专题15:电磁感应力学综合题

合集下载

电磁感应综合典型例题

电磁感应综合典型例题

2mgh 。

电阻为 R 的矩形线框 abcd ,边长 ab=L ,ad=h ,质量为 m ,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为 h ,如图所示,若线框恰好以恒定速 度通过磁场,线框中产生的焦耳热是 _______.(不考虑空气阻力)线框通过磁场的过程中,动能不变。

根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热.所以,线框通过磁场过程中产生的焦耳 热为Q=WG=mg —2h=2mgh .本题也可以直接从焦耳热公式 Q=I2 Rt 进行推算:设线框以恒定速度 v 通过磁场,运动时间从线框的 cd 边进入磁场到 ab 边离开磁场的过程中,因切割磁感线产生的感应电流的大小为cd 边进入磁场时的电流从 d 到c,cd 边离开磁场后的电流方向从 a 到 b.整个下落过程中磁场对感应电流产生的安培力方向始终向上,大小恒为据匀速下落的条件,有因线框通过磁场的时间,也就是线框中产生电流的时间,所以据焦耳定律,联立 ( l )、( 2 )、( 3 )三式,即得线框中产生的焦耳热为Q=2mgh .两种解法相比较,由于用能的转化和守恒的观点,只需从全过程考虑,不需涉及电流的产生等过程,计算更为简捷.一个质量 m=0.016kg 、长 L=0.5m ,宽 d=0.1m 、电阻R=0.1Ω的矩形线圈,从离匀强磁场上边缘高 h1 =5m 处由静止自由下落.进入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运动过程中线框保持平动),测得线圈下边通过磁场的时间△ t=0.15s,取 g=10m/s2,求:( 1 )匀强磁场的磁感强度 B;( 2 ) 磁场区域的高度 h2 ;( 3 )通过磁场过程中线框中产生的热量,并说明其转化过程.线圈进入磁场后受到向上的磁场力,恰作匀速运动时必满足条件:磁场力 =重力.由此可算出 B 并由运动学公式可算出 h2。

电磁感应现象压轴题综合题含答案解析

电磁感应现象压轴题综合题含答案解析

电磁感应现象压轴题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,两根光滑、平行且足够长的金属导轨倾斜固定在水平地面上,导轨平面与水平地面的夹角37θ=︒,间距为d =0.2m ,且电阻不计。

导轨的上端接有阻值为R =7Ω的定值电阻和理想电压表。

空间中有垂直于导轨平面斜向上的、大小为B =3T 的匀强磁场。

质量为m =0.1kg 、接入电路有效电阻r =5Ω的导体棒垂直导轨放置,无初速释放,导体棒沿导轨下滑一段距离后做匀速运动,取g =10m/s 2,sin37°=0.6,求:(1)导体棒匀速下滑的速度大小和导体棒匀速运动时电压表的示数; (2)导体棒下滑l =0.4m 过程中通过电阻R 的电荷量。

【答案】(1)20m/s 7V (2)0.02C 【解析】 【详解】(1)设导体棒匀速运动时速度为v ,通过导体棒电流为I 。

由平衡条件sin mg BId θ=①导体棒切割磁感线产生的电动势为E =Bdv ②由闭合电路欧姆定律得EI R r=+③ 联立①②③得v =20m/s ④由欧姆定律得U =IR ⑤联立①⑤得U =7V ⑥(2)由电流定义式得Q It =⑦由法拉第电磁感应定律得E t∆Φ=∆⑧B ld ∆Φ=⋅⑨由欧姆定律得EI R r=+⑩ 由⑦⑧⑨⑩得Q =0.02C ⑪2.如图所示,竖直放置、半径为R 的圆弧导轨与水平导轨ab 、在处平滑连接,且轨道间距为2L ,cd 、足够长并与ab 、以导棒连接,导轨间距为L ,b 、c 、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B 的匀强磁场,均匀的金属棒pq 和gh 垂直导轨放置且与导轨接触良好。

gh 静止在cd 、导轨上,pq 从圆弧导轨的顶端由静止释放,进入磁场后与gh 没有接触。

当pq 运动到时,回路中恰好没有电流,已知pq 的质量为2m ,长度为2L ,电阻为2r ,gh 的质量为m ,长度为L ,电阻为r ,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g ,求:(1)金属棒pq 到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq 运动到时,金属棒gh 的速度大小;(3)金属棒gh 产生的最大热量。

(完整版)电磁感应综合练习题(基本题型,含答案)

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。

如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。

高三物理 专题复习 《电磁感应的综合应用》(含答案解析)

高三物理 专题复习 《电磁感应的综合应用》(含答案解析)

