角三角形,∴AC CB =,CD CE =,又∵90ACB DCE ∠=∠=︒,∴ACD DCB ECB DCB ∠+∠=∠+∠,∴ACD ECB ∠=∠,在ACD ∆和BCE ∆中,AC CB ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴E ACD BC ∆∆≌,∴ADC BEC ∠∠=.∵点A 、D 、E 在同一直线上, ∴180********ADC BEC CDE ∠=∠=︒-∠=︒-︒=︒,∴1351354590AEB CED ∠=︒-∠=︒-︒=︒.②∵CDA CEB ∆∆≌,∴BE AD =.∵CD CE =,CM DE ⊥,∴DM ME =.又∵90DCE ∠=︒,∴2DE CM =,∴2AE AD DE BE CM =+=+.故填:①90°;②2AE BE CM =+.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等、对应角相等的性质,本题中求证△ACD ≌△BCE 是解题的关键.15.如果一个三角形能被一条线段割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.(1)如图1,ABC ∆是等腰锐角三角形,()AB AC AB BC =>,若ABC ∠的角平分线BD 交AC 于点D ,且BD 是ABC ∆的一条特异线,则BDC ∠= 度.(2)如图2,ABC ∆中,2B C ∠=∠,线段AC 的垂直平分线交AC 于点D ,交BC 于点E ,求证:AE 是ABC ∆的一条特异线;(3)如图3,若ABC ∆是特异三角形,30A ∠=,B 为钝角,不写过程,直接写出所有可能的B 的度数.【答案】(1)72;(2)证明见解析;(3)∠B 度数为:135°、112.5°或140°.【解析】【分析】(1)根据等腰三角形性质得出∠C=∠ABC=∠BDC=2∠A ,据此进一步利用三角形内角和定理列出方程求解即可;(2)通过证明△ABE 与△AEC 为等腰三角形求解即可;(3)根据题意分当BD 为特异线、AD 为特异线以及CD 为特异线三种情况分类讨论即可.【详解】(1)∵AB=AC ,∴∠ABC=∠C ,∵BD 平分∠ABC ,∴∠ABD=∠CBD=12∠ABC,∵BD是△ABC的一条特异线,∴△ABD与△BCD为等腰三角形,∴AD=BD=BC,∴∠A=∠ABD,∠C=∠BDC,∴∠ABC=∠C=∠BDC,∵∠BDC=∠A+∠ABD=2∠A,设∠A=x,则∠C=∠ABC=∠BDC=2x,在△ABC中,∠A+∠ABC+∠C=180°,即:x+2x+2x=180°,∴x=36°,∴∠BDC=72°,故答案为:72;(2)∵DE是线段AC的垂直平分线,∴EA=EC,∴△EAC为等腰三角形,∴∠EAC=∠C,∴∠AEB=∠EAC+∠C=2∠C,∵∠B=2∠C,∴∠AEB=∠B,∴△EAB为等腰三角形,∴AE是△ABC的一条特异线;(3)如图3,当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°;如果AD=AC,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°;如果AD=DB,DC=DB,则∠ABC=∠ABD+∠DBC=30°+60°=90°,不符合题意,舍去;如图4,当AD是特异线时,AB=BD,AD=DC,则:∠ABC=180°−20°−20°=140°;当CD为特异线时,不符合题意;综上所述,∠B度数为:135°、112.5°或140°.【点睛】本题主要考查了等腰三角形性质的综合运用,熟练掌握相关概念是解题关键.16.定义:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)如图1,在△ABC中,AB=AC,点D在AC边上,且AD=BD=BC,求∠A的大小;(2)在图1中过点C作一条线段CE,使BD,CE是△ABC的三分线;在图2中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数;(3)在△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC 边上,且AD=BD,DE=CE,请直接写出∠C所有可能的值.【答案】(1)∠A=36°;(2)如图所示:见解析;(3)如图所示:见解析;∠C为20°或40°的角.【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠A的度数.(2)根据(1)的解题过程作出△ABC的三等分线;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作30°角,而后确定一边为BA,一边为BC,根据题意可以先固定BA的长,而后可确定D点,再分别考虑AD为等腰三角形的腰或者底边,兼顾A、E、C 在同一直线上,易得2种三角形ABC;根据图形易得∠C的值;【详解】(1)∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180?-x2,可得2x=180?-x2,解得:x=36°,则∠A=36°;(2)根据(1)的解题过程作出△ABC的三等分线,如图1;由45°自然想到等腰直角三角形,有两种情况,①如图2,过底角一顶点作对边的高,形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;②如图3,以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°作为等腰三角形的底角,易得此时所得的三个三角形恰都为等腰三角形;(3)如图4所示:①当AD=AE时,∵2x+x=30°+30°,∴x=20°;②当AD=DE时,∵30°+30°+2x+x=180°,∴x=40°;综上所述,∠C 为20°或40°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.已知:等边ABC ∆中.(1)如图1,点M 是BC 的中点,点N 在AB 边上,满足60AMN ∠=︒,求AN BN的值. (2)如图2,点M 在AB 边上(M 为非中点,不与A 、B 重合),点N 在CB 的延长线上且MNB MCB ∠=∠,求证:AM BN =.(3)如图3,点P 为AC 边的中点,点E 在AB 的延长线上,点F 在BC 的延长线上,满足AEP PFC ∠=∠,求BF BE BC-的值. 【答案】(1)3;(2)见解析;(3)32. 【解析】【分析】(1)先证明AMB ∆,MBN ∆与MAN ∆均为直角三角形,再根据直角三角形中30所对的直角边等于斜边的一半,证明BM=2BN ,AB=2BM ,最后转化结论可得出BN 与AN 之间的数量关系即得;(2)过点M 作ME ∥BC 交AC 于E ,先证明AM=ME ,再证明MEC ∆与NBM ∆全等,最后转化边即得;(3)过点P 作PM ∥BC 交AB 于M ,先证明M 是AB 的中点,再证明EMP ∆与FCP ∆全等,最后转化边即得.【详解】(1)∵ABC ∆为等边三角形,点M 是BC 的中点∴AM 平分∠BAC ,AM BC ⊥,60B BAC ∠=∠=︒∴30BAM ∠=︒,90AMB ∠=︒∵60AMN ∠=︒∴90AMN BAM ∠+=︒∠,30∠=︒BMN∴90ANM ∠=︒。

