武汉大学高等数学2007A真题
2007年普通高等学校招生全国统一考试数学理工农医类湖北
2007年普通高等学校招生全国统一考试数学理工农医类(湖北卷)选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个答案中,只有一项是符合题目要求的.如果nx x ⎪⎭⎫ ⎝⎛-3223 的展开式中含有非零常数项,则正整数n 的最小值为A.3B.5C.6D.10 2.将⎪⎭⎫⎝⎛π+=63cos 2x y 的图象按向量a =⎪⎭⎫⎝⎛-π-2,4平移,则平移后所得图象的解析式为 A.243cos 2-⎪⎭⎫⎝⎛π+=x y B. 243cos 2+⎪⎭⎫⎝⎛π-=x y C. 2123cos 2-⎪⎭⎫⎝⎛π-=x y D. 2123cos 2+⎪⎭⎫⎝⎛π+=x y 3.设P 和Q 是两个集合,定义集合P-Q={}Q x P x x ∉∈且,|,如果P={x|log 2x<1},Q={x||x-2|<1},那么P-Q 等于A .{x|0<x<1} B.{x|0<x ≤1} C.{x|1≤x<2} D.{x|2≤x<3} 4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m '⊥n '⇒m ⊥n; ②m ⊥n ⇒ m '⊥n '③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合. 其中不正确的命题个数是A.1B.2C.3D.45.已知p 和q 是两个不相等的正整数,且q ≥2,则=-⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛+∞→111111lim q pn n n A .0 B.1 C.qpD.11--q p6.若数列{a n }满足∈=+,n p p a a nn 为正常数(221N*),则称{a n }为“等方比数列”.甲:数列{a n }是等方比数列;乙:数列{a n }是等比数列.则甲是乙的充分条件但不是必要条件 甲是乙的必要条件但不是充分条件 甲是乙的充要条件甲既不是乙的充分条件也不是乙的必要条件7.双曲线C 1:12222=-by a x (a>0,b>0)的左准线为l ,左焦点和右焦点分别为F 1和F 2;抛物线C 2的准线为l ,焦点为F 2.C 1和C 2的一个交点为M ,则||||||||21121MF MF MF F F -等于A.-1B.1C.21-D.21 8.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且3457++=n n B A n n ,则使得nn b a为整数的正整数n 的个数是A.2B.3C.4D.59.连掷两次骰子得到的点数分别为m 和n ,记向量a =(m,n)与向量b =(1,-1)的夹角为θ,则⎥⎦⎤⎝⎛π∈θ20,的概率是A.125 B.21 C.127 D 65 10.已知直线1=+by a x (a,b 是非零常数)与圆x 2+y 2=100有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有A.60条B.66条C.72条D.78条 二、填空题:本大题共5小题,每小题5分,共25分.11.已知函数y=2x-a 的反函数是y=bx+3,则 a= ;b= .12.复数z=a+bi,a,b ∈R,且b ≠0,若z 2-4bz 是实数,则有序实数对(a,b )可以是 .(写出一个有序实数对即可)13.设变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤-≥+≥+-.32,0,03x y x y x 则目标函数2x+y 的最小值为 .14.某篮球运动员在三分线投球的命中率是21,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为at y -⎪⎭⎫⎝⎛=161(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共5小题,共75分. 解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知△ABC 的面积为3,且满足0≤∙≤6,设和的夹角为θ. (Ⅰ)求θ的取值范围;(Ⅱ)求函数f (θ)=2sin 2θθπ2cos 34-⎪⎭⎫⎝⎛+的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(Ⅰ)在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(Ⅱ)估计纤度落在[)50.1,38.1中的概率及纤度小于1.40的概率是多少; (Ⅲ)统计方法中,同一组数据常用该组区间的中点值(例如区间[)34.1,30.1的中点值是1.32)作为代表. 据此,估计纤度的期望.18.(本小题满分12分)如图,在三棱锥V -ABC 中,VC ⊥底面ABC ,AC ⊥BC ,D 是AB 的中点,且AC =BC =a ,∠VDC =θ⎪⎭⎫⎝⎛<<20πθ. (Ⅰ)求证:平面VAB ⊥平面VCD ;(Ⅱ)当角θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点C (0,p )作直线与抛物线x 2=2px (p >0)相交于A 、B 两点. (Ⅰ)若点N 是点C 关于坐标原点O 的对称点, 求△ANB 面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)20.(本小题满分13分)已知定义在正实数集上的函数f (x )=21x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y =f (x ),y=g (x )有公共点,且在该点处的切线相同.(Ⅰ)用a 表示b ,并求b 的最大值; (Ⅱ)求证:f (x ) ≥g (x ) (x>0).21.(本小题满分14分) 已知m ,n 为正整数.(Ⅰ)用数学归纳法证明:当x >-1时,(1+x )m≥1+mx ;(Ⅱ)对于n ≥6,已知21311<⎪⎭⎫ ⎝⎛+-n n ,求证mn n m ⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛+-2131,m =1,1,2…,n ;(Ⅲ)求出满足等式3n+4m+…+(n +2)m=(n +3)n的所有正整数n .。
武汉大学近2年第二学期高数试卷甄选
武汉大学近2年第二学期高数试卷(优选.)武汉大学2007—2008学年第二学期《高等数学A2》(216学时)考试试题 (A 卷)一、(24分)试解下列各题1、设有向量{0,4,3},{4,5,0}=-=-a b ,求Prj a b;2、设2ln yzxy x ,求二阶偏导数2zx y;3、计算二重积分2d d Dx x y ⎰⎰,其中222{(,)|}D x y x y a =+≤;4、交换积分次序011(,)x dx f x y dy-+⎰。
二、(12分)设有直线20:4236x y L x y z +=⎧⎪⎨++=⎪⎩和曲面222:6x y z ∑++=, 1、求曲面∑在点(1,2,1)-处的切平面π和法线l 的方程; 2、求通过直线L 且与法线l 平行的平面方程。
三、(10分)求函数1(0,0)z x y x y xy=++>>的极值。
四、(12分)设函数()g x 具有连续导数,曲线积分+-⎰[()]d ()d x L e g x y x g x y与路径无关,1、求满足条件=-1(0)2g 的函数()g x ;2、计算+-⎰(1,1)(0,0)[()]d ()d x e g x y x g x y的值。
五、(12分)证明级数135724816++++收敛,并求其和。
六、(15分)1、求函数2222222,0(,)0,0x yx y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩的二阶偏导数(0,0)xy f ;2、问微分方程20y y y ''''''--=的哪一条积分曲线()y y x =通过点(0,3)-,在这点处有倾角为arctan6的切线,且0|=''=x y (0,0)xy f 。
七、(15分)试求向量2z e F izj =++穿过由1,2z z z ===所围成区域的外侧面(不包含上、下底面)的流量。
武汉大学2006-2007学年第二学期考试试卷及答案
武汉大学2006-2007学年第二学期考试试卷《计算方法》 (A 卷) (36学时用)学院: 学号: 姓名: 得分: 一、(10分)解答下列各题 1、设⎥⎦⎤⎢⎣⎡--=5021A ,求谱半径)(A ρ及条件数∞)(A Cond 2、确定求积公式)31()31()(11f f dx x f +-≈⎰- 的代数精度,并问是否是Gauss 型公式。
二、(10分)证明迭代格式 ⎩⎨⎧3),,2,1,0(,201==+=+x k x x k k 收敛,并求出kk xlim ∞→三、(10分)已知方程 )0(0272)(323>=+-=a a ax x x f 在]32,0[a 及],32[a a 内各有一个根,(1)建立求根的牛顿迭代格式;(2)如何选取初值0x ,使牛顿迭代序列k x 收敛到],32[a a 内的根。
四、(10分)用杜利特尔(Doolittle )分解算法求解方程 b Ax =,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=5421214512A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122711b五、(10分)设常数0≠a ,分别写出求解方程组 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛212111b b x x a a 的Jacobi 迭代格式及Gauss-Seidel 迭代格式并给出用Gauss-Seidel 迭代格式求解此方程组时,对任意初值都收敛的充分必要条件。
六、(10分)已知 2)(xex f y -== 的一组值:求二次拉格朗日插值多项式及余项。
七、(10分)已知数据求形如 c bx ax y ++=2 的拟合曲线。
八、(10分)已知)(x f y =的一组值分别用复化梯形公式和复化辛卜生公式计算⎰2.20)(dx x f九、(10分)用改进的欧拉法(也称预估-校正法)求解方程(取步长5.0=h ):⎪⎩⎪⎨⎧==1)0(2y y xdx dy ]1,0[∈x(取5位有效数字计算) 十、(10分)证明求积公式∑⎰=≈nk k k bax f dx x f 0)()(λ的代数精度大于等于n 的充分必要条件是),2,1,0(,)( ==⎰k dx x lbakk λ。
2007年高考真题试卷(湖北卷)数学(理科)参考答案