第9课时 电磁感应的综合应用 考点 楞次定律与法拉第电磁感应定律的应用1.求感应电动势的两种方法(1)E =n ΔΦΔt,用来计算感应电动势的平均值. (2)E =Bl v 或E =12Bl 2ω,主要用来计算感应电动势的瞬时值. 2.判断感应电流方向的两种方法(1)利用右手定则,即根据导体在磁场中做切割磁感线运动的情况进行判断.(2)利用楞次定律,即根据穿过闭合回路的磁通量的变化情况进行判断.3.楞次定律中“阻碍”的四种表现形式(1)阻碍磁通量的变化——“增反减同”.(2)阻碍相对运动——“来拒去留”.(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”.(4)阻碍电流的变化(自感现象)——“增反减同”.例1 (多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图1(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内( )图1A .圆环所受安培力的方向始终不变B .圆环中的感应电流始终沿顺时针方向C .圆环中的感应电流大小为B 0rS 4t 0ρD .圆环中的感应电动势大小为B 0πr 24t 0答案 BC解析 在0~t 0时间内,磁感应强度减小,根据楞次定律可知感应电流的方向为顺时针,圆环所受安培力水平向左,在t 0~t 1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误.变式训练1.(多选)(2020·山东等级考模拟卷·12)竖直放置的长直密绕螺线管接入如图2甲所示的电路中,通有俯视顺时针方向的电流,其大小按图乙所示的规律变化.螺线管内中间位置固定有一水平放置的硬质闭合金属小圆环(未画出),圆环轴线与螺线管轴线重合.下列说法正确的是( )图2A .t =T 4时刻,圆环有扩张的趋势 B .t =T 4时刻,圆环有收缩的趋势 C .t =T 4和t =3T 4时刻,圆环内的感应电流大小相等 D .t =3T 4时刻,圆环内有俯视逆时针方向的感应电流 答案 BC解析 t =T 4时刻,线圈中通有俯视顺时针且逐渐增大的电流,则线圈中由电流产生的磁场向下且逐渐增加.由楞次定律可知,圆环有收缩的趋势,A 错误,B 正确;t =3T 4时刻,线圈中通有俯视顺时针且逐渐减小的电流,则线圈中由电流产生的磁场向下且逐渐减小,由楞次定律可知,圆环中的感应电流为俯视顺时针,D 错误;t =T 4和t =3T 4时刻,线圈中电流的变化率一致,即由线圈电流产生的磁场变化率一致,则圆环中的感应电流大小相等,C 正确. 例2 (多选)(2019·山东枣庄市上学期期末)如图3所示,水平放置的半径为2r 的单匝圆形裸金属线圈A ,其内部有半径为r 的圆形匀强磁场区域,磁场的磁感应强度大小为B 、方向竖直向下;线圈A 的圆心和磁场区域的圆心重合,线圈A 的电阻为R .过圆心的两条虚线ab 和cd 相互垂直.一根电阻不计的直导体棒垂直于ab 放置,使导体棒沿ab 从左向右以速度v 匀速通过磁场区域,导体棒与线圈始终接触良好,线圈A 中会有感应电流通过.撤去导体棒,使磁场的磁感应强度均匀变化,线圈A 中也会有感应电流,如果使cd 左侧的线圈中感应电流大小和方向与导体棒经过cd 位置时的相同,则( )图3A .磁场一定增强B .磁场一定减弱C .磁感应强度的变化率为4B v πrD .磁感应强度的变化率为8B v πr答案 AC解析 根据右手定则,导体棒切割磁感线产生的感应电流通过cd 左侧的线圈时的方向是逆时针的,根据楞次定律,使磁场的磁感应强度均匀变化,产生同样方向的感应电流,磁场一定增强,故A 正确,B 错误;导体棒切割磁感线时,根据法拉第电磁感应定律,导体棒经过cd位置时产生的感应电动势E =2Br v ,根据欧姆定律,通过cd 左侧的线圈中感应电流大小I =E R2=4Br v R ;磁场的磁感应强度均匀变化时,根据法拉第电磁感应定律和欧姆定律,ΔB Δt ×r 2πR=4Br v R ,ΔB Δt =4B v πr,故C 正确,D 错误. 变式训练2.(2019·山东济南市3月模拟)在如图4甲所示的电路中,螺线管匝数n =1 000匝,横截面积S =20 cm 2.螺线管导线电阻r =1.0 Ω,R 1=4.0 Ω,R 2=5.0 Ω,C =30 μF.在一段时间内,垂直穿过螺线管的磁场的磁感应强度B 的方向如图甲所示,大小按如图乙所示的规律变化,则下列说法中正确的是( )图4A .螺线管中产生的感应电动势为1.2 VB .闭合K ,电路中的电流稳定后,电容器的下极板带负电C .闭合K ,电路中的电流稳定后,电阻R 1的电功率为2.56×10-2 WD .闭合K ,电路中的电流稳定后,断开K ,则K 断开后,流经R 2的电荷量为1.8×10-2 C 答案 C解析 根据法拉第电磁感应定律:E =n ΔΦΔt =nS ΔB Δt ;解得:E =0.8 V ,故A 错误;根据楞次定律可知,螺线管的感应电流盘旋而下,则螺线管下端相当于电源的正极,则电容器的下极带正电,故B 错误;根据闭合电路欧姆定律,有:I =E R 1+R 2+r=0.08 A ,根据 P =I 2R 1解得:P =2.56×10-2 W ,故C 正确;K 断开后,流经R 2的电荷量即为K 闭合时电容器一个极板上所带的电荷量Q ,电容器两端的电压为:U =IR 2=0.4 V ,流经R 2的电荷量为:Q =CU =1.2×10-5 C ,故D 错误. 考点 电磁感应中的电路与图象问题1.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源.(2)在电源内部电流由负极流向正极.(3)电源两端的电压为路端电压.2.解图象问题的三点关注(1)关注初始时刻,如初始时刻感应电流是否为零,是正方向还是负方向.(2)关注变化过程,看电磁感应发生的过程可以分为几个阶段,这几个阶段分别与哪段图象变化相对应.(3)关注大小、方向的变化趋势,看图线斜率的大小、图线的曲直是否和物理过程对应.3.解图象问题的两个分析方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.例3 (多选)(2019·贵州部分重点中学教学质量评测卷(四))长为L 的金属棒OP 固定在顶角为2θ的塑料圆锥体侧面上,ab 为圆锥体底面直径.圆锥体绕其轴OO ′以角速度ω在磁感应强度大小为B 、方向竖直向下的匀强磁场中匀速转动,转动方向如图5所示,下列说法正确的是( )图5A .金属棒上O 点的电势高于P 点B .金属棒上O 点的电势低于P 点C .金属棒OP 两端电势差大小为12Bω2L sin θD .金属棒OP 两端电势差大小为12BωL 2sin 2 θ 答案 AD解析 由右手定则知金属棒OP 在匀速转动过程中切割磁感线产生的感应电动势方向由P 指向O ,在电源内部由电势低处指向电势高处,则金属棒上O 点的电势高于P 点,故A 正确,B 错误.金属棒OP 在匀速转动过程中切割磁感线的有效长度L ′=O ′P =L sin θ,故产生的感应电动势E =BL ′·12ωL ′=12BωL 2sin 2 θ,故C 错误,D 正确. 变式训练3.(2019·安徽宣城市期末调研测试)边界MN 的一侧区域内,存在着磁感应强度大小为B 、方向垂直于光滑水平桌面的匀强磁场.边长为l 的正三角形金属线框abc 粗细均匀,三边阻值相等,a 顶点刚好位于边界MN 上,现使线框围绕过a 点且垂直于桌面的转轴匀速转动,转动角速度为ω,如图6所示,则在ab 边开始转入磁场的瞬间ab 两端的电势差U ab 为( )图6A.13Bl 2ω B .-12Bl 2ω C .-13Bl 2ω D.16Bl 2ω 答案 A 解析 当ab 边刚进入磁场时,ab 部分在切割磁感线,切割长度为两个端点间的距离,即a 、b 间的距离为l ,E =Bl v =Bl lω2=12Bl 2ω;设每个边的电阻为R ,a 、b 两点间的电势差为:U =I ·2R =E 3R ·2R ,故U =13Bωl 2,故A 正确,B 、C 、D 错误. 例4 (多选)(2019·全国卷Ⅱ·21)如图7,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好.已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图像可能正确的是( )图7答案 AD解析 根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ 通过磁场区域一段时间后MN 进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ 的电流随时间变化的图像可能是A ;若释放两导体棒的时间间隔较短,在PQ 没有出磁场区域时MN 就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ 出磁场后,MN 切割磁感线产生感应电动势和感应电流,且感应电流一定大于I 1,受到安培力作用,由于安培力与速度成正比,则MN 所受的安培力一定大于MN 的重力沿导轨平面方向的分力,所以MN 一定做减速运动,回路中感应电流减小,流过PQ 的电流随时间变化的图像可能是D. 变式训练4.(2019·安徽合肥市第一次质量检测)如图8所示,一有界匀强磁场区域的磁感应强度大小为B ,方向垂直纸面向里,磁场宽度为L ;正方形导线框abcd 的边长也为L ,当bc 边位于磁场左边缘时,线框从静止开始沿x 轴正方向匀加速通过磁场区域.若规定逆时针方向为电流的正方向,则反映线框中感应电流变化规律的图象是( )图8答案 B解析 设导线框运动的加速度为a ,则某时刻其速度v =at ,所以在0~t 1时间内(即当bc 边位于磁场左边缘时开始计时,到bc 边位于磁场右边缘结束),根据法拉第电磁感应定律得:E=BL v =BLat ,电动势为逆时针方向.由闭合电路欧姆定律得:I =BLa R t ,电流为正.其中R 为线框的总电阻.所以在0~t 1时间内,I ∝t ,故A 、C 错误;从t 1时刻开始,ad 边开始切割磁感线,电动势大小E =BLat ,其中t 1<t ≤t 2,电流为顺时针方向,为负,电流I =BLa Rt ,t 1<t ≤t 2,其中I 0=BLa R t 1,电流在t 1时刻方向突变,突变瞬间,电流大小保持I 0=BLa R t 1不变,故B 正确,D 错误.考点电磁感应中的动力学与能量问题1.电荷量的求解电荷量q =I Δt ,其中I 必须是电流的平均值.由E =n ΔΦΔt 、I =E R 总、q =I Δt 联立可得q =n ΔΦR 总,此式不涉及时间.2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流、电阻不变; (2)功能关系:Q =W 克服安培力,电流变或不变都适用;(3)能量转化:Q =ΔE 其他能的减少量,电流变或不变都适用.3.电磁感应综合题的解题策略(1) 电路分析:明确电源与外电路,可画等效电路图.(2) 受力分析:把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3) 过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”.(4) 能量分析:克服安培力做的功,等于把其他形式的能转化为电能的多少.例5 (2019·湖北稳派教育上学期第二次联考)如图9所示,倾角为θ的光滑绝缘斜面上平行于底边的虚线ef 下方有垂直于斜面向下的匀强磁场,磁场的磁感应强度大小为B ,边长为L 的正方形导线框abcd 放在斜面上,线框的电阻为R ,线框的cd 边刚好与ef 重合.无初速度释放线框,当ab 边刚好要进入磁场时,线框的加速度刚好为零,线框的质量为m ,重力加速度为g ,求:图9(1)ab 边刚好要进入磁场时线框的速度大小;(2)从释放线框到ab 边进入磁场时,通过线框横截面的电荷量.答案 (1)mgR sin θB 2L 2 (2)BL 2R解析 (1)ab 边刚好要进入磁场时, mg sin θ=F A =B 2L 2v R解得:v =mgR sin θB 2L 2(2)线框进入磁场的过程中,平均电流为I =E R根据法拉第电磁感应定律有:E =ΔФΔt 通过线框横截面的电荷量q =I Δt =ΔФR =BL 2R.变式训练5.(多选)(2019·辽宁葫芦岛市第一次模拟)如图10甲所示,在MN 、OP 间存在一匀强磁场,t =0时,一正方形光滑金属线框在水平向右的外力F 作用下紧贴MN 从静止开始做匀加速运动,外力F 随时间t 变化的图线如图乙所示,已知线框质量m =1 kg 、电阻R =2 Ω,则( )图10A .线框的加速度大小为2 m/s 2B .磁场宽度为6 mC .匀强磁场的磁感应强度大小为 2 TD .线框进入磁场过程中,通过线框横截面的电荷量为22 C 答案 ACD 解析 整个线框在磁场中运动时只受外力F 作用,则加速度a =F m=2 m/s 2.由题图可知,从线框右边刚进入磁场到右边刚离开磁场,运动的时间为2 s ,磁场的宽度d =12at 12=4 m ,所以选项A 正确,B 错误;当线框全部进入磁场前的瞬间:F 1-F 安=ma ,而F 安=BIL =B 2L 2v R=B 2L 2at R ,线框的宽度L =12at 12=12×2×12 m =1 m ,联立得:B = 2 T ,所以选项C 正确;线框进入磁场过程中,通过线框横截面的电荷量为q =ΔФR =BL 2R =2×122 C =22C ,所以选项D 正确.例6 (2019 ·浙南名校联盟期末)如图11甲所示,在竖直方向上有4条间距相等的水平虚线L 1、L 2、L 3、L 4,在L 1L 2之间、L 3L 4之间存在匀强磁场,大小均为1 T ,方向垂直于虚线所在平面.