因式分解单元测试(无答案)

合集下载

第4章 因式分解 单元测试1

第4章 因式分解  单元测试1

单元测试(一)一、选择题1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12x C.x2﹣2x D.(x﹣3)2+2(x﹣3)+12.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣4 4.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1 D.x2﹣4+3x=(x+2)(x﹣2)+3x5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣46.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)2C.(x+4)(x﹣4)D.x(x﹣4)7.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2 8.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)29.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b210.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+111.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣112.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c二、填空题13.分解因式:m2+2m=.14.分解因式:a2+a=.15.因式分解:m2﹣m= .16.因式分解:x2﹣2x+(x﹣2)=.17.分解因式:ab﹣b2=.三、解答题18.因式分解:﹣3a3b+6a2b2﹣3ab3.19.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.21.(1)计算:(﹣+)÷(﹣)(2)分解因式:x3﹣4x.22.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.答案与解析1.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12x C.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【考点】51:因式分解的意义.【专题】选择题【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选B【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.2.下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+an B.a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2C.10x2﹣5x=5x(2x﹣1)D.x2﹣16+6x=(x+4)(x﹣4)+6x【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解的意义即可判断.【解答】解:(A)该变形为去括号,故A不是因式分解;(B)该等式右边没有化为几个整式的乘积形式,故B不是因式分解;(D)该等式右边没有化为几个整式的乘积形式,故D不是因式分解;故选C【点评】本题考查因式分解的意义,解题的关键是正确理解因式分解的意义,本题属于基础题型.3.把多项式a2﹣4a分解因式,结果正确的是()A.a(a﹣4)B.(a+2)(a﹣2)C.a(a+2)(a﹣2)D.(a﹣2 )2﹣4【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】多项式提取公因式即可得到结果.【解答】解:a2﹣4a=a(a﹣4).故选A【点评】此题考查了因式分解﹣提公因式法,找出多项式的公因式是解本题的关键.4.下列等式从左到右的变形属于因式分解的是()A.x2﹣2x+1=(x﹣1)2B.ax﹣ay+a=a(x﹣y)+aC.x3﹣x=x(x+1)(x﹣1)+1 D.x2﹣4+3x=(x+2)(x﹣2)+3x【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解的意义,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.【点评】本题考查了因式分解的意义,利用因式分解得意义是解题关键.5.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4,故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.6.多项式x2﹣4分解因式的结果是()A.(x+2)(x﹣2)B.(x﹣2)2C.(x+4)(x﹣4)D.x(x﹣4)【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用平方差公式进行分解即可.【解答】解:x2﹣4=(x+2)(x﹣2),故选:A.【点评】此题主要考查了公式法分解因式,关键是掌握平方差公式:a2﹣b2=(a+b)(a﹣b).7.把多项式m2﹣9m分解因式,结果正确的是()A.m(m﹣9) B.(m+3)(m﹣3)C.m(m+3)(m﹣3)D.(m﹣3)2【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】直接找出公因式m,提取分解因式即可.【解答】解:m2﹣9m=m(m﹣9).故选:A.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.8.多项式m2﹣m与多项式2m2﹣4m+2的公因式是()A.m﹣1 B.m+1 C.m2﹣1 D.(m﹣1)2【考点】52:公因式.【专题】选择题【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【解答】解:m2﹣m=m(m﹣1),2m2﹣4m+2=2(m﹣1)(m﹣1),m2﹣m与多项式2m2﹣4m+2的公因式是(m﹣1),故选:A.【点评】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.9.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2 B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2﹣b2【考点】54:因式分解﹣运用公式法.【专题】选择题【分析】直接利用乘法公式分解因式,进而判断得出答案.【解答】解:A、4a2+4a+1=(2a+1)2,正确;B、a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C、a2﹣2a﹣1无法运用公式分解因式,故此选项错误;D、(a﹣b)(a+b)=a2﹣b2,是多项式乘法,故此选项错误;故选:A.【点评】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.10.下列因式分解正确的是()A.m2+n2=(m+n)(m﹣n)B.x2+2x﹣1=(x﹣1)2C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1【考点】54:因式分解﹣运用公式法;53:因式分解﹣提公因式法.【专题】选择题【分析】分别利用公式法以及提取公因式法分解因式得出答案.【解答】解:A、m2+n2无法分解因式,故此选项错误;B、x2+2x﹣1无法分解因式,故此选项错误;C、a2﹣a=a(a﹣1),正确;D、a2+2a+1=(a+1)2,故此选项错误;故选:C.【点评】此题主要考查了公式法以及提取公因式法分解因式,正确应用乘法公式是解题关键.11.当a,b互为相反数时,代数式a2+ab﹣2的值为()A.2 B.0 C.﹣2 D.﹣1【考点】53:因式分解﹣提公因式法.【专题】选择题【分析】由互为相反数两数之和为0得到a+b=0,原式变形后代入计算即可求出值.【解答】解:由题意得到a+b=0,则原式=a(a+b)﹣2=0﹣2=﹣2,故选C【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【考点】51:因式分解的意义.【专题】选择题【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.13.分解因式:m2+2m=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提取公因式法即可求出答案.【解答】解:原式=m(m+2)故答案为:m(m+2)【点评】本题考查因式分解,解题的关键是熟练运用提取公因式法,本题属于基础题型.14.分解因式:a2+a=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】直接提取公因式分解因式得出即可.【解答】解:a2+a=a(a+1).故答案为:a(a+1).【点评】此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.15.因式分解:m2﹣m= .【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】式子的两项含有公因式m,提取公因式即可分解.【解答】解:m2﹣m=m(m﹣1)故答案是:m(m﹣1).【点评】本题主要考查了提取公因式分解因式,正确确定公因式是解题的关键.16.因式分解:x2﹣2x+(x﹣2)=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】通过两次提取公因式来进行因式分解.【解答】解:原式=x(x﹣2)+(x﹣2)=(x+1)(x﹣2).故答案是:(x+1)(x﹣2).【点评】本题考查了因式分解﹣提公因式法:如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.17.分解因式:ab﹣b2=.【考点】53:因式分解﹣提公因式法.【专题】填空题【分析】根据提公因式法,可得答案.【解答】解:原式=b(a﹣b),故答案为:b(a﹣b).【点评】本题考查了因式分解,利用提公因式法是解题关键.18.因式分解:﹣3a3b+6a2b2﹣3ab3.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=﹣3ab(a2﹣2ab+b2)=﹣3ab(a﹣b)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.19.发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32的结果是5的几倍?(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.延伸任意三个连续整数的平方和被3除的余数是几呢?请写出理由.【考点】59:因式分解的应用.【专题】解答题【分析】验证(1)计算(﹣1)2+02+12+22+32的结果,再将结果除以5即可;(2)用含n的代数式分别表示出其余的4个整数,再将它们的平方相加,化简得出它们的平方和,再证明是5的倍数;延伸:设三个连续整数的中间一个为n,用含n的代数式分别表示出其余的2个整数,再将它们相加,化简得出三个连续整数的平方和,再除以3得到余数.【解答】解:发现任意五个连续整数的平方和是5的倍数.验证(1)(﹣1)2+02+12+22+32=1+0+1+4+9=15,15÷5=3,即(﹣1)2+02+12+22+32的结果是5的3倍;(2)设五个连续整数的中间一个为n,则其余的4个整数分别是n﹣2,n﹣1,n+1,n+2,它们的平方和为:(n﹣2)2+(n﹣1)2+n2+(n+1)2+(n+2)2=n2﹣4n+4+n2﹣2n+1+n2+n2+2n+1+n2+4n+4=5n2+10,∵5n2+10=5(n2+2),又n是整数,∴n2+2是整数,∴五个连续整数的平方和是5的倍数;延伸设三个连续整数的中间一个为n,则其余的2个整数是n﹣1,n+1,它们的平方和为:(n﹣1)2+n2+(n+1)2=n2﹣2n+1+n2+n2+2n+1=3n2+2,∵n是整数,∴n2是整数,∴任意三个连续整数的平方和被3除的余数是2.【点评】本题考查了因式分解的应用,完全平方公式,整式的加减运算,解题的关键是掌握合并同类项的法则并且能够正确运算.20.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【考点】59:因式分解的应用.【专题】解答题【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解答】解:(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.【点评】此题考查了因式分解的应用,弄清题中“吉祥数”的定义是解本题的关键.21.(1)计算:(﹣+)÷(﹣)(2)分解因式:x3﹣4x.【考点】55:提公因式法与公式法的综合运用;1G:有理数的混合运算.【专题】解答题【分析】(1)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(2)原式提取x,再利用平方差公式分解即可.【解答】解:(1)原式=(﹣+)×(﹣72)=﹣56+27﹣10=﹣39;(2)原式=x(x2﹣4)=x(x+2)(x﹣2).【点评】此题考查了提公因式法与公式法的综合运用,以及有理数的混合运算,熟练掌握因式分解的方法及运算法则是解本题的关键.22.将下列各式因式分解:(1)x2﹣9(2)﹣3ma2+12ma﹣9m(3)4x2﹣3y(4x﹣3y)(4)(a+2b)2+2(a+2b﹣1)+3.【考点】55:提公因式法与公式法的综合运用.【专题】解答题【分析】(1)直接利用平方差公式分解因式得出答案;(2)首先提取公因式﹣3m,进而利用十字相乘法分解因式得出答案;(3)首先去括号,进而利用完全平方公式分解因式得出答案;(4)首先去括号,进而利用完全平方公式分解因式得出答案.【解答】解:(1)x2﹣9=(x+3)(x﹣3);(2)﹣3ma2+12ma﹣9m=﹣3m(a2﹣4a+3)=﹣3m(a﹣1)(a﹣3);(3)4x2﹣3y(4x﹣3y)=4x2﹣12xy+9y2,=(2x﹣3y)2;(4)(a+2b)2+2(a+2b﹣1)+3=(a+2b)2+2(a+2b)+1,=(a+2b+1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.23.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2=3002﹣2×300×(﹣4)+42=90000+2400+16=92416老师表扬小亮积极发言的同时,也指出了解题中的错误,你认为小亮的解题过程错在哪儿,并给出正确的答案.【考点】59:因式分解的应用.【专题】解答题【分析】运用完全平方公式进行正确的计算后即可得到正确的结果.【解答】解:答案:错在“﹣2×300×(﹣4)”,应为“﹣2×300×4”,公式用错.∴2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.【点评】本题考查了因式分解的应用,解题的关键是了解完全平方公式的形式并正确的应用.。