2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A 二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫>⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设A B C △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+-⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=-+=-+ ⎪⎝⎭. ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤. 即当5π12θ=时,m ax ()3f θ=;当π4θ=时,m in ()2f θ=.17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=.(Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)AC BC a ==∵,A C B ∴△是等腰三角形,又D 是A B 的中点,C DA B ⊥∴,又V C ⊥底面ABC .V C A B ⊥∴.于是AB ⊥平面V C D .又A B ⊂平面V A B,∴平面V A B ⊥平面V C D .(Ⅱ) 过点C 在平面VC D 内作C H VD ⊥于H ,则由(Ⅰ)知C D ⊥平面V A B . 连接B H ,于是C B H ∠就是直线B C 与平面V A B 所成的角. 在C H D R t △中,sin 2C H a θ=;设CBH ϕ∠=,在B H C R t △中,sin CH a ϕ=,sin sin 2θϕ=∴.样本数据π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴.即直线B C 与平面V A B 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a aC A a B aD V a θ⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a a VD a θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a C D ⎛⎫= ⎪⎝⎭ ,,,(0)AB a a =- ,,. 从而2211(0)0002222a a AB C D a a a a ⎛⎫=-=-++= ⎪⎝⎭ ,,,,··,即AB C D ⊥.同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即A B V D ⊥.又CD VD D = ,A B ⊥∴平面V C D . 又A B ⊂平面V A B .∴平面V A B ⊥平面V C D .(Ⅱ)设直线B C 与平面V A B 所成的角为ϕ,平面V A B 的一个法向量为()x y z =,,n ,则由00AB VD == ,nn ··.得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是sin sin 2B C B C ϕθ===n n ··,π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.ADBCHV又π2ϕ≤≤,π4ϕ<<∴.即直线B C与平面V A B所成角的取值范围为π4⎛⎫⎪⎝⎭,.解法3:(Ⅰ)以点D为原点,以DC DB,所在的直线分别为x轴、y轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a⎛⎫⎛⎫⎛⎫--⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan22V a aθ⎛⎫-⎪⎪⎝⎭,,,于是0tan22D V a aθ⎛⎫=-⎪⎪⎝⎭,,,002D C a⎛⎫=-⎪⎪⎝⎭,,,(00)AB=,.从而(00)A B D C=,·0002a⎛⎫-=⎪⎪⎝⎭,,·,即A B D C⊥.同理(00)0tan022AB D V a aθ⎛⎫=-=⎪⎪⎝⎭,,,·,即A B D V⊥.又DC DV D=,A B⊥∴平面V C D.又A B⊂平面V A B,∴平面V A B⊥平面V C D.(Ⅱ)设直线B C与平面V A B所成的角为ϕ,平面V A B的一个法向量为()x y z=,,n,则由00AB D V==,··n n,得tan022ax azθ=⎨-+=⎪⎩,.可取(tan01)θ=,,n,又022BC⎛⎫=--⎪⎪⎝⎭,,,于是tansin2aBCBCθϕθ===nn··,π2θ<<∵,0sin1θ<<∴,0sin2ϕ<<.又π2ϕ≤≤,π4ϕ<<∴,即直线B C与平面V A B所成角的取值范围为π4⎛⎫⎪⎝⎭,.A解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,.设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a aC V t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,,(0)(00)0000AB C V a a t =-=++= ,,,,··,即AB C V ⊥.22(0)0002222a a a a AB C D a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB C D ⊥.又CV CD C = ,A B ⊥∴平面V C D . 又A B ⊂平面V A B ,∴平面V A B ⊥平面V C D .(Ⅱ)设直线B C 与平面V A B 所成的角为ϕ, 设()x y z =,,n 是平面V A B 的一个非零法向量,则()(0)0()(0)0A B x y z a a ax ay A V x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩ ,,,,,,,,,,nn ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)C B a =,,,于是1sin C Bt C B ϕ====··n n(0)t ∈+,∵∞,sin ϕ关于t 递增.0sin ϕ<<∴π04ϕ⎛⎫∈ ⎪⎝⎭,∴.即直线B C 与平面V A B 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线A B 的方程为y k xp =+,与22x p y =联立得22x p y y k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=. 由韦达定理得122x x pk +=,2122x x p =-. 于是12122A B N B C N A C N S S S p x x =+=-△△△·.12p x x =-=22p==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,A C 的中点为O ',l 与A C 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P A C '===∵111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQPH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2p y =,即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得 12AB x =-==2=又由点到直线的距离公式得d=从而112222ABNS d AB p===△···∴当0k=时,2min()ABNS=△.(Ⅱ)假设满足条件的直线l存在,其方程为y a=,则以A C为直径的圆的方程为11(0)()()()0x x x y p y y-----=,将直线方程y a=代入得211()()0x x x a p a y-+--=,则21114()()4()2px a p a y a y a p a⎡⎤⎛⎫=---=-+-⎪⎢⎥⎝⎭⎣⎦△.设直线l与以A C为直径的圆的交点为3344()()P x y Q x y,,,,则有34PQ x x=-==令02pa-=,得2pa=,此时PQ p=为定值,故满足条件的直线l存在,其方程为2py=,即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x=与()(0)y g x x=>在公共点00()x y,处的切线相同.()2f x x a'=+∵,23()ag xx'=,由题意00()()f xg x=,00()()f xg x''=.即220002123ln232x ax a x bax ax⎧+=+⎪⎪⎨⎪+=⎪⎩,,由232ax ax+=得:x a=,或3x a=-(舍去).即有222221523ln3ln22b a a a a a a a=+-=-.令225()3ln(0)2h t t t t t=->,则()2(13ln)h t t t'=-.于是当(13ln)0t t->,即130t e<<时,()0h t'>;当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数, 于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->,则()F x '23()(3)2(0)a x a x a x a x xx-+=+-=>.故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力.解法1:(Ⅰ)证:用数学归纳法证明:(ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x ≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133nnmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mnmn ⎡⎤⎛⎫⎛⎫-<⎢⎥⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n = ,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n n nnnn n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ , 2131333nnnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)n n n n n n ++++<+ .即当6n ≥时,不存在满足该等式的正整数n . 故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,.解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1m x m x +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1k x kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥,1111332nnm m m n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00034(2)(3)n n n n n n ++++=+ 成立,即有000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ②又由(Ⅱ)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪⎪⎪+++⎝⎭⎝⎭⎝⎭0000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪⎪⎪+++⎝⎭⎝⎭⎝⎭0011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾.故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。