现有一根电阻为2 Ω的均匀金属丝,首尾相连制成单匝矩形线圈abcd ,连接处接触电阻忽略,宽度cd =L =0.5 m ,线圈质量为0.1 kg ,将其从图示位置由静止释放(cd 边与L 1重合),速度随时间变化的关系如图乙所示,其中0~ t 1时间内图线是曲线,其他时间内都是直线;并且t 1时刻cd 边与L 2重合,t 2时刻ab 边与L 3重合,t 3时刻ab 边与L 4重合,已知t 1~t 2的时间间隔为0.6 s ,整个运动过程中线圈平面始终处于竖直方向(重力加速度g 取10 m/s 2).求:图11(1)线圈匀速运动的速度大小;(2)线圈的长度ad ;(3)在0~t 1时间内通过线圈的电荷量;(4)0~t 3时间内,线圈ab 边产生的热量.答案 (1) 8 m/s (2) 2 m (3) 0.25 C (4) 0.18 J解析 (1) t 2~t 3时间ab 边在L 3L 4内做匀速直线运动,E =BL v 2,F =B E R L ,F =mg 联立解得:v 2=mgR B 2L2=8 m/s , (2)从cd 边出L 2到ab 边刚进入L 3线圈一直做匀加速直线运动,ab 刚进上方磁场时,cd 也应刚进下方磁场,设磁场宽度是d ,由v 2=v 1+gt 得,v 1=2 m/s ,则3d =v 1+v 22t =3 m ,得:d =1 m ,有:ad =2d =2 m ,(3)0~t 1时间内,通过线圈的电荷量为q =ΔΦR =BdL R=0.25 C , (4)在0~t 3时间内由能量守恒得:线圈产生热量Q 总=mg ·5d -12m v 22=1.8 J 故线圈ab 边产生热量Q =110Q 总=0.18 J. 变式训练6.(2019·福建三明市期末质量检测)如图12所示,足够长的光滑导轨倾斜放置,导轨平面与水平面夹角θ=37°,导轨间距L =0.4 m ,其下端连接一个定值电阻R =4 Ω,其他电阻不计.两导轨间存在垂直于导轨平面向下的匀强磁场,磁感应强度B =1 T .一质量为m =0.04 kg 的导体棒ab 垂直于导轨放置,现将导体棒由静止释放,取重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.图12(1)求导体棒下滑的最大速度;(2)若导体棒从静止加速到v =4 m/s 的过程中,通过R 的电荷量q =0.2 C ,求R 产生的热量值. 答案 (1)6 m/s (2)0.16 J解析 (1)当导体棒所受的合外力为零时,速度最大,则:mg sin θ=BIL ,I =BL v R 联立解得v =6 m/s(2)设该过程中电流的平均值为I ,则q =I ΔtI =ER ,E =BLx Δt 由能量守恒定律可得:mgx sin θ=12m v 2+Q 联立解得:x =2 m ,Q =0.16 J .考点 电磁感应中的动量和能量问题1.电磁感应与动量综合问题往往需要运用牛顿第二定律、动量定理、动量守恒定律、功能关系和能量守恒定律等重要规律,并结合闭合电路欧姆定律等物理规律及基本方法求解.2.动量观点在电磁感应问题中的应用,主要可以解决变力的冲量.所以,在求解导体棒做非匀变速运动的问题时,应用动量定理可以避免由于加速度变化而导致运动学公式不能使用的麻烦,在求解双杆模型问题时,在一定条件下可以利用动量守恒定律避免讨论中间变化状态,而直接求得最终状态.例7 (2019·福建福州市期末质量检测)如图13所示,空间存在一个范围足够大的竖直向下的匀强磁场,磁场的磁感应强度大小为B ;边长为L 的正方形金属框abcd (简称方框)放在光滑的水平地面上,其外侧套着一个与方框边长相同的U 形金属框架MNQP (仅有MN 、NQ 、QP 三条边,简称U 形框),U 形框的M 、P 端的两个触点与方框接触良好且无摩擦,其他地方没有接触.两个金属框每条边的质量均为m ,每条边的电阻均为r .(1)若方框固定不动,U 形框以速度v 0垂直NQ 边向右匀速运动,当U 形框的接触点M 、P 端滑至方框的最右侧时,如图乙所示,求U 形框上N 、Q 两端的电势差U NQ ;(2)若方框不固定,给U 形框垂直NQ 边向右的水平初速度v 0,U 形框恰好不能与方框分离,求方框最后的速度v t 和此过程流过U 形框上NQ 边的电荷量q ;(3)若方框不固定,给U 形框垂直NQ 边向右的初速度v (v >v 0),在U 形框与方框分离后,经过t 时间,方框的最右侧和U 形框的最左侧之间的距离为s .求分离时U 形框的速度大小v 1和方框的速度大小v 2.图13答案 见解析解析 (1)由法拉第电磁感应定律得:E =BL v 0此时电路图如图所示由串并联电路规律,外电阻为R 外=2r +3r ×r 3r +r =114r 由闭合电路欧姆定律得:流过QN 的电流I =E R 外+r=4BL v 015r 所以:U NQ =E -Ir =1115BL v 0; (2)U 形框向右运动过程中,方框和U 形框组成的系统所受合外力为零,系统动量守恒. 依题意得:方框和U 形框最终速度相同,设最终速度大小为v t ;3m v 0=(3m +4m )v t解得:v t =37v 0 对U 形框,由动量定理得:-BL I t =3m v t -3m v 0由q =I t解得:q =12m v 07BL(3)设U 形框和方框分离时速度分别为v 1和v 2,系统动量守恒:3m v =3m v 1+4m v 2 依题意得:s =(v 1-v 2)t联立解得:v 1=37v +4s 7tv 2=37v -3s 7t. 专题突破练级保分练1.(2019·广东珠海市质量监测)如图1所示,使一个水平铜盘绕过其圆心的竖直轴OO ′转动,摩擦等阻力不计,转动是匀速的.现把一个蹄形磁铁水平向左移近铜盘,则( )图1A .铜盘转动将变快B .铜盘转动将变慢C .铜盘仍以原来的转速转动D .因磁极方向未知,无法确定答案 B解析 假设蹄形磁铁的上端为N 极,下端为S 极,铜盘顺时针转动(从OO ′方向看).根据右手定则可以确定此时铜盘中的感应电流方向是从盘心指向边缘.通电导体在磁场中要受到力的作用,根据感应电流的方向和磁场的方向,利用左手定则可以确定磁场对铜盘的作用力的方向是沿逆时针方向,其受力方向与铜盘的转动方向相反,所以铜盘的转动速度将减小.无论怎样假设,铜盘的受力方向始终与转动方向相反.同时,转动过程中,机械能转化为电能,最终转化为内能,所以转得慢了.所以B 正确,A 、C 、D 错误.2.(多选)(2019·福建泉州市期末质量检查)如图2甲所示,匀强磁场垂直穿过矩形金属线框abcd ,磁感应强度B 随时间t 按图乙所示规律变化,下列说法正确的是( )图2A.t1时刻线框的感应电流方向为a→b→c→d→aB.t3时刻线框的感应电流方向为a→b→c→d→aC.t2时刻线框的感应电流最大D.t1时刻线框ab边受到的安培力方向向右答案AD解析t1时刻穿过线框的磁通量向里增加,根据楞次定律可知,线框的感应电流方向为a→b→c→d→a,由左手定则可知,线框ab边受到的安培力方向向右,选项A、D正确;t3时刻穿过线框的磁通量向里减小,可知线框的感应电流方向为a→d→c→b→a,选项B错误;B-t图象的斜率等于磁感应强度的变化率,可知t2时刻磁感应强度的变化率为零,则线框的感应电流为零,选项C错误.3.(多选)(2019·全国卷Ⅲ·19)如图3,方向竖直向下的匀强磁场中有两根位于同一水平面内的足够长的平行金属导轨,两相同的光滑导体棒ab、cd静止在导轨上.t=0时,棒ab以初速度v0向右滑动.运动过程中,ab、cd始终与导轨垂直并接触良好,两者速度分别用v1、v2表示,回路中的电流用I表示.下列图像中可能正确的是()图3答案AC解析棒ab以初速度v0向右滑动,切割磁感线产生感应电动势,使整个回路中产生感应电流,判断可知棒ab受到与v0方向相反的安培力的作用而做变减速运动,棒cd受到与v0方向相同的安培力的作用而做变加速运动,它们之间的速度差Δv=v1-v2逐渐减小,整个系统产生的感应电动势逐渐减小,回路中感应电流逐渐减小,最后变为零,即最终棒ab和棒cd的速度相同,v 1=v 2,这时两相同的光滑导体棒ab 、cd 组成的系统在足够长的平行金属导轨上运动,水平方向上不受外力作用,由动量守恒定律有m v 0=m v 1+m v 2,解得v 1=v 2=v 02,选项A 、C 正确,B 、D 错误.4.(2019·甘肃兰州市第一次诊断)如图4所示,宽为L 的光滑导轨竖直放置,左边有与导轨平面垂直的区域足够大的匀强磁场,磁感应强度为B ,右边有两块水平放置的金属板,两板间距为d .金属板和电阻R 都与导轨相连.要使两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,阻值也为R 的金属棒ab 在导轨上的运动情况可能为(金属棒与导轨始终接触良好,导轨电阻不计,重力加速度为g )( )图4A .向右匀速运动,速度大小为2dmg BLqB .向左匀速运动,速度大小为2dmg BLqC .向右匀速运动,速度大小为dmg 2BLqD .向左匀速运动,速度大小为dmg 2BLq答案 A解析 两板间质量为m 、带电荷量为-q 的油滴恰好处于静止状态,则qE =mg ,板间电场强度E =mg q ,方向竖直向下;两板间电压U =Ed =mgd q,且上板带正电、下板带负电.金属棒ab 切割磁感线相当于电源,两金属板与电阻R 并联后接在金属棒两端,则金属棒中电流方向由b 流向a ,U =R R +R·E =12·BL v ,则金属棒ab 在导轨上的运动速度v =2mgd qBL ;据金属棒中电流方向由b 流向a 和右手定则可得,金属棒向右运动.综上,A 正确,B 、C 、D 错误.5.(2019·北京市东城区上学期期末)如图5所示,两光滑水平放置的平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处于垂直于纸面向里的匀强磁场中,磁感应强度大小为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右匀速运动时( )图5A .电容器两端的电压为零B .通过电阻R 的电流为BL v RC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R答案 C解析 当导线MN 匀速向右运动时,导线所受的合力为零,说明导线不受安培力,电路中电流为零,故电阻两端没有电压.此时导线MN 产生的感应电动势恒定,根据闭合电路欧姆定律得知,电容器两板间的电压为U =E =BL v ,故A 、B 错误.电容器所带电荷量Q =CU =CBL v ,故C 正确;因匀速运动后MN 所受合力为0,而此时无电流,不受安培力,则无需拉力便可做匀速运动,故D 错误.6.(多选)(2019·湖北稳派教育上学期第二次联考)如图6甲所示,通电直导线MN 和正方形导线框在同一水平面内,ab 边与MN 平行,先给MN 通以如图乙所示的电流,然后再通以如图丙所示的正弦交流电,导线和线框始终保持静止不动,电流从N 到M 为正,已知线框中的磁通量与直导线MN 中的电流成正比,则下列说法正确的是( )图6A .通以如图乙所示的电流时,线框中产生的电流先减小后增大B .通以如图乙所示的电流时,线框中的感应电流方向始终不变C .通以如图丙所示的电流时,0~t 2时间内,线框受到的安培力方向不变D .通以如图丙所示的电流时,t 3 时刻线框受到的安培力为零答案 BD解析 由题意可知,从N 到M 的方向为电流正方向;通以如题图乙所示的电流时,在0~t 1时间内电流方向为从M 到N ,穿过线框abcd 的磁场方向垂直纸面向外,大小在减小,由楞次定律可得,感应电流方向为逆时针,即为abcda ;在t 1时刻后,电流方向为N 到M ,穿过线框abcd 的磁场方向垂直纸面向里,大小在增大,由楞次定律可得,感应电流方向为逆时针,即为abcda ,故电流的方向不变,根据法拉第电磁感应定律有:E =ΔФΔt ,则线框中的感应电流为I =E R =ΔФΔt ×1R ,因线框中的磁通量与直导线MN 中的电流成正比,即ΔФΔt ∝ΔI Δt,则由乙图可知ΔI Δt 一直保持不变,故ΔФΔt不变,则感应电流I 不变,故A 错误,B 正确;通以如题图丙所示的电流时,在0~t 22时间内,导线中电流沿正方向增大,则线框中的磁场向里增大,由楞次定律可知,感应电流方向为逆时针,即为abcda ,根据左手定则可知,ab 边受到的安培力方向向右,cd 边受到的安培力方向向左,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向右;在t 22~t 2时间内,导线中电流沿正方向减小,则线框中的磁场向里减小,由楞次定律可知,感应电流方向为顺时针,即为adcba ;根据左手定则可知,ab 边受到的安培力方向向左,cd 边受到的安培力方向向右,根据F =BIL 可知,I 、L 相同,但ab 边离导线近,故ab 边所在处的磁感应强度大于cd 边所在处的磁感应强度,则此时安培力的方向向左,故在0~t 2时间内线框受到的安培力方向改变,故C 错误;由题图丙可知,在t 3时刻电流为零,根据F =BIL 可知,此时线框受到的安培力为零,故D 正确.7.(2019·湖北十堰市上学期期末)如图7甲所示,导体棒MN 置于水平导轨上,PQMN 所围成的矩形的面积为S ,PQ 之间有阻值为R 的电阻,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的匀强磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( )图7A .在0~2t 0时间内,导体棒受到的导轨的摩擦力方向先向左后向右,大小不变B .在0~t 0时间内,通过导体棒的电流方向为N 到MC .在t 0~2t 0时间内,通过电阻R 的电流大小为SB 0Rt 0。