因式分解经典测试题含解析

因式分解经典测试题含解析

因式分解经典测试题含解析一、选择题1.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.2.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3.下列等式从左到右的变形是因式分解的是( )A .2x (x +3)=2x 2+6xB .24xy 2=3x •8y 2C .x 2+2xy +y 2+1=(x +y )2+1D .x 2﹣y 2=(x +y )(x ﹣y )【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A 、不是因式分解,故本选项不符合题意;B 、不是因式分解,故本选项不符合题意;C 、不是因式分解,故本选项不符合题意;D 、是因式分解,故本选项符合题意;故选D .【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4.设a ,b ,c 是ABC V 的三条边,且332222a b a b ab ac bc -=-+-,则这个三角形是( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a 3-b 3=a 2b-ab 2+ac 2-bc 2,∴a 3-b 3-a 2b+ab 2-ac 2+bc 2=0,(a 3-a 2b )+(ab 2-b 3)-(ac 2-bc 2)=0,a 2(a-b )+b 2(a-b )-c 2(a-b )=0,(a-b )(a 2+b 2-c 2)=0,所以a-b=0或a 2+b 2-c 2=0.所以a=b 或a 2+b 2=c 2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.5.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.6.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.7.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.8.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.9.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.10.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+-C .()2x 2x l x x 21++=++D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x 2−4y 2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.11.下列因式分解结果正确的是( ).A .10a 3+5a 2=5a(2a 2+a)B .4x 2-9=(4x+3)(4x-3)C .a 2-2a-1=(a-1)2D .x 2-5x-6=(x-6)(x+1)【答案】D【解析】【分析】A 可以利用提公因式法分解因式(必须分解到不能再分解为止),可对A 作出判断;而B 符合平方差公式的结构特点,因此可对B 作出判断;C 不符合完全平方公式的结构特点,因此不能分解,而D 可以利用十字相乘法分解因式,综上所述,即可得出答案.【详解】A 、原式=5a 2(2a+1),故A 不符合题意;B 、原式=(2x+3)(2x-3),故B 不符合题意;C 、a 2-2a-1不能利用完全平方公式分解因式,故C 不符合题意;D 、原式=(x-6)(x+1),故D 符合题意;故答案为D【点睛】此题主要考查了提取公因式法以及公式法和十字相乘法分解因式,正确掌握公式法分解因式是解题关键.12.已知a b >,a c >,若2M a ac =-,N ab bc =-,则M 与N 的大小关系是( )A .M N <B .M N =C .M N >D .不能确定【答案】C【解析】【分析】 计算M-N 的值,与0比较即可得答案.【详解】∵2M a ac =-,N ab bc =-,∴M-N=a(a-c)-b(a-c)=(a-b)(a-c),∵a b >,a c >,∴a-b >0,a-c >0,∴(a-b)(a-c)>0,∴M >N ,故选:C .【点睛】本题考查整式的运算,熟练掌握运算法则并灵活运用“作差法”比较两式大小是解题关键.13.下面的多项式中,能因式分解的是( )A .2m n +B .221m m -+C .2m n -D .21m m -+ 【答案】B【解析】【分析】完全平方公式的考察,()2222a b a ab b -=-+【详解】A 、C 、D 都无法进行因式分解B 中,()2222212111m m m m m -+=-⋅⋅+=-,可进行因式分解故选:B【点睛】本题考查了公式法因式分解,常见的乘法公式有:平方差公式:()()22a b a b a b -=+- 完全平方公式:()2222a b a ab b ±=±+14.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.15.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.16.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.17.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.18.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。

因式分解测试题

因式分解测试题

一.填空题1.__________________ 把一个 _________________ 成几个_________ 的的形式叫因式分解,因式分解与_______________ 好相反。

2.一个多项式各项的公因式是这个多项式各项系数的 __________________与各项都含有的字母的 ______________ 幕的 ________________ 。

3.分解因式时,如果有的因式还能分解,一定要再继续分解到每一个多项式因式都 ___________ 止。

4.变形(1)(a b)(a -b)二a2 -b2,(2)a2一b2= (a • b) (a b)中,属于因式分解过程的是_________________ 。

5.把一个多项式进行因式分解,首先看这个多项式各项有无________________ ,如果有,就先________________ 飞6.如果9xl^+ xy+4y2是一个完全平方式,那么k=。

7.女口果x2-3x-10分解为(x才)(xh ),那么a= _________________________ ,b= ______________ 。

8.用分组分解法时,一定要考虑分组后能否________________________ ,。

9.-15m3n4x2「35m4n2x 20m5n 二-5m3n ( )。

10.-a3 a2b -ab2 = ( )(a2-ab b2)。

11.a3(x-y)-3a2b(y-x》=( )(-y)( )。

12.a2(b2 _c22) -c (b _c)(a +b) = _______________________ 。

13.(a -2b)(3a 4b) (2a-4b)(2a-3b) =(a-2b)( ).14.(x -y)n -(x -y)n_2 =(x -y)n_2■ ___________________________ 。

15. 2 x -5xy^ 6 2 = o16. 4 x 2-10x +9 = o17. 2 x 2-y + x + y = o18. 1 - 2 2oa -4b +4ab =19. 22 a -b —4b — 4 = o20.如果a2+ma+9是一个完全平方式,那么m= ______________ 。

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)

