专题01 函数图像的识别与辨析(解析版)

合集下载

中考数学专项突破之函数图象的判断与分析 课件

中考数学专项突破之函数图象的判断与分析 课件
函数图象的判断与分析


类型一
与实际问题结合
类型二
与几何图形结合
类型三
与动点结合

与实际问题结合
题型讲解
该类型题以实际生活为背景,用函数图象来描述实际问题,考查学生对函数图象的识图
能力和分析问题的能力,并且让学生更深入地体会到数学来源于生活,在平时多关注生
活中所蕴含的数学知识.此类型题,既表现了函数的基础性功能,又突出表现了它的应
如图,在矩形 ABCD 中, AB = 4,BC = 3,点 P 在 CD 边上运动,连接 AP,过点 B 作 BE⊥AP,
垂足为点 E,设 AP = x, BE = y,则能反映y与x之间函数关系的图象大致是(
)
解析:∵四边形ABCD 为矩形,
∴AB∥CD, AD = BC = 3, ∠D =∠DAB = 90°.∴∠APD =
猜想的能力以及综合运用所学知识解决问题的能力.
方法点拨
解答此类问题可以归纳为三步:“看”“算”“选”.
(1)“看”就是认真观察几何图形,彻底弄清楚动点从哪出发,到哪停止,整个运动
过程分为不同的几段,哪个点(时刻)是特殊点(时刻),这是准确解答的前提和关键.

与动点结合
(2)“算”就是计算、写出动点在不同阶段的函数解析式,注意一定要注明自变量
关系,建立已知量与未知量间的等式,通过等式从而使问题得到解决.在运用这种思想
时,要注意充分挖掘问题的隐藏条件,建立等量关系 .
例题2
如图,在Rt△PMN中,∠P = 90°, PM = PN, MN = 6 cm,矩形 ABCD 中AB=2 cm,
BC=10 cm,点 C 和点 M 重合,点 B, C (M), N在同一直线上,令Rt△PMN不动,矩形

专题01 反比例函数重难点题型专训(5大题型)(解析版)

专题01 反比例函数重难点题型专训(5大题型)(解析版)

专题01反比例函数重难点题型专训(5大题型)【题型目录】题型一用反比例函数描述数量关系题型二根据定义判断是否是反比例函数题型三根据反比例函数的定义求参数题型四求反比例函数值题型五由反比例函数值求自变量【知识梳理】【知识点1反比例函数的定义】一般的,形如 0ky k k x为常数,的函数,叫做反比例函数。

其中x 是自变量,y 是函数。

自变量x 的取值范围是不等于0的一切实数。

【经典例题一用反比例函数描述数量关系】1.(2022上·云南文山·九年级统考期末)已知点 3,1是反比例函数ky x上一点,则下列各点中在该图像上的点是()A . 1,3B .11,3C .1,93D .16,2【答案】D【分析】先把点(3,1)代入双曲线ky x(k ≠0),求出k 的值,再对各选项进行判断即可.【详解】解:∵点(3,1)是双曲线ky x(k ≠0)上一点,∴k =3×1=3,A 、1×3=-3≠3,此点不在反比例函数的图像上,故本选项错误;B 、1×13=13≠3,此点不在反比例函数的图像上,故本选项错误;C 、13×(-9)=-3≠3,此点不在反比例函数的图像上,故本选项错误;D 、6×12=3,此点在反比例函数的图像上,故本选正确,故选:D .【点睛】本题考查了反比例函数,解题的关键是熟知反比例函数图像上各点的坐标一定适合此函数的解析式.2.(2022·湖北恩施·统考一模)如图的电路图中,用电器的电阻R 是可调节的,其范围为110~220 ,已知电压220V U ,下列描述中错误的是()A .P 与R 成反比例:220P RB .P 与R 成反比例:2220P RC .电阻R 越大,功率P 越小D .用电器的功率P 的范围为220~440W【答案】A【分析】根据功率2U P R 判断即可.【详解】∵220V U ,2U P R∴2220P R,∴A 选项错误故选:A .【点睛】本题考查物理的电功率公式,熟记物理公式2U P R是解题的关键.3.(2022上·江苏苏州·九年级星海实验中学校考阶段练习)若以方程 223410x k x k k -2---=的两个实数根作为横坐标、纵坐标的点恰在反比例函数y 11x的图象上,则满足条件的k 值为.【答案】-2【分析】设方程的两个根分别为11x x,,根据题意得到11x x =241k k ,结合判别式,即可求解.【详解】解:∵以方程 223410x k x k k -2---=的两个根为横坐标、纵坐标的点恰在反比例函数数y 11x的图象上,∴设方程的两个根分别为11x x,,∴11x x=241k k ,即21141k k =,∴24120k k 解得:1262k k ,∵ 2234410k k k-2---,∴5k ,∴2k .故答案为:-2.【点睛】本题考查了一元二次方程200ax bx c a ()的根的判别式24b ac =:当0 >,方程有两个不相等的实数根;当0 =,方程有两个相等的实数根;当0 <,方程没有实数根,也考查了反比例函数.4.(2020上·广东江门·九年级统考期末)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表:近视眼镜的度数y (度)2002504005001000镜片焦距x (米)0.500.400.250.200.10根据表中数据,可得y 关于x 的函数表达式为.【答案】100y x【分析】由表中数据可得,100xy ,从而可得y 关于x 的函数表达式.【详解】由表中数据可得,100xy ,∴y 关于x 的函数表达式为100y x.故答案为:100y x【点睛】本题考查求反比例函数解析式,分析表中每一组值,从中得到变量间的关系是解题的关键.5.(2021上·福建三明·九年级统考阶段练习)水池内有污水360m ,设放净全池污水所需时间为 h y ,每小时放水量为 3m x .(1)试写出y 与x 之间的函数关系式;(2)求当15x 时,y 的值.【答案】(1)60y x(2)4y 【分析】(1)根据所需时间=池内污水量÷每小时放水量可得y 与x 之间的函数关系式;(2)把15x 代入(1)中函数关系式计算即可.【详解】(1)解:由题意得:60y x;(2)当15x 时,6060415y x.【点睛】本题考查了由实际问题抽象出反比例函数关系以及求反比例函数值,正确列出函数关系式是解题的关键.【经典例题二根据定义判断是否是反比例函数】1.(2023上·全国·九年级专题练习)下列函数中:①12xy ,②3y x ,③55y x ,④2ky x (k 为常数,且0k );属于反比例函数的个数为()A .1B .2C .3D .4【答案】C【分析】根据反比例函数的定义逐一分析判断即可,形如y =kx(0k )的函数是反比例函数.【详解】①∵12xy ,∴1122y x x,是反比例函数,符合题意;②3y x ,不是反比例函数,不合题意;③∵55y x,∴1y x,是反比例函数,符合题意;④2ky x(k 为常数,且0k ),是反比例函数,符合题意;是反比例函数的有①③④,共3个,故选:C .【点睛】本题考查了反比例函数的辨别,熟练掌握反比例函数的形式是解题的关键.y =kx(0k )的函数是反比例函数.2.(2021上·江西赣州·九年级统考期末)下列函数:①2y x ,②3y x,③2y x =,④234y x x ,y 是x 的反比例函数的个数有().A .1个B .2个C .3个D .4个【答案】A【分析】根据反比例函数、一次函数、二次函数的性质,对各个选项逐个分析,即可得到答案.【详解】2y x 是一次函数,故选项①不符合题意;3y x是反比例函数,故选项②符合题意;2y x =是二次函数,故选项③不符合题意;234y x x 是二次函数,故选项④不符合题意;∴y 是x 的反比例函数的个数有:1个故选:A .【点睛】本题考查了反比例函数、二次函数、一次函数的知识;解题的关键是熟练掌握反比例函数、二次函数、一次函数的定义,从而完成求解.3.(2022上·八年级课时练习)下列函数,①(2)1x y ②.11y x ③21y x④.12y x⑤2xy ⑥13y x;其中是y 关于x 的反比例函数的有:.【答案】④⑥.【分析】根据反比例函数的定义依次判断后即可解答.【详解】①x (y+2)=1,可化为y=12xx,不是反比例函数;②11y x ,y 与(x+1)成反比例关系;③21y x是y 关于x 2的反比例函数;④12y x符合反比例函数的定义,是反比例函数;⑤2xy 是正比例函数;⑥13y x符合反比例函数的定义,是反比例函数;故答案为④⑥.【点睛】本题考查了反比例函数的定义,熟知反比例函数的定义是解决问题的关键.4.(2022上·全国·九年级统考期末)下列关系式:①13y x ;②67y x ;③1xy ;④51y x ;⑤112y x ,其中y 是x 的反比例函数的为(只填序号)【答案】②③⑤【分析】根据反比例函数解析式的一般形式y =kx(k≠0),也可转化为y=kx -1(k≠0)的形式,即可作出判断.【详解】y 是x 的反比例函数的为②③⑤.故答案是:②③⑤.【点睛】本题考查了反比例函数的定义,解题的关键是熟练的掌握反比例函数的定义.5.(2023下·浙江·八年级专题练习)先列出下列问题中的函数表达式,再指出它们各属于什么函数.(1)电压为16V 时,电阻R 与电流I 的函数关系;(2)食堂每天用煤1.5t ,用煤总量W (t )与用煤天数t (天)的函数关系;(3)积为常数m 的两个因数y 与x 的函数关系;(4)杠杆平衡时,阻力为800N ,阻力臂长为5cm ,动力y (N )与动力臂x (cm )的函数关系(杠杆本身所受重力不计).【答案】(1)16I R,故是反比例函数关系(2) 1.5W t ,故是正比例函数关系(3)my x,故是反比例函数关系(4)4000y x,故是反比例函数关系【分析】(1)利用UI R,进而得出答案;(2)利用煤总量W (t )=用煤天数t (天) 1.5 ,进而得出答案;(3)利用 xy m ,进而得出答案;(4)动力大小×动力臂=阻力臂大小×阻力进而求出即可.【详解】(1)16I R,故是反比例函数关系;(2) 1.5W t ,故是正比例函数关系(3)my x,故是反比例函数关系(4)4000y x,故是反比例函数关系【点睛】此题主要考查了正比例和反比例函数的定义,正确得出函数关系式是解题关键.【经典例题三根据反比例函数的定义求参数】1.(2021·广东广州·统考三模)若关于x 的一元二次方程x 2﹣2x ﹣m =0无实数根,则反比例函数1m y x的图象可能经过点()A .(3,1)B .(0,3)C .(﹣3,﹣1)D .(﹣3,1)【答案】D【分析】由方程根的情况可求得m 的取值范围,则可求得反比例函数图象经过的象限,可求得答案.【详解】解:∵关于x 的一元二次方程x 2﹣2x ﹣m =0无实数根,∴Δ<0,即(﹣2)2+4m <0,解得m <﹣1,∴m +1<0,∴反比例函数1m y x的图象经过二、四象限,∴反比例函数1m y x的图象可能经过点(﹣3,1),故选:D .【点睛】本题主要考查反比例函数的性质和一元二次方程根的判别式,根据一元二次方程根的判别式求得m 的取值范围是解题的关键.2.(2022下·河南开封·八年级统考期中)若函数2m y x的图象在其每一个分支中y 的值随x 值的增大而增大,则m 的取值范围是()A .2mB .2m <C .2m D .2m <【答案】D【分析】根据k <0,反比例函数的函数值y 在每一个分支中随x 值的增大而增大列出不等式计算即可得解.【详解】解:∵2m y x在其每一个分支中y 的值随x 值的增大而增大,20m ,2m .故选:D .【点睛】此题考查反比例函数的性质.解题关键在于掌握反比例函数y=kx,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.3.(2023下·山西长治·八年级长治市第五中学校校考阶段练习)若点 1A a ,, 3B b ,(其中0b )都在反比例函数 0ky k x的图象上,则一次函数 1y a b x 中的y 随着x 的增大而(填“增大”或“减小”).【答案】减小【分析】根据点 1A a ,, 3B b ,在反比例函数图象上,可得03ka kb k ,,,从而可得2033k ka b k,即可得到答案.【详解】解:∵点 1A a ,, 3B b ,(其中0b )都在反比例函数 0ky k x的图象上,31k ka b,,03ka kb k ,,,2033k k a b k, 一次函数 1y a b x 中的y 随着x 的增大而减小,故答案为:减小.【点睛】本题主要考查了反比例函数与一次函数的图象的特征,熟练掌握反比例函数与一次函数的图象的特征是解题的关键.4.(2023·陕西西安·西安高级中学校考模拟预测)如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为 1,4,顶点C 的坐标为 3,1,若反比例函数ky x的图像与矩形ABCD 有公共点,则k 的值可以是.(写出一个即可)【答案】2(答案不唯一)【分析】根据矩形写出B ,D 两点坐标,然后利用双曲线ky x经过点B ,D 时对应的k 值,从而得到k 的取值范围.【详解】解:∵矩形ABCD 的顶点 1,4A , 3,1C ,∴ 1,1B , 3,4D ,当双曲线ky x经过点B 时,k 的值最小,此时111k ,当双曲线ky x经过点D 时,k 的值最大,此时3412k ,∴k 的取值范围为112k .∴k 可以取2故答案为:2(答案不唯一).【点睛】本题考查反比例函数图像上点的坐标特征,熟记点的横纵坐标的积是定值k 是解题的关键.5.(2023下·四川成都·七年级成都外国语学校校考期中)根据所学函数知识,解答下列问题:(1)已知函数 124m y m xn ,当m ,n 为何值时,此函数是一次函数?(2)当m 为何值时,函数 43m y m x 是反比例函数,并求当3y 时,x 的值为多少?【答案】(1)2m ,n 为任意实数(2)3m ,2x 【分析】(1)根据一次函数的定义列出关于m 的不等式组,求出m 的值即可;(2)根据反比例函数的定义列出关于m 的不等式组,求出m 的值,故可得出反比例函数的解析式,再把3y 代入解析式即可得出x 的值.【详解】(1)∵函数 124m y m xn 是一次函数,2011m m 且4n 为任意实数,解得2m ,2m ,n 为任意实数;(2)∵函数 43m y m x是反比例函数,3041m m,解得3m ,反比例函数的解析式为6y x,当3y 时,63x,2x .【点睛】本题考查的是反比例函数及一次函数的性质,反比例函数及一次函数的定义,熟知以上知识是解题的关键.【经典例题四求反比例函数值】1.(2022下·江苏泰州·八年级统考期末)函数132y x 的图像可以由1y x 的图像先向右平移2个单位,再向上平移3个单位得到.根据所获信息判断,下列直线中与函数121y x 的图像没有公共点的是()A .经过点 0,2且平行于x 轴的直线B .经过点 0,3 且平行于x 轴的直线C .经过点 1,0 且平行于y 轴的直线D .经过点 1,0且平行于y 轴的直线【答案】D【分析】分别计算对应的自变量的值或函数值即可判断.【详解】解:A 、当y =2时,1221x ,解得x =54,故直线y =2与函数121y x 的图像有公共点;B 、当y =-3时,121x =-3,解得x =0,故直线y =-3与函数121y x 的图像有公共点;C 、当x =-1时,15212y x,故直线x =-1与函数121y x 的图像有公共点;D 、分式有意义的条件是x ≠1,∴函数121y x 的图像与直线x =1没有公共点;故选:D .【点睛】此题考查了求函数值或求自变量的值,分式有意义的条件,正确计算是解题的关键.2.(2023下·江苏连云港·八年级统考期末)已知点 2,4A 在反比例函数ky x(k 为常数,0k )的图象上,下列各点中,一定在该函数图像上的是()A .4,2B .2,4 C .2,4 D .4,2【答案】A【分析】先把点 2,4A 代入反比例函数y kx,求出k 的值,再根据k xy 为定值对各选项进行逐一检验即可.【详解】解:∵点 2,4A 在反比例函数y kx的图象上,∴248k .A 、∵428 ,∴此点在函数图象上;B 、∵ 2488 ,∴此点不在函数图象上;C 、∵ 2488 ,此点不在函数图象上;D 、∵ 4288 ,此点不在函数图象上.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特点,掌握反比例函数图象上各点的坐标一定适合此函数的解析式是解题的关键.3.(2022下·江苏宿迁·八年级沭阳县怀文中学校考阶段练习)已知反比例函数8y x,若2x ,则y 的取值范围是.【答案】4y 或0y 【分析】先求出x =-2时y 的值,根据反比例函数性质得出即可.【详解】解:把x =-2代入8y x得:y =-4,∵8>0,∴在每个象限内,y 随x 的增大而减小,图象在第一、三象限,∴当x ≥-2时,函数y 的取值范围是y ≤-4或y >0,故答案为:y ≤-4或y >0.【点睛】本题考查了反比例函数的图象和性质,能熟记反比例函数的性质是解此题的关键.4.(2021·北京石景山·统考二模)在平面直角坐标系xOy 中,点 ,A a b 在双曲线1y x上.若a<0,则点A 在第象限.【答案】二【分析】由点A (a ,b )在双曲线1y x上,可得ab =-1,由a<0可得到点0b 的坐标,进而得出答案.【详解】解:∵点 ,A a b 在双曲线1y x上,∴ab =-1,∵a<0∴0b ∴点A 在第二象限.故答案为:二.【点睛】考查反比例函数图象上的点坐标的特征,求出0b 是解答此题的关键.5.(2022上·广西桂林·九年级统考期中)已知反比例函数6y x的图像经过点(2,)A m .(1)求m 的值;(2)当1x 且0x 时,直接写出y 的取值范围.【答案】(1)3(2)当1x 且0x 时,0y 或6y 【分析】(1)将点(2,)A m 代入反比例函数6y x即可求解;(2)根据反比例函数的图像可知,反比函数图像在第二象限和第四象限,由1x 且0x 即可求出图像位置,由此即可求解.【详解】(1)解:∵反比例函数6y x的图像经过点(2,)A m ,∴632y,∴3m .(2)解:反比例函数6y x的图像如图所示,当1x 且0x 时,在第二象限:0y 或在第四象限:6y .【点睛】本题主要考查反比例函数图像的性质,掌握反比例函数图像的特点是解题的关键.【经典例题五由反比例函数值求自变量】1.(2021·山西·统考模拟预测)在平面直角坐标系xoy 中,将横纵坐标相等的点称为“好点”,下列函数图像中不存在“好点”的是()A .2y xB .2y xC .1y xD .22y x x【答案】B【分析】根据“好点”的概念:当x =y 时,对应的方程有解进行判断即可.【详解】解:A 、当x =y =0时,满足y =2x ,(0,0)为“好点”,该选项不符合题意;B 、不存在横纵坐标相等的“好点”,该选项符合题意;C 、当x =y =1或x =y =﹣1时,满足1y x,(1,1)和(﹣1,﹣1)是“好点”,该选项不符合题意;D 、当x =y =0或x =y =2时,满足22y x x ,(0,0)和(2,2)为“好点”,不符合题意,故选:B .【点睛】本题考查一次函数图象上点的坐标特征、二次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答的关键是熟悉每个函数的图象与性质.2.(2020·四川·统考中考真题)已知函数1(2)2(2)x x y x x,当函数值为3时,自变量x 的值为()A .﹣2B .﹣23C .﹣2或﹣23D .﹣2或﹣32【答案】A【分析】根据分段函数的解析式分别计算,即可得出结论.【详解】解:若x <2,当y =3时,﹣x +1=3,解得:x =﹣2;若x ≥2,当y =3时,﹣2x=3,解得:x =﹣23,不合题意舍去;∴x =﹣2,故选:A .【点睛】本题考查了反比例函数的性质、一次函数的图象上点的坐标特征;根据分段函数进行分段求解是解题的关键3.(2021上·山西·九年级山西实验中学校考阶段练习)观查反比例函数2y x的图象,当2y 时,x 的取值范围是.【答案】x <﹣1或x >0/x >0或x <-1【分析】利用函数值找到分界点(-1,-2),根据反比例函数的图象和性质与直线y=-2的位置关系解答即可.【详解】解:∵k =2>0,反比例函数图像位于一三象限,在每个象限内y 随x 的增大而减小,∴y =-2时,22x,解得x =-1,∴当y >-2时x <﹣1或x >0,故答案为x <﹣1或x >0.【点睛】本题重点考查学生对反比例函数图像和性质的理解,掌握反比例函数的图象和性质,以及利用反比例函数与直线y=-2的交点求不等式解集是解题的关键.4.(2021上·九年级课时练习)考察函数2y x的图象,当2x 时,y ;当<2x 时,y 的取值范围是;当1y 时,x 的取值范围是.【答案】110y <2x 或0x 【分析】把2x 代入反比例函数解析式求解即可;根据2y x得到2x y ,再根据<2x 求解即可;(3)根据2y x得到2x y ,再根据1y 求解即可.【详解】解:∵2y x,∴把2x 代入反比例函数解析式得:212y ∵2y x,<2x ∴2x y,0y ∵<2x ,∴22y,解得y >-1∴10y ,∵2y x,1y ∴2x y ,x >-2,即21x,解得x ≤-2∵当x >0时,y >0∴当y >-1时,<2x 或0x .【点睛】本题主要考查了反比例函数图像的性质、求反比例函数函数值的范围等知识点,熟练掌握并运用相关知识成为解答本题的关键.5.(2020下·广东广州·九年级校考阶段练习)已知22211211a a Q a a a(1)化简Q .(2)若点 ,Aa a 在反比例函数4y x的图象上,求Q 的值.【答案】(1)2a 1(2)当2a 时,2Q ,当2a 时,23Q .【分析】(1)先计算括号内的分式的加法,再把除法化为乘法,再约分即可;(2)根据反比例函数的性质先求解a 的值,再代入2a 1进行计算即可.【详解】(1)解:22211211a a Q a a a2222211111aa a a a a212111a a aa a a2211aa aa21a;(2)∵点 ,A a a 在反比例函数4y x的图象上,∴24a ,解得:2a ,当2a 时,原式2221,当2a 时,原式22213.【点睛】本题考查的是分式的化简求值,反比例函数的性质,掌握分式的混合运算的运算顺序与反比例函数的性质是解本题的关键.【重难点训练】1.(2023上·山东东营·九年级校联考阶段练习)下列函数:①2y x ,②3y x,③1y x ,④21y x =+,⑤11xy ,⑥k y x ,⑦25y x ,⑧1yx.其中y 是x 的反比例函数的有()A .1个B .2个C .3个D .4个【答案】C【分析】根据反比例的三种形式判断即可.【详解】解:反比例的三种形式分别为:(0)ky k x,()0xy k k ,1(0)y kx k .①中x 的次数是1,是一次函数,不是反比例函数;②,③是反比例函数;④中分母是1x ,故不是反比例函数;⑤是反比例函数;⑥中没有0k ,故不是反比例函数;⑦分母是2x ,故不是反比例函数;⑧中x 的次数是1,是一次函数,不是反比例函数.故有三个是反比例函数.故选C .【点睛】本题主要考查反比例的定义,熟练掌握反比例函数的性质是解题的关键.2.(2022上·湖南娄底·九年级期中)现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为y 来确定点 ,P x y ,那么他们各掷一次所确定的点P 落在双曲线6y x上的概率为()A .19B .23C .118D .16【答案】A【分析】点P 若落在6y x上,则6xy ,可采用列表法确定所有可能情况及满足要求的情况,求得概率.【详解】解:表格列示所有投掷情况如下,小明小莉12345611,11,21,31,41,51,622,12,22,32,42,52,633,13,23,33,43,53,644,14,24,34,44,54,655,15,25,35,45,55,666,16,26,36,46,56,6点P 若落在6y x上,则6xy .如上表,两人掷的组合情况共有6636 种,其中满足要求的有4种:2,3;3,2;1,6;6,1,故概率为41369;故选:A【点睛】本题考查列举法求概率、反比例函数解析式;运用表格列示所有可能的情况是解题的关键.3.(2022上·广西贵港·九年级统考期中)如图,已知点 1,6A 在双曲线 0ky k x上,动点P 在y 轴正半轴上,将点A 绕点P 逆时针旋转90°,点A 的对应点为B ,若点B 恰好落在双曲线上,则点P 的坐标为()A . 0,3B . 3,0或 4,0C . 0,2或 0,6D . 0,3或0,4【答案】D【分析】先把 1,6A 代入反比例函数 0ky k x求出k 的值,分别过A 、B 两点作x 轴的垂线AC ,BD ,由旋转的性质证明APC PBD ≌,再设 0,P m ,即可得出B 的坐标,由双曲线上的点横坐标与纵坐标的积即相等,列方程求m 的值,确定P 点坐标.【详解】解:分别过A 、B 两点作AC y 轴,BD y 轴,垂足为C 、D ,∵ 1,6A 是双曲线 0ky k x上一点,6k ,反比例函数的解析式为6y x,90APB ∵,90APC BPD ,又90APC PAC ,PAC BPD ,在APC 和PBD 中,90PAC BPD ACP PDB AP PB, AAS APC PBD ≌,CP BD ,1AC PD ,设 0,P m ,OP m ,6PC m , 6,1B m m ,∵点B 在双曲线上,616m m,解得3m 或4m , 0,3P 或 0,4.故选:D .【点睛】本题考查的是反比例函数图象的性质,旋转的性质,全等三角形的性质与判定,熟练掌握反比例函数图象的性质是解答此题的关键.4.(2022上·江苏苏州·九年级校考阶段练习)如图,点P 在y 轴正半轴上,⊙P 交x 轴于A ,B 两点,连接BP 并延长交⊙P 于C ,且⊙P 的半径为5,AB =4.若函数 0ky x x的图像过C 点,则k 的值是()A .4B .4C .25D .4【答案】B【分析】连接AC ,由圆周角定理可知90CAB ,AC AB ,在Rt ACB 中由勾股定理可计算AC 的长;由垂径定理可知12OA AB,进而确定点C 的坐标,最后将点C 坐标代入 0ky x x 即可计算出k 的值.【详解】如图,连接AC∵CB 是直径,225CB BP 由圆周角定理可知90CAB 在Rt CAB △中,由勾股定理可得:22222542AC CB AB,y ∵轴是P 直径所在的直线,且AB y 轴, 由垂径定理可得:122OA ABAB AC∵ 点C 的横坐标2C x OA ,纵坐标2C y AC 2,2C 将 2,2C 代入 0ky x x,解得:4k 故选:B .【点睛】本题考查了在圆的背景下用待定系数法求反比例函数解析式,熟练掌握垂径定理和圆周角定理并能使用数形结合思想解题,是本题的解题关键.5.(2022下·湖北武汉·九年级校考阶段练习)在平面直角坐标系中,反比例函数3y x的图象经过 33a m b m ,,,两点,则代数式2227aba b ab的值是()A .23B .23C .2D .2【答案】C【分析】根据题意得到333m a,3m b ,从而得到113 a b ,进一步得到3a b ab ,代入变形后的代数式即可求得.【详解】解:∵反比例函数3y x的图象经过33a m b m ,,,两点,333m a,3m b ,∴3333a b ,113a b,3b aab,3a b ab ,22222767ab aba b ab ab ab,故选:C .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数图象上的点的坐标适合解析式是解题的关键.6.(2023下·江苏连云港·八年级校考阶段练习)已知实数x 、y 满足338x y ,当1x 时,y 的取值范围是.【答案】20y 【分析】由338x y 可得出2xy ,结合x 的取值范围,即可求出y 的取值范围.【详解】解:333()8x y xy ∵,2xy ,2y x.又1x Q ,20y .故答案为:20y .【点睛】本题考查了反比例函数,立方根、幂的乘方与积的乘方以及实数大小比较,牢记()n n n ab a b 是解题的关键.7.(2023下·江苏·八年级期末)当m 时,函数 2212mm y m m x 是反比例函数.【答案】1【分析】根据反比例函数定义列出代数式求解即可得到答案.【详解】解:∵ 2212mm y m m x 是反比例函数,∴221120m m m m,解得1m ,故答案为:1.【点睛】本题考查反比例函数定义、解方程及不等式,熟练掌握反比例函数定义,掌握因式分解解方程及不等式是解决问题的关键.8.(2023下·江苏泰州·八年级统考期末)如图,点A 在反比例函数(0)ky k x的图象上,过点A 作y 轴的平行线l .已知点A 坐标为 2,1,结合函数图象可知,当2x 时,y 的取值范围是.【答案】0y 或1y 【分析】根据题意,求对应直线l 左侧图象函数值的取值范围.【详解】2x 时,对应函数图象在直线l 左侧,两部分,0y 或1y 故答案为:0y 或1y 【点睛】本题考查反比例函数的图象,确定自变量取值范围对应的函数图象部分是解题的关键.9.(2023·山东临沂·统考中考真题)小明利用学习函数获得的经验研究函数22y x x的性质,得到如下结论:①当1x 时,x 越小,函数值越小;②当10x 时,x 越大,函数值越小;③当01x 时,x 越小,函数值越大;④当1x 时,x 越大,函数值越大.其中正确的是(只填写序号).【答案】②③④【分析】列表,描点、连线,画出图象,根据图象回答即可.【详解】解:列表,x L 2.5 2 1 0.5 0.512L yL5.45313.754.2535L描点、连线,图象如下,根据图象知:①当1x 时,x 越小,函数值越大,错误;②当10x 时,x 越大,函数值越小,正确;③当01x 时,x 越小,函数值越大,正确;④当1x 时,x 越大,函数值越大,正确.故答案为:②③④.【点睛】本题考查二次函数、反比例函数与不等式等知识,解题的关键是理解题意,学会画出函数图象,利用图象解决问题,属于中考常考题型.10.(2023·四川乐山·统考中考真题)定义:若x ,y 满足224,4x y t y x t 且x y (t 为常数),则称点(,)M x y 为“和谐点”.(1)若(3,)P m 是“和谐点”,则m .(2)若双曲线(31)ky x x存在“和谐点”,则k 的取值范围为.【答案】734k 【分析】(1)根据“和谐点”的定义得到224,433m t m t ,整理得到24210m m ,解得2137,m m (不合题意,舍去),即可得到答案;(2)设点 ,a b 为双曲线(31)ky x x上的“和谐点”,根据“和谐点”的定义整理得到 40a b a b ,由a b ¹得到40a b ,则4b a ,由(31)k b a a进一步得到 224k a ,且31a ,根据二次函数的图象和性质即可得到k 的取值范围.【详解】解:(1)若(3,)P m 是“和谐点”,则224,433m t m t ,则22,3412m t m t ,∴223124m m ,即24210m m ,解得2137,m m (不合题意,舍去),∴7m ,故答案为:7(2)设点 ,a b 为双曲线(31)ky x x上的“和谐点”,∴224,4b t b a t a ,(31)kb a a,即2244a a b b ,∴ 40a b a b a b ,则 40a b a b ,∵a b ¹,∴40a b ,即4b a ,∵(31)kb a a,∴ 224424k ab a a a a a ,且31a ,对抛物线 224k a 来说,∵10 ,∴开口向下,当1a 时, 21243k ,当3a 时, 23243k ,∵对称轴为2a ,31a ,∴当2a 时,k 取最大值为4,∴k 的取值范围为34k ,故答案为:34k 【点睛】此题考查了反比例函数的性质、二次函数的图象和性质等知识,读懂题意,熟练掌握反比例函数和二次函数的性质是解题的关键.11.(2023上·上海青浦·八年级校考期中)已知:122y y y ,并且1y 与x 成正比例,2y 与(2)x 成反比例,且当2x 时,7y ,当3x 时,13y ,求y 与x 之间的函数解析式.【答案】432y x x【分析】本题考查了待定系数法求函数的解析式,注意在本题中的正比例系数和反比例系数是两个不同的值,用不同的字母区分.设11y k x ,222k y x则1222x x k k y ,然后利用待定系数法即可求得;【详解】∵1y 与x 成正比例,2y 与(2)x 成反比例,∴设11y k x ,222k y x,∴1212222k k y y x y x,∵当2x 时,7y ,当3x 时,13y ,∴212122722231332k k k k,解得1232k k ,∴y 与x 之间的函数解析式为432y x x.12.(2023上·安徽合肥·九年级阶段练习)在平面直角坐标系中,如果一个点的横坐标与纵坐标互为相反数,则称该点为“黎点”.例如 1,1 , 2023,2023 都是“黎点”.(1)求双曲线9y x上的“黎点”;(2)若抛物线27y ax x c (a 、c 为常数)上有且只有一个“黎点”,当1a 时,求c 的取值范围.【答案】(1) 3,3 或 3,3 ;(2)09c 【分析】(1)设双曲线9y x上的“黎点”为 ,m m ,构建方程求解即可;(2)抛物线27y ax x c (a 、c 为常数)上有且只有一个“黎点”,推出方程 270ax x c x a 有且只有一个解,3640ac ,可得结论.【详解】(1)解:设双曲线9y x上的“黎点”为 ,m m ,则有9m m,解得3m ,∴9y x上的“黎点”为 3,3 , 3,3 .(2)解:∵抛物线27y ax x c 上有且只有一个“黎点”,∴方程 270ax x c x a 有且只有一个解,即260ax x c ,3640ac ,9ac ,∴9a c.∵1a ,∴09c .【点睛】本题考查反比例函数图象上的点特征,二次函数的性质等知识,解题的关键是理解题意,学会用转化的思想思考问题.13.(2023上·安徽安庆·九年级校联考阶段练习)已知ABC 的三个顶点为 1,1A 、 1,3B 、 3,3C ,将ABC 向右平移m (0m )个单位后成111A B C △,此时111A B C △某一边的中点恰好落在反比例函数3y x的图像上,求m 的值.【答案】m 的值为4或0.5【分析】求出各边的中点坐标,将其纵坐标代入3y x,求出平移后的横坐标,进而可求出m 的值.【详解】解①∵点A 的坐标为 1,1 ,点B 的坐标为 1,3 ,∴AB 中点坐标为 1,1 .在3y x中,当1y 时,3x ,故 314m ;②∵点A 的坐标为 1,1 ,点C 的坐标为 3,3 ,∴AC 中点坐标为 2,2 ,在3y x 中,当=2y 时, 1.5x ,故 1.520.5m ;③∵点B 的坐标为 1,3 ,点C 的坐标为 3,3 ,∴BC 中点坐标为 2,0 ,。