高中物理专题15:电磁感应力学综合题doc高中物理

高中物理专题15:电磁感应力学综合题doc高中物理

高中物理专题15:电磁感应力学综合题doc 高中物理——电磁感应中的力学咨询题电磁感应中中学物理的一个重要〝节点〞,许多咨询题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以〝压轴题〞形式显现.因此,在二轮复习中,要综合运用前面各章知识处理咨询题,提高分析咨询题、解决咨询题的能力.本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析咨询题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时刻变化的匀强磁场垂直于桌面,磁感应强度B 与时刻t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.[解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 现在杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =S tB ∆∆+B lv 而k tBt t t B t B kt B =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,R E I =作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时刻t 的关系如以下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时刻,那么有v =at ①杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③杆受到的安培力为F 安=IBL ④依照牛顿第二定律,有F -F 安=ma ⑤ 联立以上各式,得at R l B ma F 22 ⑥ 由图线上各点代入⑥式,可解得a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻专门小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m=0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.通过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,咨询现在两金属杆的速度各为多少?此题综合了法拉第电磁感应定律、安培力、左手定那么、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析咨询题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分不为v l 和v 2,通过专门短的时刻△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t由法拉第电磁感应定律,回路中的感应电动势E =B △S/△t =B ι(νl 一ν2)回路中的电流i =E /2 R杆甲的运动方程F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,因此两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( A ). R l vB A 2. R vBl B R l vB C 2 RvBl D 2图1 图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止开释,其下边缘刚进入磁场和刚穿出磁场时刻的速度差不多上v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),以下讲法中正确的选项是( D ).A·线圈可能一直做匀速运动B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时咨询变化时,导体圆环将受到向上的磁场力作用?( A ).图3 A B C D4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零平均增大时,金属杆ab 始终处于静止状态,那么金属杆受到的静摩擦力将( D ).A .逐步增大B .逐步减小C .先逐步增大,后逐步减小D .先逐步减小,后逐步增大图45、如下图,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后通过位置I 、Ⅱ、Ⅲ时,其加速度的大小分不为a 1、a 2、a 3( B ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,通过足够长的时刻后,金属杆的速度会趋近于一个最大速度Vm ,那么( BC ).A .假如B 增大,Vm 将变大 B .假如a 变大, Vm 将变大C .假如R 变大,Vm 将变大D .假如M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理能够简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨咨询,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽差不多上ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,那么金属框的最大速度可表示为( C ).图7A 、2222/)(LB fR v L B v m-= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m +=8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;平均磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2)(1)金属杆在匀速运动之前做作什么运动?(2)假设m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大?(3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动).(2)感应电动势E —vBL ,感应电流I=E/R 安培力R L vB BIL F m 22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RL vB BIL F +==22 )(22f F lB R v -= 由图线能够得到直线的斜率k=2)(12T kL R B == (3)由直线的截距能够求得金属杆受到的阻力f , f=2(N).假设金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如下图,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的平均直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求现在ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆能够达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,现在电路电流RBlv R E I ==杆受到安培力R v L B Blv F 22== 依照牛顿运动定律,有:R v L B mg ma 22sin -=θ Rv L B g a 22sin -=θ (3)当Rv L B mg 22sin =θ时,ab 杆达到最大速度mAX V 22sin LB mgR V m θ= 10.如下图,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,F>f .咨询:(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大,即:2222))((d B r R f F v f r R v d B f BId F m m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m ))((--== 回路中产生的感应电流为:Bdf F r R E I -=+= 那么R 中消耗的电功率为:2222)(dB R f F R I R P -== (3)当CD 速度为最大速度的1/3即m v v31=时,CD 中的电流为最大值的1/3即I I 31'=那么CD 棒所受的安培力为: )(31''f F d BI F A -== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。