七年级数学下册《因式分解》单元测试卷(附带答案解析)一.选择题1.下列多项式不能用平方差分解因式的是()A.0.36a2﹣0.04b2B.x2﹣16C.﹣a2+b2+c2D.﹣x2+y22.多项式4ab2+8ab2﹣12ab的公因式是()A.4ab B.2ab C.3ab D.5ab3.下列多项式中,在实数范围不能分解因式的是()A.x2+y2+2x+2y B.x2+y2+2xy﹣2C.x2﹣y2+4x+4y D.x2﹣y2+4y﹣44.下列从左到右的变形是因式分解的是()A.6a2b2=3ab•2ab B.﹣8x2+8x﹣2=﹣2(2x﹣1)2C.2x2+8x﹣1=2x(x+4)﹣1D.a2﹣1=a(a﹣)5.已知a、b、c是△ABC的三边的长,且满足a2+b2+c2=ab+bc+ac,关于此三角形的形状有下列判断:①是锐角三角形②是直角三角形③是钝角三角形④是等边三角形,其中正确说法的个数是()A.4个B.3个C.2个D.1个6.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值为()A.6B.18C.28D.507.若a=x﹣20,b=x﹣18,c=x﹣16,则a2+b2+c2﹣ab﹣ac﹣bc的值为()A.12B.24C.27D.54二.填空题(共8小题)8.因式分解:a3+2a2b+ab2=.9.已知x2+2x+2y+y2+2=0,则x2022+y2023=.10.若x2+2x﹣3=0,则x3+x2﹣5x+2022=.11.分解因式:25a﹣ab2=.12.若x2+mx﹣n=(x+2)(x﹣5),则m﹣n=.13.若mn=1,m﹣n=2,则m2n﹣mn2的值是.14.若x2+2(3﹣m)x+25可以用完全平方式来分解因式,则m的值为.15.甲乙两人完成因式分解x2+ax+b时,甲看错了a的值,分解的结果是(x+6)(x﹣2),乙看错了b的值,分解的结果为(x﹣8)(x+4),那么x2+ax+b分解因式正确的结果为.三.解答题16.分解因式:x(x+4)+4.17.将下列多项式因式分解(1)8x2﹣4xy(2)3x4+6x3y+3x2y2(3)a2﹣ab+ac﹣bc18.因式分解:(1)2a3﹣8a(2)3x2y﹣18xy2+27y319.因式分解:(1)x2(a﹣b)+9(b﹣a)(2)(a2+4)2﹣16a2.20.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法.请你完成下列各题:(1)因式分解:1﹣2(x﹣y)+(x﹣y)2(2)因式分解:25(a+2)2﹣10(a+2)+1(3)因式分解:(y2﹣6y)(y2﹣6y+18)+81.21.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)若F(a)=且a为100以内的正整数,则a=(2)如果m是一个两位数,那么试问F(m)是否存在最大值或最小值?若存在,求出最大(或最小)值以及此时m的取值并简要说明理由.参考答案与解析一.选择题1.解:A、0.36a2﹣0.04b2=(0.6a+0.2b)(0.6a﹣0.2b),能分解因式,本选项不符合题意B、x2﹣16=(x+4)(x﹣4),本选项不合题意C、﹣a2+b2+c2无法分解因式,本选项符合题意D、﹣x2+y2=(y+x)(y﹣x),本选项不合题意故选:C.2.解:多项式4ab2+8ab2﹣12ab的公因式4ab故选:A.3.解:A、原式不能分解B、原式=(x+y)2﹣2=(x+y+)(x+y﹣)C、原式=(x+y)(x﹣y)+4(x+y)=(x+y)(x﹣y+4)D、原式=x2﹣(y﹣2)2=(x+y﹣2)(x﹣y+2)故选:A.4.解:把一个多项式在一个范围(如有理数范围内分解,即所有项均为有理数)化为几个整式的积的形式,称为多项式的因式分解故选:B.5.解:∵a2+b2+c2=ab+bc+ca∴2a2+2b2+2c2=2ab+2bc+2ca即(a﹣b)2+(b﹣c)2+(a﹣c)2=0∴a=b=c∴此三角形为等边三角形,同时也是锐角三角形.故选:C.6.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2将a+b=3,ab=2代入得,ab(a+b)2=2×32=18故代数式a3b+2a2b2+ab3的值为18故选:B.7.解:原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]∵a=x﹣20,b=x﹣18,c=x﹣16∴a﹣b=﹣2,a﹣c=﹣4,b﹣c=﹣2则原式=×(4+16+4)=12故选:A.二.填空题8.解:原式=a(a2+2ab+b2)=a(a+b)2故答案为a(a+b)29.解:∵x2+2x+2y+y2+2=0∴(x2+2x+1)+(y2+2y+1)=0∴(x+1)2+(y+1)2=0∴x+1=0,y+1=0解得:x=﹣1,y=﹣1∴x2022+y2023=(﹣1)2022+(﹣1)2023=1+(﹣1)=0故答案为0.10.解:∵x2+2x﹣3=0∴x2=3﹣2x∴x3+x2﹣5x+2022=x(3﹣2x)+x2﹣5x+2022=3x﹣2x2+x2﹣5x+2022=﹣3+2x﹣2x+2022=2019 11.解:25a﹣ab2=a(25﹣b2)=a(5+b)(5﹣b)故答案为a(5+b)(5﹣b)12.解:∵x2+mx﹣n=(x+2)(x﹣5)=x2﹣3x﹣10∴m=﹣3,n=10∴m﹣n=﹣3﹣10=﹣13.故答案为﹣13.13.解:∵mn=1,m﹣n=2∴m2n﹣mn2=mn(m﹣n)=1×2=2故答案为2.14.解:∵x2+2(3﹣m)x+25可以用完全平方式来分解因式∴2(3﹣m)=±10解得:m=﹣2或8.故答案为﹣2或8.15.解:因式分解x2+ax+b时∵甲看错了a的值,分解的结果是(x+6)(x﹣2)∴b=6×(﹣2)=﹣12又∵乙看错了b的值,分解的结果为(x﹣8)(x+4)∴a=﹣8+4=﹣4∴原二次三项式为x2﹣4x﹣12因此,x2﹣4x﹣12=(x﹣6)(x+2)故答案为(x﹣6)(x+2).三.解答题16.解:原式=x2+4x+4=(x+2)217.解:(1)原式=4x(2x﹣y)(2)原式=3x2(x2+2xy+y2)=3x2(x+y)2(3)原式=a(a﹣b)+c(a﹣b)=(a﹣b)(a+c).18.解:(1)原式=2a(a2﹣4)=2a(a+2)(a﹣2)(2)原式=3y(x2﹣6xy+9y2)=3y(x﹣3y)2 19.解:(1)原式=x2(a﹣b)﹣9(a﹣b)=(a﹣b)(x2﹣9)=(a﹣b)(x﹣3)(x+3)(2)原式=(a2+4+4a)(a2+4﹣4a)=(a+2)2(a﹣2)220.解:(1)设x﹣y=m原式=1﹣2m+m2=(1﹣m)2=[1﹣(x﹣y)]2=(1﹣x+y)2(2)设a+2=m原式=25m2﹣10m+1=(5m﹣1)2=[5(a+2)﹣1]2=(5a+9)2(3)设y2﹣6y=m原式=m(m+18)+81=m2+18m+81=(m+9)2=(y2﹣6y+9)2=(y﹣3)4.21.解:(1)2×3=6,4×6=24,6×9=54,8×12=96 (2)F(m)存在最大值和最小值.当m为完全平方数,设m=n2(n为正整数)∵|n﹣n|=0∴n×n是m的最佳分解∴F(m)==1又∵F(m)=且p≤q∴F(m)最大值为1此时m为16,25,36,49,64,81当m为最大的两位数质数97时,F(m)存在最小值,最小值为.故答案为6,24,54,96.。

因式分解单元测试卷及答案解析

因式分解单元测试卷及答案解析

因式分解单元检测卷时间:90分钟满分:120分班级:__________姓名:__________得分:__________ 一、选择题(每小题3分,共30分)1.下列等式从左到右的变形属于因式分解的是()A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3 D.x3-x=x(x+1)(x-1)2.多项式-6xy2+9xy2z-12x2y2的公因式是()A.-3xy B.3xyz C.3y2z D.-3xy23.下列各式中,不能用平方差公式因式分解的是()A.-a2-4b2B.-1+25a2 C.116-9a2D.-a4+14.把代数式xy2-9x分解因式,结果正确的是()A.x(y2-9) B.x(y+3)2 C.x(y+3)(y-3) D.x(y+9)(y-9) 5.若(x+y)3-xy(x+y)=(x+y)·M,则M是()A.x2+y2B.x2-xy+y2 C.x2-3xy+y2D.x2+xy+y26.计算2100+(-2)101的结果是()A.2100B.-2100 C.2 D.-27.下列因式分解中,正确的是()A.x2y2-z2=x2(y+z)(y-z) B.-x2y+4xy-5y=-y(x2+4x+5)C.(x+2)2-9=(x+5)(x-1) D.9-12a+4a2=-(3-2a)28.如图是边长为a,b的长方形,它的周长为14,面积为10,则a2b+ab2-ab的值为() A.70 B.60C.130 D.1409.设n为整数,则代数式(2n+1)2-25一定能被下列数整除的是()A.4 B.5 C.n+2 D.1210.已知a,b,c是三角形ABC的三条边,且三角形两边之和大于第三边,则代数式(a-c)2-b2的值是()A.正数B.0 C.负数D.无法确定二、填空题(每小题3分,共24分)11.分解因式2a (b +c )-3(b +c )的结果是______________.12.多项式3a 2b 2-6a 3b 3-12a 2b 2c 的公因式是________.13.已知a ,b 互为相反数,则a 2-b 24的值为________. 14.把下面四个图形拼成一个大长方形,并据此写出一个多项式的因式分解:________________.15.分解因式:(m +1)(m -9)+8m =________________.16.若x +y =10,xy =1,则x 3y +xy 3的值是________.17.若二次三项式x 2+mx +9是一个完全平方式,则代数式m 2-2m +1的值为________.18.先阅读,再分解因式:x 4+4=(x 4+4x 2+4)-4x 2=(x 2+2)2-(2x )2=(x 2-2x +2)(x 2+2x +2),按照这种方法分解因式:x 4+64=______________.三、解答题(共66分)19.(16分)分解因式:(1)(2a +b )2-(a +2b )2; (2)-3x 2+2x -13;(3)3m 4-48; (4)x 2(x -y )+4(y -x ).20.(10分)(1)已知x =13,y =12,求代数式(3x +2y )2-(3x -6y )2的值;(2)已知a -b =-1,ab =3,求a 3b +ab 3-2a 2b 2的值.21.(8分)给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.22.(10分)利用因式分解计算:(1)8352-1652; (2)2032-203×206+1032.23.(10分)如图,在半径为R 的圆形钢板上,钻四个半径为r 的小圆孔,若R =8.9cm ,r =0.55cm ,请你应用所学知识用最简单的方法计算剩余部分面积(结果保留π).24.(12分)先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成整体,令x+y=A,则原式=A2+2A+1=(A+1)2.再将“A”还原,得原式=(x+y+1)2.上述解题用到的是“整体思想”,“整体思想”是数学解题中常用的一种思想方法,请你解答下列问题:(1)因式分解:1+2(x-y)+(x-y)2=____________;(2)因式分解:(a+b)(a+b-4)+4;(3)试说明:若n为正整数,则式子(n+1)(n+2)(n2+3n)+1的值一定是某一个整数的平方.参考答案与解析1.D 2.D 3.A 4.C 5.D6.B 7.C 8.B 9.A 10.C11.(b +c )(2a -3) 12.3a 2b 2 13.014.x 2+3x +2=(x +2)(x +1)15.(m +3)(m -3) 16.98 17.25或4918.(x 2-4x +8)(x 2+4x +8)19.解:(1)原式=(2a +b +a +2b )(2a +b -a -2b )=3(a +b )(a -b ).(4分)(2)原式=-3⎝⎛⎭⎫x 2-23x +19=-3⎝⎛⎭⎫x -132.(8分) (3)原式=3(m 4-42)=3(m 2+4)(m 2-4)=3(m 2+4)(m +2)(m -2).(12分)(4)原式=(x -y )(x 2-4)=(x -y )(x +2)(x -2).(16分)20.解:(1)原式=(3x +2y +3x -6y )(3x +2y -3x +6y )=(6x -4y )·8y =16y (3x -2y ).(2分)当x =13,y =12时,原式=16×12×⎝⎛⎭⎫3×13-2×12=0.(5分) (2)原式=ab (a 2+b 2-2ab )=ab (a -b )2.(7分)当ab =3,a -b =-1时,原式=3×(-1)2=3.(10分)21.解:12x 2+2x -1+12x 2+4x +1=x 2+6x =x (x +6)(答案不唯一).(8分) 22.解:(1)原式=(835+165)×(835-165)=1000×670=670000.(5分)(2)原式=2032-2×203×103+1032=(203-103)2=1002=10000.(10分)23.解:S 剩余=πR 2-4πr 2=π(R +2r )(R -2r ).(5分)当R =8.9cm ,r =0.55cm 时,S 剩余=π×10×7.8=78π(cm 2).(9分)答:剩余部分的面积为78πcm 2.(10分)24.解:(1)(x -y +1)2(2分)(2)令A =a +b ,则原式=A (A -4)+4=A 2-4A +4=(A -2)2,故(a +b )(a +b -4)+4=(a +b -2)2.(6分)(3)(n +1)(n +2)(n 2+3n )+1=(n 2+3n )[(n +1)(n +2)]+1=(n 2+3n )(n 2+3n +2)+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n +1)2.∵n 为正整数,∴n 2+3n +1也为正整数,∴式子(n +1)(n +2)(n 2+3n )+1的值一定是某一个整数的平方.(12分)。