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷

2014-2015学年八年级(上)期末数学试卷参考答案与试题解析一、选择题:(本题共10小题,每题3分,共30分)1.(3分)在直角坐标系中,下列各点位于第三象限的是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,﹣3)考点:点的坐标.分析:根据点在第三象限的条件是:横坐标是负数,纵坐标是负数,可得答案.解答:解:A、点在第一象限,故A错误;B、点在第二象限,故B错误;C、点在第三象限,故C正确;D、点在第四象限,故D错误;故选:C.点评:本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.(3分)下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.考点:三角形的角平分线、中线和高.分析:三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.解答:解:过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.故选D.点评:考查了三角形的高的概念,能够正确作三角形一边上的高.3.(3分)下图中的轴对称图形有()A.(1),(2)B.(1),(4)C.(2),(3)D.(3),(4)考点:轴对称图形.数学是一种别具匠心的艺术。

——哈尔莫斯分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解答:解:(1)是轴对称图形;(2)、(3)是中心对称图形;(4)是轴对称图形.故选B.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.4.(3分)在△ACB中,如果∠C=∠A﹣∠B,那么此三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.不能确定考点:三角形内角和定理.分析:根据三角形的内角和等于180°列方程求出∠A=90°,然后判断即可.解答:解:由三角形的内角和定理得,∠A+∠B+∠C=180°,∵∠C=∠A﹣∠B,∴∠B+∠C=∠A,∴∠A+∠A=180°,解得∠A=90°,所以,此三角形是直角三角形.故选A.点评:本题考查了三角形的内角和定理,熟记定理并列方程求出∠A=90°是解题的关键.5.(3分)正比例函数y=kx的图象经过点(1,﹣3),那么它一定经过的点是()A.(3,﹣1)B.(,﹣1)C.(﹣3,1)D.(,﹣1)考点:一次函数图象上点的坐标特征.专题:计算题.分析:先把(1,﹣3)代入y=kx求出k得到一次函数解析式为y=﹣3x,在分别计算出自变量为3、、﹣3、﹣所对应的函数值,然后根据一次函数图象上点的坐标特征进行判断.解答:解:把(1,﹣3)代入y=kx得k=﹣3,所以一次函数解析式为y=﹣3x,当x=3时,y=﹣3x=﹣9;当x=时,y=﹣3x=﹣1;当x=﹣3时,y=﹣3x=9;当x=﹣时,y=﹣3x=1,所以点(,﹣1)在一次函数y=﹣3x的图象上.故选B.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.数学是一种别具匠心的艺术。