2007年高考数学卷(湖北.理)含答案
2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10 2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( )A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( )A.{}|01x x << B.{}|01x x <≤C.{}|12x x <≤D.{}|23x x <≤4.平面α外有两条直线m 和n ,如果m 和n 在平面α内的射影分别是m '和n ',给出下列四个命题:①m n m n ''⊥⇒⊥; ②m n m n ''⊥⇒⊥;③m '与n '相交⇒m 与n 相交或重合; ④m '与n '平行⇒m 与n 平行或重合.其中不正确的命题个数是( ) A.1 B.2 C.3D.45.已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111pq n n n ∞⎛⎫+- ⎪⎝⎭=⎛⎫+- ⎪⎝⎭→( ) A .0B .1C .p qD .11p q -- 6.若数列{}n a 满足212n na p a +=(p 为正常数,n *∈N ),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列; 乙:数列{}n a 是等比数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件7.双曲线22122:1(00)x y C a b a b-=>>,的左准线为l ,左焦点和右焦点分别为1F 和2F ;抛物线2C 的准线为l ,焦点为21F C ;与2C 的一个交点为M ,则12112F F MF MF MF -等于( )A .1-B .1C .12-D .128.已知两个等差数列{}n a 和{}n b 的前n 项和分别为A n 和n B ,且7453n n A n B n +=+,则使得n na b 为整数的正整数n 的个数是( )A .2B .3C .4D .59.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛⎤∈ ⎥2⎝⎦,的概率是( )A .512B .12C .712D .5610.已知直线1x ya b+=(a b ,是非零常数)与圆22100x y +=有公共点,且公共点的横坐标和纵坐标均为整数,那么这样的直线共有( ) A .60条 B .66条 C .72条 D .78条二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.已知函数2y x a =-的反函数是3y bx =+,则a = ;b = . 12.复数i z a b a b =+∈R ,,,且0b ≠,若24z bz -是实数,则有序实数对()a b ,可以是 .(写出一个有序实数对即可)13.设变量x y ,满足约束条件02 3.x y x +⎧⎨-⎩≥,≤≤则目标函数2x y +的最小值为.14.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示.据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 ;(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么药物释放开始,至少需要经过 小时后,学生才能回到教室.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知ABC △的面积为3,且满足06AB AC ≤≤,设AB 和AC 的夹角为θ. (I )求θ的取值范围; (II )求函数2()2sin 24f θθθ⎛⎫=+-⎪⎝⎭π的最大值与最小值.17.(本小题满分12分)在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如右表:(I )在答题卡上完成频率分布表,并在给定的坐标系中画出频率分布直方图;(II )估计纤度落在[1.381.50),中的概率及纤度小于1.40的概率是多少?(III )统计方法中,同一组数据常用该组区间的中点值(例如区间[1.301.34),的中点值是1.32)作为代表.据此,估计纤度的期望. 18.(本小题满分12分)如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,VDC θ∠=π02θ⎛⎫<< ⎪⎝⎭.(I )求证:平面VAB ⊥VCD ;(II )当解θ变化时,求直线BC 与平面VAB 所成的角的取值范围.19.(本小题满分12分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图) 20.(本小题满分13分) 已知定义在正实数集上的函数21()22f x x ax =+,2()3ln g x a x b =+,其中0a >.设两曲线()y f x =,()y g x =有公共点,且在该点处的切线相同. (I )用a 表示b ,并求b 的最大值;VAx(II )求证:()()f x g x ≥(0x >). 21.(本小题满分14分) 已知m n ,为正整数,(I )用数学归纳法证明:当1x >-时,(1)1mx mx ++≥;(II )对于6n ≥,已知11132m n ⎛⎫-< ⎪+⎝⎭,求证1132mm m ⎛⎫-< ⎪+⎝⎭, 求证1132m mm n ⎛⎫⎛⎫-< ⎪ ⎪+⎝⎭⎝⎭,12m n =,,,; (III )求出满足等式34(2)(3)nnn m n n ++++=+的所有正整数n .2007年普通高等学校招生全国统一考试(湖北卷)数学(理工农医类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.B 2.A 3.B 4.D 5.C 6.B 7.A 8.D 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.162;12.(21),(或满足2a b =的任一组非零实数对()a b ,)13.32-14.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪ ⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力.解:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)2θθ=+-πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 17.本小题主要考查频率分布直方图、概率、期望等概念和用样本频率估计总体分布的统计方法,考查运用概率统计知识解决实际问题的能力. 解:(Ⅰ)(Ⅱ)纤度落在[)1.381.50,中的概率约为0.300.290.100.69++=,纤度小于1.40的概率约为10.040.250.300.442++⨯=. (Ⅲ)总体数据的期望约为1.320.04 1.360.25 1.400.30 1.440.29 1.480.10 1.520.02 1.4088⨯+⨯+⨯+⨯+⨯+⨯=.样本数据18.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 在CHD Rt △中,sin CH a θ=; 设CBH ϕ∠=,在BHC Rt △中,sin CH a ϕ=,sin 2θϕ=. π02θ<<∵, 0sin 1θ<<∴,0sin 2ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V a θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 22a aVD θ⎛⎫= ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,. 从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥. 同理2211(0)tan 0022222a aABVD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··,即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,nn ··. ADBCHV得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是sin sin 2BC BCa ϕθ===n n ···, π02θ<<∵,0sin 1θ<<∴,0sin 2ϕ<<.又π02ϕ≤≤,π04ϕ<<∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法3:(Ⅰ)以点D为原点,以DC DB ,所在的直线分别为x 轴、y 轴,建立如图所示的空间直角坐标系,则(000)000000222D A a B a C a ⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,,0tan 22V a a θ⎛⎫- ⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪ ⎪⎝⎭,,,002DC a ⎛⎫=- ⎪ ⎪⎝⎭,,,(00)AB =,,.从而(00)ABDC =,,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022AB DV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,,·,即AB DV ⊥. 又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为()x yz =,,n,则由00AB DV ==,··n n ,得0tan 022ax az θ=⎨-+=⎪⎩,.可取(tan 01)θ=,,n,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan 2sin sin 2BC a BC θϕθ===n n ···,π02θ<<∵,0sin 1θ<<∴,0sin ϕ<<. 又π02ϕ≤≤,π04ϕ<<∴, 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.解法4:以CA CB CV ,,所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)022a aC A a B aD ⎛⎫ ⎪⎝⎭,,,,,,,,,,,. 设(00)(0)V t t >,,.(Ⅰ)(00)0(0)22a a CV t CD AB a a ⎛⎫===- ⎪⎝⎭,,,,,,,,, (0)(00)0000AB CV a a t =-=++=,,,,··,即AB CV ⊥.22(0)0002222a a a a AB CD a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.又CV CD C =,AB ⊥∴平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ, 设()x y z =,,n 是平面VAB 的一个非零法向量,则()(0)0()(0)0AB x y z a a ax ay AV x y z a t ax tz ⎧=-=-+=⎪⎨=-=-+=⎪⎩,,,,,,,,,,n n ····取z a =,得x y t ==.