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册

第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。

因式分解基础测试题及答案解析

因式分解基础测试题及答案解析

因式分解基础测试题及答案解析一、选择题1.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-故选:C .【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.2.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×1 3=83,故选C.【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.3.把多项式分解因式,正确的结果是()A.4a2+4a+1=(2a+1)2B.a2﹣4b2=(a﹣4b)(a+b)C.a2﹣2a﹣1=(a﹣1)2D.(a﹣b)(a+b)=a2+b2【答案】A【解析】【分析】本题考查的是因式分解中的平方差公式和完全平方公式【详解】解:A. 4a2+4a+1=(2a+1)2,正确;B. a2﹣4b2=(a﹣2b)(a+2b),故此选项错误;C. a2﹣2a+1=(a﹣1)2,故此选项错误;D. (a﹣b)(a+b)=a2﹣b2,故此选项错误;故选A4.下列等式从左边到右边的变形,属于因式分解的是( )A.2ab(a-b)=2a2b-2ab2B.x2+1=x(x+1 x )C.x2-4x+3=(x-2)2-1 D.a2-b2=(a+b)(a-b)【答案】D【解析】【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个多项式因式分解(也叫作分解因式).分解因式与整式乘法为相反变形.【详解】解:A.不是因式分解,而是整式的运算B.不是因式分解,等式左边的x是取任意实数,而等式右边的x≠0C.不是因式分解,原式=(x-3)(x-1)D.是因式分解.故选D.故答案为:D.【点睛】因式分解没有普遍适用的法则,初中数学教材中主要介绍了提公因式法、公式法、分组分解法、十字相乘法、配方法、待定系数法、拆项法等方法.5.下列运算结果正确的是( )A .321x x -=B .32x x x ÷=C .326x x x ⋅=D .222()x y x y +=+【答案】B【解析】【分析】根据合并同类项法则、同底数幂乘除法法则、公式法分解因式逐项进行计算即可得.【详解】A 、3x ﹣2x =x ,故A 选项错误;B 、x 3÷x 2=x ,正确;C 、x 3•x 2=x 5,故C 选项错误;D 、x 2+2xy+y 2=(x+y)2,故D 选项错误,故选B.【点睛】本题考查了合并同类项、同底数幂乘除、公式法分解因式,熟练掌握相关的运算法则以及完全平方公式的结构特征是解题的关键.6.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;7.如图,边长为a ,b 的矩形的周长为10,面积为6,则a 2b +ab 2的值为( )A .60B .16C .30D .11【答案】C【解析】【分析】 先把所给式子提公因式进行因式分解,整理为与所给周长和面积相关的式子,再代入求值即可.【详解】∵矩形的周长为10,∴a+b=5,∵矩形的面积为6,∴ab=6,∴a 2b+ab 2=ab (a+b )=30.故选:C .【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.8.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.9.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.10.下列等式从左到右的变形,属于因式分解的是()A.8x2y3=2x2⋅4 y3B.(x+1)(x﹣1)=x2﹣1C.3x﹣3y﹣1=3(x﹣y)﹣1 D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解.【详解】①是单项式的变形,不是因式分解;②是多项式乘以多项式的形式,不是因式分解;③左侧是多项式加减,右侧也是多项式加减,不是因式分解;④符合因式分解的定义,结果是整式的积,因此D正确;故选D.【点睛】本题考查因式分解的定义.正确理解因式分解的结果是“整式的积”的形式,是解题的关键.11.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.12.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .13.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).14.下列各因式分解正确的是()A.﹣x2+(﹣2)2=(x﹣2)(x+2)B.x2+2x﹣1=(x﹣1)2C.4x2﹣4x+1=(2x﹣1)2D.x3﹣4x=2(x﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A.﹣x2+(﹣2)2=(2+x)(2﹣x),故A错误;B.x2+2x﹣1无法因式分解,故B错误;C.4x2﹣4x+1=(2x﹣1)2,故C正确;D、x3﹣4x= x(x﹣2)(x+2),故D错误.故选:C.【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.15.下列式子从左到右变形是因式分解的是()A.12xy2=3xy•4y B.(x+1)(x﹣3)=x2﹣2x﹣3C.x2﹣4x+1=x(x﹣4)+1 D.x3﹣x=x(x+1)(x﹣1)【答案】D【解析】【分析】根据因式分解的定义逐个判断即可.【详解】A、不是因式分解,故本选项不符合题意;B、不是因式分解,故本选项不符合题意;C、不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选:D.【点睛】此题考查因式分解的定义,能熟记因式分解的定义的内容是解题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.16.把多项式分解因式,正确的结果是( )A .4a 2+4a +1=(2a +1)2B .a 2﹣4b 2=(a ﹣4b )(a +b )C .a 2﹣2a ﹣1=(a ﹣1)2D .(a ﹣b )(a +b )=a 2﹣b 2【答案】A【解析】【分析】直接利用平方差公式和完全平方公式进行分解因式,进而判断得出答案.【详解】A .4a 2+4a +1=(2a +1)2,正确;B .a 2﹣4b 2=(a ﹣2b )(a +2b ),故此选项错误;C .a 2﹣2a ﹣1在有理数范围内无法运用公式分解因式,故此选项错误;D .(a ﹣b )(a +b )=a 2﹣b 2,是多项式乘法,故此选项错误.故选:A .【点睛】此题主要考查了公式法分解因式,正确应用乘法公式是解题关键.17.已知a 、b 、c 是ABC 的三条边,且满足22a bc b ac +=+,则ABC 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.18.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】【分析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.19.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。