函数图象的识别(配套有PPT).docx

函数图象的识别(配套有PPT).docx

函数图象的识别(配套有PPT )一、根据图象图形1. 如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC-CD-DA 运动至点A 停止.设点P 运动的路程为x, AABP 的面积为y,如果y 关于x 的函数图彖如图2所示,则y 的最大值是()2. 如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y 5)和注水时间x (s ) Z 间的关系满足如图2中的图象,则至少3. 如图14,点E 为矩形ABCD 边AD 上一点,点P,点Q 同时从点B 出发,点P 沿BE-ED-DC 运动到点C 停止, 点Q沿BC 运动到点C 停止,它们的运动速度都是lcm/s,设P 、Q 出发t 秒吋,ABPQ 的面积为y (cm 2),已 知y 与t 的函数关系的图象如图15(曲线0M 为抛物线的一部分),则下列结论:®AD=BE=5cm ;②当 0<tW5 时,y=2/5t 2;③直线 NH 的解析式为 y=-2/5t+27;④若AABE 与△QBP 相似,则t 二29/4秒,其屮正确结论的个数为()D.当t=9秒时,BP 平分梯形ABCD 的面积6.图1所示矩形ABCD 中,BC=x, CD=y, y 与x 满足的反比例函 数关系如图2所示,等腰直角三角形AEF 的斜边EF过C 点, M 为EF 的中点,则下列结论正确的是( )A.当 x=3 时,EC<EM B.当 y 二9 时,EOEM C.当x 增大时,EC ・CF 的值增大 D. 当y 增大时,BE ・DF 的值不变4. A. 4 B. 3 C. 2 D. 1 如图18,在RtAABC 中,ZACB 二90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC-CB 运动,到点B 停止,过点P 作PD 丄AB, 秒时,PD 的长是 A. 1. 5cm 垂足为D, PD 的长y (cm )与点P 的运动时I'可x (秒)的函数图象如图19所示,当点P 运动5 ()C. 1. 8cm 5. 如图1,在等腰梯形ABCD 中,ZB=60° , PQ 同时从B 出发, 以每秒1单位长度分别沿BADC 和BCD 方向运动至相遇时停止,设运动时间为t (秒),ABPQ 的面积为S (平房单位), S 与t 的函数图象如图2所示,则下列结论错误的是A. 当t 二4秒时,S=4命B. AD=4C.C.当 4时,S=2>/3 t 图1 图(1)图⑵ D. 2cm图1 图2二、根据图形求图象1. 如图,在梯形ABCD 中,AB=BC=10cm, CD=6cm, ZC=ZD=90°,动点P 、Q 同时以每秒lcm 的速度从点B 出发, 点P 沿BA 、AD 、DC 运动,点Q 沿BC 、CD 运动,P 点与Q 点相遇时停止,设P 、Q 同时从点B 出发t 秒时,P 、 Q 经过的路径与线段PQI 韦I 成的图形的面积为y (cm 2),则y 与t Z 间的函数关系的大致图象为( )2. 如图,M 是边长为4的正方形AD 边的屮点,动点P 自A 点起,由A->B->C->D 匀速运动,直线MP 扫过正方形所形成的面积为y,点P 运动的路程为x,则表示y 与x 的函数关系的图象为( )•4.如图,平行四边形纸片ABCD, CD=5, BC = 2, ZA=60° ,将纸片折叠,使点A 落在射线AD上(记为点“),折痕与AB 交于点P,设AP 的长为x,折叠后纸片 x 之间关系的大致图象是( )B —►- C3.如图4, AD 、虑是00的两条互相垂直的直径,点"从点0出发,沿X — 0的路线匀速运动,设 (单位:度),那么y 与点"运动的时间/ (单位:秒)的关系图是(DC B 第3题囹如图点C 为。

千题百炼- 函数图象的辨析100题(解析版)

千题百炼- 函数图象的辨析100题(解析版)
当 时,可得 ,且 时, ,
结合选项,可得A选项符合题意.
故选:A.
5.(2021·江西·九江市柴桑区第一中学高三月考(理))函数 的图象大致形状为().
A. B.
C. D.
【答案】A
【分析】
首先判断函数的奇偶性,再根据特殊点的函数值判断可得;
【详解】
解:因为 ,所以定义域为 ,且 ,即 为偶函数,函数图象关于 轴对称,故排除C、D;
A. B.
C. D.
【答案】B
【分析】
根据函数为奇函数以及函数值的正、负,就中得到正确答案.
【详解】
因为 ,所以函数为奇函数,故排除A,D选项;
当 时, ,所以 ,故排除C;
故选:B.
【点睛】
方法点睛:求解时要充分利用选项中的图象,提取有用的信息,并利用排除法得到正确选项.
34.(2021·河北石家庄·二模)函数 的图象大致为()
又 时, ,故排除选项D;
故选:A.
4.(2021·四川资阳·高三月考(理))函数 的图象大致为()
A. B.
C. D.
【答案】A
【分析】
根据函数的奇偶性,可排除C、D,利用 和 时, ,结合选项,即可求解.
【详解】
由题意,函数 的定义域为 ,
且 ,
所以函数 为奇函数,图象关于原点对称,排除C、D;
利用排除法,先判断函数的奇偶性,再取特殊值判断即可
【详解】
因为 ,所以 是偶函数,排除B,D,
因为 ,排除C,
故选:A.
28.(2022·全国·高三专题练习)函数 在 轴正半轴的图象大致为()
A. B.
C. D.
【答案】D
【分析】
根据 ,化简函数的解析式,结合对数型函数的性质,幂函数的性质进行判断即可.

专题01 函数图像的识别与辨析(解析版)

专题01 函数图像的识别与辨析(解析版)

专题01 函数图像的识别与辨析一、题型选讲题型一 、由函数的解析式识别图像函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项 例1、【2020年天津卷】.函数241xy x =+的图象大致为( ) AC.【答案】A【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.例2、【浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为( )A. B..C. D.【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误. 故选:A.例3、【2019年高考全国Ⅰ卷理数】函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+,可知应为D 选项中的图象. 故选D .题型二、由函数的图像辨析函数的解析式由函数的图像确定解析式,首先要观察函数的图像,可以从以下几个方面入手:(1)观察函数的对称性,判断函数的奇偶性;(2)观察图像所在象限,判断函数的定义域和值域;(3)从图像中观察一些特殊位置以及图像的发展趋势;结合上面的信息进行对函数解析式的排除。

专题01 三角函数的图象与性质(解析版)

专题01 三角函数的图象与性质(解析版)