可取()t t a =,,n ,又(00)CBa =,,, A于是sin CB CBa ϕ====···n n(0)t ∈+,∵∞,sin ϕ关于t 递增. 0sin ϕ<<∴,π04ϕ⎛⎫∈ ⎪⎝⎭,∴. 即直线BC 与平面VAB 所成角的取值范围为π04⎛⎫ ⎪⎝⎭,.19.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,,直线AB 的方程为y kx p =+,与22x py =联立得22x py y kx p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122ABN BCN ACN S S S p x x =+=-△△△·.12p x x =-=2p ==∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,. 12O P AC '===∵, 111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴2221111()(2)44y p a y p =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S dAB p ===△···∴当0k =时,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.20.本小题主要考查函数、不等式和导数的应用等知识,考查综合运用数学知识解决问题的能力.解:(Ⅰ)设()y f x =与()(0)y g x x =>在公共点00()x y ,处的切线相同.()2f x x a '=+∵,23()a g x x'=,由题意00()()f x g x =,00()()f x g x ''=. 即22000200123ln 232x ax a x b a x a x ⎧+=+⎪⎪⎨⎪+=⎪⎩,,由20032a x a x +=得:0x a =,或03x a =-(舍去). 即有222221523ln 3ln 22b a a a a a a a =+-=-. 令225()3ln (0)2h t t t t t =->,则()2(13ln )h t t t '=-.于是当(13ln )0t t ->,即130t e <<时,()0h t '>; 当(13ln )0t t -<,即13t e >时,()0h t '<.故()h t 在130e ⎛⎫ ⎪⎝⎭,为增函数,在13e ⎛⎫+ ⎪⎝⎭,∞为减函数,于是()h t 在(0)+,∞的最大值为123332h e e ⎛⎫= ⎪⎝⎭.(Ⅱ)设221()()()23ln (0)2F x f x g x x ax a x b x =-=+-->, 则()F x '23()(3)2(0)a x a x a x a x x x-+=+-=>. 故()F x 在(0)a ,为减函数,在()a +,∞为增函数,于是函数()F x 在(0)+,∞上的最小值是000()()()()0F a F x f x g x ==-=. 故当0x >时,有()()0f x g x -≥,即当0x >时,()()f x g x ≥.21.本小题主要考查数学归纳法、数列求和、不等式等基础知识和基本的运算技能,考查分析问题能力和推理能力. 解法1:(Ⅰ)证:用数学归纳法证明: (ⅰ)当1m =时,原不等式成立;当2m =时,左边212x x =++,右边12x =+, 因为20x≥,所以左边≥右边,原不等式成立;(ⅱ)假设当m k =时,不等式成立,即(1)1kx kx ++≥,则当1m k =+时,1x >-∵,10x +>∴,于是在不等式(1)1k x kx ++≥两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++++=+++++·≥≥,所以1(1)1(1)k x k x ++++≥.即当1m k =+时,不等式也成立.综合(ⅰ)(ⅱ)知,对一切正整数m ,不等式都成立.(Ⅱ)证:当6n m n ,≥≤时,由(Ⅰ)得111033mm n n ⎛⎫+-> ⎪++⎝⎭≥, 于是11133n nmm n n ⎛⎫⎛⎫--= ⎪ ⎪++⎝⎭⎝⎭≤11132mn mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪ ⎪+⎝⎭⎝⎭⎢⎥⎣⎦,12m n =,,,. (Ⅲ)解:由(Ⅱ)知,当6n ≥时,2121111111113332222n nnnn n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-++-<+++=-< ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2131333n nnn n n n n ++⎛⎫⎛⎫⎛⎫+++< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭∴. 即34(2)(3)nnn n n n ++++<+.即当6n ≥时,不存在满足该等式的正整数n .故只需要讨论12345n =,,,,的情形: 当1n =时,34≠,等式不成立; 当2n =时,222345+=,等式成立; 当3n =时,33333456++=,等式成立;当4n =时,44443456+++为偶数,而47为奇数,故4444434567+++≠,等式不成立; 当5n =时,同4n =的情形可分析出,等式不成立. 综上,所求的n 只有23n =,. 解法2:(Ⅰ)证:当0x =或1m =时,原不等式中等号显然成立,下用数学归纳法证明: 当1x >-,且0x ≠时,2m ≥,(1)1mx mx +>+. ①(ⅰ)当2m =时,左边212x x =++,右边12x =+,因为0x ≠,所以20x >,即左边>右边,不等式①成立;(ⅱ)假设当(2)m k k =≥时,不等式①成立,即(1)1kx kx +>+,则当1m k =+时,因为1x >-,所以10x +>.又因为02x k ≠,≥,所以20kx >.于是在不等式(1)1kx kx +>+两边同乘以1x +得2(1)(1)(1)(1)1(1)1(1)k x x kx x k x kx k x ++>++=+++>++·,所以1(1)1(1)k x k x ++>++.即当1m k =+时,不等式①也成立.综上所述,所证不等式成立.(Ⅱ)证:当6n ≥,m n ≤时,11132nn ⎛⎫-< ⎪+⎝⎭∵,11132nm mn ⎡⎤⎛⎫⎛⎫-<⎢⎥ ⎪⎪+⎝⎭⎝⎭⎢⎥⎣⎦∴, 而由(Ⅰ),111033mm n n ⎛⎫--> ⎪++⎝⎭≥, 1111332nnm mm n n ⎡⎤⎛⎫⎛⎫⎛⎫--<⎢⎥ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∴≤.(Ⅲ)解:假设存在正整数06n ≥使等式00000034(2)(3)nn n n n n ++++=+成立,即有0000002341333n n n n n n n ⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. ②又由(Ⅱ)可得00000234333n n n n n n n ⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭000000011111333n n n n n n n n ⎛⎫⎛⎫⎛⎫-=-+-++- ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭00011111112222n n n -⎛⎫⎛⎫<+++=-< ⎪ ⎪⎝⎭⎝⎭,与②式矛盾. 故当6n ≥时,不存在满足该等式的正整数n . 下同解法1.。
武汉大学2007年数学分析考研试题解答
1
八.计算曲面积分 I = ∫∫ xydydz + yzdzdx + z x 2 + y 2 dxdy ,
∑
其中 ∑ 是由 x 2 + y 2 + z 2 = a 2 , x 2 + y 2 + z 2 = 4a 2 , ( a > 0 ) , z = x 2 + y 2 所围立体 的边界曲面的外侧.
n →∞
n π f ( x ) dx = f ( 0 ) . 2 2 0 1+ n x 2
1
武汉大学 2007 年数学分析考研试题解答
一、简略。 二、解 由对称性,只需考虑第一卦限的情形。
x0 x y0 y z0 z + + = 1, a b c
设切点为 C ( x0 , y0 , z0 ) ,则过点 C 的切平面的方程为:
1 11 1π 1 = 2π [(2a ) 4 − a 4 ]( + − ) 4 22 24 4 = 15π a 4 。 16
九、证明设
un ( x) = an cos nx + bn sin nx
,显然它是连续可微的函数;
1 由条件,可知 | un ( x) |≤| an | + | bn |= (nα | an | + nα | bn |) 1 ≤ 2M α , α n n
≤ 2M
n
α −1
1 ,
当 α > 2 时, ∑ 2 M
n =1 ∞
∞
1 nα −1
收敛,于是 ∑ un′ ( x ) 在
n =1
∞
(−∞, +∞)
上一致收敛,
故有 S ′( x) = ∑ un′ ( x ) ,且在
武汉大学2007-2008年高数
武汉大学2007—2008学年上学期《高等数学E1》(54学时)试题(A 卷)一.计算下列极限(12分) 1.x x x sin 2)31(lim +∞→ 2.x x x 1arctan 2lim -∞→π二.计算下列积分(12分)1.⎰xdx 3cos2.⎰+10222)1(dx x x 三.(10分)讨论函数⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧=≠=,0,1sin 0,0)(x x x x x f 在0=x 处的连续性与可导性。
四.(10分)设函数)(x f 和)(x g 可导,且0)()(22≠+x g x f ,试求函数)()(22x g x f y +=的微分。
五.(10分)设函数()x y y =由方y xe y +=1所确定,求022=x dx y d 的值。
六.(10分)已知)(x f 的一个原函数为x xe-,求: 1.⎰dx x f )(; 2.⎰dx x xf)('; 3.⎰dx x xf )(; 七.(10分)求21cos 2lim x dt e x t x ⎰-∞→八.(10分)在抛物线()102≤≤=x x y 上找一点P ,使经过P 的水平直线与抛物线和直线0=x ,1=x 围成的区域的面积最小。
九.(10分)设()21222-=-x x In x f ,且[]Inx x f =)(ϕ,求()⎰dx x ϕ十.(6分)设()x f 在[]1,0上连续,在()1,0内可导,且()()010==f f ,2121=⎪⎭⎫⎝⎛f ,证明必存在一点()1,0∈ξ,使得ηξ=)('f ,其中()1,0∈η为确定值。
提示:构造函数)()(x f x x F -=η。
2007年普通高等学校招生全国统一考试、文科数学(湖北卷)