2020年秋鲁教版(五四制)八年级上册第1章《因式分解》单元测试卷

2020年秋鲁教版(五四制)八年级上册第1章《因式分解》单元测试卷

2020年鲁教五四版八年级上册第1章《因式分解》单元测试卷(满分100分)一.选择题(共12小题,满分36分,每小题3分)1.下列多项式中,不能因式分解的是()A.ab﹣a B.a2﹣9C.a2+2a+5D.4a2+4a+12.把2ax2+4ax进行因式分解,提取的公因式是()A.2a B.2x C.ax D.2ax3.下列等式从左到右变形中,属于因式分解的是()A.a(x+y)=ax+ay B.x2﹣2x+1=x(x﹣2)+1C.(x+3)(x﹣3)=x2﹣9D.x2﹣1=(x+1)(x﹣1)4.下列多项式中,能用完全平方公式分解因式的是()A.a2+4B.a2+ab+b2C.a2+4ab+b2D.x2+2x+15.已知x﹣y=1,xy=2,则x2y﹣xy2的值为()A.﹣B.﹣2C.D.26.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:a﹣b,x﹣y,x+y,a+b,x2﹣y2,a2﹣b2分别对应下列六个字:蜀、爱、我、巴、丽、美,现将(x2﹣y2)a2﹣(x2﹣y2)b2因式分解,结果呈现的密码信息可能是()A.我爱美B.巴蜀美C.我爱巴蜀D.巴蜀美丽7.对于①x﹣3xy=x(1﹣3y),②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形,表述正确的是()A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解8.812﹣81肯定能被()整除.A.79B.80C.82D.839.将多项式16m2+1加上一个单项式后,使它能够在我们所学范围内因式分解,则此单项式不能是()A.﹣2B.﹣15m2C.8m D.﹣8m10.多项式x2+mx﹣21因式分解的结果为(x+3)(x﹣7),则m的值是()A.4B.﹣4C.10D.﹣1011.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定12.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b).把余下的部分剪拼成一个长方形,通过计算阴影部分的面积,验证了一个等式,则这个等式是()A.a2﹣2ab+b2=(a﹣b)2B.a2﹣ab=a(a﹣b)C.a2﹣b2=(a﹣b)2D.a2﹣b2=(a+b)(a﹣b)二.填空题(共7小题,满分28分,每小题4分)13.把多项式4x﹣4x3因式分解为:.14.多项式6a2b﹣3ab2的公因式是.15.如果二次三项式x2+ax+2可分解为(x﹣1)(x+b),则a+b的值为.16.若实数x满足x2﹣2x﹣1=0,则2x3﹣7x2+4x﹣2020的值为.17.已知y≠0,且x2﹣3xy﹣4y2=0.则的值是.18.已知P=m2﹣m,Q=m﹣1(m为任意实数),则P、Q的大小关系为.19.如图①,是一个棱长为a的正方体中挖去一个棱长为b的小正方体(a>b)(1)如图①所示的几何体的体积是.(2)用另一种方法表示图①的体积:把图①分成如图②所示的三块长方体,将这三块长方体的体积相加后得到的多项式进行因式分解.比较这两种方法,可以得出一个代数恒等式.三.解答题(共4小题,满分36分)20.(8分)因式分解:(1)a3﹣a;(2)4ab2﹣4a2b﹣b3;(3)a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.21.(9分)已知a+b=﹣3,ab=2,求下列各式的值:(1)a3b+ab3;(2)a2+b2;(3)a4+b4;22.(9分)常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2﹣4y2﹣2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2﹣4y2﹣2x+4y=(x+2y)(x﹣2y)﹣2(x﹣2y)=(x﹣2y)(x+2y﹣2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2﹣2xy+y2﹣16;(2)△ABC三边a,b,c满足a2﹣ab﹣ac+bc=0,判断△ABC的形状.23.(10分)阅读下列文字与例题,并解答:将一个多项式分组进行因式分解后,可用提公因式法或公式法继续分解的方法称作分组分解法.例如:以下式子的分解因式的方法就称为分组分解法.a2+2ab+b2+ac+bc原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c)(1)试用“分组分解法”因式分解:x2﹣y2+xz﹣yz(2)已知四个实数a,b,c,d,满足a≠b,c≠d,并且a2+ac=12k,b2+bc=12k,c2+ac =24k,d2+ad=24k,同时成立.①当k=1时,求a+c的值;②当k≠0时,用含a的代数式分别表示b、c、d(直接写出答案即可).参考答案一.选择题(共12小题,满分36分,每小题3分)1.解:A、ab﹣a=a(b﹣1),能够分解因式,故此选项不合题意;B、a2﹣9=(a+3)(a﹣3),能够分解因式,故此选项不合题意;C、a2+2a+5,不能因式分解,故本选项符合题意;D、4a2+4a+1=(2a+1)2,能够分解因式,故此选项不合题意;故选:C.2.解:2ax2+4ax=2ax(x+2).故选:D.3.解:A、等式从左到右变形不属于因式分解,故本选项不符合题意;B、等式从左到右变形不属于因式分解,故本选项不符合题意;C、等式从左到右变形不属于因式分解,故本选项不符合题意;D、等式从左到右变形属于因式分解,故本选项符合题意;故选:D.4.解:A、a2+4,无法分解因式,故此选项错误;B、a2+ab+b2,无法运用公式分解因式,故此选项错误;C、a2+4ab+b2,无法运用公式分解因式,故此选项错误;D、x2+2x+1=(x+1)2,正确.故选:D.5.解:∵x﹣y=1,xy=2,∴x2y﹣xy2=xy(x﹣y)=2×1=2.故选:D.6.解:(x2﹣y2)a2﹣(x2﹣y2)b2=(x2﹣y2)(a2﹣b2)=(x+y)(x﹣y)(a+b)(a﹣b),由已知可得:我爱巴蜀,故选:C.7.解:①x﹣3xy=x(1﹣3y),从左到右的变形是因式分解;②(x+3)(x﹣1)=x2+2x﹣3,从左到右的变形是整式的乘法,不是因式分解;所以①是因式分解,②是乘法运算.故选:C.8.解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.9.解:A、16m2+1﹣2=16m2﹣1=(4m+1)(4m﹣1),不符合题意;B、16m2+1﹣15m2=m2+1,不能分解,符合题意;C、16m2+1+8m=(4m+1)2,不符合题意;D、16m2+1﹣8m=(4m﹣1)2,不符合题意.故选:B.10.解:∵多项式x2+mx﹣21因式分解的结果为(x+3)(x﹣7),∴m=﹣7+3=﹣4.故选:B.11.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.12.解:由图可知,大正方形减小正方形剩下的部分面积为:a2﹣b2;拼成的长方形的面积为:(a+b)×(a﹣b),所以得出:a2﹣b2=(a+b)(a﹣b),故选:D.二.填空题(共7小题,满分28分,每小题4分)13.解:原式=4x(1﹣x2)=4x(1+x)(1﹣x).故答案为:4x(1+x)(1﹣x).14.解:∵系数的最大公约数是3,相同字母的最低指数次幂是ab,∴多项式6a2b﹣3ab2的公因式是3ab.15.解:∵二次三项式x2+ax+2可分解为(x﹣1)(x+b),∴x2+ax+2=(x﹣1)(x+b)=x2+(b﹣1)x﹣b,则﹣b=2,b﹣1=a,解得:b=﹣2,a=﹣3,故a+b=﹣5.故答案是:﹣5.16.解:∵x2﹣2x﹣1=0∴x2﹣2x=1∴2x3﹣7x2+4x﹣2020=2x3﹣4x2﹣3x2+4x﹣2020=2x(x2﹣2x)﹣3x2+4x﹣2020=6x﹣3x2﹣2020=﹣3(x2﹣2x)﹣2020=﹣3﹣2020=﹣2023.故答案是:﹣2023.17.解:∵x2﹣3xy﹣4y2=0,即(x﹣4y)(x+y)=0,可得x=4y或x=﹣y,∴或,即的值是4或﹣1;故答案为:4或﹣1.18.解:∵P=m2﹣m,Q=m﹣1(m为任意实数),∴P﹣Q=m2﹣m﹣(m﹣1)=m2﹣2m+1=(m﹣1)2≥0,∴P≥Q.故答案为:P≥Q.19.解:(1)根据题意,得a3﹣b3.故答案为a3﹣b3.(2)根据题意,得a2(a﹣b)+ab(a﹣b)+b2(a﹣b)=a3﹣a2b+a2b﹣ab2+b2a﹣b3=a3﹣b3∴a3﹣b3=(a﹣b)(a2+ab+b2)故答案为(a﹣b)(a2+ab+b2)=a3﹣b3三.解答题(共4小题,满分36分)20.解:(1)a3﹣a=a(a2﹣1)=a(a+1)(a﹣1);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)a2(x﹣y)﹣9b2(x﹣y)=(x﹣y)(a2﹣9b2)=(x﹣y)(a+3b)(a﹣3b);(4)(y2﹣1)2+6 (1﹣y2)+9=(y2﹣1)2﹣6 (y2﹣1)+9=(y2﹣1﹣3)2=(y+2)2(y﹣2)2.21.解:∵a+b=﹣3,∴(a+b)2=9,∴a2+2ab+b2=9,∵ab=2,∴a2+b2=9﹣2ab=9﹣4=5;(1)a3b+ab3,=ab(a2+b2),=2×5,=10;(2)a2+b2,=(a+b)2﹣2ab,=(﹣3)2﹣2×2,=9﹣4,=5;(3)a4+b4,=(a2+b2)2﹣2a2b2,=52﹣2(ab)2,=25﹣2×22,=25﹣8,=17.22.解:(1)x2﹣2xy+y2﹣16=(x﹣y)2﹣42=(x﹣y+4)(x﹣y﹣4);(2)∵a2﹣ab﹣ac+bc=0∴a(a﹣b)﹣c(a﹣b)=0,∴(a﹣b)(a﹣c)=0,∴a=b或a=c或a=b=c,∴△ABC的形状是等腰三角形.23.解:(1)x2﹣y2+xz﹣yz=(x+y)(x﹣y)+z(x﹣y)=(x﹣y)(x+y+z);(2)①当k=1 时,得a2+ac=12,c2+ac=24,(a2+ac)+(c2+ac)=a(a+c)+c(a+c)=(a+c)(a+c)=(a+c)2=12+24=36,∴a+c=±6;②∵当k≠0时,∵a2+ac=12k,b2+bc=12k,c2+ac=24k,d2+ad=24k,∴(a2+ac)﹣(b2+bc)=0,即a2﹣b2+ac﹣bc=0,∴(a﹣b)(a+b+c)=0,∵a≠b,∴a+b+c=0,∴b=﹣a﹣c,∴由得c2+ac=24k,d2+ad=24k得,(c2+ac)﹣(d2+ad)=0,c2﹣d2+ac﹣ad=0,即(c﹣d)(c+d+a)=0,∵c≠d,∴c+d+a=0,∴d=﹣a﹣c,∴b=d=﹣a﹣c,又由a2+ac=12k,c2+ac=24k,得2(a2+ac)=c2+ac,即2a(a+c)=c(c+a),∴2a(a+c)﹣c(c+a)=0,即(a+c)(2a﹣c)=0,∴a+c=0或2a﹣c=0,∴c=﹣a,或c=2a,又k≠0,则c=2a,∴c=2a,b=d=﹣3a.。