2014-2015年福建省漳州市八年级(上)期末数学试卷及答案

2014-2015年福建省漳州市八年级(上)期末数学试卷及答案

2014-2015学年福建省漳州市八年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2分)下列四个实数中,是无理数的为()A.0B.﹣3C.D.2.(2分)无理数的整数部分是()A.1B.2C.3D.43.(2分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a24.(2分)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为()A.①②B.②③C.③④D.①④5.(2分)下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角相等6.(2分)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1 7.(2分)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A.4B.8C.10D.4或88.(2分)要直观反映我市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.条形统计图C.频数分布统计图D.扇形统计图9.(2分)如图,有两棵树,一棵高10m,另一棵高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.5m B.10m C.13m D.17m10.(2分)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2 11.(2分)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO12.(2分)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC 的值是()A.10B.8C.6D.4二、填空题(共8小题,每小题3分,共24分)13.(3分)9的平方根是.14.(3分)计算(2m+n)(2m﹣n)=.15.(3分)计算:﹣8x3y2÷2xy=.16.(3分)若+(b﹣3)2=0,则a+b=.17.(3分)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有人.18.(3分)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件即可.19.(3分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC 于E,若CE=1,∠AEC=45°,则BE的长是.20.(3分)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是.三、解答题(共7题,满分52分)21.(6分)计算:++(﹣1)2015+|4﹣π|.(结果保留π)22.(8分)(1)9x2﹣4y2;(2)2x2+4x+2.23.(6分)如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.24.(6分)近年来,各地“广场舞”噪音干扰的问题倍受关注,某中学八年级学生就此问题对市民进行了随机问卷调查,问卷内容有以下四种:A.有一定影响,要控制好音量;B.影响很大,建议取缔;C.没影响;D.其它根据调查结果,制作了如图两幅不完整的统计图:根据以上信息解答下列问题:(1)本次调查的人数是人.(2)将两幅统计图补充完整.25.(8分)先化简,再求值:[(x﹣y)2]﹣x(x+y)+4xy÷y,其中x=﹣1,y=2.26.(8分)如图,在海上观察所A处,我边防海警发现正北60海里的B处,有一可疑船只正在往正东方向80海里的C处行驶,速度为40海里/小时,我边防海警立即派海警船从A处出发,沿AC方向行驶前往C处拦截,当可疑船只行驶到C处时,海警船也同时到达并将其截住,求海警船的速度.27.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=cm,AB边上的高为cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.2014-2015学年福建省漳州市八年级(上)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2分)下列四个实数中,是无理数的为()A.0B.﹣3C.D.【解答】解:A、0是整数,是有理数,故A选项错误;B、﹣3是整数,是有理数,故B选项错误;C、=2是无理数,故C选项正确;D、是无限循环小数,是有理数,故D选项错误.故选:C.2.(2分)无理数的整数部分是()A.1B.2C.3D.4【解答】解:∵,∴2<<3,∴的整数部分为2,故选:B.3.(2分)下列计算正确的是()A.(x3)3=x6B.a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D.3a+2a=5a2【解答】解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选:C.4.(2分)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为()A.①②B.②③C.③④D.①④【解答】解:①、错误,∵92+162=337≠252=625,∴不能作为直角三角形边长;②、正确,∵82+152=172=289,∴能作为直角三角形边长;③、正确,∵72+242=252=625,∴能作为直角三角形边长;④、错误,∵122+152=369≠202=400,∴不能作为直角三角形边长.故选:B.5.(2分)下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形对应角相等【解答】解:A、全等三角形的对应边上的高相等,故错误;B、全等三角形的对应边上的中线相等,故错误;C、全等三角形的对应角的角平分线相等,故错误;D、全等三角形的对应角相等,正确.故选:D.6.(2分)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1【解答】解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.7.(2分)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A.4B.8C.10D.4或8【解答】解:分情况考虑:当4是腰时,则底边长是20﹣8=12,此时4,4,12不能组成三角形,应舍去;当4是底边时,腰长是(20﹣4)×=8,4,8,8能够组成三角形.此时腰长是8.故选:B.8.(2分)要直观反映我市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.条形统计图C.频数分布统计图D.扇形统计图【解答】解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:A.9.(2分)如图,有两棵树,一棵高10m,另一棵高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.5m B.10m C.13m D.17m【解答】解:如图,设大树高为AB=10m,小树高为CD=5m,过C点作CE⊥AB于E,则四边形EBDC是矩形,∴EB=5m,EC=12m,AE=AB﹣EB=10﹣5=5(m),在Rt△AEC中,AC===13(m).故小鸟至少飞行13m.故选:C.10.(2分)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2【解答】解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.11.(2分)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO【解答】解:∵由尺规作图的痕迹可得AE、BF是△ABC的内角平分线,∴点O到△ABC三边的距离相等,CG也是△ABC的一条内角平分线,故D选项不正确,故选:D.12.(2分)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC 的值是()A.10B.8C.6D.4【解答】解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE ,∴S △ABD =S △ADE ,S △BDC =S △CDE ,∴S △ABD +S △BDC =S △ADE +S △CDE =S △ADC ,∴S △ADC ═S △ABC =×12=6,故选:C .二、填空题(共8小题,每小题3分,共24分)13.(3分)9的平方根是 ±3 .【解答】解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.14.(3分)计算(2m +n )(2m ﹣n )= 4m 2﹣n 2 .【解答】解:原式=4m 2﹣n 2.故答案为:4m 2﹣n 2.15.(3分)计算:﹣8x 3y 2÷2xy= ﹣4x 2y .【解答】解:﹣8x 3y 2÷2xy=﹣4x 2y .故答案为:﹣4x 2y .16.(3分)若+(b ﹣3)2=0,则a +b= 2 .【解答】解:∵+(b﹣3)2=0,≥0,(b﹣3)2≥0,∴a+1=0,b﹣3=0,解得:a=﹣1,b=3,∴a+b=2,故答案为:2.17.(3分)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有16人.【解答】解:∵测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,∴该班身高在1.60m以下的学生有:40×0.4=16(人).故答案为:16.18.(3分)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件∠ABC=∠DCB,本题答案不唯一即可.【解答】解:添加的条件是∠ABC=∠DCB,理由是:在△ABC和△DCB中∴△ABC≌△DCB(AAS),故答案为:∠ABC=∠DCB.本题答案不唯一.19.(3分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,若CE=1,∠AEC=45°,则BE的长是.【解答】解:∵∠C=90°,∠AEC=45°,∴∠EAC=45°,∴AE=CE=,∵DE垂直平分AB,∴BE=AE=,故答案为:.20.(3分)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是9.6.【解答】解:如图,过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D.∵AC=AC,AE⊥BC,∴BE=EC=6,在Rt△AEB中,==8,由三角形的面积公式可知:,即:,故答案为:9.6.三、解答题(共7题,满分52分)21.(6分)计算:++(﹣1)2015+|4﹣π|.(结果保留π)【解答】解:原式=2+3﹣1+4﹣π=8﹣π.22.(8分)(1)9x2﹣4y2;(2)2x2+4x+2.【解答】解:(1)原式=(3x+2y)(3x﹣2y);(2)原式=2(x2+2x+1)=2(x+1)2.23.(6分)如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.【解答】证明:∵BF=DE,∴BE+EF=DE+EF.即BE=DF,∵AB∥CD,∴∠B=∠D,在△ABE和△CDF中,,∴△ABE≌△CDF.24.(6分)近年来,各地“广场舞”噪音干扰的问题倍受关注,某中学八年级学生就此问题对市民进行了随机问卷调查,问卷内容有以下四种:A.有一定影响,要控制好音量;B.影响很大,建议取缔;C.没影响;D.其它根据调查结果,制作了如图两幅不完整的统计图:根据以上信息解答下列问题:(1)本次调查的人数是200人.(2)将两幅统计图补充完整.【解答】解:(1)本次调查的总人数是:80÷40%=200(人),故答案是:200;(2)项目C的人数是:200×20%=40(人),B项目的人数是:200﹣80﹣40﹣50=30(人).D项目所占的百分比是:×100%=25%,B项目所占的百分比是:×100%=15%.25.(8分)先化简,再求值:[(x﹣y)2]﹣x(x+y)+4xy÷y,其中x=﹣1,y=2.【解答】解:[(x﹣y)2]﹣x(x+y)+4xy÷y=x2﹣2xy+y2﹣x2﹣xy+4x,=﹣3xy+y2+4x,当x=﹣1,y=2时,原式=6+4﹣4=6.26.(8分)如图,在海上观察所A处,我边防海警发现正北60海里的B处,有一可疑船只正在往正东方向80海里的C处行驶,速度为40海里/小时,我边防海警立即派海警船从A处出发,沿AC方向行驶前往C处拦截,当可疑船只行驶到C处时,海警船也同时到达并将其截住,求海警船的速度.【解答】解:∵AB=60海里,BC=80海里,∴AC==100(海里),∵可疑船只的行驶速度为40海里/小时,∴可疑船只的行驶时间为80÷40=2(小时),∴我边防海警船的速度为100÷2=50(海里/小时),答:我边防海警船的速度为50海里/小时,才能恰好在C处将可疑船只截住.27.(10分)如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=50cm,AB边上的高为24cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.。