2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)一、选择题(本大题共10小题,每小题5分,共50分)1.tan690°的值为 A.33- B. 33 C.3 D.3- 2.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么U A U B =A.{1,2}B.{3,4}C.{5,6}D.{7,8} 3.如果n 32)x2x 3(-的展开式中含有非零常数项,则正整数n 的最小值为 A.10 B.6 C.5 D.34.函数y =1212x x -+(x <0)的反函数是 A.1x 1x log y 2-+=(x <-1)B.1x 1x log y 2-+=(x >1)C.1x 1x log y 2+-=(x <-1)D.1x 1x log y 2+-=(x >1) 5.在棱长为1的正方体ABCD-A1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G =λ(0≤λ≤1),则点G 到平面D 1EF 的距离为 A.3B.22C.32λD.55 6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如右图所示。
根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为A.300B.360C.420D.4507.将5本不同的书全发给4名同学,每名同学至少有一本的概率是 A.6415B.12815 C.12524D.12548 8.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为 A.1B.22C.7D.39.设a =(4,3),a 在b 上的投影为,b 在x 轴上的投影为2,且|b |≤14,则b 为 A.(2,14)B.)72,2(- C.)72,2(- D.(2,8) 10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④⌝p 是⌝s 的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件。
2007年普通高等学校招生全国统一考试文科数学试卷及答案-湖北卷
2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan 690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UA B =痧( )A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10 B.6 C.5 D.34.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)AG λλ=≤≤.则点G 到平面1D EF 的距离为( )6.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所1D1C得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫-⎪⎝⎭, C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F为其右焦点,54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.17.(本小题满分12分)如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6. 18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.(I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列. (I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++. 21.(本小题满分14分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵xπ12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤,max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),.17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力. 解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin CH θ=; 在BHC Rt △中,πsin62a CH a ==,sin θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CA CB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a aVD θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,.从而2211(0)0002222a aAB CD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 0022222a a AB VD a a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CDVD D =,AB ⊥∴平面VCD .又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··n n .得0tan 0222ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩,.可取)θ=n ,又(00)BC a =-,,,于是πsin62BC BC a θ===n n ···, 即sin 2θ=π02θ<<∵,π4θ∴=.故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB,所在的直线分别为x 轴、y轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a a θ⎛⎫-⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪⎪⎝⎭,,,002DC ⎛⎫=- ⎪⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC ⊥.同理(00)0tan 022ABDV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 0θ=⎨+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=. 故交π4θ=时,即直线BC 与平面VAB 所成角为π6.18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,.(Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算A能力.解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,.(II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当a >时,()h a 单调增加,∴当03a <<-时,20()2)2(22)2(17122)h a h <<=-- 121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f f g g a-==,由(I )知03a <<-1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<. 解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,.(II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*.(II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111nn qa a --=,222211n n q a a -=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q q q --⎛⎫⎛⎫=+++++++++⎪⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121nq q --⎛⎫-=⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦.故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a q q ---+=+=,34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k x p =+,与22x p y =联立得22x p y y k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-. 于是12122AMN BCN ACN S SS p x x =+=-△△△·.12px x =-=2p == ∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H ,则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵ 111222y p O H a a y p +'=-=--, 222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线. 解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-=2=又由点到直线的距离公式得d =.从而112222ABN S d AB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。
2007—2008第一学期《高等数学B》期末考试试题及答案
武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算lim n →∞-2、计算0ln(1)limcos 1x x x x →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d xxe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d yx te t t t =⎰⎰,求xy d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)xy x =-求:1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积;2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,f b f f b b ξξ'-=∈ 对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算3arctan limln(12)x x x x →-+ 2、计算12ln(1)d (2)x x x +-⎰3、计算积分:21arctanx d xx +∞⎰4、已知两曲线()y f x =与1x y xy e ++=所确定,在点(0,0)处的切线相同,写出 此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos tx t uduy t t ⎧=⎪⎨=-⎪⎩⎰,试求:d d y x,22d |d t y x的值。