专题01 三角函数的图象与性质【要点提炼】1.常用的三种函数的图象与性质(下表中k ∈Z ) 函数y =sin xy =cos xy =tan x图象递增 区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π]⎝ ⎛⎭⎪⎫k π-π2,k π+π2 递减 区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π]奇偶性 奇函数 偶函数 奇函数 对称 中心 (k π,0) ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0 对称轴 x =k π+π2 x =k π 周期性2π2ππ2.三角函数的常用结论(1)y =A sin(ωx +φ),当φ=k π(k ∈Z )时为奇函数;当φ=k π+π2(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π+π2(k ∈Z )求得. (2)y =A cos(ωx +φ),当φ=k π+π2(k ∈Z )时为奇函数;当φ=k π(k ∈Z )时为偶函数;对称轴方程可由ωx +φ=k π(k ∈Z )求得. (3)y =A tan(ωx +φ),当φ=k π(k ∈Z )时为奇函数. 3.三角函数的两种常见变换 (1)y =sin x ――——————————→向左(φ>0)或向右(φ<0)平移|φ|个单位y =sin(ωx +φ)――——————————→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).y =sin ωx ―————————————―→向左(φ>0)或向右(φ<0)平移|φω|个单位 y =sin(ωx +φ)————————————―→纵坐标变为原来的A 倍横坐标不变y =A sin(ωx +φ)(A >0,ω>0).考点一 三角函数的图像与性质考向一 三角函数的定义与同角关系式【典例1】 (1)在平面直角坐标系中,AB ︵,CD ︵,EF ︵,GH ︵是圆x 2+y 2=1上的四段弧(如图),点P 在其中一段上,角α以Ox 为始边,OP 为终边.若tan α<cos α<sin α,则P 所在的圆弧是( )A.AB ︵B.CD ︵C.EF ︵D.GH ︵(2)已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点A (1,a ),B (2,b ),且cos 2α=23,则|a -b |=( ) A.15B.55C.255D.1解析 (1)设点P 的坐标为(x ,y ),且tan α<cos α<sin α,∴yx <x <y ,解之得-1<x <0,且0<y <1.故点P (x ,y )所在的圆弧是EF ︵.(2)由题意知cos α>0.因为cos 2α=2cos 2α-1=23,所以cos α=306,sin α=±66,得|tan α|=55.由题意知|tan α|=⎪⎪⎪⎪⎪⎪a -b 1-2,所以|a -b |=55. 答案 (1)C (2)B探究提高 1.任意角的三角函数值仅与角α的终边位置有关,而与角α终边上点P 的位置无关.若角α已经给出,则无论点P 选择在α终边上的什么位置,角α的三角函数值都是确定的.2.应用诱导公式与同角关系开方运算时,一定要注意三角函数值的符号;利用同角三角函数的关系化简要遵循一定的原则,如切化弦、化异为同、化高为低、化繁为简等.【拓展练习1】 (1)(2020·唐山模拟)若cos θ-2sin θ=1,则tan θ=( ) A.43B.34C.0或43D.0或34(2)(2020·济南模拟)已知cos ⎝ ⎛⎭⎪⎫α+π6-sin α=435,则sin ⎝ ⎛⎭⎪⎫α+11π6=________.解析 (1)由题意可得⎩⎨⎧cos θ-2sin θ=1,cos 2θ+sin 2θ=1,解得⎩⎨⎧sin θ=0,cos θ=1或⎩⎪⎨⎪⎧sin θ=-45,cos θ=-35,所以tan θ=0,或tan θ=43.故选C.(2)∵cos ⎝ ⎛⎭⎪⎫α+π6-sin α=32cos α-12sin α-sin α=32cos α-32sin α=3sin ⎝ ⎛⎭⎪⎫π6-α=435,∴sin ⎝⎛⎭⎪⎫α-π6=-45, ∴sin ⎝ ⎛⎭⎪⎫α+11π6=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α-π6+2π=sin ⎝ ⎛⎭⎪⎫α-π6=-45.答案 (1)C (2)-45考向二 三角函数的图象及图象变换【典例2】 (1)(多选题)(2020·新高考山东、海南卷)如图是函数y =sin(ωx +φ)的部分图象,则sin(ωx +φ)=( )A.sin ⎝ ⎛⎭⎪⎫x +π3B.sin ⎝ ⎛⎭⎪⎫π3-2xC.cos ⎝ ⎛⎭⎪⎫2x +π6D.cos ⎝ ⎛⎭⎪⎫5π6-2x(2)(2019·天津卷)已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π)是奇函数,将y =f (x )的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为g (x ).若g (x )的最小正周期为2π,且g ⎝ ⎛⎭⎪⎫π4=2,则f ⎝ ⎛⎭⎪⎫3π8=( )A.-2B.- 2C. 2D.2解析 (1)由图象知T 2=2π3-π6=π2,得T =π,所以ω=2πT =2.又图象过点⎝ ⎛⎭⎪⎫π6,0,由“五点法”,结合图象可得φ+π3=π,即φ=2π3,所以sin(ωx +φ)=sin ⎝ ⎛⎭⎪⎫2x +2π3,故A 错误;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2x =sin ⎝ ⎛⎭⎪⎫π3-2x 知B 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=sin ⎝ ⎛⎭⎪⎫2x +π2+π6=cos ⎝ ⎛⎭⎪⎫2x +π6知C 正确;由sin ⎝ ⎛⎭⎪⎫2x +2π3=cos ⎝ ⎛⎭⎪⎫2x +π6=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫2x -5π6=-cos ⎝ ⎛⎭⎪⎫5π6-2x 知D 错误.综上可知,正确的选项为BC. (2)由f (x )是奇函数可得φ=k π(k ∈Z ),又|φ|<π,所以φ=0. 所以g (x )=A sin ⎝ ⎛⎭⎪⎫12ωx ,且g (x )最小正周期为2π,可得2π12ω=2π,故ω=2,所以g (x )=A sin x ,g ⎝ ⎛⎭⎪⎫π4=A sin π4=22A =2,所以A =2. 所以f (x )=2sin 2x ,故f ⎝ ⎛⎭⎪⎫3π8=2sin 3π4= 2.答案 (1)BC (2)C探究提高 1.在图象变换过程中务必分清是先相位变换,还是先周期变换.变换只是相对于其中的自变量x 而言的,如果x 的系数不是1,就要把这个系数提取后再确定变换的单位长度和方向.2.已知函数y =A sin(ωx +φ)(A >0,ω>0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A ;由函数的周期确定ω;确定φ常根据“五点法”中的五个点求解,一般把第一个“零点”作为突破口,可以从图象的升降找准第一个“零点”的位置.【拓展练习2】 (1)(多选题)(2020·济南历城区模拟)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )的图象.若g (x 1)g (x 2)=9,且x 1,x 2∈[-2π,2π],则2x 1-x 2的可能取值为( ) A.-59π12B.-35π6C.25π6D.49π12(2)(2020·长沙质检)函数g (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<2π)的部分图象如图所示,已知g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,函数y =f (x )的图象可由y =g (x )图象向右平移π3个单位长度而得到,则函数f (x )的解析式为( )A.f (x )=2sin 2xB.f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3C.f (x )=-2sin 2xD.f (x )=-2sin ⎝ ⎛⎭⎪⎫2x +π3 解析 (1)将函数f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π6的图象向左平移π12个单位长度,再向上平移1个单位长度,得到函数g (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3+1的图象.由g (x 1)g (x 2)=9,知g (x 1)=3,g (x 2)=3,所以2x +π3=π2+2k π,k ∈Z ,即x =π12+k π,k ∈Z .由x 1,x 2∈[-2π,2π],得x 1,x 2的取值集合为⎩⎨⎧⎭⎬⎫-23π12,-11π12,π12,13π12.当x 1=-23π12,x 2=13π12时,2x 1-x 2=-59π12;当x 1=13π12,x 2=-23π12时,2x 1-x 2=49π12.故选AD.(2)由函数g (x )的图象及g (0)=g ⎝ ⎛⎭⎪⎫5π6=3,知直线x =5π12为函数g (x )的图象的一条对称轴,所以T 4=5π12-π6=π4,则T =π,所以ω=2πT =2,所以g (x )=A sin(2x +φ),由题图可知⎝ ⎛⎭⎪⎫π6,0为“五点法”作图中的第三点,则2×π6+φ=π,解得φ=2π3,由g (0)=3,得A sin 2π3=3,又A >0,所以A =2,则g (x )=2sin ⎝ ⎛⎭⎪⎫2x +2π3,所以g (x )的图象向右平移π3个单位长度后得到的图象对应的解析式为f (x )=2sin ⎣⎢⎡⎦⎥⎤2⎝⎛⎭⎪⎫x -π3+2π3=2sin 2x ,故选A. 答案 (1)AD (2)A 考向三 三角函数的性质【典例3】 (1)若f (x )=cos x -sin x 在[-a ,a ]上是减函数,则a 的最大值是( ) A.π4B.π2C.3π4D.π(2)(2020·天一大联考)已知f (x )=cos ⎝ ⎛⎭⎪⎫ωx -π6(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,无最大值,则ω=( ) A.83 B.143 C.8 D.4 (3)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________. 解析 (1)f (x )=cos x -sin x =2cos ⎝ ⎛⎭⎪⎫x +π4,且函数y =cos x 在区间[0,π]上单调递减,则由0≤x +π4≤π,得-π4≤x ≤3π4.因为f (x )在[-a ,a ]上是减函数,所以⎩⎪⎨⎪⎧-a ≥-π4,a ≤3π4,解得a ≤π4.所以0<a ≤π4,所以a 的最大值是π4.(2)由于f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3内有最小值,∴f (x )在x =12⎝ ⎛⎭⎪⎫π6+π3=π4处取得最小值.因此π4ω-π6=2k π+π,即ω=8k +143,k ∈Z .①又函数f (x )在区间⎝ ⎛⎭⎪⎫π6,π3无最大值,且ω>0,∴T =2πω≥π3-π6=π6,∴0<ω≤12.②由①②知ω=143.(3)f (x )=sin ωx +cos ωx =2sin ⎝ ⎛⎭⎪⎫ωx +π4,因为f (x )在区间(-ω,ω)内单调递增,且函数图象关于直线x =ω对称,所以f (ω)必为一个周期上的最大值,所以有ω·ω+π4=2k π+π2,k ∈Z ,所以ω2=π4+2k π,k ∈Z .又ω-(-ω)≤2πω2,即ω2≤π2,即ω2=π4,所以ω=π2. 答案 (1)A (2)B (3)π2探究提高 1.讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅助角公式,将函数化成一个角的一种三角函数.2.求函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间,是将ωx +φ作为一个整体代入正弦函数增区间(或减区间),求出的区间即为y =A sin(ωx +φ)的增区间(或减区间).【拓展练习3】 (1)(多选题)(2020·济南质检)已知函数f (x )=2sin(2x +φ)(0<φ<π),若将函数f (x )的图象向右平移π6个单位长度后,得到图象关于y 轴对称,则下列结论中正确的是( ) A.φ=5π6B.⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心 C.f (φ)=-2D.x =-π6是f (x )图象的一条对称轴(2)(多选题)关于函数f (x )=|cos x |+cos|2x |,则下列结论正确的是( ) A.f (x )是偶函数 B.π是f (x )的最小正周期C.f (x )在⎣⎢⎡⎦⎥⎤3π4,5π4上单调递增D.当x ∈⎣⎢⎡⎦⎥⎤34π,54π时,f (x )的最大值为2解析 (1)将函数f (x )的图象向右平移π6个单位长度后,得到y =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π6+φ=2sin ⎝ ⎛⎭⎪⎫2x +φ-π3的图象,∵其关于y 轴对称,∴φ-π3=k π+π2,k ∈Z ,∴φ=k π+5π6,k ∈Z .又0<φ<π,∴当k =0时,φ=5π6,故A 正确;f (x )=2sin ⎝ ⎛⎭⎪⎫2x +5π6,f ⎝ ⎛⎭⎪⎫π12=0,则⎝ ⎛⎭⎪⎫π12,0是f (x )的图象的一个对称中心,故B 正确;因为f (φ)=f ⎝ ⎛⎭⎪⎫5π6=2,故C错误;f ⎝ ⎛⎭⎪⎫-π6=2,则x =-π6是f (x )图象的一条对称轴,故D 正确.故选ABD.(2)f (x )=|cos x |+cos|2x |=|cos x |+cos 2x =|cos x |+2cos 2x -1=2|cos x |2+|cos x |-1,由f (-x )=2|cos(-x )|2+|cos(-x )|-1=f (x ),且函数f (x )的定义域为R ,得f (x )为偶函数,故A 正确.由于y =|cos x |的最小正周期为π,可得f (x )的最小正周期为π,故B 正确. 令t =|cos x |,得函数f (x )可转化为g (t )=2t 2+t -1,t ∈[0,1], 易知t =|cos x |在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,由t ∈[0,1],g (t )=2⎝ ⎛⎭⎪⎫t +142-98,可得g (t )在[0,1]上单调递增,所以f (x )在⎣⎢⎡⎦⎥⎤3π4,π上单调递增,在⎣⎢⎡⎦⎥⎤π,5π4上单调递减,故C 错误.根据f (x )在⎣⎢⎡⎦⎥⎤34π,π上递增,在⎣⎢⎡⎦⎥⎤π,54π上递减,∴f (x )在x =π时取到最大值f (π)=2,则D 正确. 答案 (1)ABD (2)ABD考向四 三角函数性质与图象的综合应用【典例4】 (2020·临沂一预)在①f (x )的图象关于直线x =5π6ω对称,②f (x )=cos ωx -3sin ωx ,③f (x )≤f (0)恒成立这三个条件中任选一个,补充在下面横线处.若问题中的ω存在,求出ω的值;若ω不存在,请说明理由.设函数f (x )=2cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,0≤φ≤π2,_____________________________.是否存在正整数ω,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的?(注:如果选择多个条件分别解答,按第一个解答计分)解 若选①,则存在满足条件的正整数ω.求解过程如下: 令ωx +φ=k π,k ∈Z ,代入x =5π6ω, 解得φ=k π-5π6,k ∈Z .因为0≤φ≤π2,所以φ=π6,所以f (x )=2cos ⎝ ⎛⎭⎪⎫ωx +π6.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π6∈⎣⎢⎡⎦⎥⎤π6,ωπ2+π6.若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π6≤π,解得0<ω≤53.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选②,则存在满足条件的正整数ω.求解过程如下: f (x )=cos ωx -3sin ωx =2cos ⎝ ⎛⎭⎪⎫ωx +π3=2cos(ωx +φ),且0≤φ≤π2,所以φ=π3.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx +π3∈⎣⎢⎡⎦⎥⎤π3,ωπ2+π3. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2+π3≤π,解得0<ω≤43.所以存在正整数ω=1,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.若选③,则存在满足条件的正整数ω.求解过程如下: 因为f (x )≤f (0)恒成立,即f (x )max =f (0)=2cos φ=2, 所以cos φ=1.因为0≤φ≤π2,所以φ=0,所以f (x )=2cos ωx .当x ∈⎣⎢⎡⎦⎥⎤0,π2时,ωx ∈⎣⎢⎡⎦⎥⎤0,ωπ2. 若函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调,则有ωπ2≤π,解得0<ω≤2.所以存在正整数ω=1或ω=2,使得函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是单调的.探究提高 1.研究三角函数的图象与性质,关键是将函数化为y =A sin(ωx +φ)+B (或y =A cos(ωx +φ)+B )的形式,利用正余弦函数与复合函数的性质求解. 2.函数y =A sin(ωx +φ)(或y =A cos(ωx +φ))的最小正周期T =2π|ω|.应特别注意y =|A sin(ωx +φ)|的最小正周期为T =π|ω|.【拓展练习4】 (2020·威海三校一联)已知函数f (x )=2cos 2ω1x +sin ω2x . (1)求f (0)的值;(2)从①ω1=1,ω2=2,②ω1=1,ω2=1这两个条件中任选一个,作为题目的已知条件,求函数f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值,并直接写出函数f (x )的一个周期.(注:如果选择多个条件分别解答,按第一个解答计分) 解 (1)f (0)=2cos 20+sin 0=2. (2)选择条件①.f (x )的一个周期为π.当ω1=1,ω2=2时,f (x )=2cos 2x +sin 2x =(cos 2x +1)+sin 2x =2⎝ ⎛⎭⎪⎫22sin 2x +22cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x +π4+1.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以2x +π4∈⎣⎢⎡⎦⎥⎤-3π4,7π12.所以-1≤sin ⎝ ⎛⎭⎪⎫2x +π4≤1,则1-2≤f (x )≤1+ 2. 当2x +π4=-π2,即x =-3π8时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值1- 2.选择条件②.f (x )的一个周期为2π.当ω1=1,ω2=1时,f (x )=2cos 2x +sin x =2(1-sin 2x )+sin x =-2⎝ ⎛⎭⎪⎫sin x -142+178.因为x ∈⎣⎢⎡⎦⎥⎤-π2,π6,所以sin x ∈⎣⎢⎡⎦⎥⎤-1,12.所以当sin x =-1,即x =-π2时,f (x )在⎣⎢⎡⎦⎥⎤-π2,π6上取得最小值-1.【专题拓展练习】一、选择题(1~10题为单项选择题,11~15题为多项选择题) 1.函数2()cos 3f x x π⎛⎫=+⎪⎝⎭的最小正周期为( ) A .4π B .2πC .2π D .π【答案】D 【详解】因为22cos 211213()cos cos 232232x f x x x πππ⎛⎫++ ⎪⎛⎫⎛⎫⎝⎭=+==++ ⎪ ⎪⎝⎭⎝⎭,所以最小正周期为π.2.把函数sin 2y x =的图象向左平移4π个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( ) A .sin y x = B .cos y x =C .sin()4y x π=+D .sin y x =-【答案】B 【详解】把函数sin 2y x =的图象向左平移4π个单位长度, 得到sin 2sin(2)cos 242y x x x ππ⎛⎫=+=+= ⎪⎝⎭,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为cos y x =. 3.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【详解】 解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B4.将函数()2sin 26f x x π⎛⎫=+⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,则函数()g x 的单调递增区间是( ) A .(),36k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .(),63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .()44k ,k k Z ππ⎡⎤-+π+π∈⎢⎥⎣⎦D .()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦【答案】D 【详解】将函数()2sin 26f x x π⎛⎫=+ ⎪⎝⎭的图象向左平移12π个单位长度后得到函数()g x 的图象,所以()2sin 22sin 2663g x x x πππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭, 由()222232k x k k Z πππππ-+≤+≤+∈可得()51212k x k k Z ππππ-+≤≤+∈, 即函数()g x 的单调递增区间是()5,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦.5.函数()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的图像最近两对称轴之间的距离为2π,若该函数图像关于点()0m ,成中心对称,当0,2m π⎡⎤∈⎢⎥⎣⎦时m 的值为( ) A .6πB .4π C .3π D .512π 【答案】D 【详解】()()2sin 06f x x πωω⎛⎫=+> ⎪⎝⎭的最小正周期2π2ω2T ππ==⨯=,2ω∴=,所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,令2,6x k k Z ππ+=∈,则212k x ππ=-, ∴函数f (x )的对称轴心为,0212k ππ⎛⎫-⎪⎝⎭,k Z ∈, 所以212k m ππ=-, 当0,2122k m πππ⎡⎤=-∈⎢⎥⎣⎦时,解得:17,66k ⎡⎤∈⎢⎥⎣⎦, 又5π,1,12k Z k m ∈∴=∴=, 6.已知函数()22sin 23sin cos cos f x x x x x =+-,x ∈R ,则( )A .()f x 的最大值为1B .()f x 的图象关于直线3x π=对称C .()f x 的最小正周期为2π D .()f x 在区间()0,π上只有1个零点【答案】B 【详解】()22sin cos cos f x x x x x =+-2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭故最大值为2,A 错22sin 2sin 23362f ππππ⎛⎫⎛⎫=-== ⎪ ⎪⎝⎭⎝⎭,故关于3x π=对称,B 对最小正周期为22ππ=,C 错 ()26x k k Z ππ-=∈解得()122k x k Z ππ=+∈,12x π=和712x π=都是零点,故D 错. 7.已知函数()()()3cos 0g x x ωϕω=+>在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,且满足04g π⎛⎫=⎪⎝⎭,()3g π=,则ω的取值共有( )A .6个B .5个C .4个D .3个【答案】B 【详解】因为()g x 在7,6ππ⎛⎫ ⎪⎝⎭上具有单调性,04g π⎛⎫= ⎪⎝⎭,()3g π=, 所以()()7,62,4422121,442T T n n T n N πππωπππωπππω*⎧-≤=⎪⎪⎪-≥=⎨⎪⎪---==∈⎪⎩得263ω≤≤,423n ω-=,n *∈N , 所以242633n -≤≤, 解得15n ≤≤.即1,2,3,4,5n =,可得23ω=,102,3,143,6,经检验均符合题意,所以ω的取值共有5个.8.函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象,则下列说法正确的是( )A .函数()g x 为奇函数B .函数()g x 的最小正周期为2πC .函数()g x 的图象的对称轴为直线()6x k k ππ=+∈ZD .函数()g x 的单调递增区间为5,()1212k k k ππππ⎡⎤-++∈⎢⎥⎣⎦Z【答案】D 【详解】 由图象可知3A =,33253441234ππππω⎛⎫=⋅=--= ⎪⎝⎭T , ∴2ω=,则()3sin(2)f x x ϕ=+.将点5,312π⎛⎫⎪⎝⎭的坐标代入()3sin(2)f x x ϕ=+中,整理得5sin 2112πϕ⎛⎫⨯+= ⎪⎝⎭, ∴522,Z 122k k ππϕπ⨯+=+∈, 即2,Z 3k k πϕπ=-∈;||2ϕπ<, ∴3πϕ=-,∴()3sin 23f x x π⎛⎫=-⎪⎝⎭. ∵将函数()f x 的图象向左平移3π个单位长度后得到()y g x =的图象, ∴()3sin 23sin 2,333g x x x x R πππ⎡⎤⎛⎫⎛⎫=+-=+∈ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. ()()3sin 23sin 233g x x x g x ππ⎛⎫⎛⎫-=-+=--≠- ⎪ ⎪⎝⎭⎝⎭,∴()g x 既不是奇函数也不是偶函数, 故A 错误;∴()g x 的最小正周期22T ππ==, 故B 不正确. 令2,32πππ+=+∈x k k Z ,解得,122k x k Z ππ=+∈, 则函数()g x 图像的对称轴为直线,122k x k Z ππ=+∈. 故C 错误; 由222,232k x k k πππππ-++∈Z ,可得5,1212k x k k ππππ-+∈Z ,∴函数()g x 的单调递增区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. 故D 正确;9.设函数()sin 2cos 2f x a x b x =+,其中,,0a b R ab ∈≠,若()6f x f π⎛⎫≤⎪⎝⎭对一切x ∈R 恒成立,则以下结论:①函数()f x 的图象关于11,012π⎛⎫⎪⎝⎭对称;②函数()f x 的单调递增区间是2,()63k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;③函数()f x 既不是奇函数也不是偶函数;④函数()f x 的图象关于()26k x k Z ππ=+∈对称.其中正确的说法是( ) A .①②③ B .②④C .③④D .①③④【答案】D 【详解】解:由辅助角公式得:())f x x ϕ=+, 由()6f x f π⎛⎫≤⎪⎝⎭恒成立,得22()62k k Z ππϕπ⨯+=+∈, 所以2()6k k Z πϕπ=+∈,取6π=ϕ,从而()26f x x π⎛⎫=+ ⎪⎝⎭,由11012f π⎛⎫= ⎪⎝⎭得①正确, 由222()262k x k k Z πππππ-≤+≤+∈得()36k x k k Z ππππ-≤≤+∈,所以函数的增区间为,()36k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,②不正确, 根据正弦函数的奇偶性易得③显然正确, 由2()62x k k Z πππ+=+∈,得对称轴为()26k x k Z ππ=+∈,④正确, 10.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (AB BC =)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④【答案】A 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯,()25135ED =-=所以(352m EG π==⨯,(5135254CG =-=,所以()()254522n GI ππ==⨯=,所以(())3525451222m n l πππ⨯+⨯=⨯==+,故①正确;(2222735354m π-⨯==,))273551522l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))35551522l n ππ-⨯++==,((2235352m ππ=⨯⨯-=-,所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯211m l n≠+,故④不正确;所以①②正确,11.已知函数()3sin sin3f x x x=+,则()A.()f x是奇函数B.()f x是周期函数且最小正周期为2πC.()f x的值域是[4,4]-D.当(0,)xπ∈时()0f x>【答案】ABD【详解】A.()3sin()sin(3)3sin sin3()f x x x x x f x-=-+-=--=-,故()f x是奇函数,故A正确;B.因为siny x=的最小正周期是2π,sin3y x=的最小正周期为23π,二者的“最小公倍数”是2π,故2π是()f x的最小正周期,故B正确;C.分析()f x的最大值,因为3sin3x≤,sin31x≤,所以()4f x≤,等号成立的条件是sin1x=和sin31x=同时成立,而当sin1x=即2()2x k kππ=+∈Z时,336()2x k kππ=+∈Z,sin31x=-故C错误;D.展开整理可得()2()3sin sin cos2cos sin2sin4cos2f x x x x x x x x=++=+,易知当(0,)xπ∈时,()0f x>,故D正确.12.设函数cos2()2sin cosxf xx x=+,则()A.()()f x f xπ=+B.()f x的最大值为12C.()f x在,04π⎛⎫-⎪⎝⎭单调递增D.()f x在0,4π⎛⎫⎪⎝⎭单调递减【答案】AD【详解】()f x的定义域为R,且cos2()2sin cosxf xx x=+,()()()()cos 22cos 2()2sin cos 2sin cos x xf x f x x x x xππππ++===++++,故A 正确.又2cos 22cos 2()42sin cos 4sin 2x x f x x x x ==++,令2cos 24sin 2xy x=+,则()42cos 2sin 22y x y x x ϕ=-=+,其中cos ϕϕ==1≤即2415y ≤,故y ≤≤当15y =时,有1cos ,sin 44ϕϕ==,此时()cos 21x ϕ+=即2x k ϕπ=-,故max 15y =,故B 错误. ()()()()()22222sin 24sin 22cos 2414sin 2()4sin 24sin 2x x x x f x x x ⎡⎤-+--+⎣⎦'==++,当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,4π⎛⎫⎪⎝⎭为减函数,故D 正确. 当,04x π⎛⎫∈-⎪⎝⎭时,1sin 20x -<<,故314sin 21x -<+<, 因为2t x =为增函数且2,02x π⎛⎫∈- ⎪⎝⎭,而14sin y t =+在,02π⎛⎫- ⎪⎝⎭为增函数,所以()14sin 2h x x =+在,04π⎛⎫-⎪⎝⎭上为增函数, 故14sin 20x +=在,04π⎛⎫- ⎪⎝⎭有唯一解0x ,故当()0,0x x ∈时,()0h x >即()0f x '<,故()f x 在()0,0x 为减函数,故C 不正确. 13.若将函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度,得到函数g (x )的图象,则下列说法正确的是( ) A .g (x )的最小正周期为πB .g (x )在区间[0,2π]上单调递减C .x =12π是函数g (x )的对称轴 D .g (x )在[﹣6π,6π]上的最小值为﹣12【答案】AD 【详解】 函数f (x )=cos(2x +12π)的图象向左平移8π个单位长度后得()cos 2812g x x ππ⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦cos 23x π⎛⎫=+ ⎪⎝⎭,最小正周期为π,A 正确;222()3k x k k Z ππππ≤+≤+∈()63k x k k Z ππππ∴-≤≤+∈为g (x )的所有减区间,其中一个减区间为,63ππ⎡⎤-⎢⎥⎣⎦,故B 错; 令23x k ππ+=,得6,2kx k Z ππ=-+∈,故C 错; x ∈[﹣6π,6π],220,33x ππ⎡⎤∴+∈⎢⎥⎣⎦,1cos(2),132x π⎡⎤∴+∈-⎢⎥⎣⎦,故 D 对 14.下列说法正确的是( ) A .函数()23sin 0,42f x x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是1 B .函数()cos sin tan 0,tan 2x f x x x x x π⎛⎫⎛⎫=⋅+∈ ⎪ ⎪⎝⎭⎝⎭的值域为(C .函数()1sin 2cos 2f x x a x =+⋅在()0,π上单调递增,则a 的取值范围是(],1-∞- D .函数()222sin 42cos tx x xf x x x π⎛⎫+++ ⎪⎝⎭=+的最大值为a ,最小值为b ,若2a b +=,则1t =【答案】ACD 【详解】 A 选项,()222311cos cos cos 1442f x x x x x x ⎛⎫=--=-++=--+ ⎪ ⎪⎝⎭, 又0,2x π⎡⎤∈⎢⎥⎣⎦可得:[]cos 0,1x ∈,则当cos 2x =时函数()f x 取得最大值1,A 对; B 选项,()2233sin cos sin cos cos sin sin cos x x x xf x x x x x+∴=+=⋅ ()()22sin cos sin cos sin cos sin cos x x x x x x x x++-⋅=⋅()()2sin cos sin cos 3sin cos sin cos x x x x x x x x⎡⎤++-⋅⎣⎦=⋅,设sin cos 4t x x x π⎛⎫=+=+ ⎪⎝⎭,则()22sin cos 12sin cos t x x x x =+=+,则21sin cos 2t x x -⋅=, 0,2x π⎛⎫∈ ⎪⎝⎭,3,444x πππ⎛⎫∴+∈ ⎪⎝⎭,sin 42x π⎛⎤⎛⎫∴+∈ ⎥⎪ ⎝⎭⎝⎦,(t ∴∈, 令()223221323112t t t t t g t t t ⎛⎫--⨯ ⎪-⎝⎭==--,(t ∈,()()422301t g t t --'=<-, ()g t ∴在区间(上单调递减,()()32min 1g t g===-所以,函数()f x 的值域为)+∞,B 错; C 选项,()1sin 2cos 2f x x a x =+⋅在区间()0,π上是增函数,()cos2sin 0f x x a x ∴=-⋅≥',即212sin sin 0x a x --⋅≥,令sin t x =,(]0,1t ∈,即2210t at --+≥,12a t t ∴≤-+,令()12g t t t =-+,则()2120g t t'=--<,()g t ∴在(]0,1t ∈递减,()11a g ∴≤=-,C 对;D选项,()2222 22sin cos222costx t x x xf xx x⎛⎫+++⎪⎝⎭=+()()2222cos sin sin2cos2cost x x t x x t x xtx x x x++⋅+⋅+==+++,所以,()()()()22sin sin2cos2cost x x t x xf x t tx xx x--+-=+=-+⋅-+-,()()2f x f x t∴+-=,所以,函数()f x的图象关于点()0,t对称,所以,22a b t+==,可得1t=,D对. 15.如图是函数()sin()(0,0,||)f x A x Aωϕωϕπ=+>><的部分图象,则下列说法正确的是()A.2ω=B.π,06⎛⎫- ⎪⎝⎭是函数,()f x的一个对称中心C.2π3ϕ=D.函数()f x在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数【答案】ACD【详解】由题知,2A=,函数()f x的最小正周期11π5π2π1212T⎛⎫=⨯-=⎪⎝⎭,所以2π2Tω==,故A正确;因为11π11π11π2sin22sin212126fϕϕ⎛⎫⎛⎫⎛⎫=⨯+=+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以11ππ2π62kϕ+=+,k Z∈,解得4π2π3kϕ=-,k Z∈,又||ϕπ<,所以2π3ϕ=,故C正确;函数()2π2sin 23f x x ⎛⎫=+ ⎪⎝⎭,因为ππ2ππ2sin 22sin 06633f ⎡⎤⎛⎫⎛⎫-=⨯-+==≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以π,06⎛⎫-⎪⎝⎭不是函数()f x 的一个对称中心,故B 错误; 令π2π3π2π22π232m x m +≤+≤+,m Z ∈,得π5ππ1212m x mx -≤≤+,m Z ∈,当1m =-时,13π7π1212x -≤≤-,因为4π13π7ππ,,51212⎡⎤⎡⎤--⊆--⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()f x 在区间4ππ,5⎡⎤--⎢⎥⎣⎦上是减函数,故D 正确.。

专题01 锐角三角函数(解析版)

专题01 锐角三角函数(解析版)