法拉第电磁感应定律压轴题综合题附答案解析

法拉第电磁感应定律压轴题综合题附答案解析

法拉第电磁感应定律压轴题综合题附答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图,匝数为N 、电阻为r 、面积为S 的圆形线圈P 放置于匀强磁场中,磁场方向与线圈平面垂直,线圈P 通过导线与阻值为R 的电阻和两平行金属板相连,两金属板之间的距离为d ,两板间有垂直纸面的恒定匀强磁场。

当线圈P 所在位置的磁场均匀变化时,一质量为m 、带电量为q 的油滴在两金属板之间的竖直平面内做圆周运动。

重力加速度为g ,求:(1)匀强电场的电场强度 (2)流过电阻R 的电流(3)线圈P 所在磁场磁感应强度的变化率 【答案】(1)mg q (2)mgd qR(3)()B mgd R r t NQRS ∆+=∆ 【解析】 【详解】 (1)由题意得:qE =mg解得mg qE =(2)由电场强度与电势差的关系得:UE d=由欧姆定律得:U I R=解得mgdI qR=(3)根据法拉第电磁感应定律得到:E Nt∆Φ=∆ BS t t∆Φ∆=∆∆根据闭合回路的欧姆定律得到:()E I R r =+ 解得:()B mgd R r t NqRS∆+=∆2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。

线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求:(1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l vQ R=(3)43cd Blv U =【解析】 【详解】(1)线框离开磁场的过程中,则有:2E B lv = E I R=q It =l t v=联立可得:22Bl q R=(2)线框中的产生的热量:2Q I Rt=解得:234B l vQ R=(3) cd 间的电压为:23cd U IR =解得:43cd BlvU =3.如图(a )所示,间距为l 、电阻不计的光滑导轨固定在倾角为θ的斜面上。

电磁感应综合题(有梯度)

电磁感应综合题(有梯度)

法拉第电磁感应综合题集锦专题一动生电动势(基础)例1 两根光滑的足够长直金属导轨MN、M′N′平行置于竖直面内,导轨间距为l,导轨上端接有阻值为R的电阻,如图所示。

质量为m、长度也为l、阻值为r的金属棒ab垂直于导轨放置,且与导轨保持良好接触,其他电阻不计。

导轨处于磁感应强度为B、方向水平向里的匀强磁场中,ab由静止释放,在重力作用下向下运动,求:(1)ab运动的最大速度的大小;(2)若ab从释放至其运动达到最大速度时下落的高度为h,此过程中金属棒中产生的焦耳热为多少?例2 如图所示,足够长的平行金属导轨MN、PQ平行放置,间距为L,与水平面成角,导轨与固定电阻R1和R2相连,且R1=R2=R.R1支路串联开关S,原来S闭合,匀强磁场垂直导轨平面斜向上。

有一质量为m的导体棒ab与导轨垂直放置,接触面粗糙且始终接触良好,导体棒的有效电阻也为R,现让导体棒从静止释放沿导轨下滑,当导体棒运动达到稳定状态时速率为v,此时整个电路消耗的电功率为重力功率的3/4。

已知当地的重力加速度为g,导轨电阻不计。

试求:(1)在上述稳定状态时,导体棒ab中的电流I和磁感应强度B的大小;(2)如果导体棒从静止释放沿导轨下滑距离后运动达到稳定状态,在这一过程中回路产生的电热是多少?(3)断开开关S后,导体棒沿导轨下滑一段距离后,通过导体棒ab的电量为q,求这段距离是多少?例3 如图所示,匀强磁场的磁感强度为0.5T,方向垂直纸面向里,当金属棒ab沿光滑导轨水平向左匀速运动时,电阻R上消耗的功率为2w,已知电阻R=0.5,导轨间的距离,导轨电阻不计,金属棒的电阻r=0.1,求:(1)金属棒ab中电流的方向。

(2)金属棒匀速滑动的速度例4 如图所示,半径为R、单位长度电阻为λ的均匀导体圆环固定在水平面上,圆环中心为O.匀强磁场垂直水平面方向向下,磁感强度为B.平行于直径MON的导体杆,沿垂直于杆的方向向右运动.杆的电阻可以忽略不计,杆与圆环接触良好,某时刻,杆的位置如图,∠aOb=2θ,速度为v,求此时刻作用在杆上安培力的大小.例5 如图所示,光滑水平平行导轨M、N,间距L=0.5m,其电阻不计。

2019高考物理专题电磁感应中的综合问题测试题(答案及详解)

2019高考物理专题电磁感应中的综合问题测试题(答案及详解)
C.选项C
D.选项D
2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率()
A.均匀增大
B.先增大,后减小
C.逐渐增大,趋于不变
D.先增大,再减小,最后不变
3.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直。磁感强度B随时间变化的图象如图所示.T=0时刻.磁感强度的方向垂直于纸面向里.在0~4s叫间内.线框的ab边受力随时间变化的图象(力的方向规定以向左为正方向)可能如图中()
2019高考物理专题电磁感应中的综合问题测试题
一、单选题(共15小题)
1.如图所示,水平面内有一足够长的平行金属导轨,导轨光滑且电阻不计,匀强磁场与导轨平面垂直,阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好,现闭合开关,导体棒的速度v,回路中电流i随时间变化的图像正确的是()
A.选项A
B.选项B
A.选项A
B.选项B
C.选项C
D.选项D
5.如图甲所示闭合矩形导线框abcd固定在磁场中,磁场的方向与导线框所在平面垂直,磁感应强度B随时间t变化的的规律如图乙所示.规定垂直纸面向里为磁场的正方向,abcda的方向为线框中感应电流的正方向,水平向右为安培力的正方向.关于线框中的电流i与ad边所受的安培力F随时间t变化的图象,下列选项正确的是()
A.选项A
B.选项B
C.选项C
D.选项D
7.如图所示,图中两条平行虚线间存有匀强磁场,虚线间的距离为2L,磁场方向垂直纸面向里.abcd是位于纸面内的梯形线圈,ad与bc间的距离为2L且均与ab相互垂直,ad边长为2L,bc边长为3L,t=0时刻,c点与磁场区域左边界重合.现使线圈以恒定的速度v沿垂直于磁场区域边界的方向穿过磁场区域.取沿a→b→c→d→a方向的感应电流为正,则在线圈穿过磁场区域的过程中,感应电流I随时间t变化的关系图线可能是()