福建省漳州市八年级上学期期末数学试卷

福建省漳州市八年级上学期期末数学试卷

福建省漳州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2017七下·海安期中) 如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A . (1,0)B . (-1,0)C . (-1,1)D . (1,-1)2. (2分)(2019·广元) ﹣8的相反数是()A .B . ﹣8C . 8D .3. (2分) (2017七上·绍兴期中) 在0.010010001,0 ,π ,,,中无理数的个数是()A . 5个B . 4个C . 3个D . 2个4. (2分)已知是方程组的解,则a+2b的值为()A . 4B . 5C . 6D . 75. (2分)计算的结果是()A . 1B . -1C .D .6. (2分)(2017·临高模拟) 如图,l1∥l2 ,∠1=56°,则∠2的度数为()A . 34°B . 56°C . 124°D . 146°7. (2分)(2017·官渡模拟) 某地连续十天的最高气温统计如表:最高气温(度)22232425天数1423则这种数据的中位数,众数,平均数分别是()A . 23.5,23,23.7B . 23,24,23.5C . 24,23.5,25.5D . 23.5,23,23.58. (2分)如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后的三个顶点的坐标是().A . (2,2),(3,4),(1,7)B . (-2,2),(4,3),(1,7)C . (-2,2),(3,4),(1,7)D . (2,-2),(3,3),(1,7)9. (2分) (2017八上·肥城期末) 下列命题是真命题的是()A . 两个锐角的和一定是钝角B . 两条平行线被第三条直线所截,同旁内角的平分线互相垂直C . 两条直线被第三条直线所截,同旁内角互补D . 直线外一点到这条直线的垂线段,叫做这点到该直线的距离10. (2分)若直线y=-2x+1经过(3,y1),(-2,y2),则y1 ,y2的大小关系是()A . y1>y2B . y1<y2C . y1=y2D . 无法确定11. (2分)(2017·石家庄模拟) 如图,在平面直角坐标系中,一次函数y= x+1的图象分别与x轴、y 轴交于A、B两点,以A为圆心,适当长为半径画弧分别交AB、AO于点C、D,再分别以C、D为圆心,大于 CD 的长为半径画弧,两弧交于点E,连接AE并延长交y轴于点F,则下列说法正确的个数是()①AF是∠BAO的平分线;②∠BAO=60°;③点F在线段AB的垂直平分线上;④S△AOF:S△ABF=1:2.A . 1B . 2C . 3D . 412. (2分)如图,AB是半圆O的直径,点C、D、E是半圆弧上的点,且弦AC=CD=2,弦DE=EB=,则直径AB的长是()A .B .C .D .二、填空题 (共5题;共6分)13. (1分)如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为________.14. (2分) (2015九上·新泰竞赛) 在平面直角坐标系xOy中,对于点P(x,y),我们把点P(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2 ,点A2的伴随点为A3 ,点A3的伴随点为A4 ,…,这样依次得到点A1 , A2 , A3 ,…,An ,….若点A1的坐标为(3,1),则点A2015的坐标为________;若点A1的坐标为(a,b),对于任意的正整数n,点An均在x轴上方,则a,b应满足的条件为________。

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

2014—2015学年第一学期期末考试八年级数学试卷(含答案)1

111---a a a 11-+a a 1--a a ()⎪⎭⎫ ⎝⎛•-b a ab 243853-x 2013—2014学年第一学期期末考试八年级数学试卷(时间:90分钟 卷面分100分)一、选择题(每小题3分,共24分)1、下列运算正确的是( )A 、a+a=a 2B 、(3a) 2=6a 2C 、(a+1) 2=a 2+1D 、a ·a=a 22、某三角形其中两边长分别为5cm 和8cm ,则此三角形的第三边长可能是( )A 、2cmB 、5cmC 、13cmD 、15cm3、观察下列中国传统工艺品的花纹,其中轴对称图形是( )4、计算 的结果为( ) A 、 B 、 C 、 -1 D 、1-a5、如图,某人将一块五边形玻璃打碎成四块,现要到玻璃店配一块完全一样的玻璃,那么最省事的方法是( )A 、带①去B 、带①②去C 、带①②③去D 、带①②③④去6、如图是跷跷板的示意图,支柱OC 与地面垂直,点O 是横板AB 的中点,AB 可以绕着点O 上下转动,当A 端落地时,∠OAC=20°,横板上下可转动的最大角度(即∠A ′OA )是( )A 、80°B 、60°C 、40°D 、20°7、的边长为a 的正方形中挖去一个边长为b 的小正方形(a>b )(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证( )A 、(a+b) 2=a 2+2ab+b 2B 、(a-b) 2=a 2-2ab+b 2C 、a 2-b 2=(a+b)(a-b)D 、(a+2b)(a-b)=a 2+ab-2b 28、如图,已知△AB C ≌△CDA ,下列结论:(1)AB=CD,BC=DA ;(2)∠BAC=∠DCA,∠ACB=∠CAD ;(3)A B ∥CD,BC ∥DA 。