2021-2022学年北师大版数学九年级下册压轴题专题精选汇编专题01 锐角三角函数一.选择题1.(2021春•金台区期末)如图,在Rt△ABC中∠C=90°,直线MN垂直平分AB交AB于M,交BC于N,且∠B=15°,AC=3,则BC的长为( )A.6B.6+3C.6+2D.9【思路引导】如图,连接AN.证明AN=BN,推出∠B=∠NAB=15°,推出∠ANC=30°,再求出AN,CN,可得结论.【完整解答】如图,连接AN.∵MN垂直平分线段AB,∴NA=NB,∴∠B=∠BAN=15°,∴∠ANC=∠B+∠NAB=30°,∵AC=3,∠C=90°,∴AN=2AC=6,CN===3,∴BC=CN+BN=3+6,故选:B.2.(2020秋•南召县期末)如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的格点上,那么tan∠ABC的值为( )A.B.C.4D.【思路引导】过点A作AE⊥BC于E.根据,tan∠ABC=,求解即可.【完整解答】过点A作AE⊥BC于E.在Rt△ABE中,tan∠ABC===4,故选:C.3.(2020秋•仁寿县期末)等腰三角形底边与底边上的高的比是2:,则它的顶角为( )A.30°B.45°C.60°D.120°【思路引导】证明△ABC是等边三角形,可得结论.【完整解答】如图,AB=AC,AD⊥BC,∴BD=CD,∵BC:AD=2:,∴tan B==,∴∠B=60°,∵AB=AC,∴△ABC是等边三角形,∴∠BAC=60°,故选:C.4.(2020秋•紫金县期末)如图,点A(3,4)在第一象限,OA与x轴所夹的锐角为α,则cosα=( )A.B.C.D.【思路引导】过点A作AE⊥x轴于E.利用勾股定理求出OA,再根据cosα=,可得结论.【完整解答】如图,过点A作AE⊥x轴于E.∵A(3,4),∴OE=3,AE=4,∴OA===5,∴cosα==,故选:B.5.(2021•淄博)如图,在Rt△ABC中,∠ACB=90°,CE是斜边AB上的中线,过点E作EF⊥AB交AC 于点F.若BC=4,△AEF的面积为5,则sin∠CEF的值为( )A.B.C.D.【思路引导】根据直角三角形的斜边中线等于斜边一半可得CE =AE =BE =AB ,进而得到∠BEC =2∠A =∠BFC ,从而有∠CEF =∠CBF ,根据三角形的面积公式求出AF ,由勾股定理,在Rt △BCF 中,求出CF ,再根据锐角三角函数的定义求解即可.【完整解答】连接BF ,∵CE 是斜边AB 上的中线,EF ⊥AB ,∴EF 是AB 的垂直平分线,∴S △AFE =S △BFE =5,∠FBA =∠A ,∴S △AFB =10=AF •BC ,∵BC =4,∴AF =5=BF ,在Rt △BCF 中,BC =4,BF =5,∴CF ==3,∵CE =AE =BE =AB ,∴∠A =∠FBA =∠ACE ,又∵∠BCA =90°=∠BEF ,∴∠CBF =90°﹣∠BFC =90°﹣2∠A ,∠CEF =90°﹣∠BEC =90°﹣2∠A ,∴∠CEF =∠FBC ,∴sin ∠CEF =sin ∠FBC ==,故选:A .6.(2021•宜兴市模拟)如图,在△ABC 中,∠ABC =90°,tan ∠BAC =,AD =2,BD =4,连接CD ,则CD 长的最大值是( )A .2+B .2+1C .2+D .2+2【思路引导】如图,在AD 的下方作Rt △ADT ,使得∠ADT =90°,DT =1,连接CT ,则AT =,证明△DAB ∽△TAC ,推出==,推出TC =2,再根据CD ≤DT +CT ,可得CD ≤1+2,由此即可解决问题.【完整解答】如图,在AD 的下方作Rt △ADT ,使得∠ADT =90°,DT =1,连接CT ,则AT =,∵==2,∴=,∵∠ADT =∠ABC =90°,∴△ADT ∽△ABC ,∴∠DAT =∠BAC ,=∴∠DAB =∠TAC ,∵=,∴△DAB ∽△TAC ,∴==,∴TC =2,∵CD≤DT+CT,∴CD≤1+2,∴CD的最大值为1+2,故选:B.7.(2020秋•北碚区校级期末)北碚区政府计划在缙云山半山腰建立一个基站AB,其设计图如图所示,BF,ED与地面平行,CD的坡度为i=1:0.75,EF的坡角为45°,小王想利用所学知识测量基站顶部A 到地面的距离,若BF=ED,CD=15米,EF=3米,小王在山脚C点处测得基站底部B的仰角为37°,在F点处测得基站顶部A的仰角为60°,则基站顶部A到地面的距离为( )(精确到0.1米,参考数据:≈1.73,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.21.5米B.21.9米C.22.0米D.23.9米【思路引导】延长AB交过点C的水平线于M,交DE延长线于点N,作DG⊥MC于G,FH⊥DN于H,根据锐角三角函数即可求出结果.【完整解答】如图,延长AB交过点C的水平线于M,交DE延长线于点N,作DG⊥MC于G,FH⊥DN于H,∵CD的坡度为i=1:0.75=,∴=,设DG=4k,CG=3k,则CD=5k,∴5k=15,∴k=3,∴DG=12,CG=9,∵EF的坡角为45°,EF=3,∴EH=FH=3,∵四边形BNHF和四边形DGMN是矩形,∴BF=NH=DE,BN=FH=3,DN=MG,NM=DG=12,∴BM=BN+NM=15,在Rt△BCM中,∠BCM=37°,MC=MG+CG=DN+CG=NH+HE+DE+CG=2BF+3+9=2BF+12,∴BM=CM•tan∠BCM,∴15=(2BF+12)×0.75,∴BF=4,在Rt△ABF中,∠AFB=60°,∴AB=BF•tan60°=4≈6.92(米),∴AM=AB+BM=6.92+15≈21.9(米).故选:B.8.(2021•渝中区校级二模)如图,旗杆AB竖立在斜坡CB的顶端,斜坡CB长为65米,坡度为i=.小明从与点C相距115米的点D处向上爬12米到达建筑物DE的顶端点E,在此测得旗杆顶端点A的仰角为39°,则旗杆的高度AB约为( )米.(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.12.9B.22.2C.24.9D.63.1【思路引导】通过作高,构造直角三角形,利用直角三角形的边角关系和坡度即可求出答案.【完整解答】过点B作BF⊥CD,垂足为F,过点E作EG⊥BF,垂足为G,在Rt△BCF中,由斜坡BC的坡度i=,得,=,又BC=65,设BF=12x,FC=5x,由勾股定理得,(12x)2+(5x)2=652,∴x=5,∴BF=60,FC=25,又∵DC=115,∴DF=DC﹣FC=115﹣25=90=EG,在Rt△AEG中,AG=EG•tan39°≈90×0.81=72.9,∴AB=AG+FG﹣BF=72.9+12﹣60=24.9(米),故选:C.二.填空题(共11小题)9.(2021春•沙河口区期末)如图,从一艘船A上测得海岸上高为42米的灯塔顶部B的仰角∠BAC=30°,求船离灯塔的水平距离AC的长度是 71 米(参考数据:≈1.7,≈2.2,结果取整数).【思路引导】由含30°角的直角三角形的性质得AB=2BC=84(米),再由勾股定理即可求解.【完整解答】由题意得:∠ACB=90°,∠BAC=30°,BC=42米,∴AB=2BC=84(米),∴AC===42≈71(米),故答案为:71.10.(2020秋•肥城市期末)如图,在正方形网格中,△ABC的顶点都在格点上,则cos B+sin B的值为  .【思路引导】如图,过点A作AE⊥BC交BC的延长线于E.利用勾股定理求出AB,可得结论.【完整解答】如图,过点A作AE⊥BC交BC的延长线于E.在Rt△ABE中,∠E=90°,AE=3,BE=4,∴AB===5,∴cos B==,sin B==,∴cos B+sin A=+=,故答案为:.11.(2020秋•崇川区期末)如图,若A,B,C,D都在格点处,AB与CD相交于O,则∠BOD的余弦值为 .【思路引导】如图,取格点T,连接CT.DT.利用平行线的性质证明∠BOD=∠TCD,求出CT,CD,可得结论.【完整解答】如图,取格点T,连接CT.DT.观察图象可知,CT∥AB,CT⊥DT,∴∠BOD=∠TCD,∠CTD=90°,∵CT==,CD==5,∴cos∠BDO=cos∠TCD===,故答案为:.12.(2020秋•锡山区期末)如图的正方形网格中,△ABC的顶点都在格点上,则tan∠ACB的值为  .【思路引导】如图,过点A作AH⊥BC于H.利用面积法求出AH,再利用勾股定理求出BH,CH,可得结论.【完整解答】如图,过点A作AH⊥BC于H.∵AB=2,BC=5,=×2×4=•BC•AH,∴S△ABC∴AH=,∴BH===,∴CH=BC﹣BH=5﹣=,∴tan∠ACB===,故答案为:.13.(2020秋•龙口市期末)如图,在Rt△ABC中,∠C=90°,D为边AC上一点,∠A=∠CBD,若AC=8cm,cos∠CBD=,则边AB= 10 cm.【思路引导】根据锐角三角函数即可求出AB的值.【完整解答】∵∠C=90°,∠A=∠CBD,cos∠CBD=,∴cos∠A==,∵AC=8cm,∴AB=10cm.故答案为:10.14.(2020秋•德江县期末)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,若AC=6,tan B=,则CE= 3 .【思路引导】过点F作FG⊥AB于点G,根据三角形的内角和定理得出∠CAF+∠CFA=90°,∠FAD+∠AED=90°,根据角平分线和对顶角相等得出∠CEF=∠CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案.【完整解答】过点F作FG⊥AB于点G,∵∠ACB=90°,CD⊥AB,∴∠CDA=90°,∴∠CAF+∠CFA=90°,∠FAD+∠AED=90°,∵AF平分∠CAB,∴∠CAF=∠FAD,∴∠CFA=∠AED=∠CEF,∴CE=CF,∵AF平分∠CAB,∠ACF=∠AGF=90°,∴FC=FG,∵∠B=∠B,∠FGB=∠ACB=90°,∴△BFG∽△BAC,∴=,∵AC=6,∠ACB=90°,∴tan B==∴BC=8,AB===10,∴=,∵FC=FG,解得:FC=3,即CE的长为3.故答案为:3.15.(2020秋•新吴区期末)如图,△ABC的顶点都在正方形网格纸的格点上,则sin= .【思路引导】如图,取格点T,连接AT,BT,设BT的中点为H,连接CH.证明CB=CT,利用等腰三角形的性质求解即可.【完整解答】如图,取格点T,连接AT,BT,设BT的中点为H,连接CH.∵BC==5,CT==5,∴CB=CT,∵BH=HT,∴∠HCA=∠HCB,CH⊥BT,∵HT=,∴sin===,故答案为:.16.(2021春•瑞安市月考)如图,在河对岸有一等腰三角形场地EFG,FG=EG,为了估测场地的大小,在笔直的河岸上依次取点C,D,B,A,使FC⊥l,BG⊥l,EA⊥l,点E,G,D在同一直线上,在D观测F后,发现∠FDC=∠EDA,测得CD=12米,DB=6米,AB=12米,则FG= 8 米.【思路引导】过点G作GM⊥AE于G.GN⊥EF于N,过点D作DJ⊥l,过点F作FT⊥AE于T.利用相似三角形的性质证明DF=FG,再证明∠DEA=∠DEF,推出EN=EM=FN,证明△EGM≌△EGN (AAS),推出EM=EN,设AM=m,在Rt△ETF中,利用勾股定理求出方程求出m,即可解决问题.【完整解答】过点G作GM⊥AE于G.GN⊥EF于N,过点D作DJ⊥l,过点F作FT⊥AE于T.∵FC⊥l,BG⊥l,EA⊥l,∴∠FCD=∠EAD=90°,BG∥AE,∵∠FDC=∠EDA,∴△FCD∽△EAD,△GBD∽EAD,∴==2,==,∴DF=2DG,DE=3DG,∴EG=FG=2DG,∴FD=FG,∴∠FDG=∠FGD=∠GFE+∠GEF,∵GE=GF,∴∠GEF=∠GFE,∵∠FDJ+∠FDC=90°,∠EDJ+∠EDA=90°,∠FDC=∠EDA,∴∠FDJ=∠EDJ,∴2∠EDJ=2∠GEF,∴∠EDJ=∠DEF,∵DJ∥AE,∴∠EDJ=∠AED,∴∠DEA=∠DEF,∵GM⊥AE,GN⊥EF,∴∠EMG=∠ENG=90°,∵EG=EG,∴△EGM≌△EGN(AAS),∴EM=EN,∵GE=GF,GN⊥EF,∴FN=EN=EM,∵四边形ABGM,四边形CFTA都是矩形,∴AB=GM=CD=6(米),∵DF=EG,∠FCD=∠GME=90°,∴Rt△FCD≌Rt△EMG(HL),∴CF=EM,设AM=m米则AE=3m米,EM=CF=AT=FN=EN=2m米,∴ET=AE﹣AT=m(米),在Rt△EFT中,FT2+ET2=EF2,∴302+m2=(4m)2,∴m=2或﹣2(舍弃),∴FN=4(米),∵GN=GM=12米,∴FG===8(米),故答案为:8.17.(2021•道里区三模)△ABC中,AB=8,∠B=60°,AC=7,则∠BAC的余弦值为 或 .【思路引导】分两种情况进行解答,即当△ABC是锐角三角形和△ABC是钝角三角形,分别画出相应的图形,通过做高,利用直角三角形的边角过程求出相应的边长,再根据锐角三角函数的意义求出答案.【完整解答】(1)如图1,过点A作AD⊥BC,垂足为D,过点C作CE⊥AC,垂足为E,在Rt△ABD中,∠ABD=60°,AB=8,∴BD=AB=4,AD=AB=4,在Rt△ACD中,CD==1,由三角形的面积公式得,BC•AD=AC•BE,即(4+1)×4=7BE,∴BE=,在Rt△ABE中,AE==,∴cos∠BAC===;(2)如图2,过点A作AD⊥BC,垂足为D,过点C作CF⊥AB,垂足为F,由题意得,BC=4﹣1=3,在Rt△BCF中,∠FBC=60°,BC=3,∴BF=BC=,∴AF=AB﹣FB=8﹣=,在Rt△AFC中,cos∠BAC==;故答案为:或.18.(2021•新洲区模拟)如图,在Rt△ABC中,∠ACB=90°,AC=10,BC=5,M是射线AB上的一动点,以AM为斜边在△ABC外作Rt△AMN,且使tan∠MAN=,O是BM的中点,连接ON.则ON长的最小值为 2 .【思路引导】作NP⊥AB于点P,设AM长为x,用含x代数式表示出ON,然后通过配方求解.【完整解答】作NP⊥AB于点P,在Rt△ACB中,由勾股定理得:AB===5,设AM长为x,则BM=5﹣x,∵tan∠MAN==,∴AN=2MN,∴AM==MN,∴MN=AM=x,AN=2MN=x,同理,在Rt△ANP中可得NP==x,AP=2NP=x,∵O为BM中点,∴BO=BM=,∴AO=AB﹣BO=,∴OP=AO﹣AP=﹣x=,在Rt△ONP中,由勾股定理得ON2=OP2+NP2,即ON2=()2+(x)2=(25x2﹣150x+3125)=(x2﹣6x+125)=(x﹣3)2+20,∴当x=3时,ON2取最小值为20,∴ON最小值为2.故答案为:2.19.(2021•乐山)如图,已知点A(4,3),点B为直线y=﹣2上的一动点,点C(0,n),﹣2<n<3,AC⊥BC于点C,连接AB.若直线AB与x正半轴所夹的锐角为α,那么当sinα的值最大时,n的值为 .【思路引导】当sinα的值最大时,则tanα=值最大,即当BG最大时,sinα的值最大,设BG=y,由tan∠CAM=tan∠BCG,得到y=﹣(n﹣3)(n+2),进而求解.【完整解答】过点A作AM⊥y轴于点M,作AN⊥BN交于点N,∵直线y=﹣2∥x轴,故∠ABN=α,当sinα的值最大时,则tanα=值最大,故BN最小,即BG最大时,tanα最大,即当BG最大时,sinα的值最大,设BG=y,则AM=4,GC=n+2,CM=3﹣n,∵∠ACM+∠MAC=90°,∠ACM+∠BCG=90°,∴∠CAM=∠BCG,∴tan∠CAM=tan∠BCG,∴,即,∴y=﹣(n﹣3)(n+2),∵﹣<0,故当n=(3﹣2)=时,y取得最大值,故n=,故答案为:.三.解答题20.(2021•河池)如图,小明同学在民族广场A处放风筝,风筝位于B处,风筝线AB长为100m,从A处看风筝的仰角为30°,小明的父母从C处看风筝的仰角为50°.(1)风筝离地面多少m?(2)A、C相距多少m?(结果保留小数点后一位,参考数据:sin30°=0.5,cos30°≈0.8660,tan30°≈0.5774,sin50°≈0.7760,cos50°≈0.6428,tan50°≈1.1918)【思路引导】(1)过B作BD⊥AC于D,由含30°角的直角三角形的性质即可求解;(2)由锐角三角函数定义求出CD、AD的长,即可求解.【完整解答】(1)过B作BD⊥AC于D,如图所示:则∠ADB=∠CDB=90°,∵∠BAD=30°,∴BD=AB=50(m),即风筝离地面50m;(2)由(1)得:BD=50m,在Rt△BCD中,∠BCD=50°,∵tan∠BCD==tan50°≈1.1918,∴CD≈=≈41.95(m),在Rt△ABD中,∠BAD=30°,∵tan∠BAD==tan30°≈0.5774,∴AD≈≈86.60(m),∴AC=AD+CD≈41.95+86.60≈128.6(m),即A、C相距约128.6m.21.(2020秋•长沙期末)如图,A、B、D三点在同一水平线上,CD⊥AD,∠A=45°,∠CBD=75°,AB=60m.(1)求∠ACB的度数;(2)求线段CB的长度.【思路引导】(1)利用三角形的外角的性质求解即可.(2)如图,过点B作BH⊥AC于H,利用等腰直角三角形的性质求出BH,再根据BC=2BH,可得结论.【完整解答】(1)∵∠CBD=∠A+∠ACB,∠A=45°,∠CBD=75°,∠∠ACB=75°﹣45°=30°.(2)如图,过点B作BH⊥AC于H.∵∠BHA=90°,AB=60m,∠A=45°,∴BH=AB•sin45°=60(m),∵∠BCH=30°,∴BC=2BH=120(m).22.(2021•朝阳)一数学兴趣小组去测量一棵周围有围栏保护的古树的高,在G处放置一个小平面镜,当一位同学站在F点时,恰好在小平面镜内看到这棵古树的顶端A的像,此时测得FG=3m,这位同学向古树方向前进了9m后到达点D,在D处安置一高度为1m的测角仪CD,此时测得树顶A的仰角为30°,已知这位同学的眼睛与地面的距离EF=1.5m,点B,D,G,F在同一水平直线上,且AB,CD,EF均垂直于BF,求这棵古树AB的高.(小平面镜的大小和厚度忽略不计,结果保留根号)【思路引导】过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由锐角三角函数定义求出BD=CH=AH,再证△EFG∽△ABG,得=,求出AH=(8+4)m,即可求解.【完整解答】如图,过点C作CH⊥AB于点H,则CH=BD,BH=CD=1m,由题意得:DF=9m,∴DG=DF﹣FG=6(m),在Rt△ACH中,∠ACH=30°,∵tan∠ACH==tan30°=,∴BD=CH=AH,∵EF⊥FB,AB⊥FB,∴∠EFG=∠ABG=90°.由反射角等于入射角得∠EGF=∠AGB,∴△EFG∽△ABG,∴=,即=,解得:AH=(8+4)m,∴AB=AH+BH=(9+4)m,即这棵古树的高AB为(9+4)m.23.(2021•锦州)如图,山坡上有一棵竖直的树AB,坡面上点D处放置高度为1.6m的测倾器CD,测倾器的顶部C与树底部B恰好在同一水平线上(即BC∥MN),此时测得树顶部A的仰角为50°.已知山坡的坡度i=1:3(即坡面上点B处的铅直高度BN与水平宽度MN的比),求树AB的高度(结果精确到0.1m.参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【思路引导】先求出BC=4.8m,再由锐角三角函数定义即可求解.【完整解答】∵山坡BM的坡度i=1:3,∴i=1:3=tan M,∵BC∥MN,∴∠CBD=∠M,∴tan∠CBD==tan M=1:3,∴BC=3CD=4.8(m),在Rt△ABC中,tan∠ACB==tan50°≈1.19,∴AB≈1.19BC=1.19×4.8≈5.7(m),即树AB的高度约为5.7m.24.(2020秋•阜宁县期末)在Rt△ABC中,∠C=90°,∠A﹣∠B=30°,a﹣b=2﹣2,解这个直角三角形.【思路引导】利用三角形内角和定理构建方程组求出∠A,∠B的值,推出a=b,解方程组求出a,b,即可解决问题.【完整解答】∵,∴,∵,∴,由,解得,∵,∴c=2b=4.25.(2021•荆门)某海域有一小岛P,在以P为圆心,半径r为10(3+)海里的圆形海域内有暗礁.一海监船自西向东航行,它在A处测得小岛P位于北偏东60°的方向上,当海监船行驶20海里后到达B处,此时观测小岛P位于B处北偏东45°方向上.(1)求A,P之间的距离AP;(2)若海监船由B处继续向东航行是否有触礁危险?请说明理由.如果有触礁危险,那么海监船由B 处开始沿南偏东至多多少度的方向航行能安全通过这一海域?【思路引导】(1)通过作垂线构造直角三角形,求出小岛P到航线AB的最低距离PC,与暗礁的半径比较即可得出答案;(2)规划新航线BD,使小岛P到新航线的距离PE等于暗礁的半径,进而求出∠PBD,进而求出∠CBD,确定方向角.【完整解答】(1)过点P作PC⊥AB,交AB的延长线于点C,由题意得,∠PAC=30°,∠PBC=45°,AB=20,设PC=x,则BC=x,在Rt△PAC中,∵tan30°===,∴x=10+10,∴PA=2x=20+20,答:A,P之间的距离AP为(20+20)海里;(2)因为PC﹣10(3+)=10+10﹣30﹣10=10(+1)(﹣)<0,所以有触礁的危险;设海监船无触礁危险的新航线为射线BD,作PE⊥BD,垂足为E,当P到BD的距离PE=10(3+)海里时,有sin∠PBE===,∴∠PBD=60°,∴∠CBD=60°﹣45°=15°,90°﹣15°=75°即海监船由B处开始沿南偏东至多75°的方向航行能安全通过这一海域.26.(2021•天津)如图,一艘货船在灯塔C的正南方向,距离灯塔257海里的A处遇险,发出求救信号.一艘救生船位于灯塔C的南偏东40°方向上,同时位于A处的北偏东60°方向上的B处,救生船接到求救信号后,立即前往救援.求AB的长.(结果取整数)参考数据:tan40°≈0.84,取1.73.【思路引导】通过作垂线,构造直角三角形,利用锐角三角函数的意义列方程求解即可.【完整解答】如图,过点B作BH⊥AC,垂足为H,由题意得,∠BAC=60°,∠BCA=40°,AC=257海里,在Rt△ABH中,∵tan∠BAH=,cos∠BAH=,∴BH=AH•tan60°=AH,AB==2AH,在Rt△BCH中,∵tan∠BCH=,∴CH==(海里),又∵CA=CH+AH,∴257=+AH,所以AH=(海里),∴AB=≈=168(海里),答:AB的长约为168海里.27.(2021•资阳)资阳市为实现5G网络全覆盖,2020﹣2025年拟建设5G基站七千个.如图,在坡度为i=1:2.4的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45°,然后她沿坡面CB 行走13米到达D处,在D处测得塔顶A的仰角为53°.(点A、B、C、D均在同一平面内)(参考数据:sin53°≈,cos53°≈,tan53°≈)(1)求D处的竖直高度;(2)求基站塔AB的高.【思路引导】(1)通过作垂线,利用斜坡CB的坡度为i=1:2.4,CD=13,由勾股定理可求出答案;(2)设出DE的长,根据坡度表示BE,进而表示出CF,由于△ACF是等腰直角三角形,可表示BE,在△ADE中由锐角三角函数可列方程求出DE,进而求出AB.【完整解答】(1)如图,过点C、D分别作AB的垂线,交AB的延长线于点E、F,过点D作DM⊥CF,垂足为M,∵斜坡CB的坡度为i=1:2.4,∴=,即=,设DM=5k米,则CM=12k米,在Rt△CDM中,CD=13米,由勾股定理得,CM2+DM2=CD2,即(5k)2+(12k)2=132,解得k=1,∴DM=5(米),CM=12(米),答:D处的竖直高度为5米;(2)斜坡CB的坡度为i=1:2.4,设DE=12a米,则BE=5a米,又∵∠ACF=45°,∴AF=CF=(12+12a)米,∴AE=AF﹣EF=12+12a﹣5=(7+12a)米,在Rt△ADE中,DE=12a米,AE=(7+12a)米,∵tan∠ADE=tan53°≈,∴=,解得a=,∴DE=12a=21(米),AE=7+12a=28(米),BE=5a=(米),∴AB=AE﹣BE=28﹣=(米),答:基站塔AB的高为米.28.(2021•莱芜区二模)如图,为加强对市内道路交通安全的监督,王警官利用无人机进行检测.某段限速道路AB=328米,当无人机在限速道路的正上方C处时,测得限速道路的起点A的俯角是37°,无人机继续向右水平飞行到达D处,此时又测得起点A的俯角是30°,同时测得限速道路终点B的俯角是45°.求无人机距离地面道路的高度和飞行距离各为多少米.(均精确到1米)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)【思路引导】通过作垂线构造直角三角形,在不同的直角三角形中,利用边角关系进行计算即可.【完整解答】(1)如图,由题意得:∠ECA=37°,∠CDA=30°,∠FDB=45°,CD∥AB,AB=328米,过点C作CM⊥AB于点M,过点D作DN⊥AB于点N,则四边形CDNM是矩形,∵∠ECA=37°,∠CDA=30°,∠FDB=45°,CD∥AB,∴∠CAM=∠ECA=37°,∠DAN=∠CDA=30°,∠B=∠FDB=45°,即无人机距离地面道路的高度为120米,∴,∴CD=MN=AN﹣AM=207.6﹣160≈48米,即无人机的飞行距离为48米.29.(2021•碑林区校级模拟)学校“科技创新小团队”设计的智能照明家居(如图①)的设计方案(如图②)所示:MN为台灯底座,支架AB与MN的夹角为60°.支架AB与BC的夹角可以调节的.试用后发现,当支架AB与BC的夹角为108°时,可以达到较好的照明效果.若AB=21cm,BC=28cm.此时点C离底座MN的距离为多少?(结果精确到0.1cm.参考数据:≈1.41;≈1.73;sin48°≈0.74;cos48°≈0.67;tan48°≈1.11)【思路引导】过点C作CE⊥MN于点M,过点B作BF⊥MN于点F,作BG⊥CE于点G,得矩形EGBF,根据锐角三角函数即可求出CG和BF的值,进而可得结果.【完整解答】如图,过点C作CE⊥MN于点M,过点B作BF⊥MN于点F,作BG⊥CE于点G,得矩形EGBF,在Rt△ABF中,∵∠BAF=60°,AB=21cm,∴∠ABF=30°,∴AF=AB=cm,∴BF=AF=≈18.165(cm),∴GE=BF≈18.165(cm),在Rt△CGB中,∵∠CBG=108°﹣60°=48°,BC=28cm.∴CG=BC×sin48°≈28×0.74≈20.72(cm),∴CE=CG+GE=20.72+18.165≈38.9(cm),答:此时点C离底座MN的距离为38.9cm.。