电磁感应与力学综合类型题

电磁感应与力学综合类型题

电磁感应与力学综合类型题1.如图所示,两根相距l 的平行直导轨ab 、cd ,b 、d 间连有一固定电阻R ,导轨电阻忽略不计.MN 为ab 和cd 上的一导体杆,与ab 垂直,其电阻也为R .整个装置处于匀强磁场中,磁感应强度的大小为B ,磁场方向垂直于导轨所在平面(指向图中纸面内).现对MN 施加一力使它沿导轨方向以速度υ做匀速运动.用U 表示MN两端电压大小,则( A )A .U =Bl υ/2,流过固定电阻R 的感应电流由b 到dB .U =Bl υ/2,流过固定电阻R 的感应电流由d 到bC .U =Bl υ,流过固定电阻R 的感应电流由b 到dD .U =Bl υ,流过固定电阻R 的感应电流由d 到b2、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( A ). R l vB A 2. R vBl B R l vB C 2 RvBl D 2 3.如图所示,ABCD 是固定的水平放置的足够长的U 形导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上架着一根金属棒ab ,在极短时间内给棒ab 一个水平向右的速度,ab 棒开始运动,最后又静止在导轨上,则ab 在运动过程中,就导轨是光滑和粗糙两种情况相比较(A ) A. 整个回路产生的总热量相等B. 安培力对ab 棒做的功相等C. 安培力对ab 棒的冲量相等D .电流通过整个回路所做的功相等4.如图,AB 、CD 是固定的水平放置的足够长U 形金属导轨,整个导轨处于竖直向上的匀强磁场中,在导轨上放一金属棒ab ,给ab 一个水平向右的冲量,使它以初速度v 0运动起来,最后静止在导轨上,在导轨是光滑和粗糙两种情况下CA .安培力对ab 所做的功相等B .电流通过整个回路做功相等C .整个回路产生的热量相等D .到停止运动时,两种情况棒运动距离相等5.如图所示,匀强磁场和竖直导轨所在面垂直,金属棒ab 可在导轨上无摩擦滑动,在金属棒、导轨和电阻组成的闭合回路中,除电阻R 外,其余电阻均不计,在ab 下滑过程中: [ ]A.由于ab 下落时只有重力做功,所以机械能守恒.B.ab 达到稳定速度前,其减少的重力势能全部转化为电阻R 的内能.C.ab 达到稳定速度后,其减少的重力势能全部转化为电阻R 的内能.D.ab 达到稳定速度后,安培力不再对ab 做功.6.如图所示,一个由金属导轨组成的回路,竖直放在宽广的水平匀强磁场中,磁场垂直于该回路所在的平面,方向向外,AC 导体可紧贴光滑竖直导轨自由上下滑动,导轨足够长,回路总电阻R 保持不变,当AC 由静止释放后A .导体AC 的加速度将达到一个与阻值R 成反比的极限值B .导体AC 的速度将达到一个与R 成正比的极限值C .回路中的电流将达到一个与R 成反比的极限值D .回路中的电功率将达到一个与R 成正比的极限值【解析】匀速运动时v →v m ,此时有mg =BIL =R v L B m 22得v m =22L B mg R ,P =22222222L B g m R v L B R E m ==R 7.如图所示,竖直平行导轨间距L =20 cm ,导轨顶端接有一电键K .导体棒ab 与导轨接触良好且无摩擦,ab 的电阻R =0.4 Ω,质量m =10g ,导轨的电阻不计,整个装置处在与轨道平面垂直的匀强磁场中,磁感应强度B =1 T .当ab 棒由静止释放0.8 s 后,突然接通电键,不计空气阻力,设导轨足够长.求ab 棒的最大速度和最终速度的大小.(g 取10 m/s 2)【解析】 ab 棒由静止开始自由下落0.8 s 时速度大小为v =gt =8 m/s则闭合K 瞬间,导体棒中产生的感应电流大小I =Blv /R =4 Aab 棒受重力mg =0.1 N 因为F >mg ,ab 棒加速度向上,开始做减速运动,产生的感应电流和受到的安培力逐渐减小,当安培力F =mg 时,开始做匀速直线运动.此时满足R v l B '22=mg解得最终速度v ′=mgR /B 2l 2=1 m/s .闭合电键时速度最大为8 m/s . 8、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图所示,请在图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlv R E I == 杆受到安培力Rv L B Blv F 22==根据牛顿运动定律,有:R v L B mg ma 22sin -=θ R v L B g a 22sin -=θ (3)当R v L B mg 22sin =θ时,ab 杆达到最大速度mAX V ,22sin L B mgR V m θ= 9、如图所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( D ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大10、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度V m ,则( BC ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大图5 图611、如图5所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( B ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g12、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( D ). A·线圈可能一直做匀速运动B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-13.如图所示,具有水平的上界面的匀强磁场,磁感强度为B ,方向水平指向纸内,一个质量为m ,总电阻为R 的闭合矩形线框abcd 在竖直平面内,其ab 边长为L ,bc 边长为h ,磁场宽度大于h ,线框从ab 边距磁场上界面H 高处自由落下,线框下落时,保持ab 边水平且线框平面竖直.已知ab 边进入磁场以后,cd 边到达上边界之前的某一时刻线框的速度已达到这 a Bbc dH一阶段的最大值,此时cd边距上边界为h1,求:(1)线框ab边进入磁场时的速度大小;(2)从线框ab边进入磁场到线框速度达到最大的过程中,线框中产生的热量.答案:(1)v=(2gh)1/232244× × ×× × ×× × ×× × ×图1解析:由于线框进入、穿出磁场时,线框内磁通量均匀变化,因此在线框中产生的感应电流大小不变,由楞次定律可知,线框进入和穿出磁场时感应电流的方向是相反的,而线框全部在磁场中运动时,磁通量不发生变化,没有感应电流产生,同时由本题的条件可知,不产生感应电流的时间与进入和穿出的时间相同。

高考物理电磁感应现象习题综合题附答案

高考物理电磁感应现象习题综合题附答案

高考物理电磁感应现象习题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L vθ=2)sin sin t gvt v v CgR θθ=+ 【解析】试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流EI R=,棒所受的安培力F BIL =联立可得22B L v F R =,由平衡条件可得F mgsin θ=,解得2mgRsin B L vθ(2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t则电容器板间电压为 U E BLv ='= 此时电容器的带电量为Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q则电路中电流Q C U CBL v i t t t ∆∆∆===∆∆∆,又va t∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθθ==++所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θθ'==+.考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

电磁感应现象习题综合题含答案解析

电磁感应现象习题综合题含答案解析

电磁感应现象习题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图,水平面(纸面)内同距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上,t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.0t 时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求(1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.【答案】0F E Blt g m μ⎛⎫=- ⎪⎝⎭ ; R =220B l t m【解析】 【分析】 【详解】(1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得:ma=F-μmg ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有:v =at 0 ②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律,杆中的电动势为:E=Blv ③ 联立①②③式可得:0F E Blt g m μ⎛⎫=-⎪⎝⎭④ (2)设金属杆在磁场区域中匀速运动时,金属杆的电流为I ,根据欧姆定律:I=ER⑤ 式中R 为电阻的阻值.金属杆所受的安培力为:f BIl = ⑥ 因金属杆做匀速运动,由牛顿运动定律得:F –μmg–f=0 ⑦联立④⑤⑥⑦式得: R =220B l t m2.如图所示,两平行长直金属导轨(不计电阻)水平放置,间距为L ,有两根长度均为L 、电阻均为R 、质量均为m 的导体棒AB 、CD 平放在金属导轨上。

其中棒CD 通过绝缘细绳、定滑轮与质量也为m 的重物相连,重物放在水平地面上,开始时细绳伸直但无弹力,棒CD 与导轨间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力,忽略其他摩擦和其他阻力,导轨间有一方向竖直向下的匀强磁场1B ,磁场区域的边界满足曲线方程:sin(0y L x x L Lπ=≤≤,单位为)m 。

电磁感应现象压轴题综合题含答案

电磁感应现象压轴题综合题含答案

电磁感应现象压轴题综合题含答案一、高中物理解题方法:电磁感应现象的两类情况1.如图1所示,在光滑的水平面上,有一质量m =1kg 、足够长的U 型金属导轨abcd ,间距L =1m 。

一电阻值0.5ΩR =的细导体棒MN 垂直于导轨放置,并被固定在水平面上的两立柱挡住,导体棒MN 与导轨间的动摩擦因数0.2μ=,在M 、N 两端接有一理想电压表(图中未画出)。

在U 型导轨bc 边右侧存在垂直向下、大小B =0.5T 的匀强磁场(从上向下看);在两立柱左侧U 型金属导轨内存在方向水平向左,大小为B 的匀强磁场。

以U 型导轨bc 边初始位置为原点O 建立坐标x 轴。

t =0时,U 型导轨bc 边在外力F 作用下从静止开始运动时,测得电压与时间的关系如图2所示。

经过时间t 1=2s ,撤去外力F ,直至U 型导轨静止。

已知2s 内外力F 做功W =14.4J 。

不计其他电阻,导体棒MN 始终与导轨垂直,忽略导体棒MN 的重力。

求:(1)在2s 内外力F 随时间t 的变化规律; (2)在整个运动过程中,电路消耗的焦耳热Q ;(3)在整个运动过程中,U 型导轨bc 边速度与位置坐标x 的函数关系式。