其中正确的结论有( )个A 、0B 、1C 、2D 、3二、填空题(每小题3分,共24分)9、计算: = 10、当x 时,分式 有意义22322=--+x x x 2112211112+-÷⎪⎭⎫ ⎝⎛-++a a a a a 11、分解因式:x 3-9x=12、点P (-3,a )和点Q (b ,-2)关于Y 轴对称,则a+b=13、如图,点P 在∠AOB 人平分线上,若使△AOP ≌△BOP ,则需添加的一个条件是 (只写一个即可,不添加辅助线)14、已知:在Rt △AB C 中,∠C=90°,AD 平分∠BAC 交BC 于D ,若BC=32cm ,且BD :DC=9:7,则D 到AB 边的距离为15、如图,△AB C 中,∠C=90°,∠A=30°,AB 的垂直平分线交AC 于D ,交AB 于E ,CD=2,则AC=16、如图所示,△AB C 中,点A 的坐标为(0,1),点C 的坐标为(4,3),若要使使△AB C 和△AB D 全等,则点D 的坐标为三、解答题(共52分)17、(6分)解方程:18、(7分)先化简再求值:(a 2b-2ab 2-b 2)÷b-(a+b)(a-b),其中a=-3,b=19、(7分)先化简: ,再先一个你认为合适的数作为a 的值代入求值。