高考数学十年真题专题解析—函数图象

高考数学十年真题专题解析—函数图象

函数的图象真题解析年份题号考点考查内容2012课标理10函数图象的识别根据定义域、特殊值、单调性识别函数图象2013卷1理11(文12)函数图象的变换利用对折变换作出函数图象解函数不等式卷1文9函数图象的识别利用奇偶性、特殊值及极值识别函数图象2016卷1理7(文9)函数图象的识别函数的奇偶性、函数图象2017卷1文8函数图象的识别函数的奇偶性、函数图象卷3文7函数图象的识别函数的奇偶性、函数图象2018卷1文3函数图象的应用含糊的图象应用卷2理3函数图象的识别函数的奇偶性、函数图象卷3理7(文9)函数图象的识别函数的奇偶性、函数图象2019卷1理5函数图象的识别函数的奇偶性、函数图象卷3理11函数图象识别函数的奇偶性、函数图象可能考查利用函数图象解函数不等式或函数零点问题考点17函数图象的识别1.(2020天津3)函数241x y x =+的图象大致为()A .B .C .D .【答案】A【思路导引】由题意首先确定函数的奇偶性,然后考查函数在特殊点的函数值排除错误选项即可确定函数的图象.【解析】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误.故选A .2.(2019全国Ⅰ理5)函数f (x )=2sin cos ++x x x x在[,]-ππ的图像大致为A .B .C .D .【答案】D 【解析】:因为()2sin cos x x f x x x+=+,π[]πx ∈-,,所以()()()22sin sin cos cos x x x x f x f x x x x x --+-===--++,所以()f x 为[ππ]-,上的奇函数,因此排除A ;又()22sin ππππ0cos ππ1πf +==>+-+,因此排除B ,C ;故选D .3.(2019全国Ⅲ理7)函数3222x x x y -=+在[]6,6-的图像大致为A .B .C .D .【答案】B 【解析】因为332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是[]6,6-上的奇函数,因此排除C ,又1182(4)721f =>+,因此排除A ,D .故选B .4.(2018全国卷Ⅱ)函数2()--=x x e e f x x 的图像大致为【答案】B 【解析】当0<x 时,因为0--<x x e e ,所以此时2()0--=<x xe ef x x,故排除A .D ;又1(1)2=->f e e,故排除C ,选B .5.(2018全国卷Ⅲ)函数422y x x =-++的图像大致为【答案】D 【解析】当0x =时,2y =,排除A ,B .由3420y x x '=-+=,得0x =或22x =±,结合三次函数的图象特征,知原函数在(1,1)-上有三个极值点,所以排除C ,故选D .6.(2017新课标Ⅰ)函数sin 21cos x y x =-的部分图像大致为【答案】C 【解析】由题意知,函数sin 21cos x y x =-为奇函数,故排除B ;当x π=时,0y =,排除D ;当1x =时,sin 21cos 2y =-,因为22ππ<<,所以sin 20>,cos 20<,故0y >,排除A .故选C .7.(2017新课标Ⅲ)函数2sin 1x y x x=++的部分图像大致为A .B .C .D .【答案】D 【解析】当1x =时,(1)2sin12f =+>,排除A 、C ;当x →+∞时,1y x →+,排除B .选D .8.(2016全国I)函数2||2x y x e =-在[–2,2]的图像大致为A .B .C .D .【答案】D 【解析】当0x 时,令函数2()2x f x x e =-,则()4x f x x e '=-,易知()f x '在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又(0)10f '=-<,1()202f e '=->,(1)40f e '=->,2(2)80f e '=->,所以存在01(0,)2x ∈是函数()f x 的极小值点,即函数()f x 在0(0,)x 上单调递减,在0(,2)x 上单调递增,且该函数为偶函数,符合条件的图像为D .9.(2012课标,理10)已知函数()f x =1ln(1)x x+-,则y =()f x 的图像大致为【答案】B 【解析1】定义域为(-1,0)∪(0,+∞),()f x '=2(1)(ln(1))x x x x ++-∴()f x 在(-1,0)是减函数,在(0,+∞)是增函数,结合选项,只有B 符合,故选B .10.(2013卷1,文9)函数()f x =(1cos )sin x x -在[,]ππ-的图像大致为【答案】C 【解析】显然()f x 是奇函数,故排除B ,当0x π-<<时,()f x <0,故排除A ,∵()f x '=22sin cos cos x x x +-=22cos cos 1x x -++,由()f x '≥0解得1cos 2x -≤,又∵x ππ-≤≤,∴3344x ππ-≤≤,同理,由()f x '≤0解得,34x ππ-≤≤-或34x ππ≤≤,∴()f x 在[-π,-34π]上是减函数,在[-34π,34π]上是增函数,在[34π,π]上是减函数,∴当x =34π时,()f x 取最小值3()4f π-=12+-,最小值点靠近-π,故选C .11.(2018浙江)函数||2sin 2x y x =的图象可能是A .B .C.D .【答案】D 【解析】设||()2sin 2x f x x =,其定义域关于坐标原点对称,又||()2sin(2)()x f x x f x --=⋅-=-,所以()y f x =是奇函数,故排除选项A ,B ;令()0f x =,所以sin 20x =,所以2x k π=(k ∈Z ),所以2k x π=(k ∈Z ),故排除选项C .故选D .12.(2013福建)函数)1ln()(2+=x x f的图象大致是A .B .C .D .【答案】A 【解析】本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B ,D .13.(2013四川)函数133-=x x y的图像大致是A B C D【答案】C 【解析】由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A ;取x =-1,y =1113--=32>0,故再排除B ;当x →+∞时,3x -1远远大于x 3的值且都为正,故331x x -→0且大于0,故排除D ,选C .考点18函数图象的变换1.(2013新课标Ⅰ)已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]【答案】D 【解析】∵|()f x |=22,0ln(1),0x x x x x ⎧-≤⎨+>⎩,∴由|()f x |≥ax 得,202x x x ax≤⎧⎨-≥⎩且0ln(1)x x ax>⎧⎨+≥⎩,由202x x x ax ≤⎧⎨-≥⎩可得2a x ≥-,则a ≥-2,排除A ,B ,当a =1时,易证ln(1)x x +<对0x >恒成立,故a =1不适合,排除C ,故选D .2.(2012安徽)若函数()|2|f x x a =+的单调递增区间是),3[+∞,则a =________.【答案】6-【解析】由22()22a x a x f x ax a x ⎧--<-⎪⎪=⎨⎪+-⎪⎩ 可知()f x 的单调递增区间为[,)2a -+∞,故362a a -=⇔=-.考点19函数图象的应用1.(2018全国卷Ⅰ)设函数2,0()1,0-⎧=⎨>⎩≤x x f x x ,则满足(1)(2)+<f x f x 的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞【答案】D 【解析】当0x ≤时,函数()2x f x -=是减函数,则()(0)1f x f =≥,作出()f x 的大致图象如图所示,结合图象可知,要使(1)(2)+<f x f x ,则需102021x x x x +<⎧⎪<⎨⎪<+⎩或1020x x +⎧⎨<⎩≥,所以0x <,故选D.2.(2015安徽)函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <【答案】C 【解析】∵2()()ax b f x x c +=+的图象与,x y 轴分别交于,N M ,且点M 的纵坐标与点N 的横坐标均为正,∴0b x a =->,20b y c =>,故0,0a b <>,又函数图象间断的横坐标为正,∴0c ->,故0c <.。

专题01 一次函数的概念与图像(真题测试)(解析版)

专题01 一次函数的概念与图像(真题测试)(解析版)

专题01 一次函数的概念与图像【真题测试】 一、选择题1.(松江2018期中13)下列函数中,是一次函数的是( ) A.11y x=+; B.2y x =-; C.()y kx b k b =+、是常数; D.22y x =+. 【答案】B ;【解析】A 、右边是分式,故A 不是一次函数;B 、根据一次函数定义可知:B 为一次函数;C 、当k=0时,y kx b =+就不是一次函数,故C 错误;D 、是二次函数;故此题答案案选B.2.(奉贤2018期末1)下列函数中,一次函数是( )A.B.C.11y x=+ D.22y x =-【答案】A ;【解析】解:A 、y=x 属于一次函数,故此选项正确;B 、y=kx (k≠0),故此选项错误;C 、11y x=+,不符合一次函数的定义,故此选项错误;D 、22y x =-,不符合一次函数的定义,故此选项错误;故选:A . 3.(浦东四署2018期中1)下列函数中,是一次函数的是( ) (A )21+=xy ; (B )2+=x y ; (C )22y x =+; (D )y kx b =+ 【答案】B ; 【解析】A 、因为12x+是分式,故A 不是一次函数;B 、2y x =+是一次函数,故B 正确;C 、22y x =+是二次函数,故C 错误;D 、当0k =时,y kx b =+是常数函数,故D 错误;因此答案选B. 4.(长宁2018期末1)函数y =(k -2)x +3是一次函数,则k 的取值范围是( )A. B. C. D.【答案】D ;【解析】解:由题意得:k-2≠0, 解得:k≠2, 故选:D .5.(松江2018期中14)如图,一次函数y kx b =+的图像经过(1,3),(2,0)两点,那么当3y >时,x 的取值范围是( )A.0x <;B.2x <;C.1x >;D.1x <.2yxOP (1,3)【答案】D ;【解析】数形结合法;当3y >时,对应的图像是点P 以上的部分,故1x <,答案选D. 6. (长宁2018期末2)函数y =2x -1的图象经过( )A. 一、二、三象限;B. 二、三、四象限;C. 一、三、四象限;D. 一、二、四象限;【答案】C ;【解析】解:∵2>0, ∴一次函数y=-x+2的图象一定经过第一、三象限; 又∵-1<0, ∴一次函数y=2x-1的图象与y 轴交于负半轴, ∴一次函数y=2x-1的图象经过第一、三、四象限; 故选:C . 7. (松江2019期中2)一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】解:∵20,10k b =>=>,根据一次函数的图像即可判断函数所经过一、二、三象限,不经过第四象限,故选D .8.(闵行2018期末1)一次函数y =3x ﹣2的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B ;【解析】解:∵一次函数y =3x ﹣2中,k =3>0,b =﹣2<0,∴此函数的图象经过一三四象限,不经过第二象限.故选:B .9.(嘉定2019期末1)直线23y x =-的截距是( ) A. – 3; B. – 2; C. 2; D. 3. 【答案】A ;【解析】令0x =,得3y =-,故直线23y x =-的截距是-3. 故选A. 10. (松江2019期中5)一次函数的图像大致是( )A. B. C. D.【答案】B【解析】解:∵k <0,∴﹣k >0,则一次函数的图象为,y 随自变量x 的增大而减小,图象与y 轴的正半轴相交.故选B.11.(松江2018期中17)一次函数12y ax b y bx a =+=+与在同一坐标系中的图像可能是( )CDOx y yxO Ox y yx O BA【答案】C ;【解析】A 、若经过一、二、三象限的直线为1y ax b =+,则0,0a b >>,所以2y bx a =+经过一、二、三象限,矛盾,故A 错误;B 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故B 错误;C 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,故C 正确;D 、若经过一、二、四象限的直线为1y ax b =+,则0,0a b <>,所以2y bx a =+经过一、三、四象限,矛盾,故D 错误;因此答案选C.12.(浦东四署2018期中6)如图,直线443y x =-+与x 轴、y 轴分别交于A 、B 两点,把AOB △绕点A 顺时针旋转90°后得到AO B ''△,则点B '的坐标是 ( ) (A )(3,4) (B )(4,5) (C )(7,4) (D )(7,3)【解析】依题可知:A (3,0)、B (0,4),故OA=3,OB=4;将AOB △绕点A 顺时针旋转90°后得到AO B ''△,OA='O A =3,''4OB O B ==,且'O A x ⊥轴,''O B //x 轴,故'B 点的横坐标为3+4=7,纵坐标为3,即'(7,3)B ,因此答案选D.二、填空题13. (长宁2018期末7)已知函数f (x )=+1,则f ()=______.【答案】3; 【解析】解:f (x )=+1,则f ()=×+1=2+1=3,故答案为:3.14.(长宁2019期末6)已知函数224(5)1m y m x m -=-++,若它是一次函数,则m = .【答案】﹣5;【解析】解:由224(5)1my m x m -=-++是一次函数,得m 2﹣24=1且m ﹣5≠0,解得m =﹣5.15.(普陀2018期中7)函数y =-2x +3在y 轴上的截距为______. 【答案】3;【解析】∵函数y=-2x+3,则b=3,∴根据截距的定义,得在y 轴上的截距为3,故答案为3. 16.(崇明2018期中6)一次函数26y x =-在y 轴上的截距是 . 【答案】- 6;【解析】一次函数26y x =-在y 轴上的截距是 – 6. 17.(松江2019期中8)一次函数的图像在y 轴上的截距是_____________.【答案】-2【解析】解:令x=0,得y=﹣2,则一次函数图象在y 轴上的截距是﹣2.故答案为:﹣2.18.(闵行2018期末7)已知一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5,那么b = . 【答案】9;【解析】解:∵y =2(x ﹣2)+b =2x +b ﹣4,且一次函数y =2(x ﹣2)+b 的图象在y 轴上的截距为5, ∴b ﹣4=5,解得:b =9.故答案为:9.19.(黄浦2018期中15)如果一次函数y =-3x +m -1的图象不经过第一象限,那么m 的取值范围是______ 【答案】m≤1;【解析】解:∵一次函数y=-3x+m-1的图象不经过第一象限, ∴m-1≤0, 解得 m≤1. 故答案是:m≤1. 20. (奉贤2018期末9)一次函数y =kx +3的图象不经过第3象限,那么k 的取值范围是______【解析】解:∵一次函数y=kx+3的图象不经过第3象限, 一次函数y=kx+3的图象即经过第一、二、四象限, ∴k <0. 故答案为:k <0,21.(金山2018期中9)将直线21y x =--向上平移4个单位,所得直线的表达式是 . 【答案】23y x =-+【解析】将直线21y x =--向上平移4个单位,则得21423y x y x =--+=-+即.22.(浦东四署2019期中11)将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为 . 【答案】34y x =--【解析】 将直线31y x =--沿y 轴向下平移3个单位,所得直线的表达式为313y x =---,即34y x =--. 23.(普陀2018期末10)将直线y =﹣2x ﹣2向上平移5个单位后,得到的直线为 . 【答案】y =﹣2x +3;【解析】解:将直线y =﹣2x ﹣2向上平移5个单位,得到直线y =﹣2x ﹣2+5,即y =﹣2x +3;24.(青浦2018期末8)把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为 . 【答案】y =2(x ﹣1);【解析】解:把函数y =2x 的图象向右平移1个单位长度,得到的函数图象解析式为y =2(x ﹣1). 25.(浦东四署2019期末11)如果将直线112y x =+平移,使其经过点(0,2),那么平移后所得直线的表达式是 . 【答案】122y x =+; 【解析】设平移后所得的直线表达式是12y x b =+,点(0,2)代入得2b =,故表达式为122y x =+.26. (杨浦2019期中3)直线b kx y +=与15+-=x y 平行,且经过点(2,1),则k= b= . 【答案】-5、11; 【解析】依题,得521k k b =-⎧⎨+=⎩,解得511k b =-⎧⎨=⎩.27. (普陀2018期中10)已知直线y =kx +b 如图所示,当y <0时,x 的取值范围是______.【答案】x <2【解析】解: ∵A 点横坐标为2,∴当y <0时,x <2,故答案为:x <2.28. (杨浦2019期中4)已知,一次函数b kx y +=的图像经过点A (2,1)(如下图所示),当1y ≥时,x 的取值范围是 .21OA (2,1)XY【答案】2x ≤;【解析】由“数形结合”法可知,当1y ≥时,是指直线上点A 左边的部分射线,所以它对应的x 的取值范围是2x ≤.29.(嘉定2019期末8)已知函数37y x =-+,当2x >时,函数值y 的取值范围是 . 【答案】1y <;【解析】由37y x =-+可得73y x -=-,因为2x >,故723y ->-,解得1y <. 30.(杨浦2019期中1)一次函数72--=x y 与x 轴的交点是 . 【答案】7,02⎛⎫-⎪⎝⎭; 【解析】令0y =,得027x =--,72x =-,所以与x 轴交点坐标为7,02⎛⎫- ⎪⎝⎭. 31.(崇明2018期中10)直线334y x =-与x 轴和y 轴的交点分别为A 、B ,那么线段AB 的长为 . 【答案】5; 【解析】因为直线334y x =-与x 轴和y 轴的交点分别为A 、B ,所以A (4,0)、B (0,-3),故OA=4,OB=3,所以AB=5.32.(浦东四署2018期中9一次函数的图像经过点(0,2)、(–2,0),这个一次函数的解析式是 . 【答案】y kx b =+;【解析】设一次函数解析式为y kx b =+,点(0,2)、(–2,0)代入得220b k b =⎧⎨-+=⎩,解得12k b =⎧⎨=⎩,故一次函数解析式为:2y x =+.33. (松江2019期中16)函数y kx b =+(k 、b 为常数)的图象如图所示,则关于x 的不等式0kx b +>的解集是_________.【答案】x<2.【解析】函数y kx b =+(k 、b 为常数)的图象经过(2,0),并且函数值y 随x 的增大而减小,所以x<2时,函数值小于0,即关于x 的不等式0kx b +>>0的解集是x<2.34. (长宁2018期末10)如图,一次函数y =kx +b (k ≠0)的图象经过点(2,0),则关于x 的不等式kx +b >0的解集是______.【答案】x <2;【解析】解:由图象可得:当x <2时,kx+b >0, 所以关于x 的不等式kx+b >0的解集是x <2.35. (普陀2018期中17)如图,在直角坐标系xOy 中,点A 的坐标是(2,0)、点B 的坐标是(0,2)、点C 的坐标是(0,3),若直线CD 的解析式为y =-x +3,则S △ABD 为______.【答案】1【解析】解:∵点A 的坐标是(2,0)、点B 的坐标是(0,2),∠AOB=90°,∴OA=2,OB=2,∴AB=22,∠ABO=45°,设过点A 和点B 的直线解析式为y=kx+b ,202k b b +=⎧⎨=⎩,得12k b =-⎧⎨=⎩,∴过点A 和点B 的直线解析式为y=-x+2,∵点C 的坐标是(0,3),直线CD 的解析式为y=-x+3,∴BC=1,AB ∥CD ,∴∠OCD=∠OBA=45°,∴点B到直线CD 的距离是:BC•sin45°=21⨯=2,∴点D 到AB 的距离是:2,∴S △ABD=22222⨯=1.三、解答题36.(闵行2018期末22)已知直线y =kx +b 经过点A (﹣20,5)、B (10,20)两点. (1)求直线y =kx +b 的表达式; (2)当x 取何值时,y >5. 【答案】(1)y =12x +15;(2)x >﹣20; 【解析】解:(1)根据题意得2051020k b k b -+=⎧⎨+=⎩,解得1215k b ⎧=⎪⎨⎪=⎩,所以直线解析式为y =12x +15; (2)解不等式12x +15>5得x >﹣20,即x >﹣20时,y >5. 37. (松江2019期中23)已知一次函数y=kx+b (k 、b 是常数)的图像平行于直线3y x =-,且经过点(2,-3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积. 【答案】(1) y=-3x+3;(2)32. 【解析】解:(1)∵y=kx+b 平行于直线3y x =-,∴k=-3,∵一次函数经过点(2,-3),∴代入得b=3, ∴y=-3x+3;(2)一次函数与x 轴交于点(1,0),与y 轴交于点(0,3),∴面积133122S ∆=⨯⨯=. 38. (浦东2018期末21)已知直线y =kx +b 与直线13y x k =-+都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.【答案】2;【解析】解:∵直线y =kx +b 与直线y =-x +k 都经过点A (6,-1),∴,解得,∴两条直线的解析式分别为y =x -7和y =-x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-x +1与x 轴交于点C (3,0),∴S △ABC =×4×1=2,即这两条直线与x 轴所围成的三角形面积为2.39.(金山2018期中23)已知一次函数的图像经过点A (-3,2),且平行于直线41y x =+. (1)求这个函数解析式;(2)求该一次函数的图像与坐标轴围成的图形面积. 【答案】(1)414y x =+;(2)492; 【解析】解:(1)因为一次函数图像与直线41y x =+平行,所以设一次函数4y x b =+,把(3,2)A -代入得122b -+=,得14b =,所以414y x =+;(2)设直线414y x =+与x 轴交于A ,与y 轴交于B ,当x=0时,y=14,故B (0,14);当y=0时,x=72-,故7(,0)2A -, 所以7,142OA OB ==,所以11749142222AOBS OA OB ∆=⨯⨯=⨯⨯=. 40.(崇明2018期中28)已知:如图,在直角坐标平面中,点A 在x轴的负半轴上,直线y kx =+点A ,与y 轴相交于点M ,点B 是点A 关于原点的对称点,过点B 的直线BC x ⊥轴,交直线y kx =+于点C ,如果60MAO ∠=︒. (1)求直线AC 的表达式;(2)如果点D 在直线AC 上,且ABD ∆是等腰三角形,请求出点D 的坐标.【答案】(1)y =(2)(2,D -或;【解析】解:(1)由题意,得点M的坐标为,即OM =,60CAB ∠=︒Q ,所以AO =1,即点A 的坐标为(-1,0);因为直线y kx =+经过点A,0k ∴=-+k =所以这条直线的表达式为y =+ (2)由题意,得点B (1,0).设直线AC 上的点D的坐标为(m +,因为ABD ∆是等腰三角形,所以:当AB=AD 时,点D坐标为(2,D -或;当AB=BD 时,点D坐标为D 、(-1,0)(与点A 重合,舍去);当BD=AD 时,点D 的坐标为(0,3).综上所述,点D的坐标为(0,3)(2,3)D --或.41.(松江2018期中27)如图,直线343y x =-+与x 轴相交于点A ,与直线3y x =相交于点P. (1)求点P 的坐标;(2)请判断OPA ∆的形状并说明理由;(3)动点E 从原点O 出发,以每秒1个单位的速度沿着O P A →→的路线向点A 匀速运动(E 不与点O 、A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分的面积为S ,求S 与t 之间的函数关系式.【答案】(1)(2,3);(2)OPA ∆是等边三角形;(3)223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩【解析】解:(1)由3433y x y x ⎧=-+⎪⎨=⎪⎩得223x y =⎧⎪⎨=⎪⎩P 的坐标为(2,23);(2)OPA ∆是等边三角形. 证明:当y=0时,x=4,所以A (4,0);222(23)4OP +=Q ,22(24)(230)4PA =-+-=,所以OA=OP=PA ,所以OPA ∆是等边三角形.(3)当02t <≤时,21133222t t S OF EF ==⨯=g ;当24t <<时,21334344383222t t S t t ⎛⎫⎫=⨯-+-=+- ⎪⎪⎝⎭⎭故223(02)334383(24)t S t t ⎧<≤⎪=⎨⎪+-<<⎪⎩.42.(浦东四署2018期中26)将直角坐标系中一次函数的图像与坐标轴围成的三角形,叫做此一次函数的坐标三角形(也称为直线的坐标三角形).如图,一次函数y =kx -7的图像与x 、y 轴分别交于点A 、B ,那么△ABO 为此一次函数的坐标三角形(也称为直线AB 的坐标三角形).(1)如果点C 在x 轴上,将△ABC 沿着直线AB 翻折,使点C 落在点D (0,18)上, 求直线BC 的坐标三角形的面积;(2)如果一次函数y =kx -7的坐标三角形的周长是21,求k 值;(3)在(1)(2)条件下,如果点E 的坐标是(0,8),直线AB 上有一点P ,使得△PDE 周长最小,且点P 正好落在某一个反比例函数的图像上,求这个反比例函数的解析式.【答案】(1)84;(2)43k =-;(3)45y x=-; 【解析】解:(1)∵翻折,∴BC =BD .∵点B (0,-7)、D (0,18),∴BC =25,OB =7, ∵OC 2+OB 2=BC 2,∴OC 2+72=252,∴OC =24, ∴直线BC 的坐标三角形的面积=12×7×24=84. (2)设点A 的坐标为(m ,0),(m <0).∵点B (0,-7),∴OA =-m ,OB =7,AB =227m +.∵△ABO的周长为21∴-m +7227m +21227m +m +14,平方,得28m =-147,∴m =214-,∴点A (214-,0).将点A (214-,0)的坐标代入y =kx -7,得43k =-; (3)联结CE 交AB 于点P ,联结DP .∵PC =PD ,点P 与C 、E 在一条直线上,∴PE +PD =PE +PC =CE ,∵CE 为定长,∴△PDE 的周长最小. ∵点C (-24,0)、E (0,8),∴直线CE 的解析式为y =13x +8. ∵直线AB的解析式为y=4 3 -x-7,∴联立183473y xy x⎧⎪⎪⎨⎪=--⎪⎩=+,解得95xy=⎧⎨=⎩∴点P的坐标为(-9,5 ),∴反比例函数的解析式为45yx=-.。

专题01-利用函数值解决比较大小问题归类(解析版)

专题01-利用函数值解决比较大小问题归类(解析版)