2021-2022学年浙教版初中数学七年级下册第四章因式分解单元测试试题(精选)

2021-2022学年浙教版初中数学七年级下册第四章因式分解单元测试试题(精选)

第四章因式分解章节同步练习2022年·浙教版初中数学七年级下册知识点习题·定向攻克·含答案及详细解析浙教版初中数学七年级下册第四章因式分解单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(15小题,每小题3分,共计45分)11x -,则2x x -的值为( )A.0和1B.0和2C.0和-1D.0或±12、下列各式中,因式分解正确的是( )A.()22121x x x x ++=++B.()()22a b a b a b +=+-C.()222412923a ab b a b ++=+D.()231x x x x -=- 3、下列各式由左到右的变形中,属于因式分解的是( )A.﹣a 2﹣ab ﹣ac =﹣a (a +b +c )B.x 2+x +1=(x +1)2﹣x C.(x +2)(x ﹣1)=x 2+x ﹣2D.a 2+b 2=(a +b )2﹣2ab 4、下列因式分解结果正确的是( )A.24(4)x x x x -+=-+B.224(4)(4)x y x y x y -=+-C.2221(1)x x x ---=-+D.256(2)(3)x x x x --=--5、下列分解因式正确的是( )A.222()m n m n +=+B.22164(4)(4)m n m n m n -=-+C.3223(3)a a a a a a -+=-D.22244(2)a ab b a b -+=- 6、下列因式分解正确的是( )A.3ab 2﹣6ab =3a (b 2﹣2b )B.x (a ﹣b )﹣y (b ﹣a )=(a ﹣b )(x ﹣y )C.a 2+2ab ﹣4b 2=(a ﹣2b )2D.﹣a 2+a ﹣14=﹣14(2a ﹣1)27、多项式(2)(22)(2)x x x +--+可以因式分解成()(2)x m x n ++,则m n -的值是( )A.-1B.1C.-5D.58、若a 是整数,则2a a +一定能被下列哪个数整除( )A.2B.3C.5D.79、已知下列多项式:①22484x xy y +-;②222x xy y -+-;③2244xy x y ++;④2414x x --.其中,能用完全平方公式进行因式分解的有( )A.①②③④B.①②③C.①②④D.②③④10、已知23m m -的值为5,那么代数式2203026m m -+的值是( )A.2030B.2020C.2010D.200011、下列因式分解正确的是( )A.3p 2-3q 2=(3p +3q )(p -q )B.m 4-1=(m 2+1)(m 2-1) C.2p +2q +1=2(p +q )+1 D.m 2-4m +4=(m -2)2 12、下列等式中,从左到右的变形是因式分解的是( )A.2x (x ﹣1)=2x 2﹣2xB.4m 2﹣n 2=(4m +n )(4m ﹣n ) C.﹣x 2+2x =﹣x (x ﹣2) D.x 2﹣2x +3=x (x ﹣2)+313、下列各式能用平方差公式分解因式的是( )A.22m n +B.()224x y --C.224a b --D.2294x y -+14、下列各式由左到右的变形中,属于因式分解的是( ).A.()()2212+-=+-x x x xB.()2111x x x x ++=++C.()2a ab ac a a b c ---=-++D.()2222a b a b ab +=+- 15、下列各式由左边到右边的变形,是因式分解的是( )A.x 2+xy ﹣4=x (x +y )﹣4B.2(1)y x x y x x x ++=++C.(x +2)(x ﹣2)=x 2﹣4D.x 2﹣2x +1=(x ﹣1)2二、填空题(10小题,每小题4分,共计40分)1、若a +b =2,ab =﹣3,则代数式a 3b +2a 2b 2+ab 3的值为______.2、若m 2=n +2021,n 2=m +2021(m ≠n ),那么代数式m 3-2mn +n 3的值 _________.3、分解因式:x 4﹣1=__________________.4、分解因式:236ab a -=___________.5、分解因式:22a b -=_________;322x y x y xy ++=______________.6、因式分解:2a 2-4a -6=________.7、请从24a ,2()x y +,16,29b 四个式子中,任选两个式子做差得到一个多项式,然后对其进行因式分解是_____________________.8、将24a -分解因式________9、若a <b <0,则a 2﹣b 2___0.(填“>”,“<”或“=”)10、分解因式:()()m n a b b a -+-=_________.三、解答题(3小题,每小题5分,共计15分)1、因式分解(1)3263654a a a -+-(2)229()49()a x y b y x -+-2、已知实数x ,y ,z 满足5x y +=,29z xy y =+-,求23x y z ++的值.3、因式分解:(1)2m 2﹣4mn +2n 2;(2)x 4﹣1.---------参考答案-----------一、单选题1、B【分析】根据已知条件得出(x -1)3-(x -1)=0,再通过因式分解求出x 的值,然后代入要求的式子进行计算即可得出答案.【详解】1x =-,∴x -1=(x -1)3,∴(x -1)3-(x -1)=0,(x -1)[(x -1)2-1]=0,(x -1)(x -1+1)(x -1-1)=0, x (x -1)(x -2)=0,∴x 1=0,x 2=1,x 3=2,∴x 2-x =0或x 2-x =12-1=0或x 2-x =22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x 的值.2、C【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:A .2221(1)x x x ++=+,故此选项不合题意;B .22a b +,无法分解因式,故此选项不合题意; 222.4129(23)C a ab b a b ++=+,故此选项符合题意;D .32(1)(1)(1)x x x x x x x -=-=-+,故此选项不合题意;故选:C .【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用提取公因式法以及公式法分解因式是解题关键.3、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;B、没把一个多项式转化成几个整式积,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积,故D不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.4、C【分析】根据提公因式法、平方差公式以及十字相乘法进行解答.【详解】解:A、原式=﹣x(x﹣4),故本选项不符合题意;B、原式=(2x+y)(2x﹣y),故本选项不符合题意;C、原式=﹣(x+1)2,故本选项符合题意;D、原式=(x+1)(x﹣6),故本选项不符合题意,故选:C.【点睛】本题主要考查了提公因式法、平方差公式以及十字相乘法因式分解,属于基础题.5、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m 2+n 2,不能因式分解;B.16m 2−4n 2=4(4m −2n )(4m +2n ),原因式分解错误;C. a 3−3a 2+a =a (a 2−3a +1),原因式分解错误; D.4a 2−4ab +b 2=(2a −b )2,原因式分解正确. 故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.6、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A :根据因式分解的定义,每个因式要分解彻底,由3ab 2﹣6ab =3a (b 2﹣2b )中因式b 2﹣2b 分解不彻底,故A 不符合题意.B :将x (a ﹣b )﹣y (b ﹣a )变形为x (a ﹣b )+y (a ﹣b ),再提取公因式,得x (a ﹣b )﹣y (b ﹣a )=x (a ﹣b )+y (a ﹣b )=(a ﹣b )(x +y ),故B 不符合题意.C :形如a 2±2ab +b 2是完全平方式,a 2+2ab ﹣4b 2不是完全平方式,也没有公因式,不可进行因式分解,故C 不符合题意.D :先将214a a -+-变形为()214414a a --+,再运用公式法进行分解,得()()22211144121444a a a a a -+-=--+=--,故D 符合题意. 故答案选择D .【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.7、D【分析】先提公因式()2x +,然后将原多项式因式分解,可求出m 和 n 的值,即可计算求得答案.【详解】解:∵()()()()()()()22222221223x x x x x x x +--+=+--=+-,∴2m =,3n =-,∴()235m n -=--=.故选:D .【点睛】本题考查了提公因式法分解因式,准确找到公因式是解题的关键.8、A【分析】根据题目中的式子,进行因式分解,根据a 是整数,从而可以解答本题.【详解】解:∵a 2+a =a (a +1),a 是整数,∴a (a +1)一定是两个连续的整数相乘,∴a (a +1)一定能被2整除,选项B 、C 、D 不符合要求,所以答案选A ,故选:A.【点睛】本题考查了因式分解的应用,准确理解题意并熟练掌握因式分解的方法是解题的关键.9、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:①22484x xy y +-不能用完全平方公式分解;②()2222x y x xy y =---+-,能用完全平方公式分解; ③()222442xy x y x y ++=+,能用完全平方公式分解;④()2224114x x x =----,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a 2±2ab +b 2=(a ±b )2是解题的关键.10、B【分析】将2203026m m -+化简为220302(3)m m --,再将235m m -=代入即可得.【详解】解:∵2220302620302(3)m m m m -+=--,把235m m -=代入,原式=2030252020-⨯=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.11、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p2−3q2=3(p2−q2)=3(p+q)(p−q),不符合题意;选项B:m4−1=(m2+1)(m2−1)=m4−1=(m2+1)(m+1)(m−1),不符合题意;选项C:2p+2q+1不能进行因式分解,不符合题意;选项D:m2−4m+4=(m−2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x﹣1)=2x2﹣2x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2﹣n2=(2m+n)(2m﹣n),故此选项不符合题意;C.﹣x2+2x=﹣x(x﹣2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x2﹣2x+3=x(x﹣2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.13、D【分析】根据平方差公式逐个判断即可.【详解】解:A .是m 和n 的平方和,不是m 和n 的平方差,不能用平方差公式分解因式,故本选项不符合题意;B .()222244x y x y =+--是2x 和y 的平方和,不是2x 和y 的平方差,不能用平方差公式分解因式,故本选项不符合题意;C .22224(4)a b a b --=-+是2a 和b 的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D .2294(23)(23)x y x y x y -+=+-,能用平方差公式分解因式,故本选项符合题意;故选:D .【点睛】本题考查了平方差公式分解因式,能熟记公式a 2-b 2=(a +b )(a -b )是解此题的关键.14、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A 、是整式的乘法,故A 不符合;B 、没把一个多项式转化成几个整式积,故B 不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.15、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:∵a+b=2,ab=﹣3,∴a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=﹣3×4,=﹣12.故答案为:﹣12.【点睛】本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.2、-2021【分析】将两式m2=n+2021,n2=m+2021相减得出m+n=-1,将m2=n+2021两边乘以m,n2=m+2021两边乘以n再相加便可得出.【详解】解:将两式m2=n+2021,n2=m+2021相减,得m2-n2=n-m,(m+n)(m-n)=n-m,(因为m≠n,所以m-n≠0),m+n=-1,将m2=n+2021两边乘以m,得m³=mn+2021m①,将n2=m+2021两边乘以n,得n³=mn+2021n②,由①+②得:m³+n³=2mn+2021(m+n),m³+n³-2mn=2021(m+n),m ³+n ³-2mn =2021×(-1)=-2021.故答案为-2021.【点睛】本题考查因式分解的应用,代数式m 3-2mn +n 3的降次处理是解题关键.3、2(1)(1)(1)x x x ++-.【分析】首先把式子看成x 2与1的平方差,利用平方差公式分解,然后再利用一次即可.【详解】解:x 4﹣1=(x 2+1)(x 2﹣1)=(x 2+1)(x +1)(x ﹣1).故答案是:(x 2+1)(x +1)(x ﹣1).【点睛】本题主要考查了平方差公式,熟练公式是解决本题的关键.4、()()66a b b +-【分析】先提出公因式a ,再利用平方差公式进行因式分解即可.【详解】解:2236(36)(6)(6)-=-=+-ab a a b a b b ,故答案为:()()66a b b +-.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法——提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.5、()()a b a b +- 2(1)xy x +【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:22()()a b a b a b -=+-;32222(21)(1)x y x y xy xy x x xy x ++=++=+;故答案为:()()a b a b +-;2(1)xy x +.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.6、2(a -3)(a +1)a +1)(a -3)【分析】提取公因式2,再用十字相乘法分解因式即可.【详解】解:2a 2-4a -6=2(a 2-2a -3)=2(a -3)(a +1)故答案为:2(a -3)(a +1)【点睛】本题考查了本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说如果可以先提取公因式的要先提取公因式,再考虑运用公式法或十字相乘法分解因式,分解因式要彻底是解题关键.7、4a 2-16=4(a -2)(a +2)【分析】任选两式作差,例如,4a 2-16,运用平方差公式因式分解,即可解答.【详解】解:根据平方差公式,得,4a 2-16,=(2a )2-42,=(2a -4)(2a +4),=4(a -2)(a +2)故4a 2-16=4(a -2)(a +2),故答案为:4a 2-16=4(a -2)(a +2).【点睛】本题考查了运用平方差公式因式分解:把一个多项式化为几个整式的积的形式;属于基础题. 8、()()22a a +-【分析】原式利用平方差公式分解即可.【详解】解:24a -=()()22a a +-故答案为:()()22a a +-.【点睛】此题考查了因式分解,熟练掌握平方差公式是解本题的关键.9、>【分析】将a 2-b 2因式分解为(a +b )(a -b ),再讨论正负,和积的正负,得出结果.【详解】解:∵a <b <0,∴a +b <0,a -b <0,∴a 2-b 2=(a +b )(a -b )>0.故答案为:>.【点睛】本题考查了因式分解,解题的关键是先把整式a 2-b 2因式分解,再利用a <b <0得到a -b 和a +b 的正负,利用负负得正判断大小.10、()()a b m n --【分析】根据提公因式因式分解求解即可.【详解】解:()()()()()()m n m n a b b a a b a b m n b a -----+==--,故答案为:()()a b m n --.【点睛】本题考查了提公因式法因式分解,正确找出公因式是解本题的关键.三、解答题1、(1)()263a a --;(2)()()()3737x y a b a b -+- 【分析】(1)直接提取公因式﹣6a ,再利用完全平方公式分解因式得出答案;(2)直接提取公因式x ﹣y ,再利用平方差公式分解因式即可;【详解】解:(1)原式()2669a a a -=-+()263a a =--;(2)原式()()22949x y a b =-- ()()()3737x y a b a b -+-=【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式分解因式是解题关键. 2、8【分析】先把5x y +=化为5,x y 再代入29z xy y =+-可得22(3)0z y +-=,利用非负数的性质求解,,z y 从而可得x 的值,再代入代数式23x y z ++求值即可.【详解】解:5x y +=,29z xy y =+-,5x y ∴=-,代入29z xy y =+-得:2(5)9z y y y =-+-,22(3)0z y +-=,0,30,z y可得:0z =,30y -=,3y ∴=,532x =-=,所以23223308x y z ++=+⨯+⨯=.【点睛】本题考查的是非负数的性质,二元方程组的代换思想,求解代数式的值,运用完全平方公式分解因式,掌握“把原条件转化为非负数的和”是解题的关键.3、(1)2(m ﹣n )2;(2)(x 2+1)(x +1)(x ﹣1).【分析】(1)综合利用提取公因式法和公式法进行因式分解即可;(2)利用两次平方差公式进行因式分解即可.【详解】解:(1)2m 2﹣4mn +2n 2=2(m 2﹣2mn +n 2)=2(m ﹣n )2;(2)x 4﹣1=(x 2+1)(x 2﹣1)=(x 2+1)(x +1)(x ﹣1).【点睛】本题考查了综合提取公因式法和公式法、公式法进行因式分解,因式分解的主要方法包括:提取公因式法、公式法、十字相乘法、分组分解法等,熟记各方法是解题关键.。