福建省漳州市八年级上学期期末数学试卷

福建省漳州市八年级上学期期末数学试卷

福建省漳州市八年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·普兰店期末) 下列因式分解,其中正确的是()A .B .C .D .2. (2分)如果2x2y3与x2yn+1是同类项,那么n的值是()A . 1B . 2C . 3D . 43. (2分)下列分式中,最简分式是()A .B .C .D .4. (2分) (2015八下·洞头期中) 如果一个多边形的内角和是720°,那么这个多边形是()A . 四边形B . 五边形C . 六边形D . 七边形5. (2分) (2015九上·房山期末),则(﹣xy)2的值为()A . ﹣6B . 9C . 6D . ﹣96. (2分)若a+b=4,则a2+2ab+b2的值是()A . 8B . 16C . 2D . 47. (2分)(2017·承德模拟) 方程的解为()A . x=B . x=C . x=﹣2D . 无解8. (2分) (2017八上·杭州月考) 如图,AB∥CD,AC∥DB,AD 与 BC 交于点 O,AE⊥BC 于点 E,DF⊥BC 于点 F,那么图中全等的三角形有()对A . 5B . 6C . 7D . 89. (2分)(2019·石家庄模拟) 如图,木工师傅在板材边角处作直角时,往往使用”三弧法”,其作法是(1)作线段AB·分别以A,B为圆心,以AB长为半径弧,两弧的交点为C(2)以C为圆心,仍以AB长为半径作弧交AC 的延长线于点D:(3)连接BD,BC下列说法不正确的是()A . ∠CBD=30°B . S△BDC= AB2C . sin2A+cos2D=1D . 点C是△ABD的外心10. (2分)(2016·福田模拟) 下列命题中,不正确的是()A . 有一个角是60°的等腰三角形是等边三角形B . 一组对边平行且一组对角相等的四边形是平行四边形C . 对角线互相垂直且相等的四边形是矩形D . 对角线相等的菱形是正方形二、填空题 (共6题;共6分)11. (1分)(2018·河源模拟) 分解因式: =________12. (1分) (2018八上·巴南月考) 若ax=3,ay=6,则ax+y=________13. (1分)(2017·和平模拟) 某服装加工厂计划加工400套运动服,在加工完160套后,采用了新技术,工作效率比原计划提高了20%,结果提前2天完成全部任务.则采用技术后每天加工________套运动服.14. (1分)如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是________.15. (1分)如图,在△ABC中,AB=AC,BC=24,tanC=2,如果将△ABC沿直线l翻折后,点B落在边AC的中点E处,直线l与边BC交于点D,那么BD的长为________.16. (1分) (2015八上·惠州期末) 如图,锐角三角形ABC中,直线L为BC的中垂线,射线BM为∠ABC的角平分线,L与M相交于P点,若∠A=60°,∠ACP=24°,则∠ABP的度数为________.三、解答题 (共9题;共80分)17. (5分) (2017七下·单县期末) 化简再求值:,其中18. (5分)(2019·郴州) 先化简,再求值:,其中.19. (5分)有一个圆形的花园,其半径为4米,现要扩大花园,将其半径增加2米,这样花园的面积将增加多少平方米?20. (10分) (2020七下·固阳月考) 如图,在中,,垂足为,点在上,,垂足为, .(1)试说明的理由;(2)如果,且,求的度数.21. (10分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?22. (13分)(2017·景德镇模拟) 如图1,△AC B和△DCE均为等边三角形,若B,D,E在同一直线上,连接AE.(1)请你在图中找出一个与△AEC全等的三角形:________;(2)∠AEB的度数为________;CE,AE,BE的数量关系为________.(3)如图2,△ACB是等腰直角三角形,∠AEB=90°,连接CE,过点C作CD⊥CE,交BE于点D,试探究CE,AE,BE的数量关系,并说明理由.(4)如图3,在正方形ABCD中,CD=5 ,点P为正方形ABCD外一点,∠APC=90°,且AP=6,试求点P到CD的距离.23. (7分) (2017八下·平顶山期末) 在列分式方程解应用题时:(1)主要步骤有:①审清题意;②设未知数;③根据题意找________关系,列出分式方程;④解方程,并________;⑤写出答案.(2)请你联系实际设计一道关于分式方程 = 的应用题,要求表述完整,条件充分,并写出解答过程.24. (10分) (2020八上·江津月考) 王强同学用10块高度都是的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(),点在上,点和分别与木墙的顶端重合.(1)求证:;(2)求两堵木墙之间的距离.25. (15分)(2017·河南模拟) 如图①,△ABC与△CDE是等腰直角三角形,直角边AC、CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE、BD.(1)猜想PM与PN的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图②,AE与MP、BD分别交于点G、H.请判断(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC=kAC,CD=kCE,如图③,写出PM与PN的数量关系,并加以证明.参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共80分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、答案:22-3、答案:22-4、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建省漳州市2014-2015学年八年级(上)期末数学试卷一、选择题(共12小题,每小题2分,满分24分,每小题只有一个正确的选项,请将正确选项填入相应的表格内)1.(2014•莱芜)下列四个实数中,是无理数的为()A.0 B.﹣3 C. D.考点:无理数.专题:常规题型.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:A、0是整数,是有理数,故A选项错误;B、﹣3是整数,是有理数,故B选项错误;C、=2是无理数,故C选项正确;D、是无限循环小数,是有理数,故D选项错误.故选:C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2014秋•漳州期末)无理数的整数部分是()A. 1 B. 2 C. 3 D. 4考点:估算无理数的大小.分析:看在哪两个整数之间即可得到它的整数部分.解答:解:∵,∴2<<3,∴的整数部分为2,故选:B.点评:本题考查估算无理数的大小的知识;用“夹逼法”得到无理数的范围是解决本题的关键.3.(2014秋•漳州期末)下列计算正确的是()A.(x3)3=x6B. a6•a4=a24C.(﹣mn)4÷(﹣mn)2=m2n2D. 3a+2a=5a2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;单项式的除法,合并同类项法则对各选项分析判断利用排除法求解.解答:解:A、(x3)3=x3×3=x9,故本选项错误;B、a6•a4=a6+4=a10,故本选项错误;C、(﹣mn)4÷(﹣mn)2=m2n2,故本选项正确;D、3a+2a=5a,故本选项错误.故选C.点评:本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方的性质,合并同类项法则,熟记各性质并理清指数的变化情况是解题的关键.4.(2014秋•漳州期末)观察下列各组数:①9,16,25;②8,15,17;③7,24,25;④12,15,20.其中能作为直角三角形边长的组数为()A.①②B.②③C.③④D.①④考点:勾股定理的逆定理.分析:利用勾股定理的逆定理对四个答案进行逐一判断即可.