专题01 利用函数值解决比较大小问题归类一、重点题型目录【题型】一、利用指数函数的单调性比较大小 【题型】二、利用对数函数的单调性比较大小 【题型】三、利用幂函数的单调性比较大小 【题型】四、利用三角函数的单调性比较大小 【题型】五、作差法比较大小 【题型】六、作商法比较大小【题型】七、指数式与对数式互化法比较大小 【题型】八、构造函数法比较大小 【题型】九、放缩法比较大小 【题型】十、中间量法比较大小 二、题型讲解总结【题型】一、利用指数函数的单调性比较大小例1.(2023·全国·高三专题练习)已知0.50.60.3,0.3a b ==,122()5c =,则a 、b 、c 的大小关系为( ) A .a <b <c B .c <a <b C .b <a <c D .c <b <a【答案】C【分析】根据给定条件,利用指数函数、幂函数单调性即可比较大小作答. 【详解】函数0.3x y =是定义域R 上的单调减函数,且0.50.6,则0.50.60.30.3>,即a b >,又函数0.5y x = 在(0,)+∞上单调递增,且20.35<,于是得10.5220.3()5<,即c a >,所以a 、b 、c 的大小关系为b a c <<. 故选:C例2.(2023·全国·高三专题练习)已知311434333(),(),,552a b c ---⎛⎫=== ⎪⎝⎭则a ,b ,c 的大小关系是________.【答案】c b a <<或a b c >>【分析】利用指数函数的单调性比较大小即可【详解】因为35xy ⎛⎫= ⎪⎝⎭是R 上的减函数,且11034-<-<,所以11034333555--⎛⎫⎛⎫⎛⎫>> ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1a b >>,因为32xy ⎛⎫= ⎪⎝⎭是R 上的增函数,且304-<,所以30433122-⎛⎫⎛⎫<= ⎪⎪⎝⎭⎝⎭,所以1c <, 所以c b a <<故答案为:c b a <<或a b c >>【题型】二、利用对数函数的单调性比较大小例2.(2022·广西柳州·模拟预测(理))若35lg 0.3,log 2,log 4a b c ===,则( ) A .c b a >> B .b c a >> C .c a b >> D .a b c >>【答案】A【分析】利用对数的运算及对数函数的性质进行比较大小. 【详解】因为lg0.3lg10<=,所以a<0;因为3355log 2log 10,log 4log 10>=>=,所以0,0b c >>,42211log 5log 5log 2c ===21log 3b =,而22log 3log >所以11b c >,即b c <. 故选:A.例4.(2023·全国·高三专题练习)已知正数,,x y z 满足3815x y z ==,则下列说法正确的是( ) A .230x y -> B .230x y -< C .50x z -> D .50x z -<【答案】AD【分析】设38151x y z k ===>,可得3log x k =,8log y k =,15log z k =;根据对数运算法则和换底公式可表示出23x y -和5x z -,根据对数函数单调性可确定结果.【详解】,,x y z 为正数,∴可设38151x y z k ===>,则3log x k =,8log y k =,15log z k =;对于AB ,3821232log 3log log lg lg 2x y k k k k ⎛⎫-=-=-=⎪⎭,lg 2>1lg 2>,又lg lg10k >=,230x y ∴->,A 正确,B 错误; 对于CD ,31535log 5log log lg x z k k k k k ⎛⎫-=-=-=,5lg 243><lg lg10k >=,50x z ∴-<,C 错误,D 正确.故选:AD.【题型】三、利用幂函数的单调性比较大小例5.(2022·安徽·砀山中学高三阶段练习)已知实数()(),,00,m n ∈-∞+∞,且m n <,则下列结论一定正确的是( ) A .5533m n > B .65m n > C .22n mm n < D .142m n n m-->【答案】D【分析】根据幂函数的单调性可判断AD 选项,利用特值法可判断BC 选项. 【详解】因为53y x =为增函数,且m n <,故5533m n <,故A 错误; 令1m =,2n =,此时65m n <,故B 错误; 令2m =-,1n =,故214n m =,22m n =-,故22n m m n >,故C 错误; 因为0n m ->,故n m y x -=在第一象限为增函数,则11424m n n mn m--->=,故D 正确;故选:D.例6.(2022·河南·开封清华中学高三阶段练习(理))122a =,133b =,166c =,则a ,b ,c 的大小关系正确的是( ) A .a b c >> B .c b a >> C .b a c >> D .a c b >>【答案】C【分析】由幂的运算法则把幂的幂指数化为相同,然后由幂函数的单调性比较大小. 【详解】116228a ==,113639b ==,16y x =是增函数,689<<, ∴c<a<b 故选:C .例7.(2022·北京·北大附中高三开学考试)已知302a =,203b =则a ,b 中较大的数是___________. 【答案】b【分析】利用指数的性质有10108,9a b ==,结合幂函数的单调性即可判断大小关系. 【详解】由101030203892a b =<===, 所以a b <,较大的数是b . 故答案为:b .【题型】四、利用三角函数的单调性比较大小例8.(2022·全国·高三专题练习)sin1,sin 2,sin 3按从小到大排列的顺序为( ) A .sin3sin2sin1<< B .sin3sin1sin2<< C .sin1sin2sin3<<D .sin2sin1sin3<<【答案】B【分析】利用诱导公式化简后,再利用正弦函数的单调性比较即可. 【详解】sin 2sin(π2),sin3sin(π3)=-=-, 因为π0π31π22<-<<-<,sin y x =在π0,2⎛⎫⎪⎝⎭上为增函数,所以sin(π3)sin1sin(π2)-<<-, 所以sin3sin1sin2<<, 故选:B例9.(2022·四川·模拟预测(文))设1cos662a =︒︒,22tan131tan 13b ︒=+︒,c =则有( ) A .a b c >> B .a b c << C .a c b << D .b<c<a【答案】C【分析】利用辅助角公式化简a ,利用倍角公式化简,b c ,利用正弦函数的单调性比较大小.【详解】()1cos 66sin 306sin 242a ===︒-︒︒︒︒,2222tan132sin13cos13sin 261tan 13cos 13sin 13b ︒︒︒︒︒==︒︒=++,sin 25c ===︒. 因为函数sin y x =在π0,2⎛⎫ ⎪⎝⎭上是增函数,所以a c b <<.故选:C.例10.(2022·全国·高三专题练习)下列不等式中成立的是( ) A .34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭B .sin507sin145<C .3tan tan 57ππ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭D .sin4cos4<【答案】ABD【分析】利用三角函数的单调性判断.【详解】解:因为余弦函数cos y x =是偶函数,比较3cos 10π⎛⎫ ⎪⎝⎭与4cos 9π⎛⎫⎪⎝⎭即可,因为3401092πππ<<<,所以34cos cos 109ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即34cos cos 109ππ⎛⎫⎛⎫->- ⎪ ⎪⎝⎭⎝⎭,A 正确; sin507sin147=,正弦函数sin y x =,在(90,180)上单调递减,且90145147180<<<, 所以sin147sin145<,即sin507sin145<,B 正确;因为32752,且tan y x =在,22ππ⎛⎫- ⎪⎝⎭内单调递增, 所以3tan <tan 75ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,C 错误; 因为53442ππ<<,则sin4cos40<<,D 正确. 故选:ABD例11.(2022·广西·北海市教育教学研究室高一期末)设2sin38cos38a =︒︒,22tan 351tan 35b ︒=-︒,c =) A .c b a << B .c<a<b C .a c b << D .a b c <<【答案】B【分析】先对,a b 化简,然后利用三角函数的单调性比较大小即可 【详解】因为2sin38cos38sin76a =︒︒=︒,22tan 35tan 70tan 601sin 761tan 35b a ︒==︒>︒=>︒=-︒,sin 76sin 60a c =︒>︒==, 所以c<a<b . 故选:B【题型】五、作差法比较大小例12.(2023·全国·高三专题练习)已知01b a <<<,则下列不等式成立的是( ) A .log log a b b a < B .log 1a b > C .ln ln a b b a < D .ln ln a a b b >【答案】BC【分析】作差法判断选项A ;利用对数函数单调性判断选项B ;利用幂函数指数函数对数函数的单调性去判断选项C ;举反例排除选项D.【详解】选项A :()()22lg lg lg lg lg lg lg lg log log lg lg lg lg lg lg a b b a b a b a b a b a a b a b a b-+--=-== 由01b a <<<,可得lg lg 0b a <<,则lg lg 0b a >,lg lg 0b a -<,lg lg 0b a +< 则()()lg lg lg lg 0lg lg b a b a a b-+>,则log log a b b a >.判断错误;选项B :由01a <<,可得log a y x =为(0,)+∞上减函数, 又0b a <<,则log log 1a a b a >=.判断正确;选项C :由01a <<,可知x y a =为R 上减函数,又b a <,则a b a a > 由0a >,可知a y x =为(0,)+∞上增函数,又b a <,则a a b a <,则b a a b >又ln y x =为(0,)+∞上增函数,则ln ln b a a b >,则ln ln a b b a <.判断正确; 选项D :令211e e a b ==,,则01b a <<<,e ln l 111e n e a a =-=,222ln ln 112e e eb b =-=则22122e0e ln eln e a a b b --+==<-,即ln ln a a b b <.判断错误.故选:BC例13.(2023·全国·高三专题练习)已知实数m ,n 满足01n m <<<,则下列结论正确的是( ) A .11n n m m +<+ B .11m n m n+>+ C .n m m n > D .log log m n n m <【答案】AC【分析】利用作差法比较大小,可判断A,B,利用指数函数和幂函数的单调性,可判断C;根据对数函数的单调性,可判断D.【详解】由01n m <<<知,0n m -< ,故110,1(1)1n n n m n n m m m m m m +-+-=<<+++,A 正确; 由01n m <<<得0m n ->,110mn -<,所以()11110m n m n m n mn ⎛⎫⎛⎫+-+=--< ⎪ ⎪⎝⎭⎝⎭,即11m n m n+<+,故B 错误; 因为指数函数x y m =为单调减函数,故n m m m >,由幂函数m y x = 为单调增函数知m m m n > ,故n m m n >,故C 正确; 根据, 01n m <<<对数函数log ,log m n y x y x == 为单调减函数, 故log log 1log log m m n n n m n m >==>,故D 错误, 故选:AC【题型】六、作商法比较大小例14.(2023·全国·高三专题练习)下列说法中正确的是( ) A .若20352049x y =,则0x y == B .若22x x <,则12x <<C .若定义域为R 的奇函数()f x 在(),0∞-单调递减,且()20f =,则满足0xf x ≤()的x 的取值范围为][()22∞∞--⋃+,,D .若25log 3m =,log n =0mn m n <+<【答案】BD【分析】对于A ,令()203520490x yt t ==>,将指数式转化为对数式即可判断;对于B , 作出函数2,2x y y x ==的图像,结合图像即可得判断B ;对于C ,根据函数的奇偶性不等式()0xf x ≤即为0x =或()00x f x <⎧⎨≥⎩或()00x f x >⎧⎨≤⎩,解之即可判断C ;对于D ,分别判断,m n 的符号,再利用作商法比较,m n mn +即可判断D.【详解】解:对于A ,令()203520490x yt t ==>,则20352049log ,log x t y t ==,当且仅当1t =时,0x y ==,当1t ≠时,x y ≠,故A 错误;对于B ,作出函数2,2x y y x ==的图像,又当1x =时,1221=⨯,当2x =时,2222=⨯, 所以若22x x <,则12x <<,故B 正确;对于C ,因为()f x 为R 上的奇函数,所以()00f =,因为()f x 在(),0∞-单调递减,所以函数在()0,∞+也单调递减,因为()20f =,所以()()220f f -=-=, 则当()(),20,2x ∈-∞-时,()0f x >,当()()2,02,x ∈-+∞时,()0f x <,若()0xf x ≤,则0x =或()00x f x <⎧⎨≥⎩或()00x f x >⎧⎨≤⎩,所以0x =或2x ≤-或2x ≥,所以满足()0xf x ≥的x 的取值范围为[][){}22,0-⋃∞+∞⋃,-,故C 不正确;对于D ,2255log 31l 5og 2m =<=-,225525log 3log 24m m =>==-, 所以()2,1m ∈--,221log log 2n ==,22log log 21n =<=,所以1,12n ⎛⎫∈ ⎪⎝⎭,所以0m n +<,0mn <,由331128log log 55m n mn m n +=+=+=, 因为380log 15<<,所以1m n mn +<,所以m n mn +>,所以0mn m n <+<,故D 正确. 故选:BD.【题型】七、指数式与对数式互化法比较大小例15.(2023·全国·高三专题练习)已知2510a b ==,则( ) A .111a b+>B .2a b >C .4ab >D .4a b +>【答案】BCD【分析】根据指数式与对数式的互化,再利用对数的运算性质及对数大小的比较及不等式的性质即可求解.【详解】252510,log 10,log 10,a ba b ==∴==对于A ,lg lg lg lg log log lg lg lg lg a b +=+=+=+251111112510101010101025log log log log =+===⨯101010102255101,故A 不正确;对于B ,log ,log log log a b ====2255510221010100,342328,216,525,5125====log log log ;log log log a b <<⇒<<<<⇒<<222555816342510012522103,2a b >,故B 正确; 对于C ,()()lg lg lg lg lg lg log log log log lg lg lg lg ab ++=⋅=⋅=⋅=++102525251025101015122525log log log log log log =+++⋅=++25252515252252log log ,log log ab >=>=∴>++=22555422102204,故C 正确;对于D ,由B 知,,,a b b a b <<<<∴<<∴<+<311342231422,故D 正确;故选:BCD.【题型】八、构造函数法比较大小例16.(2022·广东·深圳中学高三阶段练习)下列大小关系正确的是( ). A .2 1.91.92< B . 2.922 2.9< C .712log 4log 7< D.712log 4log 7+【答案】ABC【分析】构造函数ln ()xf x x=,利用导数判断其单调性后判断A ,利用指数函数性质判断B ,利用对数函数性质及基本不等式判断C ,根据对数换底公式、对数函数性质判断D . 【详解】设ln ()x f x x=,则21ln ()xf x x -'=,0e x <<时,()0f x '>,()f x 递增,而0 1.92e <<<,所以(1.9)(2)f f <,即ln1.9ln 21.92<,2 1.9ln1.9ln 2<, 即2 1.91.92<,A 正确;2.9322288.41 2.9<=<=,B 正确;770log 4log 12<<,所以222777777(log 4log 12)(log 48)(log 49)log 4log 121444+⋅<=<=,所以71271log 4log 7log 12<=,C 正确;10102264(2)102410==>,76107823543104=<<,7107710log 4log 417=>,所以77log 40.710>=, 472401=,341217287=<,所以3412124log 7log 713=>,123log 70.754>=,所以712log 4log 70.70.75 1.45+>+=D 错. 故选:ABC .例17.(2022·河南河南·一模(文))已知e ππe e ,π,a b c ===,则这三个数的大小关系为( ) A .c b a << B .b c a << C .b a c << D .c a b <<【答案】A【分析】构造函数()()ln ,0xf x x x=>,利用导数法研究单调性,并利用单调性可比较,a b ,在同一坐标系中作出xy =与y x =的图象,结合图象与幂函数的性质可比较,b c ,即可求解【详解】令()()ln ,0xf x x x =>,则()()21ln ,0x f x x x -'=>, 由0fx,解得0e x <<,由()0f x '<,解得e x >,所以()()ln ,0xf x x x=>在()0,e 上单调递增,在()e,+∞上单调递减; 因为πe >, 所以()()πe f f <,即ln πln eπe<,所以eln ππlne <,所以e πln πln e <, 又ln y x =递增, 所以e ππe <,即b a <;ee ππ=⎡⎤⎢⎥⎣⎦,在同一坐标系中作出xy =与y x =的图象,如图:由图象可知在()2,4中恒有xx >,又2π4<<,所以ππ>,又e y x =在()0,∞+上单调递增,且ππ>所以eπe πeπ=⎡⎤>⎢⎥⎣⎦,即b c >;综上可知:c b a <<, 故选:A【题型】九、放缩法比较大小例18.(2023·上海·高三专题练习)设0.21e 1,ln1.2,5a b c =-==,则,,a b c 的大小关系为___________.(从小到大顺序排) 【答案】b<c<a【分析】方法一:构造函数()e 1x f x x =--和()ln 1g x x x =-+,求导确定单调性,利用单调性即可比较大小.【详解】[方法一]:【最优解】构造函数法记()e 1x f x x =--,则()e 1xf x '=-,当0x >时,()0f x '>,故()f x 在()0+∞,上单调递增,故0.20.2(0.2)(0)e 0.210e 10.2f f >⇒-->⇒->,故a c >,记()ln 1g x x x =-+,则11()1xg x x x-'=-=,当1x >时,()0g x '<,故()g x 在()1+∞,单调递减,故(1.2)(1)0ln1.2 1.210ln1.20.2g g <=⇒-+<⇒<,故b c <,因此a c b >>. 故答案为:b<c<a [方法二]:泰勒公式放缩0.2110.210.2a e c =->+-==,由函数切线放缩ln(1)x x +<得()ln 10.20.2b c =+<=,因此a cb >>.故答案为:b<c<a【整体点评】方法一:根据式子特征,构造相关函数,利用其单调性比较出大小关系,是该题的通性通法,也是最优解;方法二:利用泰勒公式以及切线不等式放缩,解法简洁,但是内容超出教材,不是每一个同学可以掌握.【题型】十、中间量法比较大小例19.(2022·天津北辰·高三期中)已知0.12a =,0.3log 0.5b =,0.5log 0.2c =,则( ) A .c b a >> B .b c a >> C .c a b >> D .a c b >>【答案】C【分析】利用指数函数和对数函数的性质,与中间量1,2比较大小即可得到结果. 【详解】因为0.10.51222a <=<<,0.30.3log 0.5log 0.31b =<=,0.50.5log 0.2log 0.252c =>=, 所以c a b >>. 故选:C .例20.(2022·北京·北大附中高三阶段练习)设ln 2a =,122b =,133c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b a c << C .a c b << D .c a b <<【答案】A【分析】通过0ln 21<<,所以判断出01a <<;又对122b =,133c =进行化简,得到121628b ==,131639c ==,从而判断出a ,b ,c 的大小关系. 【详解】ln 2a =,而0ln 21<<,所以01a <<;又121628b ==,131639c ==∴令16()f x x =,而函数()f x 在(0,)+∞上递增∴1b c << ∴a b c <<三、题型模拟演练 一、单选题1.(2022·山东·济南市历城第二中学高三阶段练习)已知集合{}{}231,340x A x B x x x =≥=-->,则A B =( )A .{}1x x <-B .{}04x x <≤C .{}4x x >D .{10x x -<≤或}4x >【答案】C【分析】利用指数函数图象可得[)0A =+∞,,根据一元二次不等式可得B =4∞∞(,+)(-,-1),进而求出A B ⋂.【详解】[)0A =+∞,,B =4(,+)(-,-1)∞∞,A B =4+∞(,) 故选:C.2.(2022·云南·高三阶段练习)已知0.11.1a -=,ln3b =,c = ) A .a b c << B .a c b << C .c a b << D .c b a <<【答案】B【分析】根据指数函数和对数函数的单调性即可判断,,a b c 的大小.【详解】0.101.1 1.11-<=,ln 3=,ln e 1=>= ,所以a c b <<; 故选:B.3.(2022·陕西·交大附中高一期中)已知12a ⎛⎫= ⎪⎝⎭4log 8b =,π32c -⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为( ). A .a b c >> B .a c b >> C .b c a >> D .b a c >>【答案】A【分析】根据指数函数单调性及对数的运算性质即得.【详解】因为122a ⎛⎫==> ⎪⎝⎭,32443log 8log 42b ===,π33122c -⎛⎫⎛⎫=<= ⎪⎪⎝⎭⎝⎭, 所以a b c >>. 故选:A.4.(2022·重庆南开中学高三阶段练习)已知实数a ,b ,c 满足13440a b +⨯-=1=()()25log 3R a c x x x =+-+∈,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >> C .c b a >>D .a c b >>【分析】对题意进行化简,利用函数的单调性即可判断大小 【详解】由13440a b +⨯-=可得034144b a-=<=,所以0b a -<即b a <,1=y =R 上的增函数,可得b c <,因为221113124x x x ⎛⎫-+=-+> ⎪⎝⎭,所以由()()25log 3R a c x x x =+-+∈可得()255log 3log 10a c x x -=-+>=,所以a c >,故a c b >>. 故选:D5.(2022·山东省青岛第九中学高三阶段练习)已知函数 ()3xf x = ,且函数 ()g x 的图像与 ()f x 的图像关于 y x = 对称,函数 ()x ϕ 的图像与 ()g x 的图像关于 x 轴对称,设 12a f ⎛⎫=- ⎪⎝⎭ , 12b g ⎛⎫= ⎪⎝⎭ , 12c ϕ⎛⎫= ⎪⎝⎭.则( )A .a b c <<B .b c a <<C .c b a <<D .b a c <<【答案】D【分析】根据函数图像的对称关系可以得到()g x ,()x ϕ的解析式,代入后跟特殊值0比较可得b 最小,然后构造函数,利用特殊值和函数的单调性比较a ,c 的大小即可.【详解】因为()g x 的图像与()f x 的图像关于y x =对称,所以()3log g x x =,又因为()x ϕ的图像与()g x 关于x 轴对称,所以()3log x x ϕ=-,1210312a f -⎛⎫<=-=< ⎪⎝⎭,311log 022b g ⎛⎫==< ⎪⎝⎭,33110log log 2122c ϕ⎛⎫<==-=< ⎪⎝⎭,所以b 最小;1a =221log 32log c== 构造()22log h x x x =-,则()2ln 221ln 2ln 2x h x x x -'=-=, 当20,ln 2x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,所以()h x 在20,ln 2x ⎛⎫∈ ⎪⎝⎭上单调递减,因为0ln 21<<,所以22ln 2>,令2x =,得()20h =,所以()20h h >=,22112log 02log a c>⇒>>, 又因为0a >,0c >,所以c a >,综上所述c a b >>. 故选:D.【点睛】比较对数、指数、幂的大小的方法:∴利用指数函数、对数函数、幂函数的单调性比较大小; ∴借助特殊值“0”、“1”或其它的数值比较大小; ∴根据两数之间的关系,构造函数来比较大小.6.(2022·广西南宁·高三阶段练习(理))设e 3a =,πe b =,3πc =,则a 、b 、c 的大小关系为( ) A .a b c >> B .b c a >>C .b a c >>D .c b a >>【答案】D【分析】利用e e 3ππ3m c a <=<==,构造ln ()xf x x=且(e,)x ∈+∞研究单调性比较ln ,ln b m 大小,构造()3ln g x x x =-且(3,)x ∈+∞研究单调性判断函数值符号比较ln ,ln b c 的大小,即可得结果.【详解】由e e 3ππ3m c a <=<==, 因为ln πlne b =,ln eln πm =,则ln ln e e πeb =,ln ln πe ππm =, 令ln ()xf x x=且(e,)x ∈+∞,则21ln ()0x f x x -'=<,则()f x 递减, 所以(e)(π)f f >,即ln e ln πe π>,则ln ln b m >,故b m a >>; 因为ln πb =,ln 3ln πc =,由ln ln π3ln πb c -=-, 令()3ln g x x x =-且(3,)x ∈+∞,则3()0x g x x-'=>,则()g x 递增; 故3e (3)33ln 3ln 027g =-=<,4e (4)43ln 4ln 064g =-=<,而3π4<<, 所以(π)π3ln π0g =-<,则ln ln b c <,即>c b , 综上,c b a >>. 故选:D【点睛】关键点点睛:利用中间值得到e e 3ππ3m c a <=<==,构造ln ()xf x x=利用导数研究单调性比较ln ,ln b m ,作差法并构造()3ln g x x x =-研究函数值符号比较ln ,ln b c 大小.二、多选题7.(2023·全国·高三专题练习)已知2log a x =,2x b =,3x c =,其中()1,2x ∈,则下列结论正确的是( ) A .log b a c >B .b c a b >C .b c a b <D .log log a b b c <【答案】CD【分析】根据()1,2x ∈求出()0,1a ∈,()2,4b ∈,()3,9c ∈,借助指数函数与对数函数的单调性分别判断选项即可.【详解】因为()1,2x ∈,所以()0,1a ∈,()2,4b ∈,()3,9c ∈,且b c <,所以log 1b c a >>,故A 错误;因为()0,1ba ∈,1cb >,即bc a b <,故B 错误,C 正确;因为log 0a b <,log 0b c >,即log log a b b c <,故D 正确. 故选:CD.8.(2023·全国·高三专题练习)已知x ,y ∈R 且3344x y y x -<-,则( ) A .x y < B .33x y --<C .()lg 0y x ->D .133yx -⎛⎫< ⎪⎝⎭【答案】AD【分析】将原不等式转化为3344x x y y +<+,结合函数的单调性可得x y <,再根据指对幂函数的性质逐个判断即可【详解】因为x ,y ∈R 且3344x y y x -<-,即x ,y ∈R ,且3344x x y y +<+,设()34f x x x =+,因为函数3y x =在R 上单调递增,函数4y x =在R 上单调递增,所以函数()34f x x x =+在R 上单调递增,A ,由3344x x y y +<+,得()()f x f y <,所以x y <,故选项A 正确;B ,因为x ,y ∈R ,所以当x =0或y =0时,3x -,3y -没意义,故选项B 错误;C ,因为x y <,而只有当1y x ->时,()lg 0y x ->才能成立,故选项C 错误;D ,因为x y <,所以1133yx⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,即133yx -⎛⎫< ⎪⎝⎭,故选项D 正确.故选:AD三、填空题9.(2022·四川省泸县第二中学模拟预测(文))设32log 2a =,9log 15b ,13c -=,则a ,b ,c 大小关系为___________. 【答案】a b c >>【分析】根据对数的运算及对数函数的单调性,结合指数的运算即可求解.【详解】由题意可知,332log 2log 4log a ===,293331log 15log 15log 15log 152b , 当1a >时,log a y x =在()0,+∞上单调递增, 因为3331615,log 16log 15log 31,即1a b >>.11313c -==<,所以a b c >>. 故答案为:a b c >>.四、解答题10.(2022·全国·高三专题练习)已知0a >且1a ≠,()()log 1a f x x =+,()()log 1a g x x =-,()h x(1)求()()()f x g x h x ++的定义域D ;(2)已知0x D ∈,请比较()0f x 与()0g x 的大小关系. 【答案】(1)()0,1;(2)当1a >时,()()00f x g x >;当01a <<时,()()00f x g x <.【分析】(1)根据对数函数真数大于零,分母不为零,偶次开根根号下非负即可列出不等式组求D ;(2)根据a 的范围,根据对数函数单调性即可判断. (1)依题意,x 应满足10100x x x +>⎧⎪->⎨⎪>⎩,解得01x <<,∴函数()()()f x g x h x ++的定义域D =()0,1; (2)当()00,1x ∈时,有0011x x +>-,∴当1a >时,函数log a y x =单调递增,∴()()00f x g x >; ②当01a <<时,函数log a y x =单调递减,∴()()00f x g x <.。