因式分解单元测试题

因式分解单元测试题

因式分解单元测试题一、选择题(每题2分,共10分)1. 下列哪个表达式是因式分解的结果?A. \( x^2 - 4 = x - 2 \)B. \( x^2 - 4 = (x - 2)(x + 2) \)C. \( x^2 - 4 = 2(x - 2) \)D. \( x^2 - 4 = 2x - 8 \)2. 因式分解 \( x^3 - 8 \) 的正确结果是:A. \( (x - 2)(x^2 + 2x + 4) \)B. \( (x - 2)^3 \)C. \( (x - 2)(x^2 + 2x + 4) \)D. \( (x - 2)(x + 2)(x + 4) \)3. 多项式 \( 2x^2 - 4x \) 可以因式分解为:A. \( 2x(x - 2) \)B. \( 2x(x + 2) \)C. \( x(2x - 4) \)D. \( 2(x^2 - 2x) \)4. 因式分解 \( a^2 - b^2 \) 的结果是:A. \( (a - b)(a + b) \)B. \( a^2 - b^2 \)C. \( (a + b)(a - b) \)D. \( (a^2 - b^2) \)5. 如果 \( x^2 + 5x + 6 \) 可以因式分解,那么正确的因式分解是:A. \( (x + 1)(x + 6) \)B. \( (x + 2)(x + 3) \)C. \( (x + 3)(x + 2) \)D. \( (x + 6)(x + 1) \)二、填空题(每题3分,共15分)6. 因式分解 \( x^2 + 7x + 10 \) 为 \( (x + \_\_\_\_\_\_)(x + \_\_\_\_\_\_) \)。

7. 多项式 \( 4y^2 - 9 \) 是一个差平方,可以因式分解为\( (\_\_\_\_\_\_ + \_\_\_\_\_\_)(\_\_\_\_\_\_ - \_\_\_\_\_\_) \)。

因式分解单元测试题及 答案

因式分解单元测试题及 答案

因式分解单元测试题及答案因式分解单元测试题一、选择题(每小题3分,共30分)1.下列各式从左到右的变形中,是因式分解的是()A、(a+3)(a-3)=a2-9B、a2-b2=(a+b)(a-b)C、a2-4a-5=a(a-4)-5D、m2-2m-3=m(m-2)-3m2.下列各式的分解因式:① 100p2-25q2=(10+5q)(10-5q)② -4m-n=-(2m+n)(2m-n)③ x-6=(x+3)(x-2)④ -x-x+42=-x+(x-42)其中正确的个数有()A、0B、1C、2D、33.下列各式中,能用完全平方公式分解因式的是()A、(x+y)(y-x)-4xyB、a2-2ab+4b2C、4m2-m+1D、(a-b)2-2(a+b)+14.当n是整数时,(2n+1)-(2n-1)是()A、2的倍数B、4的倍数C、6的倍数D、8的倍数5.设M=a(a+1)(a+2)。