第一学期《高等数学B》期末考试试题及答案
武汉大学数学与统计学院2007—2008第一学期《高等数学B 》期末考试试题(180学时)一、(87'⨯)试解下列各题:1、计算n →∞2、计算0ln(1)lim cos 1x x xx →+--3、计算arctan d x x x ⎰4、 计算4x ⎰5、计算d x xe x +∞-⎰6、设曲线方程为sin cos 2x t y t=⎧⎨=⎩,求此曲线在点4t π=处的切线方程。
7、已知2200d cos d y x te t t t =⎰⎰,求x y d d8、设11x y x-=+,求()n y二、(15分)已知函数32(1)x y x =-求: 1、函数)(x f 的单调增加、单调减少区间,极大、极小值;2、函数图形的凸性区间、拐点、渐近线 。
三、(10分)设()g x 是[1,2]上的连续函数,0()()d x f x g t t =⎰1、用定义证明()f x 在(1,2)内可导;2、证明()f x 在1x =处右连续;四、(10分)1、设平面图形A 由抛物线2y x = ,直线8x =及x 轴所围成,求平面图形A 绕x轴旋转一周所形成的立体体积; 2、在抛物线2(08)y x x =≤≤上求一点,使得过此点所作切线与直线8x =及x 轴所围图形面积最大。
五、(9分)当0x ≥,对()f x 在[0,]b 上应用拉格朗日中值定理有: ()(0)()(0,)f b f f bb ξξ'-=∈对于函数()arcsin f x x =,求极限0lim b bξ→武汉大学数学与统计学院 B 卷2007—2008第一学期《高等数学B 》期末考试试题一、(86'⨯)试解下列各题:1、计算30arctan lim ln(12)x x x x →-+2、计算120ln(1)d (2)x x x +-⎰ 3、计算积分:21arctanxd x x +∞⎰ 4、已知两曲线()y f x =与1x yxy e++=所确定,在点(0,0)处的切线相同,写出此切线方程,并求极限2lim ()n nf n→∞5、设,2221cos cos t x t udu y t t ⎧=⎪⎨=-⎪⎩,试求:d d y x,22d |d t y x 的值。
2007湖北高考数学理科
2007湖北高考数学理科2007年湖北高考数学理科试卷共分为选择题和非选择题两部分,题型涉及了常见的代数、几何、概率等数学知识。
下面将分别对选择题和非选择题进行解析。
选择题部分共有25小题,每小题4分,共100分。
以下是其中几个题目的解析:第1题:若sinα+sinβ=√2cos(α−β),则tanα+tanβ的值为()。
A.1B.0C.−1D.undefined解析:首先,根据三角恒等式sin^2x+cos^2x=1,将√2用cos(α-β)表示,得:sinα+sinβ=cos(α-β)。
然后,利用三角恒等式sinα+sinβ = 2sin(α+β)/2cos(α-β)/2,将cos(α-β)用sin(α+β)进行替换,得:2sin(α+β)/2cos(α-β)/2 = cos(α-β)。
再将等式两边平方,得:4sin^2(α+β)/2 = cos^2(α-β)。
根据三角恒等式cos^2x - sin^2x = cos2x,得:4cos^2(α+β)/2 -4sin^2(α+β)/2 = cos2(α-β)。
最终,根据cos2θ=1-2sin^2θ,得:2-4sin^2(α+β)/2 = 1-2sin^2(α-β)。
整理后得:sin^2(α+β)/2 = sin^2(α-β)/2。
根据左右两边的含义可知,左右两边的正负号相同,故sin(α+β) = sin(α-β)。
根据余角公式sin(π/2-θ) = cosθ,可知α+β = α-β+π/2+2kπ(k为整数)。
因此,tanα+tanβ的值为tan(α+β)。
根据tan(α+β)的公式,得:tan(α+β) = tan(α+β+π) = tan(α-β+π/2) = cot(α-β) =−1。
因此,答案选C.−1。
第6题:已知函数f(x) = x^2 - bx + 1,其中b是常数,若对所有实数x都有f(x)≥4,则b的取值范围是()。
A.(-∞,2)B.[-1,1]C.[0,2]D.[1,∞)解析:根据题意,对于所有实数x都有f(x)≥4,即x^2 - bx +1 ≥ 4。
2007年高考湖北卷数学文科试卷含答案.doc
2007年普通高等学校招生全国统一考试(湖北卷)数 学(文史类)本试卷共4页,满分150分,考试时间120分钟.★祝考试顺利★注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题每小题选出答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.答在试题卷上无效.3.将填空题和解答题用0.5毫米的黑色墨水签字笔或黑色墨水钢笔直接答在答题卡上每题对应的答题区域内.答在试题卷上无效.4.考试结束,请将本试题卷和答题卡一并上交.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.tan690°的值为( )A.D.2.如果{}|9U x x =是小于的正整数,{}1234A =,,,,{}3456B =,,,,那么U UA B =痧( ) A.{}12,B.{}34,C.{}56,D.{}78,3.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.10B.6 C.5 D.3 4.函数21(0)21x x y x +=<-的反函数是( )A.21log (1)1x y x x +=<-- B.21log (1)1x y x x +=>-C.21log (1)1x y x x -=<-+ D.21log (1)1x y x x -=>+5.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB ,的中点,G 为棱11A B 上的一点,且1(01)A G λλ=≤≤.则点G 到平面1D EF 的距离为( )B.2C.36.为了了解某学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所1D1C得数据画出样本的频率分布直方图如右图所示.根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为( ) A .300 B .360 C .420 D .4507.将5本不同的书全发给4名同学,每名同学至少有一本书的概率是( ) A .1564B .15128C .24125D .481258.由直线1y x =+上的一点向圆22(3)1x y -+=引切线,则切线长的最小值为( ) A .1B.CD .39.设(43)=,a ,a 在b上的投影为2,b 在x 轴上的投影为2,且||14≤b ,则b 为( )A .(214),B .227⎛⎫- ⎪⎝⎭,C .227⎛⎫- ⎪⎝⎭,D .(28),10.已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件,现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件; ③r 是q 的必要条件而不是充分条件; ④p ⌝是s ⌝的必要条件而不是充分条件;⑤r 是s 的充分条件而不是必要条件. 则正确命题的序号是( ) A .①④⑤ B .①②④ C .②③⑤ D .②④⑤二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡相应位置上.11.设变量x y ,满足约束条件30023x y x y x -+⎧⎪+⎨⎪-⎩≥,≥,≤≤,则目标函数2x y +的最小值为 .12.过双曲线22143x y -=左焦点1F 的直线交曲线的左支于M N ,两点,2F为其右焦点,54.5 56.5 58.5 60.5 62.5 64.5 66.5 68.5 70.5 72.5 74.5 76.5kg )则22MF NF MN +-的值为______.13.已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是122y x =+,则(1)(1)f f '+=____.14.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率为 .(用数值作答)15.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与t 的函数关系式为116t ay -⎛⎫= ⎪⎝⎭(a 为常数),如图所示,根据图中提供的信息,回答下列问题:(I )从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .(II )据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么从药物释放开始,至少需要经过 小时后,学生才能回到教室. 三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数2π()2sin 24f x x x ⎛⎫=+⎪⎝⎭,ππ42x ⎡⎤∈⎢⎥⎣⎦,. (I )求()f x 的最大值和最小值;(II )若不等式()2f x m -<在ππ42x ⎡⎤∈⎢⎥⎣⎦,上恒成立,求实数m 的取值范围.17.(本小题满分12分)如图,在三棱锥V ABC -中,VC ABC ⊥底面,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π02VDC θθ⎛⎫=<< ⎪⎝⎭∠.(I )求证:平面VAB ⊥平面VCD ;(II )试确定角θ的值,使得直线BC 与平面VAB 所成的角为π6.18.(本小题满分12分)某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x (单位:元,030x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件. (I )将一个星期的商品销售利润表示成x 的函数; (II )如何定价才能使一个星期的商品销售利润最大? 19.(本小题满分12分)设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<. (I )求实数a 的取值范围; (II )试比较(0)(1)(0)f f f -与116的大小.并说明理由. 20.(本小题满分13分)已知数列{}n a 和{}n b 满足:11a =,22a =,0n a >,n b =*n ∈N ),且{}n b 是以q 为公比的等比数列.(I )证明:22n n a a q +=;(II )若2122n n n c a a -=+,证明数列{}n c 是等比数列; (III )求和:1234212111111n na a a a a a -++++++.21.(本小题满分14分)在平面直角坐标系xOy 中,过定点(0)C p ,作直线与抛物线22x py =(0p >)相交于A B ,两点.(I )若点N 是点C 关于坐标原点O 的对称点,求ANB △面积的最小值;(II )是否存在垂直于y 轴的直线l ,使得l 被以AC 为直径的圆截得的弦长恒为定值?若存在,求出l 的方程;若不存在,说明理由.(此题不要求在答题卡上画图)2007年普通高等学校招生全国统一考试(湖北卷)数学(文史类)试题参考答案一、选择题:本题考查基础知识和基本运算.