函数图像的识别与判断解法探密

函数图像的识别与判断解法探密

龙源期刊网
函数图像的识别与判断解法探密
作者:吴志峰
来源:《广东教育·高中》2018年第12期
函数是高中数学的主干知识,也是高考考查的重点内容.在函数的高考题中,函数图像的
识别与判断问题是这几年高考的高频考点,这类问题往往通过给出函数背景或者函数解析式,和四个函数图像选项,要求考生利用函数的研究方法,对函数的图像进行识别和判断.这类问
题往往比较灵活,对考生解题能力要求较高,所以也是高考中的难点之一,由于每个函数图像的特征不同,选择的方法也不同,这令很多考生在解题时很为难,本文对高考中的函数图像的识别与判断问题进行研究,寻找解决这一类问题的一般方法,从而指导考生们科学备考,攻克函数图像问题.。

专题01 三角函数的实际应用(解析版)

专题01 三角函数的实际应用(解析版)

一、三角函数的实际应用知识点拨一、在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):定义边范围数量关系正弦斜边的对边A A ∠=sin c a A =sin 1sin 0<<A (∠A 为锐角)余弦斜边的邻边A A ∠=cos cb A =cos 1cos 0<<A (∠A 为锐角)B A cos sin =BA sin cos =1cos sin 22=+A A 正切的邻边的对边A tan ∠∠=A A baA =tan 0tan >A (∠A 为锐角)余切的对边的邻边A A A ∠∠=cot ab A =cot 0cot >A (∠A 为锐角)B A cot tan =B A tan cot =AA cot 1tan =(倒数)1cot tan =⋅AA 二、0°、30°、45°、60°、90°特殊角的三角函数值三角函数0°30°45°60°90°αsin 02122231αcos 12322210αtan 03313不存在αcot 不存在31330三、常见术语:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

对边邻边AC(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。

用字母i 表示,即hi l =。

坡度一般写成1:m 的形式,如1:5i =等。

把坡面与水平面的夹角记作α(叫做坡角),那么tan hi l α==。

例题演练一.选择题(共20小题)1.如图,为了测量旗杆AB 的高度,小明在点C 处放置了高度为2米的测角仪CD ,测得旗杆顶端点A 的仰角∠ADE =50.2°,然后他沿着坡度为i =的斜坡CF 走了20米到达点F ,再沿水平方向走8米就到达了旗杆底端点B .则旗杆AB 的高度约为( )米.(参考数据:sin50.2°≈0.77,cos50.2°≈0.64,tan50.2°≈1.2).A .8.48B .14C .18.8D .30.8【解答】解:如图,延长AB 交水平线于M ,作FN ⊥CM 于N ,延长DE 交AM 于H .:i h l=hlα在Rt△CFN中,∵=,CF=20米,∴FN=BM=12米,CN=16米,∴DH=CM=16+8=24米,在Rt△ADH中,AH=DH•tan50.2=24×1.2=28.8米,∴AB=AM﹣BM=AH+HM=BM=28.8+2﹣12=18.8米,故选:C.2.我校兴趣小组同学为测量校外“御墅临枫”的一栋电梯高层AB的楼高,从校前广场的C 处测得该座建筑物顶点A的仰角为45°,沿着C向上走到30米处的D点.再测得顶点A 的仰角为22°,已知CD的坡度:i=1:2,A、B、C、D在同一平面内,则高楼AB的高度为( )(参考数据;sin22°≈0.37,cos22°≈0.93,tan22°≈0.40)A.60B.70C.80D.90【解答】解:作AH⊥ED交ED的延长线于H,设DE=x米,∵CD的坡度:i=1:2,∴CE=2x米,由勾股定理得,DE2+CE2=CD2,即x2+(2x)2=(30)2,解得,x=30,则DE=30米,CE=60米,设AB=y米,则HE=y米,∴DH=y﹣30,∵∠ACB=45°,∴BC=AB=y,∴AH=BE=y+60,在Rt△AHD中,tan∠DAH=,则≈0.4,解得,y=90,∴高楼AB的高度为90米,故选:D.3.小敏利用无人机测量某座山的垂直高度AB.如图所示,无人机在地面BC上方130米的D 处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A ,B,C,D在同一平面内,则此山的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.146.4米B.222.9米C.225.7米D.318.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣130)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=130米,在Rt△DCR中,DR===65(米),∵tan∠ADH=,∴=0.4,解得x≈222.9,∴AB=222.9(米),故选:B.4.重庆实验外国语学校某数学兴趣小组,想测量华岩寺内七佛塔的高度,他们在点C处测得七佛塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得七佛塔顶部A的仰角为37°,七佛塔AB所在平台高度EF为0.8米,则七佛塔AB的高约为( )米.(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)A.20.8B.21.6C.23.2D.24【解答】解:根据题意可知:∠AHC=90°,∠ACH=45°,∴AH=HC,∵DN:NC=i=1:2.4,CD=5.2米,∴DN=2米,CN=4.8米,设DG⊥AB,垂足为G,在Rt△ADG中,∠ADG=37°,∵AG=AB﹣GB=AB﹣(DN﹣EF)=AB﹣1.2,又DG=NH=CN+HC=4.8+AH=4.8+AB+0.8=AB+5.6,∴tan∠ADG=,∴×(5.6+AB)≈AB﹣1.2,解得AB=21.6(米),答:碧津塔AB的高约为21.6米.故选:B.5.春节期间,某老师读到《行路难》中“闲来垂钓碧溪上,忽复乘舟梦日边.”邀约好友一起在江边垂钓,如图,河堤AB的坡度为1:2.4,AB长为5.2米,钓竿AC与水平线的夹角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角也是60°,则浮漂D与河堤下端B 之间的距离约为( )(参考数据:=1.732)A.2.33米B.2.35米C.2.36米D.2.42米【解答】解:如图,延长CA交DB延长线于点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴==,设AF=5x,BF=12x,在Rt△ABF中,由勾股定理知,5.22=25x2+144x2.解得:x=0.4,∴AF=5x=2(米),BF=12x=4.8(米),由题意得:AC=6米,∠CAG=∠C=60°,AG∥DF,∴∠EAF=90°﹣60°=30°,∠AEF=∠CAG=60°,∴EF=AF=(米),AE=2EF=(米),∵∠C=∠CED=60°,∴△CDE是等边三角形,∴DE=CE=AC+AE=(6+)米,∵BD=DE﹣EF﹣BF=6+﹣﹣4.8≈2.35(米),即浮漂D与河堤下端B之间的距离约为2.35米,故选:B.6.如图,为测量观光塔AB的高度,冬冬在坡度i=1:2.4的斜坡CD的D点测得塔顶A的仰角为52°,斜坡CD长为26米,C到塔底B的水平距离为9米.图中点A,B,C,D在同一平面内,则观光塔AB的高度约为( )米.(结果精确到0.1米,参考数据:sin52°≈0.79,cos52°≈0.62,tan52°≈1.28)A.10.5米B.16.1米C.20.7米D.32.2米【解答】解:如图,延长AB交过点D的水平面于F,作CE⊥DF于E,由题意得:CD=26米,BC=EF=9米,BF=CE,在Rt△CDE中,i=1:2.4,CD=26米,∴BF=CE=10米,ED=24米,在Rt△AFD中,∠AFD=90°,FD=EF+ED=33米,∠ADF=52°,∴AF=FD•tan52°≈33×1.28=42.24(米),∴AB=AF﹣BF=42.24﹣10≈32.2(米);即建筑物AB的高度为32.2米;故选:D.7.如图,一棵松树AB挺立在斜坡CB的顶端,斜坡CB长为52米,坡度为i=12:5,小张从与点C相距60米的点D处向上爬12米到达观景台DE的顶端点E,在此测得松树顶端点A的仰角为39°,则松树的高度AB约为( )(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81)A.16.8米B.28.8米C.40.8米D.64.2米【解答】解:延长AB交DC的延长线于H,作EF⊥AH于F,则四边形EDHF为矩形,∴FH=DE=12米,EF=DH,∵斜坡CB的坡度为t=12:5,∴设BH=12x,CH=5x,由勾股定理得,(5x)2+(12x)2=522,解得,x=4,则BH=12x=48米,CH=5x=20米,则EF=DH=DC+CH=60+20=80(米),在Rt△AEF中,tan∠AEF=,则AF=EF•tan∠AEF≈80×0.81=64.8(米),∴AB=AF+HF﹣BH=64.8+12﹣48=28.8(米),故选:B.8.小明和好朋友一起去三亚旅游,他们租住的酒店AB坐落在坡度为i=1:2.4的斜坡CD上,酒店AB高为129米.某天,小明在酒店顶楼的海景房A处向外看风景,发现酒店前有一座雕像C(雕像的高度忽略不计),已知雕像C距离海岸线上的点D的距离CD为260米,雕像C与酒店AB的水平距离为36米,他站在A处还看到远处海面上一艘即将靠岸的轮船E的俯角为27°.则轮船E距离海岸线上的点D的距离ED的长大约为( )米.(参考数据:tan27°≈0.5,sin27°≈0.45)A.262B.212C.244D.276【解答】解:如图,延长AB交ED的延长线于G,过C作CH⊥DG于H,CF⊥BG于F,则四边形CFGH是矩形,∴HG=CF=36(米),FG=CH,在Rt△CDH中,CD=260米,CH:DH=1:2.4,∴CH=100(米),DH=240(米),在Rt△BCF中,CF=36米,BF:CF=1:2.4,∴BF=15(米),FG=CH=100(米),∴DG=DH+HG=276(米),AG=AB+BF+FG=244(米),∵tan27°=≈0.5,即≈,解得:DE≈212(米),故选:B.9.保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为( )米.(结果精确到十分位)(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)A.18.3米B.19.3米C.20米D.21.2米【解答】解:连接DE,作BF⊥DE于F,BG⊥DA于G,如图:则DF=BG,BF=DG=AD+AG,∵AB=斜坡AB的坡度i=0.75=,∴设BG=3xm,则AG=4xm,BF=DG=20+4x(m),CF=BF+BC=20+4x+20=40+4x (m),由题意得:∠EBF=37°,∠ECF=22°,∵tan∠BEF==,tan∠ECF==,∴EF=tan37°(20+4x),EF=tan22°(40+4x),∴0.75(20+4x)=0.40(40+4x),解得:x=,∴DF=BG=3x=(m),EF=0.40(40+4x)=(m),∴DE=DF+EF=+≈19.3(m);故选:B.10.小李同学想测量广场科技楼CD的高度,他先在科技楼正对面的智慧楼AB的楼顶A点测得科技楼楼顶C点的仰角为45°.再在智慧楼的楼底B点测得科技楼楼顶C点的仰角为61°,然后从楼底B点经过4米长的平台BF到达楼梯F点,沿着坡度为i=1:2.4的楼梯向下到达楼梯底部E点,最后沿水平方向步行20米到达科技楼楼底D点(点A、B、C、D、E 、F在同一平面内,智慧楼AB和科技楼CD与水平方向垂直).已知智慧楼AB的高为24米,则科技楼CD的高约为( )米.(结果精确到0.1,参考数据:sin61°≈0.87.cos61°≈0.48,tan61°≈1.80)A.54.0B.56.4C.56.5D.56.6【解答】解:作AM⊥CD于M,FN⊥CD于N,FG⊥DE于点G,则四边形AMNB,四边形NDGF是矩形.在Rt△FEG中,FG:EG=1:2.4,设FG=5x,则EG=12x,∴FN=DG=12x+20,AB=24米,AM=BN=(24+12x)米,∵∠CAM=45°,∴AM=CM=(24+12x)米,∴CN=CM+MN=(48+12x)米,∵∠CBN=61°,∴tan∠CBN==,∴x=,∴CD=CM+MN+DN=24+12x+24+5x=24+17×+24=56.5(米).故选:C.11.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福士最高楼顶点F的仰角为45°,此时他头顶正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD 走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为( )(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米【解答】解:如图所示:延长AC和FE交于点G,过点B作BM⊥FE于点M,作DH⊥AG于点H,得矩形ABMG、DHEG,设DH=x,则HC=2x,BM=AG=160+120+2x=280+2x.EG=DH=x,∵∠FAG=45°,∠FGA=90°,∴∠AFG=45°,∴FG=AG,EF=FG﹣EG=AG﹣EG=280+2x﹣x=280+x,∴FM=FG﹣MG=280+2x﹣146=134+2x,在Rt△FBM中,tan31°=,即=0.6,解得x=42.5,则EF=280+x=322.5.故选:B.12.如图是杨家坪步行街某天桥扶梯横截面的平面图.身高为1.5米的小明站在距离扶梯底端A处8米远的点P处,测得扶梯顶端B的仰角为18°,扶梯AB的坡度i=3:4,已知扶梯顶端B到天桥顶部的距离为2.3米,则小明所在位置点P到天桥顶部的距离是( )(参考数据:sin18°≈0.29,cos18°≈0.95,tan18°≈)A.12.3米B.9.8米C.7.9米D.7.5米【解答】解:作BC⊥PA交PA的延长线于点C,作QD⊥BC于点D,∵扶梯AB的坡度i=3:4,∴,设BC=3x米,则AC=4x米,∵AP=8米,QP=1.5米,∴DQ=(4x+8)米,BD=(3x﹣1.5)米,∵∠BQD=18°,tan∠BQD=,tan18°≈,∴≈,解得x=2.5,∴BC=3x=7.5,∵点B到顶部的距离是2.3米,∴点C到顶部的距离是2.3+7.5=9.8(米),即点P到顶部的距离是9.8米,故选:B.13.如图,在某山坡前有一电视塔.小明在山坡坡脚P处测得电视塔顶端M的仰角为60°,在点P处小明沿山坡向上走39m到达D处,测得电视塔顶端M的仰角为30°.已知山坡坡度i=1:2.4,请你计算电视塔的高度ME约为( )m.(结果精确到0.1m,参考数据:≈1.732)A.59.8B.58.8C.53.7D.57.9【解答】解:如图,作DC⊥EP延长线于点C,作DF⊥ME于点F,作PH⊥DF于点H,则DC=PH=FE,DH=CP,HF=PE,∵山坡坡度i=DC:CP=1:2.4,PD=39,设DC=5x,则CP=12x,根据勾股定理,得(5x)2+(12x)2=392,解得x=3,则DC=15,CP=36,∴DH=CP=36,FE=DC=15,设MF=y,则ME=MF+FE=y+15,在Rt△DMF中,∠MDF=30°,∴DF=y,在Rt△MPE中,∠MPE=60°,∴PE=(y+15),∵DH=DF﹣HF,∴y﹣(y+15)=36,解得y=7.5+18,∴ME=MF+EF=7.5+18+15≈53.7(m).答:电视塔的高度ME约为53.7米.故选:C.14.如图,万达广场主楼楼顶立有广告牌DE,小辉准备利用所学的三角函数知识估测该主楼的高度.由于场地有限,不便测量,所以小辉沿坡度i=1:0.75的斜坡从看台前的B处步行50米到达C处,测得广告牌底部D的仰角为45°,广告牌顶部E的仰角为53°(小辉的身高忽略不计),已知广告牌DE=15米,则该主楼AD的高度约为( )(结果精确到整数,参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)A.80m B.85m C.89m D.90m【解答】解:过C作CF⊥AE于F,CG⊥AB于G,如图所示:则四边形AFCG是矩形,∴AF=CG,∵斜坡AB的坡度i=1:0.75==,BC=50米,∴BG=30(米),AF=CG=40(米),设DF=x米.在Rt△DCF中,∠DCF=45°,∴CF=DF=x米.在Rt△ECF中,∠ECF=53°,∴EF=tan53°•CF=1.3x(米),∵DE=15米,∴1.3x﹣x=15,∴x=50,∴DF=50米,∴AD=AF+DF=40+50=90(米),故选:D.15.图中的阴影部分是某水库大坝横截面,小明站在大坝上的A处看到一棵大树CD的影子刚好落在坝底的B处(点A与大树及其影子在同一平面内),此时太阳光与地面的夹角为60°,在A处测得树顶D的俯角为15°,如图所示,已知斜坡AB的坡度i=:1,若大树CD的高为8米,则大坝的高为( )米(结果精确到1米,参考数据≈1.414 ≈1.732)( )A.18B.19C.20D.21【解答】解:如图,过点D作DP⊥AB于点P,作AQ⊥BC交CB延长线于点Q,∵∠DBC=60°、CD=8,∴BD===16,∵AB的坡度i=tan∠ABQ=,∴∠ABQ=∠EAB=60°,∴∠ABD=60°,∴PD=BD sin∠ABD=16×=8,BP=BD cos∠ABD=16×=8,∵∠EAD=15°,∴∠DAP=∠BAE﹣∠EAD=45°,∴PA=PD=8,则AB=AP+BP=8+8,∴AQ=AB cos∠ABQ=(8+8)×=4+12≈19,故选:B.16.3月中旬某中学校园内的樱花树正值盛花期,供全校师生驻足观赏.如图,有一棵樱花树AB垂直于水平平台BC,通往平台有一斜坡CD,D、E在同一水平地面上,A、B、C、D、E均在同一平面内,已知BC=3米,CD=5米,DE=1米,斜坡CD的坡度是,李同学在水平地面E处测得树冠顶端A的仰角为62°,则樱花树的高度AB约为( )(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)A.9.16米B.12.04米C.13.16米D.15.04米【解答】解:过C作CG⊥DE交ED的延长线于G,延长AB交ED的延长线于H,如图所示:则四边形BHGC为矩形,∴BH=CG,GH=BC=3米,∵斜坡CD的坡度是=,∴设CG=3x米,则DG=4x,由勾股定理得,CD2=CG2+DG2,即52=(3x)2+(4x)2,解得:x=1,∴BH=CG=3(米),DG=4(米),∴EH=DE+DG+GH=1+4+3=8(米),在Rt△AHE中,tan∠AEH==tan62°≈1.88,∴AH≈1.88EH=1.88×8=15.04(米),∴AB=AH﹣BH≈15.04﹣3=12.04(米),故选:B.17.某数学兴趣小组在歌乐山森林公园借助无人机测量某山峰的垂直高度AB.如图所示,无人机在地面BC上方120米的D处测得山顶A的仰角为22°,测得山脚C的俯角为63.5°.已知AC的坡度为1:0.75,点A,B,C,D在同一平面内,则山峰的垂直高度AB约为( )(参考数据:sin63.5°≈0.89,tan63.5°≈2.00,sin22°≈0.37,tan22°≈0.40)A.141.4米B.188.6米C.205.7米D.308.6米【解答】解:如图,过点D作DH⊥AB于H,过点C作CR⊥DH于R,设AB=x米,则AH=(x﹣120)米.∵AB:BC=1:0.75,∴BC=RH=0.75x(米),BH=CR=120米,在Rt△DCR中,DR=≈=60(米),∵tan∠ADH=,∴=0.4,解得x≈205.7,∴AB=205.7(米),故选:C.18.小菁在数学实践课中测量路灯的高度.如图,已知她的身高AB1.2米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°.那么该路灯顶端O到地面的距离约为( )(sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2 .1)A.3.2米B.3.9米C.4.4米D.4.7米【解答】解:过点O作OE⊥AC于点E,延长BD交OE于点F,设DF=x,∴BF=BD+DF=3+x,∵tan65°=,∴OF=x tan65°,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x≈0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15(米),∴OE=3.15+1.2=4.35≈4.4(米),故选:C.19.如图,某班数学兴趣小组利用数学知识测量建筑物DEFC的高度.他们从点A出发沿着坡度为i=1:2.4的斜坡AB步行26米到达点B处,此时测得建筑物顶端C的仰角α=35°,建筑物底端D的俯角β=30°.若AD为水平的地面,则此建筑物的高度CD约为( )米.(参考数据:≈1.7,tan35°≈0.7)A.23.1B.21.9C.27.5D.30【解答】解:如图所示:过点B作BN⊥AD,BM⊥DC垂足分别为:N,M,∵i=1:2.4,AB=26m,∴设BN=x,则AN=2.4x,∴AB=2.6x,则2.6x=26,解得:x=10,故BN=DM=10m,则tan30°===,解得:BM=10,则tan35°===0.7,解得:CM≈11.9(m),故DC=MC+DM=11.9+10=21.9(m).故选:B.20.如图,某数学活动小组为测量学校旗杆AB的高度,从旗杆正前方2m处的点C出发,沿坡度l=1:2的斜坡CD前进5m到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5m,已知A,B,C,D,E在同一平面内,AB⊥BC,AB∥D E,则旗杆AB的高度是( )(参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.732,≈2.236,结果保留一位小数)A.8.2B.8.4C.8.6D.8.8【解答】解:延长ED交BC的延长线于点F,作EG⊥AB于G,DH⊥AB于H,则四边形GHDE为矩形,∴GH=DE=1.5,GE=DH,设DF=x,∵斜坡CD的坡度为1:2,∴CF=2x,由勾股定理得,x2+(2x)2=52,解得,x=,则DF=,CF=2,∴GE=DH=BC+CF=2+2,在Rt△AGE中,tan∠AEG=,则AG=EG•tan∠AEG≈(2+2),∴AB=AG+GH+BH≈4.85+1.5+2.24≈8.6(米),故选:C.。

专题01 锐角三角形函数和特殊角的三角函数值(解析版)(重点突围)

专题01 锐角三角形函数和特殊角的三角函数值(解析版)(重点突围)

专题01锐角三角形函数和特殊角的三角函数值考点一正弦、余弦、正切的概念辨析考点二求角的正弦值、余弦值、正切值考点三已知正弦值、余弦值、正切值求边长考点四求特殊角的三角函数值考点一正弦、余弦、正切的概念辨析A.sinBCAAB=B.【变式训练】A.CDACB.BDCB【答案】C【分析】根据已知可得∠B=∠ACD 【详解】A.∵CD⊥AB,考点二求角的正弦值、余弦值、正切值【变式训练】【答案】5 5【分析】连接AC,根据格点特点得出答案.(1)求证:四边形OCEB是矩形;AB=,(2)连接DE,当5【答案】(1)见解析Q 四边形ABCD 是菱形,OA OC \=,OB OD =在Rt AOB △中,5AB =考点三 已知正弦值、余弦值、正切值求边长Q ∠C =90°,AB =sin 8BC BC A AB \===解得:6BC =,故选:A .【变式训练】【答案】5【分析】根据5sin 13A =,可设【详解】解:∵5sin A =,sin【点睛】本题考查锐角三角函数和勾股定理,熟练掌握锐角三角函数的定义和勾股定理的计算是解答本题的关键.3.(2022·安徽宿州【答案】46【分析】首先根据考点四求特殊角的三角函数值【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【变式训练】化简.A.43B【答案】B【分析】依据折叠的性质以及矩形的性质,易得股定理易得BF的长.根据三角函数的定义,易得A.55【答案】D【分析】先根据圆周角定理可得【答案】1【分析】连接AB ,由勾股定理求得【详解】解:连接AB 由勾股定理得:AB =∴AB =AO ,22OA AB +∴△ABO 是以OB 为斜边的等腰直角三角形,∴tan tan 45AOB а==【答案】53【分析】根据直角三角形的边角关系可求出MC NC MN 、、,再根据角平分线的定义以及等腰三角形的判定得出【详解】解:在ABC V 中,=90C Ð∴10BCAB ==,2AC AB BC =-【点睛】本题考查直角三角形的边角关系,角平分线的定义,相似三角形的判定和性质以及平行四边形的判定和性质,掌握直角三角形的边角关系以及相似三角形的判定和性质是解决问题的前提,用含有数式表示MC、NC、MN是正确解答的关键.三、解答题11.(2022·吉林·长春市第五十二中学九年级阶段练习)计算:【答案】4sin 5B =(1)求证:AE=AC;(2)若cos∠E=35,CE=12,求矩形【答案】(1)见解析(2)矩形ABCD的面积为48(1)求证:△ABE∽△DEC(2)当AD=25时,且AE<DE时,求(3)当BP=9时,求BE·EF的值.【答案】(1)见详解1∥,BF=PG=BP=9,AB=12∵BE PG∴四边形BPGF是菱形,∥,GF=BP=9,∴BP GF∴∠GFE=∠ABE,(1)求证:AM FM=;(2)如图2,若点B¢恰好落在对角线AC上,求tan F的值;(3)当2BE CE=时,求线段AM的长.【答案】(1)见解析;(2)1 tan2F=;(3)线段AM的长为14518或736.由AB CF ∥,,ABE FCE BAE \Ð=ÐÐΔΔABE FCE \∽,\2AB BE CF CE ==,即6CF=由AB CF ∥:,ABE FCE BAE CFE\Ð=ÐÐ=ÐΔABE FCE \D ∽,\2AB BE CF CE ==,即62CF=,3CF \=,则633DF =-=,解题时注意分类思想与方程思想的运用.。