解答:解:①、错误,∵92+162=337≠252=625,∴不能作为直角三角形边长;②、正确,∵82+152=172=289,∴能作为直角三角形边长;③、正确,∵72+242=252=625,∴能作为直角三角形边长;④、错误,∵122+152=369≠202=400,∴不能作为直角三角形边长.故选B.点评:本题考查的是利用勾股定理的逆定理判断三角形是否为直角三角形,即三角形的三边若满足a2+b2=c2,则此三角形是直角三角形.5.(2014秋•漳州期末)下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等 D.全等三角形对应角相等考点:命题与定理.分析:认真读题,只要甄别,其中A、B、C选项中都没有“对应”二字,都是错误的,只有D是正确的.解答:解:A、全等三角形的对应边上的高相等,故错误;B、全等三角形的对应边上的中线相等,故错误;C、全等三角形的对应角的角平分线相等,故错误;D、全等三角形的对应角相等,正确.故选D.点评:本题考查了全等三角形的性质;注意全等三角形的性质中指的是各对应边上高,中线,角平分线相等.对性质中对应的真正理解是解答本题的关键.6.(2014秋•漳州期末)计算(18x4﹣48x3+6x)÷6x的结果为()A.3x3﹣13x2B.3x3﹣8x2C.3x3﹣8x2+6x D.3x3﹣8x2+1考点:整式的除法.分析:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.解答:解:(18x4﹣48x3+6x)÷6x=3x3﹣8x2+1.故选:D.点评:考查了整式的除法,多项式除以单项式实质就是转化为单项式除以单项式.多项式除以单项式的结果仍是一个多项式.7.(2014秋•漳州期末)若等腰三角形的周长为20,有一边长为4,则它的腰长为()A. 4 B.8 C.10 D. 4或8考点:等腰三角形的性质;三角形三边关系.分析:根据等腰三角形的性质分为两种情况解答:当边长4cm为腰或者4cm底边时.解答:解:分情况考虑:当4是腰时,则底边长是20﹣8=12,此时4,4,12不能组成三角形,应舍去;当4是底边时,腰长是(20﹣4)×=8,4,8,8能够组成三角形.此时腰长是8.故选B.点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.8.(2014秋•漳州期末)要直观反映我市某一周每天的最高气温的变化趋势,宜采用()A.折线统计图B.条形统计图C.频数分布统计图D.扇形统计图考点:统计图的选择.分析:根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.解答:解:根据题意,要求直观反映我市一周内每天的最高气温的变化情况,结合统计图各自的特点,应选择折线统计图.故选:A.点评:此题主要考查统计图的选择,根据扇形统计图、折线统计图、条形统计图各自的特点来判断.9.(2014秋•漳州期末)如图,有两棵树,一颗高10m,另一颗高5m,两树相距12m,一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()A.5m B.10m C.13m D. 17m考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=5m,过C点作CE⊥AB于E,则四边形EBDC是矩形,连接AC,∴EB=5m,EC=12m,AE=AB﹣EB=10﹣5=5(m),在Rt△AEC中,AC===13(m).故小鸟至少飞行13m.故选:C.点评:本题考查了勾股定理的应用,根据实际得出直角三角形,培养学生解决实际问题的能力.10.(2014秋•漳州期末)如图(1)所示在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把拿下的部分剪拼成一个矩形如图(2)所示,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣b2=(a+b)(a﹣b) B.(a+b)2=a2+2ab+b2 C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab﹣2b2考点:平方差公式的几何背景.分析:左图中阴影部分的面积=a2﹣b2,右图中矩形面积=(a+b)(a﹣b),根据二者相等,即可解答.解答:解:由题可得:a2﹣b2=(a﹣b)(a+b).故选:A.点评:此题主要考查了平方差公式的几何背景.解题的关键是运用阴影部分的面积相等得出关系式.11.(2014秋•漳州期末)如图,AE于BF交于点O,点O在CG上,根据尺规作图的痕迹,判断下列说法不正确的是()A.AE、BF是△ABC的内角平分线B.点O到△ABC三边的距离相等C.CG也是△ABC的一条内角平分线D.AO=BO=CO考点:作图—基本作图;角平分线的性质.分析:利用尺规作图的痕迹可得AE、BF是△ABC的内角平分线,即可得出答案.解答:解:∵由尺规作图的痕迹可得AE、BF是△ABC的内角平分线,∴点O到△ABC三边的距离相等,CG也是△ABC的一条内角平分线,故D选项不正确,故选:D.点评:本题主要考查了基本作图及角平分线的性质,解题的关键是熟记角平分线的作图方法.12.(2014秋•漳州期末)如图,已知S△ABC=12,AD平分∠BAC,且AD⊥BD于点D,则S△ADC 的值是()A.10 B.8 C. 6 D. 4考点:等腰三角形的判定与性质;三角形的面积.分析:延长BD交AC于点E,则可知△ABE为等腰三角形,则S△ABD=S△ADE,S△BDC=S△CDE,可得出S△ADC=S△ABC.解答:解:如图,延长BD交AC于点E,∵AD平分∠BAE,AD⊥BD,∴∠BAD=∠EAD,∠ADB=∠ADE,在△ABD和△AED中,,∴△ABD≌△AED(ASA),∴BD=DE,∴S△ABD=S△ADE,S△BDC=S△CDE,∴S△ABD+S△BDC=S△ADE+S△CDE=S△ADC,∴S△ADC═S△ABC=×12=6,故选C.点评:本题主要考查等腰三角形的判定和性质,由BD=DE得到S△ABD=S△ADE,S△BDC=S△CDE是解题的关键.二、填空题(共8小题,每小题3分,共24分)13.(3分)(2013•泰州)9的平方根是±3.考点:平方根.专题:计算题.分析:直接利用平方根的定义计算即可.解答:解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.点评:此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.14.(3分)(2014秋•漳州期末)计算(2m+n)(2m﹣n)=4m2﹣n2.考点:平方差公式.专题:计算题.分析:原式利用平方差公式计算即可得到结果.解答:解:原式=4m2﹣n2.故答案为:4m2﹣n2.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.15.(3分)(2014秋•漳州期末)计算:﹣8x3y2÷2xy=﹣4x2y.考点:整式的除法.分析:利用系数,同底数幂分别相除后,作为商的因式求解.解答:解:﹣8x3y2÷2xy=﹣4x2y.故答案为:﹣4x2y.点评:本题主要考查了整式的除法,解题的关键是熟记,把系数同底数幂分别相除后,作为商的因式.16.(3分)(2014秋•漳州期末)若+(b﹣3)2=0,则a+b=2.考点:非负数的性质:算术平方根;非负数的性质:偶次方.分析:利用非负数的性质解得a,b,求得a+b.解答:解:∵+(b﹣3)2=0,≥0,(b﹣3)2≥0,∴a+1=0,b﹣3=0,解得:a=﹣1,b=3,∴a+b=2,故答案为:2.点评:本题主要考查了非负数的性质,利用算术平方根的非负性求值是解答此题的关键.17.(3分)(2014秋•漳州期末)测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,则该班身高在1.60m以下的学生有16人.考点:频数与频率.分析:利用频率=,进而得出该班身高在1.60m以下的学生数.解答:解:∵测量某班40名学生的身高,得身高在1.60m以下的频率是0.4,∴该班身高在1.60m以下的学生有:40×0.4=16(人).故答案为:16.