【答案】(1)2 1.2F t =+;(2)12J ;(3)2v x =(0≤x ≤4m );6.40.6v x =-324m m 3x ⎛⎫≤< ⎪⎝⎭;v =0(32m 3x ≥) 【解析】 【分析】 【详解】(1)根据法拉第电磁感应定律可知:U BLv kt t ===得到:2Uv t BL== 根据速度与时间关系可知:22m/s a =对U 型金属导轨根据牛顿第二定律有:F IBL IBL ma μ--=带入数据整理可以得到:2 1.2F t =+(2)由功能关系,有f W Q W =+由于忽略导体棒MN 的重力,所以摩擦力为:A f F μ=则可以得到:fA Q WW μμ==则整理可以得到:(1)f W Q W Q μ=+=+得到:Q=12J(3)设从开始运动到撤去外力F 这段时间为12s t=,这段时间内做匀加速运动;①1t t 时,根据位移与速度关系可知:v =1t t =时根据匀变速运动规律可知该时刻速度和位移为:14m/s v =14m x =②1t t >时,物体做变速运动,由动量定理得到:1(1)BL q mv mv μ-+∆=-整理可以得到:2211(1)(1)(4)6.40.6BL q B L x v v v x m mRμμ+∆+-=-==--当323x m =时: 0v =综合上述,故bc 边速度与位置坐标x 的函数关系如下:v =(0≤x≤4m )6.40.6v x =-324m m 3x ⎛⎫≤< ⎪⎝⎭0v =(32m 3x ≥)2.如图所示,两条平行的固定金属导轨相距L =1m ,光滑水平部分有一半径为r =0.3m 的圆形磁场区域,磁感应强度大小为10.5T B =、方向竖直向下;倾斜部分与水平方向的夹角为θ=37°,处于垂直于斜面的匀强磁场中,磁感应强度大小为B =0.5T 。

专题15 电磁感应中的动量和能量问题 (解析版)-高考物理计算题专项突破

专题15 电磁感应中的动量和能量问题 (解析版)-高考物理计算题专项突破

专题15 电磁感应中的动量和能量问题①磁通量公式:BS =Φ;②磁通量的变化量:12Φ-Φ=∆Φ;磁通量的变化率:tt ∆Φ-Φ=∆∆Φ12;③法拉第电磁感应定律公式:t nE ∆∆Φ=;(n 为线圈匝数)④感应电流与感应电动势的关系:rR EI +=;⑤与线框有关的公式:S t B n E ∆∆=;B tSn E ∆∆=;t nBS E ωωsin =;⑥恒流电路:It q =。

1.电磁感应现象中出现的电能,一定是由其他形式的能转化而来的,具体问题中会涉及多种形式能之间的转化,如机械能和电能的相互转化、内能和电能的相互转化。

分析时应当牢牢抓住能量守恒这一基本规律,分析清楚有哪些力做功就可以知道有哪些形式的能量参与了相互转化,如有摩擦力做功,必然有内能出现;重力做功就可能有机械能参与转化;安培力做负功就是将其他形式的能转化为电能,做正功就是将电能转化为其他形式的能,然后利用能量守恒列出方程求解。

 电能求解的主要思路:(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功。

(2)利用能量守恒求解:机械能的减少量等于产生的电能。

(3)利用电路特征求解:通过电路中所产生的电流来计算。

2.电磁感应中的能量转化问题解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(包括右手定则)确定感应电动势的大小和方向。

(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式。

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解。

两种常考的电磁感应中的动力学、动量和能量问题:1.在安培力作用下穿越磁场(如图)【动力学分析】以进入磁场的过程为例,设运动过程中某时刻的速度为v ,加速度大小为a ,则mRv L B a 22=,a 与v 方向相反,导线框做减速运动,↓↓⇒a v ,即导线框做加速度减小的减速运动。

【能量分析】部分(或全部)动能转化为焦耳热,k E Q ∆-=。

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题(解析版)--2024年高考物理大题突破优选全文

电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。

2.掌握应用动量守恒定律处理电磁感应问题的方法。

3.熟练应用楞次定律与法拉第电磁感应定律解决问题。

4.会分析电磁感应中的图像问题。

5.会分析电磁感应中的动力学与能量问题。

电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。

一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。

【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。

法拉第电磁感应定律习题综合题含答案解析

法拉第电磁感应定律习题综合题含答案解析

法拉第电磁感应定律习题综合题含答案解析一、高中物理解题方法:法拉第电磁感应定律1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。

PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。

一根电阻为r 、质量为m 的导体棒置于导轨上,0〜t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。

求:(1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00mB SBLt【解析】 【详解】(1)由法拉第电磁感应定律得 :010B SBS E t t t ∆Φ∆===∆∆ 所以此时回路中的电流为:()100B S E I R r R r t ==++ 根据右手螺旋定则知电流方向为a 到b.因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即:()00==BB SLF F BIL R t r =+安由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为:2E BLv =由题意知:12E E =所以联立解得:00B Sv BLt =所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为:000mB SI mv BLt =-=答:(1)0~t 0时间内导体棒ab 所受水平外力为()00=BB SLt F R r +,方向水平向左.(2)t 0时刻给导体棒的瞬时冲量的大小00mB SBLt2.两间距为L=1m 的平行直导轨与水平面间的夹角为θ=37° ,导轨处在垂直导轨平面向下、 磁感应强度大小B=2T 的匀强磁场中.金属棒P 垂直地放在导轨上,且通过质量不计的绝缘细绳跨过如图所示的定滑轮悬吊一重物(重物的质量m 0未知),将重物由静止释放,经过一 段时间,将另一根完全相同的金属棒Q 垂直放在导轨上,重物立即向下做匀速直线运动,金 属棒Q 恰好处于静止状态.己知两金属棒的质量均为m=lkg 、电阻均为R=lΩ,假设重物始终没有落在水平面上,且金属棒与导轨接触良好,一切摩擦均可忽略,重力加速度g=l0m/s 2,sin 37°=0.6,cos37°=0.8.求:(1)金属棒Q 放上后,金属棒户的速度v 的大小;(2)金属棒Q 放上导轨之前,重物下降的加速度a 的大小(结果保留两位有效数字); (3)若平行直导轨足够长,金属棒Q 放上后,重物每下降h=lm 时,Q 棒产生的焦耳热.【答案】(1)3m/s v = (2)22.7m/s a = (3)3J 【解析】 【详解】(1)金属棒Q 恰好处于静止时sin mg BIL θ=由电路分析可知E BLv = ,2E I R= , 代入数据得,3m/s v =(2)P 棒做匀速直线运动时,0sin m g BIL mg θ=+, 金属棒Q 放上导轨之前,由牛顿第二定律可得00sin ()m g mg m m a θ-=+代入数据得,22.7m/s a =(3)根据能量守恒可得,0sin m gh mgh Q θ=+总 由于两个金属棒电阻串联,均为R ,可知 Q 棒产生的焦耳热为3J 2Q Q ==总3.如图所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x0的条形匀强磁场区域1、2、3、…n 组成,从左向右依次排列,磁感应强度的大小分别为B 、2B 、3B 、…nB ,两导轨左端MP 间接入电阻R ,一质量为m 的金属棒ab 垂直于MN 、PQ 放在水平导轨上,与导轨电接触良好,不计导轨和金属棒的电阻。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三第二轮物理专题复习学案——电磁感应中的力学问题电磁感应中中学物理的一个重要“节点”,不少问题涉及到力和运动、动量和能量、电路和安培力等多方面的知识,综合性强,也是高考的重点和难点,往往是以“压轴题”形式出现.因此,在二轮复习中,要综合运用前面各章知识处理问题,提高分析问题、解决问题的能力.本学案以高考题入手,通过对例题分析探究,让学生感知高考命题的意图,剖析学生分析问题的思路,培养能力.例1.【2003年高考江苏卷】如右图所示,两根平行金属导端点P 、Q 用电阻可忽略的导线相连,两导轨间的距离l =0.20 m .有随时间变化的匀强磁场垂直于桌面,已知磁感应强度B 与时间t 的关系为B=kt ,比例系数k =0.020 T /s .一电阻不计的金属杆可在导轨上无摩擦地滑动,在滑动过程中保持与导轨垂直.在t=0时刻,轨固定在水平桌面上,每根导轨每m 的电阻为r 0=0.10Ω/m ,导轨的金属杆紧靠在P 、Q 端,在外力作用下,杆恒定的加速度从静止开始向导轨的另一端滑动,求在t =6.0 s 时金属杆所受的安培力.[解题思路] 以a 示金属杆运动的加速度,在t 时刻,金属杆与初始位置的距离L =21at 2 此时杆的速度v =at这时,杆与导轨构成的回路的面积S=L l回路中的感应电动势E =S tB ∆∆+B lv 而k tBt t t B t B kt B =∆-∆+=∆∆=)( 回路的总电阻 R =2Lr 0 回路中的感应电流,R E I =作用于杆的安培力F =BlI解得t r l k F 02223= 代入数据为F =1.44×10-3N例2. (2000年高考试题)如右上图所示,一对平行光滑R 轨道放置在水平地面上,两轨道间距L =0.20 m ,电阻R =1.0 Ω;有一导体杆静止地放在轨道上,与两轨道垂直,杆与轨道的电阻皆可忽略不计,整个装置处于磁感强度B =0.50T 的匀强磁场中,磁场方向垂直轨道面向下.现用一外力F 沿轨道方向拉杆,使之做匀加速运动.测得力F 与时间t 的关系如下图所示.求杆的质量m 和加速度a .解析:导体杆在轨道上做匀加速直线运动,用v 表示其速度,t 表示时间,则有v =at ① 杆切割磁感线,将产生感应电动势E =BLv ②在杆、轨道和电阻的闭合回路中产生电流I=E/R ③杆受到的安培力为F安=IBL ④根据牛顿第二定律,有F -F 安=ma ⑤ 联立以上各式,得at Rl B ma F 22 ⑥ 由图线上各点代入⑥式,可解得a =10m/s 2,m =0.1kg例3. (2003年高考新课程理综)两根平行的金属导轨,固定在同一水平面上,磁感强度B =0.05T 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l =0.20 m .两根质量均为m =0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R =0.50Ω.在t =0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动.经过t =5.0s ,金属杆甲的加速度为a =1.37 m /s ,问此时两金属杆的速度各为多少?本题综合了法拉第电磁感应定律、安培力、左手定则、牛顿第二定律、动量定理、全电路欧姆定律等知识,考查考生多角度、全方位综合分析问题的能力.设任一时刻t ,两金属杆甲、乙之间的距离为x ,速度分别为v l 和v 2,经过很短的时间△t ,杆甲移动距离v 1△t ,杆乙移动距离v 2△t ,回路面积改变△S =[(x 一ν2△t )+ν1△t]l —l χ=(ν1-ν2) △t由法拉第电磁感应定律,回路中的感应电动势E =B △S/△t =B ι(νl 一ν2)回路中的电流i =E /2 R杆甲的运动方程F —B l i =ma由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t =0时为0)等于外力F 的冲量.Ft =m νl +m ν2联立以上各式解得ν1=[Ft/m +2R(F 一ma)/B 2l 2]/2ν2=[Ft /m 一2R(F 一ma)/B 2l 2]/2代入数据得移νl =8.15 m /s ,v 2=1.85 m /s练习1、.如图l ,ab 和cd 是位于水平面内的平行金属轨道,其电阻可忽略不计.af 之间连接一阻值为R 的电阻.ef 为一垂直于ab 和cd 的金属杆,它与ab 和cd 接触良好并可沿轨道方向无摩擦地滑动.ef 长为l ,电阻可忽略.整个装置处在匀强磁场中,磁场方向垂直于图中纸面向里,磁感应强度为B ,当施外力使杆ef 以速度v 向右匀速运动时,杆ef 所受的安培力为( A ).R l vB A 2. R v B l B R l vB C 2 Rv B l D 2图1 图22、如图2所示·两条水平虚线之间有垂直于纸面向里、宽度为d 、磁感应强度为B 的匀强磁场.质量为m 、电阻为R 的正方形线圈边长为L(L<d),线圈下边缘到磁场上边界的距离为h .将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时刻的速度都是v 0在整个线圈穿过磁场的全过程中(从下边缘进入磁场到上边缘穿出磁场),下列说法中正确的是( D ). A·线圈可能一直做匀速运动B .线圈可能先加速后减速C .线圈的最小速度一定是mgR /B 2 L 2D .线圈的最小速度一定是)(2l d h g +-3、如图3所示,竖直放置的螺线管与导线abed 构成回路,导线所围区域内有一垂直纸面向里的变化的匀强磁场,螺线管下方水平面桌面上有一导体圆环.导线abcd 所围区域内磁场的磁感强度按图1 5—11中哪一图线所表示的方式随时问变化时,导体圆环将受到向上的磁场力作用?( A ).图3 A B C D4、如图4所示,磁感应强度的方向垂直于轨道平面倾斜向下,当磁场从零均匀增大时,金属杆ab 始终处于静止状态,则金属杆受到的静摩擦力将( D ).A .逐渐增大B .逐渐减小C .先逐渐增大,后逐渐减小D .先逐渐减小,后逐渐增大图45、如图所示,一闭合线圈从高处自由落下,穿过一个有界的水平方向的匀强磁场区(磁场方向与线圈平面垂直),线圈的一个边始终与磁场区的边界平行,且保持竖直的状态不变.在下落过程中,当线圈先后经过位置I 、Ⅱ、Ⅲ时,其加速度的大小分别为a 1、a 2、a 3( B ).A . a 1<g ,a 2=g ,a 3<gB .a l <g ,a 2<g ,a 3<gC . a 1<g,a 2=0,a 3=gD .a 1<g ,a 2>g ,a 3<g图5 图66、如图6所示,有两根和水平方向成a 角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B .一根质量为m 的金属杆从轨道上由静止滑下,经过足够长的时间后,金属杆的速度会趋近于一个最大速度Vm ,则( BC ).A .如果B 增大,Vm 将变大 B .如果a 变大, Vm 将变大C .如果R 变大,Vm 将变大D .如果M 变小,Vm 将变大7、超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图6所示的模型:在水平面上相距L 的两根平行直导轨问,有竖直方向等距离分布的匀强磁场B 1和B 2,且B 1=B 2=B ,每个磁场的宽都是ι,相间排列,所有这些磁场都以速度V 向右匀速运动.这时跨在两导轨间的长为L 、宽为ι的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R ,运动中所受到的阻力恒为f ,则金属框的最大速度可表示为( C ).图7A 、2222/)(LB fR v L B v m-= B 、22222/)2(L B fR v L B v m -= C 、22224/)4(L B fR v L B v m -= D 、22222/)2(L B fR v L B v m +=8、水平面上两根足够长的金属导轨平行固定放置,间距为L ,一端通过导线与阻值为R 的电阻连接;导轨上放一质量为m 的金属杆(见图),金属杆与导轨的电阻不计;均匀磁场竖直向下.用与导轨平行的恒定力F 作用在金属杆上,杆最终将做匀速运动.当改拉力的大小时,相对应的匀速运动速度v 也会改变,v 和F 的关系如图 (取重力加速度g=10m /s 2)(1)金属杆在匀速运动之前做作什么运动?(2)若m =0.5 kg ,L =0.5 m ,R =0.5 Ω,磁感应强度B 为多大?(3)由ν-F 图线的截距可求得什么物理量?其值为多少?解: (1)变速运动(或变加速运动、加速度减小的加速运动,加速运动).(2)感应电动势E —vBL ,感应电流I=E/R安培力RL vB BIL F m 22== 由图可知金属杆受拉力、安培力和阻力作用,匀速时合力为零f RL vB BIL F +==22 )(22f F lB R v -= 由图线可以得到直线的斜率k=2 )(12T kL R B ==(3)由直线的截距可以求得金属杆受到的阻力f , f=2(N).若金属杆受到的阻力仅为动摩擦力,由截距可求得动摩擦因数 μ=0.49、如图所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L ,M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略·让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图1 5—2所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当杆ab 的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.解:(1)重力mg ,竖直向下;支撑力N ,,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E=BLv ,此时电路电流RBlv R E I ==杆受到安培力Rv L B Blv F 22== 根据牛顿运动定律,有:R v L B mg ma 22sin -=θ Rv L B g a 22sin -=θ (3)当Rv L B mg 22sin =θ时,ab 杆达到最大速度mAX V 22sin LB mgR V m θ= 10.如图所示,电阻不计的平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,导轨相距为d ,其间有竖直向下的匀强磁场,磁感强度为B .质量为m 、电阻为r 的导体棒CD 垂直于导轨放置,并接触良好.用平行于MN 的恒力F 向右拉动CD ,CD 受恒定的摩擦阻力.f ,已知F>f .问:(1)CD 运动的最大速度是多少?(2)当CD 达到最大速度后,电阻R 消耗的电功率是多少?(3)当CD 的速度是最大速度的1/3时,CD 的加速度是多少?解析:(1)以金属棒为研究对象,当CD 受力:F=F A +f 时,CD 速度最大, 即:2222))((d B r R f F v f r R v d B f BId F m m +-=⇒++=+= (2)CD 棒产生的感应电动势为:Bdr R f F Bdv E m ))((--== 回路中产生的感应电流为:Bdf F r R E I -=+= 则R 中消耗的电功率为:2222)(dB R f F R I R P -== (3)当CD 速度为最大速度的1/3即m v v31=时,CD 中的电流为最大值的1/3即I I 31'=则CD 棒所受的安培力为: )(31''f F d BI F A -== CD 棒的加速度为:mf F m F f F a A 3)(2'-=--=。

相关文档
最新文档