专题01 选择基础重点题型(一)(解析版)

专题01 选择基础重点题型(一)(解析版)

专题01 选择基础重点题型(一)1.(2023•广东)计算32a a +的结果为( )A .1a B .26a C .5a D .6a【答案】C 【详解】32a a +32a +=5a =.故本题选:C .2.(2023•广东)我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了( )A .黄金分割数B .平均数C .众数D .中位数【答案】A【详解】我国著名数学家华罗庚曾为普及优选法作出重要贡献.优选法中有一种0.618法应用了黄金分割数,故选:A .3.(2023•广东)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等.小明恰好选中“烹饪”的概率为( )A .18B .16C .14D .12【答案】C【详解】Q 共有“种植”“烹饪”“陶艺”“木工”4门兴趣课程,\小明恰好选中“烹饪”的概率为14.故选:C .4.(2022•广东)如图,在ABC D 中,4BC =,点D ,E 分别为AB ,AC 的中点,则(DE = )A .14B .12C .1D .2【答案】D【详解】Q 点D ,E 分别为AB ,AC 的中点,4BC =,DE \是ABC D 的中位线,114222DE BC \==´=,故选:D .5.(2022•广东)在平面直角坐标系中,将点(1,1)向右平移2个单位后,得到的点的坐标是()A .(3,1)B .(1,1)-C .(1,3)D .(1,1)-【答案】A【详解】将点(1,1)向右平移2个单位后,横坐标加2,所以平移后点的坐标为(3,1),故选:A .6.(2022•广东)书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A .14B .13C .12D .23【答案】B【详解】根据题意可得,P (从中任取1本书是物理书)13=.故选:B .7.(2021•广东)若||0a -=,则(ab = )A B .92C .D .9【答案】B【详解】由题意得,0a =,2291240a ab b -+=,解得a =b =所以,92ab ==.故选:B .8.(2021•广东)下列图形是正方体展开图的个数为( )A.1个B.2个C.3个D.4个【答案】C【详解】由正方体的展开图的特征可知,可以拼成正方体是下列三个图形:故这些图形是正方体展开图的个数为3个.故选:C.9.(2021•广东)如图,AB是OÐ的平分线交AC于点D,e的直径,点C为圆上一点,3AC=,ABCCD=,则Oe的直径为( )1A B.C.1D.2【答案】B【详解】如图,过点D作DT AB^于T.Q是直径,AB\Ð=°,ACB90\^,DC BC^,Q平分CBADB^,DT BAÐ,DC BC\==,1DC DT3AC=Q,2 AD AC CD\=-=,2AD DT\=,30A\Ð=°,cos30ACAB\===°,解法二:2AD DT=由此处开始,可以证明30DAB DBAÐ=Ð=°,DA DB\=.DT AB^Q,AT TB\=,\点O与点T重合,在Rt ADTD中用勾股定理得AT=2AB AT=得解.故选:B.10.(2020•广东)已知ABCD的周长为16,点D,E,F分别为ABCD三条边的中点,则DEFD的周长为( )A.8B.C.16D.4【答案】A【详解】DQ、E、F分别为ABCD三边的中点,DE\、DF、EF都是ABCD的中位线,12DF AC\=,12DE BC=,12EF AC=,故DEFD的周长11()16822DE DF EF BC AB AC=++=++=´=.故选:A.11.(2020•广东)若一个多边形的内角和是540°,则该多边形的边数为( )A.4B.5C.6D.7【答案】B【详解】设多边形的边数是n ,则(2)180540n -×°=°,解得5n =.故选:B .12.(2020•广东)把函数2(1)2y x =-+图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =-+【答案】C【详解】二次函数2(1)2y x =-+的图象的顶点坐标为(1,2),\向右平移1个单位长度后的函数图象的顶点坐标为(2,2),\所得的图象解析式为2(2)2y x =-+.故选:C .13.(2019•广东)数据3,3,5,8,11的中位数是( )A .3B .4C .5D .6【答案】C【详解】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.故选:C .14.(2019•广东)实数a 、b 在数轴上的对应点的位置如图所示,下列式子成立的是( )A .a b >B .||||a b <C .0a b +>D .0ab <【答案】D【详解】由图可得:21a -<<-,01b <<,a b \<,故A 错误;||||a b >,故B 错误;0a b +<,故C 错误;0ab <,故D 正确;故选:D .15.(2019•的结果是( )A .4-B .4C .4±D .2【答案】B4==.故选:B .16.(2023•东莞市二模)在3317,p ,2023这五个数中,无理数的个数为( )A .2B .3C .4D .5【答案】A【详解】在3317p ,2023中,3317,2023p ,是无理数,共2个,故选:A .17.(2023•东莞市二模)已知方程2310x x -+=的两个根分别为1x 、2x ,则1212x x x x +-×的值为()A .7B .5C .3D .2【答案】D【详解】Q 方程2310x x -+=的两个根分别为1x 、2x ,123x x \+=,121x x ×=,1212312x x x x \+-×=-=,故选:D .18.(2023•有意义的x 的取值范围在数轴上表示为( )A .B .C .D .【答案】B【详解】Q 20x \-…,2x \…,故选:B .19.(2023•东莞市校级二模)方程28150x x -+=左边配成一个完全平方式后,所得的方程是( )A .2(6)1x -=B .2(4)1x -=C .2(4)31x -=D .2(4)7x -=-【答案】B【详解】2815x x -=-Q ,28161516x x \-+=-+,即2(4)1x -=,故选:B .20.(2023•东莞市校级二模)将一副三角尺按如图所示的位置摆放在直尺上,则1Ð的度数为( )A .45°B .65°C .75°D .85°【答案】C 【详解】26045180Ð+°+°=°Q ,275\Ð=°.Q 直尺的上下两边平行,1275\Ð=Ð=°.故选:C .21.(2023•东莞市校级二模)如图,AB 是O e 的直径,C ,D 为O e 上两点,若6AB =,3AC =,则ADC Ð的度数是( )A .15°B .30°C .45°D .60°【答案】B【详解】连接BC ,AB Q 是圆的直径,90ACB \Ð=°,6AB =Q ,3AC =,1sin 2AC B AB \==,30B \Ð=°,30ADC B \Ð=Ð=°.故选:B .22.(2023•东莞市二模)一个多边形的每个外角都等于72°,则这个多边形的边数为( )A .5B .6C .7D .8【答案】A【详解】多边形的边数是:360725¸=.故选:A .23.(2023•东莞市二模)把抛物线2y x =-向左平移1个单位,然后向下平移3个单位,则平移后抛物线的解析式为( )A .2(1)3y x =---B .2(1)3y x =--+C .2(1)3y x =-+-D .2(1)3y x =-++【答案】C【详解】根据题意,原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(1,3)--,\平移后抛物线解析式为:2(1)3y x =-+-.故选:C .24.(2023•东莞市二模)如图,//AB CD ,//BC EF .若158Ð=°,则2Ð的大小为( )A .120°B .122°C .132°D .148°【答案】B 【详解】//AB CD Q ,158Ð=°,158C \Ð=Ð=°,//BC EF Q ,58CGF C \Ð=Ð=°,218018058122CGF \Ð=°-Ð=°-°=°,故选:B .25.(2023•东莞市一模)下列计算结果正确的是( )A .23a a a +=B .62322a a a ¸=C .236236a a a ×=D .326(2)4a a =【答案】D【详解】A 、a 与2a 不是同类项,不能合并计算,故此选项不符合题意;B 、原式42a =,故此选项不符合题意;C 、原式56a =,故此选项不符合题意;D 、原式64a =,故此选项符合题意;故选:D .26.(2023•东莞市一模)某校5位同学在“国学经典诵读”比赛中,成绩(单位:分)分别是86,95,97,90,88.这组数据的中位数是( )A .86B .88C .90D .95【答案】C【详解】将5个同学的成绩重新排列为:86、88、90、95、97,所以这组数据的中位数为9(0分),故选:C .27.(2023•东莞市一模)如图所示,直线//a b ,231Ð=°,28A Ð=°,则1(Ð= )A .61°B .60°C .59°D .58°【答案】C【详解】//a b Q ,1DBC \Ð=Ð,2DBC A Ð=Ð+ÐQ ,2831=°+°59=°.故选:C .28.(2023•东莞市校级二模)下列运算正确的是( )A .623m m m ¸=B .22(21)41x x +=+C .326(3)9m m -=-D .34722a a a ×=【答案】D【详解】A .624m m m ¸=,故本选项错误,不符合题意;B .22(21)441x x x +=++,故本选项错误,不符合题意;C .326(3)9m m -=,故本选项错误,不符合题意;347.22D a a a ×=,故本选项正确,符合题意.故选:D .29.(2023•东莞市校级二模)已知点(3,2)-在一次函数4y kx =-的图象上,则k 等于( )A .2B .3C .2-D .3-【答案】C【详解】Q 点(3,2)-在一次函数4y kx =-的图象上,234k \=--,解得:2k =-.故选:C .30.(2023•东莞市校级二模)正十边形的外角和是( )A .144°B .180°C .360°D .1440°【答案】C【详解】Q 多边形的外角和等于360°,\正十边形的外角和是360°.故选:C .31.(2023•东莞市一模)关于x 的一元二次方程2220x mx m m ++-=的两实数根1x ,2x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C .32D .16或40【答案】C 【详解】由题意得△22(2)4()0m m m =--…,0m \…,Q 关于x 的一元二次方程2220x mx m m ++-=的两实数根1x ,2x ,满足122x x =,则122x x m +=-,2122x x m m ×=-=,220m m \--=,解得2m =或1m =-(舍去),124x x \+=-,2212(2)(2)x x ++22121212()2()44x x x x x x =++-+,原式2222(4)42432=+´--´+=.故选:C .32.(2023•东莞市一模)已知点1(A x ,1)y ,2(B x ,2)y 在反比例函数6y x=的图象上,且120x x <<,则下列结论一定正确的是( )A .120y y +<B .120y y +>C .12y y <D .12y y >【答案】C 【详解】Q 反比例函数6y x=中的60>,\该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,Q 点1(A x ,1)y ,2(B x ,2)y 在反比例函数6y x=的图象上,且120x x <<,\点A 位于第三象限,点B 位于第一象限,12y y \<.故选:C .33.(2023•东莞市一模)某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如右表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是( )册数/册12345人数/人25742A .3,3B .3,7C .2,7D .7,3【答案】A【详解】因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为3332+=,由表格知数据3出现了7次,次数最多,所以众数为3.故选:A .34.(2023•东莞市三模)已知A Ð为锐角且tan A =,则(A Ð= )A .30°B .45°C .60°D .不能确定【答案】C【详解】A ÐQ 为锐角,tan A =,60A \Ð=°.故选:C .35.(2023•东莞市三模)二次函数22(2)1y x =-+图象的顶点坐标是( )A .(2,0)B .(0,1)C .(2,1)D .(2,1)-【详解】Q 二次函数的顶点式为22(2)1y x =-+,\其顶点坐标为:(2,1).故选:C .36.(2023•东莞市三模)如图所示,五个大小相同的正方体搭成的几何体,其左视图是( )A .B .C .D .【答案】A 【详解】从左边看,是一列两个相邻的小正方形.故选:A .37.(2023•东莞市三模)某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x ,则下列方程正确的是( )A .225(1)64x +=B .225(1)64x +=C .264(1)25x -=D .264(1)25x -=【答案】A【详解】设游客每月的平均增长率为x ,依题意,得:225(1)64x +=.故选:A .38.(2023•东莞市校级一模)若一个多边形的内角和是它的外角和的3倍,则该多边形的边数为( )A .6B .7C .8D .9【答案】C【详解】设这个多边形的边数为x .由题意得,180(2)3603x °-=°´.故选:C .39.(2023•东莞市校级一模)下列运算结果正确的是( )A .2235x x x +=B .844()()x x x -¸-=C .2336(2)6xy x y -=-D .222(32)94x y x y +=+【答案】B【详解】A 、235x x x +=,原计算错误,故此选项不符合题意;B 、8444()()()x x x x -¸-=-=,原计算正确,故此选项符合题意;C 、2336(2)8xy x y -=-,原计算错误,故此选项不符合题意;D 、222(32)9124x y x xy y +=++,原计算错误,故此选项不符合题意.故选:B .40.(2023•东莞市校级一模)将抛物线2y x =向左平移3个单位,再向上平移2个单位,得到抛物线的表达式为( )A .2(3)2y x =++B .2(3)2y x =+-C .2(3)2y x =-+D .2(3)2y x =--【答案】A【详解】将抛物线2y x =先向左平移3个单位,再向上平移2个单位,得到新抛物线的表达式是2(3)2y x =++.故选:A .41.(2023•东莞市校级一模)定义新运算:23a b a b =-+Ä.例如,542543=´-+Ä,则不等式组0.522531x x x ì>-ïí>+ïîÄÄ的解集为( )A .3x >B .36x <<C .无解D .16x -<<【答案】B【详解】由0.52x >-Ä得132x -+>-,解得6x <,由2531x x >+Ä得45331x x -+>+,解得3x >,则不等式组的解集为36x <<,故选:B .42.(2023•东莞市校级一模)如图,//a b ,2120Ð=°,则1Ð的度数为( )A .80°B .70°C .60°D .50°【答案】C 【详解】//a b Q ,2120Ð=°,3120\Ð=°,1ÐQ 和3Ð是邻补角,160\Ð=°,故选:C .43.(2023•东莞市校级一模)某次比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法正确的是( )A .方差是3.6B .众数是10C .中位数是3D .平均数是6【答案】D【详解】平均数为(753510)56++++¸=;方差为22221[(76)(56)2(36)(106)] 5.65´-+-´+-+-=;数据中5出现2次,所以众数为5;数据重新排列为3、5、5、7、10,则中位数为5;故选:D .。

专题01 函数的图像与性质(解析版)

专题01  函数的图像与性质(解析版)

专题01 函数的图像与基本性质1、(2019年江苏卷).函数y =_____. 【答案】[1,7]-.【解析】由已知得2760x x +-≥, 即2670x x --≤ 解得17x -≤≤, 故函数的定义域为[1,7]-.2、(2019年江苏卷).设(),()f x g x 是定义在R 上的两个周期函数,()f x 的周期为4,()g x 的周期为2,且()f x 是奇函数.当2(]0,x ∈时,()f x =(2),01()1,122k x x g x x +<≤⎧⎪=⎨-<≤⎪⎩,其中0k >.若在区间(0]9,上,关于x 的方程()()f x g x =有8个不同的实数根,则k 的取值范围是_____.【答案】1,34⎡⎫⎪⎢⎪⎣⎭. 【解析】当(]0,2x ∈时,()f x =即()2211,0.x y y -+=≥又()f x 为奇函数,其图象关于原点对称,其周期为4,如图,函数()f x 与()g x 的图象,要使()()f x g x =在(]0,9上有8个实根,只需二者图象有8个交点即可.当1g()2x =-时,函数()f x 与()gx 的图象有2个交点;当g()(2)x k x =+时,()g x 的图象为恒过点()2,0-的直线,只需函数()f x 与()g x 的图象有6个交点.当()f x 与()g x 图象相切时,圆心()1,0到直线20kx y k -+=的距离为11=,得4k =,函数()f x 与()g x 的图象有3个交点;当g()(2)x k x =+过点1,1()时,函数()f x 与()g x 的图象有6个交点,此时13k =,得13k =. 综上可知,满足()()f x g x =在(]0,9上有8个实根的k 的取值范围为134⎡⎫⎪⎢⎪⎣⎭,. 3【2019年高考全国Ⅲ卷理数】若()f x 是定义域为R 的偶函数,且在(0,)+∞单调递减,则( )A. 233231(log )(2)(2)4f f f -->> B. 233231(log )(2)(2)4f f f -->>C. 233231(2)(2)(log )4f f f -->> D.233231(2)(2)(log )4f f f -->>答案:C解析:依据题意函数为偶函数且函数在(0,)+∞单调递减,则函数在(,0)-∞上单调递增;因为3331(log )(log 4)(log 4)4f f f =-=;又因为233230221log 4--<<<<;所以233231(2)(2)(log )4f f f -->>;故选C.4.【2019年高考全国Ⅰ卷文数】已知0.20.32log 0.2,2,0.2a b c ===,则( )A .B .C .D .【答案】Ba b c <<a c b <<c a b <<b c a <<【解析】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,c <=<=即01,c <<则a c b <<. 故选B .5、【2019年高考全国Ⅱ卷文数】设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )= ( ) A .e 1x -- B .e 1x -+ C .e 1x --- D .e 1x --+【答案】D【解析】由题意知()f x 是奇函数,且当x ≥0时,f (x )=e 1x -, 则当0x <时,0x ->,则()e 1()xf x f x --=-=-,得()e 1xf x -=-+.故选D .6、【2019年高考全国Ⅲ卷文数】函数()2sin sin2f x x x =-在[0,2π]的零点个数为( ) A .2 B .3 C .4D .5【答案】B【解析】由()2sin sin 22sin 2sin cos 2sin (1cos )0f x x x x x x x x =-=-=-=, 得sin 0x =或cos 1x =,[]0,2πx ∈,0πx ∴=、或2π.()f x ∴在[]0,2π的零点个数是3.故选B .7、【2019年高考天津文数】已知0.223log 7,log 8,0.3a b c ===,则a ,b ,c 的大小关系为( )A .c b a <<B .a b c <<C .b c a <<D .c a b <<【答案】A【解析】∵0.200.30.31c =<=,22log 7log 42a =>=, 331log 8log 92b <=<=,∴c b a <<. 故选A .8、【2019年高考北京文数】下列函数中,在区间(0,+∞)上单调递增的是( ) A .12y x = B .y =2x - C .12log y x =D .1y x=【答案】A【解析】易知函数122,log xy y x -==,1y x=在区间(0,)+∞上单调递减, 函数12y x =在区间(0,)+∞上单调递增. 故选A.9、【2019年高考全国Ⅰ卷文数】函数f (x )=在[,]-ππ的图像大致为( ) A .B .C .D .【答案】D 【解析】由22sin()()sin ()()cos()()cos x x x xf x f x x x x x -+----===--+-+,得()f x 是奇函数,其图象关于原点对称.又22π1π42π2()1,π2π()2f ++==>2π(π)01πf =>-+, 可知应为D 选项中的图象. 故选D .10、【2019年高考北京文数】在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮2sin cos ++x xx x度满足212152–lg E m m E =,其中星等为k m 的星的亮度为k E (k =1,2).已知太阳的星等是–26.7,天狼星的星等是–1.45,则太阳与天狼星的亮度的比值为( ) A .1010.1B .10.1C .lg10.1D .10−10.1【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=, 令211.45,26.7m m =-=-, 则()121222lg( 1.4526.7)10.1,55E m m E =-=⨯-+= 从而10.11210E E =. 故选A.11、【2019年高考浙江】在同一直角坐标系中,函数1x y a =,1(2log )ay x =+(a >0,且a ≠1)的图象可能是( )【答案】D【解析】当01a <<时,函数xy a =的图象过定点(0,1)且单调递减,则函数1x y a=的图象过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+⎪⎝⎭的图象过定点1(,0)2且单调递减,D 选项符合; 当1a >时,函数xy a =的图象过定点(0,1)且单调递增,则函数1xy a =的图象过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭的图象过定点1(,02)且单调递增,各选项均不符合. 综上,选D.12、【2019年高考全国Ⅲ卷文数】设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314) D .f (232-)>f (322-)>f (log 314) 【答案】C 【解析】()f x 是定义域为R 的偶函数,331(log )(log 4)4f f ∴=.223303322333log 4log 31,1222,log 422---->==>>∴>>,又()f x 在(0,+∞)上单调递减,∴23323(log 4)22f f f --⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭, 即23323122log 4f f f --⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选C .13、【2019年高考天津文数】已知函数01,()1,1.x f x x x⎧≤≤⎪=⎨>⎪⎩若关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解,则a 的取值范围为( ) A .59,44⎡⎤⎢⎥⎣⎦B .59,44⎛⎤⎥⎝⎦C .59,{1}44⎛⎤⎥⎝⎦D .59,{1}44⎡⎤⎢⎥⎣⎦【答案】D【解析】作出函数01,()1,1x f x x x⎧≤≤⎪=⎨>⎪⎩的图象,以及直线14y x =-,如图,关于x 的方程1()()4f x x a a =-+∈R 恰有两个互异的实数解, 即为()y f x =和1()4y x a a =-+∈R 的图象有两个交点, 平移直线14y x =-,考虑直线经过点(1,2)和(1,1)时,有两个交点,可得94a =或54a =, 考虑直线1()4y x a a =-+∈R 与1y x =在1x >时相切,2114ax x -=, 由210a ∆=-=,解得1a =(1-舍去), 所以a 的取值范围是{}59,149⎡⎤⎢⎥⎣⎦.故选D.一、函数的性质 1、求函数的单调区间首先应注意函数的定义域,函数的单调区间都是其定义域的子集;其次掌握一次函数、二次函数等基本初等函数的单调区间.常用方法:根据定义、利用图象和单调函数的性质、利用导数的性质. 2、复合函数的单调性对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或者(g (b ),g (a ))上是单调函数,若t =g (x )与y =f (t )的单调性相同(同时为增或减),则y =f [g (x )]为增函数;若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称:同增异减. 3、正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件; (2)f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.4、奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.5、判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.6、判断函数f (x )是奇函数,必须对定义域内的每一个x ,均有f (-x )=-f (x ),而不能说存在x 0使f (-x 0)=-f (x 0).对于偶函数的判断以此类推.7、分段函数奇偶性判定时,要以整体的观点进行判断,不可以利用函数在定义域某一区间上不是奇偶函数而否定函数在整个定义域上的奇偶性. 二、抽象函数的问题:我们把没有给出具体 解析式的函数称为抽象函数。

函数图象的分析与判断

函数图象的分析与判断

A.C→B→A→E
B.C→D→E→A
C.A→E→C→B
图1
图2
D.A→E→D→C
选择填空题突破
10.如图1,点E为矩形ABCD的边AD上的一点,点P从点B出发沿 折线BE→ED→DC运动到点C时停止.点Q从点B出发沿BC运动到点C时 停止,它们运动的速度都是2 cm/s.若P,Q两点同时开始运动,设运动 时间为t(s),△BPQ的面积为y(cm2),y与t的函数关系图象如图2所示,则
选择填空题突破
类型 函数图象的分析 例2 如图1,四边形ABCD是菱形,对角线AC,BD相交于点O,
P,Q两点同时从点O出发,以1 cm/s的速度在菱形的对角线及边上运 动 . 点 P 的 运 动 路 线 为 O→A→D→O , 点 Q 的 运 动 路 线 为 O→C→B→ O.设运动的时间为x s,P,Q之间的距离为y cm,y与x的函数关系的大 致图象如图2所示,
BD=8,点P是对角线BD上任意一点,过点P作EF∥AC,与平行四边形
的两条边分别相交于点E,F.设BP=x,EF=y,则能大致表示y与x之
间函数关系的图象为
( D)
选择填空题突破
3.如图,等边三角形BC和等边三角形
ECD的边BC,CD在同一条直线上,将△ABC
向右平移,直到点B与点D重合为止,设点B
选择填空题突破
训练 6.如图1,在矩形ABCD中,动点P从点B出发,沿折线
B→C→D→B运动,设点P经过的路程为x,△APB的面积为y.若y关于x
的函数图象如图2所示,则图2中的a等于
( C)
A.3
B.2 5
C.6
D.8
图1
图2
选择填空题突破
7.如图1,在△ABC中,点P从点A出发向点C运动,在运动过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 专题01 函数图像的识别与辨析 一、题型选讲
题型一 、由函数的解析式识别图像
函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项
例1、【2020年天津卷】.函数241x y x =
+的图象大致为( ) A
C.
【答案】A 【解析】由函数的解析式可得:()()241x f x f x x --=
=-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;
当1x =时,42011
y =
=>+,选项B 错误. 故选:A. 例2、【浙江卷】.函数y =x cos x +sin x 在区间[–π,+π]的图象大致为( )
A. B. .。

相关文档
最新文档