每小题5分,满分50分. 1.A 2.D 3.C 4.A 5.D 6.B 7.A 8.C 9.B 10.B二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.32-12.8 13.314.1512815.110110010111610t t t y t -⎧⎛⎫ ⎪⎪⎝⎭⎪=⎨⎪⎛⎫⎛⎫> ⎪⎪⎪⎝⎭⎝⎭⎩,,,≤≤;0.6 三、解答题:本大题共6小题,共75分.16.本小题主要考查三角函数和不等式的基本知识,以及运用三角公式、三角函数的图象和性质解题的能力.解:(Ⅰ)π()1cos 221sin 222f x x x x x ⎡⎤⎛⎫=-+=+⎪⎢⎥⎝⎭⎣⎦∵xπ12sin 23x ⎛⎫=+- ⎪⎝⎭.又ππ42x ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2633x -∴≤≤,即π212sin 233x ⎛⎫+- ⎪⎝⎭≤≤, max min ()3()2f x f x ==,∴.(Ⅱ)()2()2()2f x m f x m f x -<⇔-<<+∵,ππ42x ⎡⎤∈⎢⎥⎣⎦,,max ()2m f x >-∴且min ()2m f x <+,14m <<∴,即m 的取值范围是(14),. 17.本小题主要考查线面关系、直线与平面所成角的有关知识,考查空间想象能力和推理运算能力以及应用向量知识解决数学问题的能力.解法1:(Ⅰ)AC BC a ==∵,ACB ∴△是等腰三角形,又D 是AB 的中点, CD AB ⊥∴,又VC ⊥底面ABC .VC AB ⊥∴.于是AB ⊥平面VCD . 又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ) 过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CD ⊥平面VAB . 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角. 依题意π6CBH ∠=,所以在CHD Rt △中,sin 2CH a θ=; 在BHC Rt △中,πsin62a CH a ==,sin 2θ=∴. π02θ<<∵,π4θ=∴. 故当π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法2:(Ⅰ)以CACB CV ,,所在的直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则(000)(00)(00)000tan 222a a C A a B a D V θ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭,,,,,,,,,,,,,,,于是,tan 222a aVD a θ⎛⎫=- ⎪ ⎪⎝⎭,,,022a a CD ⎛⎫= ⎪⎝⎭,,,(0)AB a a =-,,.从而2211(0)0002222a aABCD a a a a ⎛⎫=-=-++= ⎪⎝⎭,,,,··,即AB CD ⊥.同理2211(0)tan 0022222a a AB VD a a a a θ⎛⎫=--=-++= ⎪ ⎪⎝⎭,,,,··, 即AB VD ⊥.又CD VD D =,AB ⊥∴平面VCD . 又AB ⊂平面VAB .∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB VD ==,··nn .得0tan 0222ax ay a a x y az θ-+=⎧⎪⎨+-=⎪⎩,.可取(11)θ=n ,又(00)BC a =-,,,于是πsin62BC BC a θ===nn ···, 即sin θ=π02θ<<,π4θ∴=. 故交π4θ=时,直线BC 与平面VAB 所成的角为π6. 解法3:(Ⅰ)以点D 为原点,以DC DB,所在的直线分别为x 轴、y轴,建立如图所示的空间直角坐标系,则(000)000000D A B C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,,,,,0tan 22V a a θ⎛⎫-⎪ ⎪⎝⎭,,,于是0tan 22DV a a θ⎛⎫=- ⎪⎪⎝⎭,,,002DC a ⎛⎫=- ⎪⎪⎝⎭,,,(00)AB =,.从而(00)AB DC =,·0002a ⎛⎫-= ⎪ ⎪⎝⎭,,·,即AB DC⊥.同理(00)0tan 022ABDV a a θ⎛⎫=-= ⎪ ⎪⎝⎭,,,·,即AB DV ⊥.又DCDV D =,AB ⊥∴平面VCD .又AB ⊂平面VAB ,∴平面VAB ⊥平面VCD .(Ⅱ)设平面VAB 的一个法向量为()x y z =,,n ,则由00AB DV ==,··n n,得0tan 022ax az θ=⎨-+=⎪⎩,. 可取(tan 01)n θ=,,,又022BC a a ⎛⎫=-- ⎪ ⎪⎝⎭,,,于是tan π2sin 62BC BC a θθ===n n ···, 即πππsin 0224θθθ=<<,,∵∴=.故交π4θ=时,即直线BC 与平面VAB 所成角为π6.18.本小题主要考查根据实际问题建立数学模型,以及运用函数、导数的知识解决实际问题的能力.解:(Ⅰ)设商品降价x 元,则多卖的商品数为2kx ,若记商品在一个星期的获利为()f x , 则依题意有22()(309)(432)(21)(432)f x x kx x kx =--+=-+,又由已知条件,2242k=·,于是有6k =, 所以32()61264329072[030]f x x x x x =-+-+∈,,. (Ⅱ)根据(Ⅰ),我们有2()1825243218(2)(12)f x x x x x '=-+-=---.故12x =时,()f x 达到极大值.因为(0)9072f =,(12)11264f =,所以定价为301218-=元能使一个星期的商品销售利润最大.19.本小题主要考查二次函数、二次方程的基本性质及二次不等式的解法,考查推理和运算A能力.解法1:(Ⅰ)令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. (II )2(0)(1)(0)(0)(1)2f f f g g a -==,令2()2h a a =.当0a >时,()h a 单调增加,∴当03a <<-时,20()2)2(22)2(17122)h a h <<=-- 121617122=<+,即1(0)(1)(0)16f f f -<.解法2:(I )同解法1. (II )2(0)(1)(0)(0)(1)2f f f g g a-==,由(I )知03a <<-,1170-<<∴.又10+>,于是221112(321)1)0161616a a -=-=-+<, 即212016a -<,故1(0)(1)(0)16f f f -<.解法3:(I )方程()0f x x -=⇔2(1)0x a x a +-+=,由韦达定理得121x x a +=-,12x x a =,于是121212121200010(1)(1)0(1)(1)0x x x x x x x x x x ∆>⎧⎪+>⎪⎪<<<⇔>⎨⎪-+->⎪⎪-->⎩,,,,0133a a a a ⎧>⎪⇔<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a 的取值范围是(03-,. (II )依题意可设12()()()g x x x x x =--,则由1201x x <<<,得12121122(0)(1)(0)(0)(1)(1)(1)[(1)][(1)]f f f g g x x x x x x x x -==--=--2211221112216x x x x +-+-⎛⎫⎛⎫<= ⎪ ⎪⎝⎭⎝⎭,故1(0)(1)(0)16f f f -<. 20.本小题主要考查等比数列的定义,通项公式和求和公式等基本知识及基本的运算技能,考查分析问题能力和推理能力. 解法1:(I )证:由1n n b q b +=n q ==,∴ 22()n n a a q n +=∈N*. (II )证:22n n a q q -=,22221231n n n a a q a q ---∴===,222222n n n a a q a q --===,22222222212121222(2)5n n n n n n n c a a a q a q a a q q -----∴=+=+=+=.{}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )得2221111n n q a a --=,222211nn q a a-=,于是 1221321242111111111n n n a a a a a a a a a -⎛⎫⎛⎫+++=+++++++⎪ ⎪⎝⎭⎝⎭24222422121111111111n n a q q q a q q q --⎛⎫⎛⎫=+++++++++⎪⎪⎝⎭⎝⎭2122311112n q qq -⎛⎫=++++⎪⎝⎭. 当1q =时,2422122111311112n n a a a q qq -⎛⎫+++=++++ ⎪⎝⎭32n =. 当1q ≠时,2422122111311112n n a a a q qq -⎛⎫+++=++++⎪⎝⎭223121n q q --⎛⎫-= ⎪-⎝⎭2222312(1)n n q q q -⎡⎤-=⎢⎥-⎣⎦.故21222223121111 1.(1)nn n n q q a a a q q q -⎧=⎪⎪+++=⎨⎡⎤3-⎪≠⎢⎥⎪2-⎣⎦⎩, ,, 解法2:(I )同解法1(I ).(II )证:222*1212221221221222()22n n n n nn n n n nc a a q a q a q n c a a a a +++---++===∈++N ,又11225c a a =+=, {}n c ∴是首项为5,以2q 为公比的等比数列.(III )由(II )的类似方法得222221212()3n n n n a a a a qq ---+=+=, 34212121221234212111n nn n na a a a a a a a a a a a a a a --++++++=+++,2222212442123322k k k k k k k a a q qa a q --+---+==,12k n =,,,. 2221221113(1)2n k q q a a a --+∴+++=+++.下同解法1.21.本小题主要考查直线、圆和抛物线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.解法1:(Ⅰ)依题意,点N 的坐标为(0)N p -,,可设1122()()A x y B x y ,,,, 直线AB 的方程为y k xp =+,与22x p y =联立得22x p yy k x p ⎧=⎨=+⎩,.消去y 得22220x pkx p --=.由韦达定理得122x x pk +=,2122x x p =-.于是12122AMN BCN ACN S SS p x x =+=-△△△·.12px x =-=2p ==∴当0k =,2min ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,设AC 的中点为O ',l 与AC 为直径的圆相交于点P ,Q PQ ,的中点为H , 则O H PQ '⊥,Q '点的坐标为1122x y p +⎛⎫⎪⎝⎭,.12O P AC '===∵, 111222y p O H a a y p +'=-=--,222PH O P O H ''=-∴221111()(244y p a y =+---1()2p a y a p a ⎛⎫=-+- ⎪⎝⎭,22(2)PQ PH =∴14()2p a y a p a ⎡⎤⎛⎫=-+- ⎪⎢⎥⎝⎭⎣⎦.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.解法2:(Ⅰ)前同解法1,再由弦长公式得12AB x =-==2=又由点到直线的距离公式得d =.从而112222ABN S dAB p ===△···∴当0k =时,2max ()ABN S =△.(Ⅱ)假设满足条件的直线l 存在,其方程为y a =,则以AC 为直径的圆的方程为11(0)()()()0x x x y p y y -----=,将直线方程y a =代入得211()()0x x x a p a y -+--=,则21114()()4()2p x a p a y a y a p a ⎡⎤⎛⎫=---=-+- ⎪⎢⎥⎝⎭⎣⎦△. 设直线l 与以AC 为直径的圆的交点为3344()()P x y Q x y ,,,,则有34PQ x x =-==.令02p a -=,得2p a =,此时PQ p =为定值,故满足条件的直线l 存在,其方程为2py =, 即抛物线的通径所在的直线.。