点评:此题主要考查了频数与频率,正确掌握频数与频率之间的关系是解题关键.18.(3分)(2014秋•漳州期末)如图,∠A=∠D=90°,要使△ABC≌△DCB,只需再添加一个条件∠ABC=∠DCB,本题答案不唯一即可.考点:全等三角形的判定.专题:证明题;开放型.分析:添加的条件是∠ABC=∠DCB,根据全等三角形的判定定理AAS即可求出答案.解答:解:添加的条件是∠ABC=∠DCB,理由是:在△ABC和△DCB中∴△ABC≌△DCB(AAS),故答案为:∠ABC=∠DCB.本题答案不唯一.点评:本题主要考查对全等三角形的判定的理解和掌握,能熟练地根据全等三角形的判定定理进行证明是解此题的关键.19.(3分)(2014秋•漳州期末)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,若CE=1,∠AEC=45°,则BE的长是.考点:线段垂直平分线的性质.分析:根据等腰直角三角形的性质得到AE=CE,然后根据线段的操作频繁的性质即可得到结果.解答:解:∵∠C=90°,∠AEC=45°,∴∠EAC=45°,∴AE=CE=,∵DE垂直平分AB,∴BE=AE=,故答案为:.点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,熟记各性质是解题的关键.20.(3分)(2014秋•漳州期末)如图,在△ABC中,AB=AC=10,BC=12,若点P在边AC上移动,则BP的最小值是9.6.考点:垂线段最短;等腰三角形的性质;勾股定理.分析:过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D,首先由等腰三角形三线合一可知BE=6,在Rt△AEB中,由勾股定理可求得AE=8,然后利用等面积法即可求得BD的长.解答:解:如图,过点A作AE⊥BC,垂足为E,过点B作BD⊥AC,垂足为D.∵AC=AC,AE⊥BC,∴BE=EC=6,在Rt△AEB中,==8,由三角形的面积公式可知:,即:,∴BD=9.6.故答案为:9.6.点评:本题主要考查的是等腰三角形的性质、勾股定理以及垂线段的性质,利用等面积法求得BD 的长是解题的关键.三、解答题(共7题,满分52分)21.(6分)(2014秋•漳州期末)计算:++(﹣1)2015+|4﹣π|.(结果保留π)考点:实数的运算.专题:计算题.分析:原式第一项利用算术平方根定义计算,第二项利用立方根定义计算,第三项利用乘方的意义化简,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=2+3﹣1+4﹣π=8﹣π.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.(8分)(2014秋•漳州期末)(1)9x2﹣4y2;(2)2x2+4x+2.考点:提公因式法与公式法的综合运用.专题:计算题.分析:(1)原式利用平方差公式分解即可;(2)原式提取2,再利用完全平方公式分解即可.解答:解:(1)原式=(3x+2y)(3x﹣2y);(2)原式=2(x2+2x+1)=2(x+1)2.点评:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.23.(6分)(2014秋•漳州期末)如图,已知B,F,E,D在同一条直线上,AB=CD,AB∥CD,BF=DE,求证:AE=CF.考点:全等三角形的判定与性质.专题:证明题.分析:利用SAS证明△ABE≌△CDF,根据全等三角形,对应边相等,可得到结论AE=CF.解答:证明:∵BF=DE,∴BE+EF=DE+EF.即BE=DF,∵AB∥CD,∴∠B=∠D,在△ABE和△CDF中,,∴△ABE≌△CDF.∴AE=CF.点评:本题考查了全等三角形的判定和性质;证明线段相等往往可以通过全等三角形来证明,这是一种经常用、很重要的方法,要注意掌握.24.(6分)(2014秋•漳州期末)近年来,各地“广场舞”噪音干扰的问题倍受关注,某中学八年级学生就此问题对市民进行了随机问卷调查,问卷内容有以下四种:A.有一定影响,要控制好音量;B.影响很大,建议取缔;C.没影响;D.其它根据调查结果,制作了如图两幅不完整的统计图:根据以上信息解答下列问题:(1)本次调查的人数是200人.(2)将两幅统计图补充完整.考点:条形统计图;扇形统计图.分析:(1)根据项目A有80人,所占的百分比是40%即可求得总人数;(2)根据百分比的意义即可求得B、C项目的人数以及B、D所占的百分比,从而补全图形.解答:解:(1)本次调查的总人数是:80÷40%=200(人),故答案是:200;(2)项目C的人数是:200×20%=40(人),B项目的人数是:200﹣80﹣40﹣50=30(人).D项目所占的百分比是:×100%=25%,B项目所占的百分比是:×100%=15%.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.25.(8分)(2014秋•漳州期末)先化简,再求值:[(x﹣y)2]﹣x(x+y)+4xy÷y,其中x=﹣1,y=2.考点:整式的混合运算—化简求值.分析:先化简,再把x=﹣1,y=2代入求值.解答:解:[(x﹣y)2]﹣x(x+y)+4xy÷y=x2﹣2xy+y2﹣x2﹣xy+4x,=﹣3xy+y2+4x,当x=﹣1,y=2时,原式=6+4﹣4=6.点评:本题主要考查了整式的化简求值,解题的关键是正确的化简.26.(8分)(2014秋•漳州期末)如图,在海上观察所A处,我边防海警发现正北60海里的B处,有一可疑船只正在往正东方向80海里的C处行驶,速度为40海里/小时,我边防海警立即派海警船从A处出发,沿AC方向行驶前往C处拦截,当可疑船只行驶到C处时,海警船也同时到达并将其截住,求海警船的速度.考点:勾股定理的应用.分析:首先利用勾股定理求得线段AC的长,然后利用行驶时间相等求得边防海警船的速度.解答:解:∵AB=60海里,BC=80海里,∴AC==100(海里),∵可疑船只的行驶速度为40海里/小时,∴可疑船只的行驶时间为80÷40=2(小时),∴我边防海警船的速度为100÷2=50(海里/小时),答:我边防海警船的速度为50海里/小时,才能恰好在C处将可疑船只截住.点评:本题考查了勾股定理在实际生活中的应用,本题中正确的找到CB,AB,AC的等量关系,并且根据该等量关系在直角△CAB中求解是解题的关键.27.(10分)(2014秋•漳州期末)如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D 在线段AB上从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t0.(1)AB=50cm,AB边上的高为24cm;(2)点D在运动过程中,当△BCD为等腰三角形时,求t的值.考点:勾股定理.专题:动点型.分析:(1)在Rt△ABC中,由勾股定理即可求出AB;由直角三角形的面积即可求出斜边上的高;(2)分三种情况:①当BD=BC=30cm时,得出2t=30,即可得出结果;②当CD=CB=30cm时,作CE⊥AB于E,则BE=DE=BD=t,由(1)得出CE=24,由勾股定理求出BE,即可得出结果;③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,∴AB===50(cm);作AB边上的高CE,如图1所示:∵Rt△ABC的面积=AB•CE=AC•BC,∴CE===24(cm);故答案为:50,24;(2)分三种情况:①当BD=BC=30cm时,2t=30,∴t=15(s);②当CD=CB=30cm时,作CE⊥AB于E,如图2所示:则BE=DE=BD=t,由(1)得:CE=24,在Rt△BCE中,由勾股定理得:BE===18(cm),∴t=18s;③当DB=DC时,∠BCD=∠B,∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,∴∠ACD=∠A,∴DA=DC,∴AD=DB=AB=25(cm),∴2t=25,∴t=12.5(s);综上所述:t的值为15s或18s或12.5s.点评:本题考查了勾股定理、等腰三角形的判定与性质、三角形面积的计算;本题综合性强,有一定难度,特别是(2)中,需要进行分类讨论,运用勾股定理和等腰三角形的性质才能得出结果.。

相关文档
最新文档