2007年湖北省高考数学试卷(文科)及解析
2007年湖北省高考数学试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1、(2007•湖北)tan690°的值为()A、﹣B、C、{a x}D、2、(2007•湖北)如果U={x|x是小于9的正整数},A={1,2,3,4},B={3,4,5,6},那么(C U A)∩(C U B)=()A、{1,2}B、{3,4}C、{5,6}D、{7,8}3、(2007•湖北)如果的展式中含有非零常数项,则正整数n的最小值为()A、10B、6C、5D、34、(2007•湖北)函数y=(x<0)的反函数是()A、y=log2(x<﹣1)B、y=log2(x>1)C、y=log2(x<﹣1)D、y=log2(x>1)5、(2007•湖北)在棱长为1的正方体ABCD﹣A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为()A、B、C、D、6、(2007•湖北)为了了解学校学生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图如图所示,根据此图,估计该校2000名高中男生中体重大于70.5公斤的人数为()A、300B、350C、420D、4507、(2007•湖北)将5本不同的书全发给4名同学,每名同学至少有一本书的概率是()A、B、C、D、8、(2007•湖北)由直线y=x+1上的一点向圆(x﹣3)2+y2=1引切线,则切线长的最小值为()A、1B、2C、D、39、(2007•湖北)设,在上的投影为,在x轴上的投影为2,且,则为()A、(2,14)B、C、D、(2,8)10、(2007•湖北)已知p是r的充分条件而不是必要条件,q是r的充分条件,s是r的必要条件,q是s的必要条件,现有下列命题:①r是q的充要条件;②p是q的充分条件而不是必要条件;③r是q的必要条件而不是充分条件;④┐p是┑s的必要条件而不是充分条件;⑤r是s的充分条件而不是必要条件.则正确命题的序号是()A、①④⑤B、①②④C、②③⑤D、②④⑤二、填空题(共5小题,每小题5分,满分25分)11、(2007•湖北)设变量x,y满足约束条件则目标函数2x+y的最小值为_________12、(2007•湖北)过双曲线左焦点F的直线交双曲线的左支于M、N两点,F2为其右焦点,则|MF2|+|NF2|﹣|MN|的值为_________.13、(2007•湖北)已知函数y=f(x)的图象在M(1,f(1))处的切线方程是+2,f(1)+f′(1)=_________.14、(2007•湖北)某篮运动员在三分线投球的命中率是,他投球10次,恰好投进3个球的概率_________.(用数值作答)15、(2007•湖北)为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量V﹣ABC(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示.据图中提供的信息,回答下列问题:(I)从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式为_________;(II)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那么,药物释放开始,至少需要经过_________小时后,学生才能回到教室.三、解答题(共6小题,满分75分)16、(2007•湖北)已知函数.(Ⅰ)求f(x)的最大值和最小值;(Ⅱ)若不等式|f(x)﹣m|<2在定义域上恒成立,求实数m的取值范围.17、(2007•湖北)如图,在三棱锥V﹣ABC中,VC⊥底面ABC,AC⊥BC,D是AB的中点,且AC=BC=a,∠VDC=θ(0<θ<).(Ⅰ)求证:平面VAB⊥平面VCD;(Ⅱ)当确定角θ的值,使得直线BC与平面VAB所成的角为.18、(2007•湖北)某商品每件成本9元,售价30元,每星期卖出432件.如果降低价格.销售量可以增加,且每星期多卖出的商品件数与商品单价的降低销x(单位:元,0≤x≤30)的平方成正比.已知商品单价降低2元时,一星期多卖出24件.(Ⅰ)将一个星期的商品销售利润表示成x的函数;(Ⅱ)如何定价才能使一个星期的商品销售利润最大?19、(2007•湖北)设二次函数f(x)=﹣x2+ax+a,方程f(x)﹣x=0的两根x1和x2满足0<x1<x2<1.(Ⅰ)求实数a的取值范围;(Ⅱ)试比较f(0)•f(1)﹣f(0)与的大小,并说明理由.20、(2007•湖北)已知数列{a x}和{b x}满足:.且{b x}是以a为公比的等比数列.(Ⅰ)证明:a a+2=a1a2;(Ⅱ)若a3n﹣1+2a2,证明数例{c x}是等比数例;(Ⅲ)求和:….21、(2007•湖北)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2﹣2py(p>0)相交于A、B两点.(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得的张长恒为定值?若存在,求出l的方程;若不存在,说明理由.(此题不要求在答题卡上画图)答案与评分标准一、选择题(共10小题,每小题5分,满分50分)1、(2007•湖北)考点:运用诱导公式化简求值。
武汉大学2007年到2012年高数考题
武汉大学2007-2008第一学期《高等数学》期末考试试题(数统)一.试解下列各题(每小题6分,共48分) 1.计算().21ln arctan lim 30x xx x +-→2.计算()().21ln 12⎰-+dx x x3.计算积分.arctan 12⎰+∞dx xx4.已知两曲线由()x f y =与1=++y x e xy 所确定,且在点()0,0处的切线相同,写出此切线方程,并求极限.2lim 0⎪⎭⎫⎝⎛→n nf x5.设⎪⎩⎪⎨⎧-==⎰.cos 21cos ,cos 2122t udu u t t y t x 试求,dx dy .|222π=t dx y d6.确定函数xt xx t x t sin sin sin sin lim -→⎪⎭⎫⎝⎛的间断点,并判断间断点的类型.7.设(),11x x y -=求().n y8.求位于曲线()0≥=-x xe y x 下方,x 轴上方之图形的面积.二.(12分)设()x f 具有二阶连续导数,且().0=a f()()⎪⎩⎪⎨⎧=≠-=.,,,a x A a x a x x f x g(1)试确定A 的值,使()x g 在a x =处连续.(2)求()x g '. (3)证明:()x g '在a x =处连续三.(15分)设()y x P ,为曲线⎩⎨⎧==.sin 2,cos :2t y t x L ⎪⎭⎫ ⎝⎛≤≤20πt 上一点,作过原点()0,0O 和点P 的直线OP , 由曲线L 、直线OP 以及x 轴所围成的平面图形记为A .(1)将y 表示为x 的函数.(2)求平面图形A 的面积()x S 的表达式. (3)将平面图形A 的面积()x S 表示成t 的函数()t S S =,并求dtdS取得最大值时 点P 的坐标.四.(15分)已知函数(),352--=x x x f 求 (1)函数()x f 的单调增加、单调减少区间,极大、极小值; (2)函数图形的凸性区间、拐点、渐进线.五.( 10分)设函数()x f 在[]l l ,-上连续,在0=x 处可导,且().00≠'f (1)证明:对于任意()l x ,0∈,至少存在一个()1,0∈θ,使得()()()()[].0x f x f x dt t f dt t f xx θθ--=+⎰⎰-(2)求极限.lim 0θ+→x 武汉大学2008-2009第一学期《高等数学》期末考试试题一、试解下列各题:(''⨯=8756)1、求极限: 2201lim(cot )x x x→-2、已知04x →=,求极限0lim ()→x f x3、试证:若()f x 是可导的周期为l 的函数,则'()f x 也是以l 为周期的周期函数.4、求函数xx x x f )1(1)(2--=的间断点,并判断其类型。
2007年高考数学试题湖北卷(理科)
2007年普通高等学校招生全国统一考试(湖北卷)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果2323nx x ⎛⎫- ⎪⎝⎭的展开式中含有非零常数项,则正整数n 的最小值为( )A.3B.5 C.6 D.10答案:选B解析:由展开式通项有()21323rn rrr n T C xx -+⎛⎫=- ⎪⎝⎭()2532r r n r n rn C x --=⋅⋅-⋅ 由题意得()52500,1,2,,12n r n r r n -=⇒==- ,故当2r =时,正整数n 的最小值为5,故选B点评:本题主要考察二项式定理的基本知识,以通项公式切入探索,由整数的运算性质易得所求。
本题中“ 非零常数项”为干扰条件。
易错点:将通项公式中r n C 误记为1r n C +,以及忽略0,1,2,,1r n =- 为整数的条件。
2.将π2cos 36x y ⎛⎫=+ ⎪⎝⎭的图象按向量π24⎛⎫=-- ⎪⎝⎭,a 平移,则平移后所得图象的解析式为( ) A.π2cos 234x y ⎛⎫=+- ⎪⎝⎭ B.π2cos 234x y ⎛⎫=-+ ⎪⎝⎭C.π2cos 2312x y ⎛⎫=-- ⎪⎝⎭D.π2cos 2312x y ⎛⎫=++ ⎪⎝⎭答案:选A解析:法一 由向量平移的定义,在平移前、后的图像上任意取一对对应点()''',P x y ,(),P x y ,则π24⎛⎫=-- ⎪⎝⎭,a ()''',P P x x y y ==--'',24x x y y π⇒=+=+,带入到已知解析式中可得选A法二 由π24⎛⎫=-- ⎪⎝⎭,a 平移的意义可知,先向左平移4π个单位,再向下平移2个单位。
点评:本题主要考察向量与三角函数图像的平移的基本知识,以平移公式切入,为简单题。
易错点:将向量与对应点的顺序搞反了,或死记硬背以为是先向右平移4π个单位,再向下平移2个单位,误选C3.设P 和Q 是两个集合,定义集合{}|P Q x x P x Q -=∈∉,且,如果{}2|log 1P x x =<,{}|21Q x x =-<,那么P Q -等于( ) A.{}|01x x <<B.{}|01x x <≤A BC D A 1B 1C 1D 1 C.{}|12x x <≤ D.{}|23x x <≤答案:选B解析:先解两个不等式得{}02P x x =<<,}{13Q x x =<<。