N=a(a-1)(a+1),那么M-N等于()A、a2+aB、(a+1)(a+2)C、a2-aD、(a-1)(a+2)6.已知正方形的面积是(16-8x+x2) cm2(x>4cm),则正方形的周长是()A、(4-x)cmB、(x-4)cmC、(16-4x)cmD、(4x-16)cm7.若多项式(2x)3-81能分解成4x+9(2x+3)(2x-3),那么n=( )A、2B、4C、6D、88.已知248-1可以被60到70之间的某两个整数整除,则这两个数分别是()A、61,62B、61,63C、63,65D、65,679.如图①,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是()A、(a+2b)(a-b)=a2+ab-2b2B、(a+b)2=a2+2ab+b22x² + 3xy + y² - 5xy(x - y)的值。

因式分解单元测试题及---答案

因式分解单元测试题及---答案

因式分解单元测试题一、选择题(每小题3分,共30分)1、下列各式从左到右的变形中,是因式分解的是( )A 、()()2339a a a +-=-B 、()()22a b a b a b -=+-C 、()24545a a a a --=--D 、23232m m m m m ⎛⎫--=-- ⎪⎝⎭2、下列各式的分解因式:①()()2210025105105p q q q -=+-②()()22422m n m n m n --=-+-③()()2632x x x -=+-④221142x x x ⎛⎫--+=-- ⎪⎝⎭其中正确的个数有( )A 、0B 、1C 、2D 、33、下列各式中,能用完全平方公式分解因式的是( )A 、()()4x y y x xy +--B 、2224a ab b -+C 、2144m m -+ D 、()2221a b a b ---+4、当n 是整数时,()()222121n n +--是( )A 、2的倍数B 、4的倍数C 、6的倍数D 、8的倍数5、设()()()()1112,1133M a a a N a a a =++=-+,那么M N -等于( )A 、2a a +B 、()()12a a ++C 、21133a a +D 、()()1123a a ++6、已知正方形的面积是()22168x x cm -+(x >4cm),则正方形的周长是( )A 、()4x cm -B 、()4x cm -C 、()164x cm -D 、()416x cm -7、若多项式()281n x -能分解成()()()2492323x x x ++-,那么n=( )A 、2B 、4C 、6D 、88、已知4821-可以被60到70之间的某两个整数整除,则这两个数分别是( )A 、61,62B 、61,63C 、63,65,679、如图①,在边长为a 的正方形中挖掉一个 边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形(阴影部分)的面积,验证了一个等式,则 这个等式是( ) A 、()()2222a b a b a ab b +-=+- B 、()2222a b a ab b +=++C 、()2222a b a ab b -=-+D 、()()22a b a b a b -=+-① ②10、三角形的三边a 、b 、c 满足()2230a b c b c b -+-=,则这个三角形的形状是( )A 、等腰三角形B 、等边三角形C 、直角三角形D 、等腰直角三角形二、填空题(每小题2分,共20分)1、利用分解因式计算: (1)7716.87.63216⨯+⨯=___________; (2)221.229 1.334⨯-⨯=__________;(3)5×998+10=____________。

因式分解单元测试题及答案

因式分解单元测试题及答案

因式分解单元测试题及答案因式分解是代数中一项重要的技能,它涉及到将多项式表达为几个因子的乘积。

以下是一套因式分解单元测试题及答案,供学生练习和教师参考。

一、选择题1. 下列哪个表达式不能被因式分解?A. \( x^2 - 1 \)B. \( x^2 + 2x + 1 \)C. \( x^2 - 4x + 4 \)D. \( x^2 + 4 \)答案:D2. 将 \( 6x^3 - 8x \) 因式分解,正确的结果是什么?A. \( 2x(3x^2 - 4) \)B. \( 2x^2(3x - 4) \)C. \( 2x(3x + 2)(3x - 2) \)D. \( 2x(3x - 2)(3x + 2) \)答案:D二、填空题3. 将 \( 9x^2 - 16 \) 因式分解,结果为 \( (3x + 4)(3x - 4) \)。

4. 多项式 \( ax^3 + bx^2 + cx + d \) 可以因式分解为 \( (x -p)(x - q)(x - r) \),其中 \( p, q, r \) 是______。

答案:多项式的根三、解答题5. 给定多项式 \( 2x^3 - 11x^2 + 14x - 5 \),尝试将其因式分解。

答案:首先寻找公共因子,这里没有公共因子。

接下来,尝试分组或多项式长除法。

经过计算,我们发现可以将其分解为 \( (2x -1)(x - 5)(x - 1) \)。

6. 证明 \( a^4 - b^4 \) 可以因式分解为 \( (a^2 + b^2)(a +b)(a - b) \)。

答案:使用差平方公式,\( a^4 - b^4 = (a^2)^2 - (b^2)^2 =(a^2 + b^2)(a^2 - b^2) \)。

进一步分解 \( a^2 - b^2 \) 为\( (a + b)(a - b) \),得到 \( (a^2 + b^2)(a + b)(a - b) \)。

因式分解单元测试试卷

因式分解单元测试试卷

因式分解单元测试卷班级____________学号_____________姓名_____________一、填空题:(每小题2分,共26分)1、 把下列各式写在横线上:①y x x 22255-的公因式为 ; ②n n x x4264--的公因式为 2、 填上适当的式子,使以下等式成立:(1))(222⋅=-+xy xy y x xy (2))(22⋅=+++n n n n a a a a 3、 直接写出因式分解的结果:(1)=-222y y x ;(2)=+-3632a a 。

4、 若()22416-=+-x mx x ,那么m=________。

5、 如果。

,则=+=+-==+2222,7,0y x xy y x xy y x 6、 简便计算:。

-=2271.229.7 8、若n mx x ++2是一个完全平方式,则n m 、的关系是 。

9、已知正方形的面积是2269y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。

10.已知22==+ab b a ,,则32232121ab b a b a ++的值为 二、选择题:(每小题3分,共18分)1、下列各式从左到右的变形中,是因式分解的为( )A 、bx ax b a x -=-)(B 、222)1)(1(1y x x y x ++-=+-C 、)1)(1(12-+=-x x xD 、c b a x c bx ax ++=++)(2、一个多项式分解因式的结果是)2)(2(33b b -+,那么这个多项式是() A 、46-bB 、64b -C 、46+bD 、46--b3、下列各式是完全平方式的是()A 、412+-x xB 、21x +C 、1++xy xD 、122-+x x 4、把多项式)2()2(2a m a m -+-分解因式等于() A ))(2(2m m a +- B ))(2(2m m a --C 、m(a-2)(m-1)D 、m(a-2)(m+1) 5、分解因式14-x 得() A 、)1)(1(22-+x xB 、22)1()1(-+x xC 、)1)(1)(1(2++-x x xD 、3)1)(1(+-x x 6、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。

因式分解经典测试题及答案解析

因式分解经典测试题及答案解析

因式分解经典测试题及答案解析一、选择题1.下列等式从左到右的变形,属于因式分解的是()A.x2+2x﹣1=(x﹣1)2 B.x2+4x+4=(x+2)2C.(a+b)(a﹣b)=a2﹣b2 D.ax2﹣a=a(x2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A选项,从左到右变形错误,不符合题意,B选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法. 2.设a,b,c是ABC的三条边,且332222a b a b ab ac bc-=-+-,则这个三角形是( )A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【答案】D【解析】【分析】把所给的等式能进行因式分解的要因式分解,整理为整理成多项式的乘积等于0的形式,求出三角形三边的关系,进而判断三角形的形状.【详解】解:∵a3-b3=a2b-ab2+ac2-bc2,∴a3-b3-a2b+ab2-ac2+bc2=0,(a3-a2b)+(ab2-b3)-(ac2-bc2)=0,a2(a-b)+b2(a-b)-c2(a-b)=0,(a-b)(a2+b2-c2)=0,所以a-b=0或a2+b2-c2=0.所以a=b或a2+b2=c2.故选:D.【点睛】本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.3.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.4.下列各式中不能用平方差公式进行计算的是( )A .(m -n )(m +n )B .(-x -y )(-x -y )C .(x 4-y 4)(x 4+y 4)D .(a 3-b 3)(b 3+a 3)【答案】B【解析】A.(m -n)(m +n),能用平方差公式计算;B.(-x -y)(-x -y),不能用平方差公式计算;C.(x 4-y 4)(x 4+y 4),能用平方差公式计算;D. (a 3-b 3)(b 3+a 3),能用平方差公式计算.故选B.5.将3a b ab 进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab 有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;6.多项式225a -与25a a -的公因式是( )A .5a +B .5a -C .25a +D .25a -【答案】B【解析】【分析】直接将原式分别分解因式,进而得出公因式即可.【详解】解:∵a 2-25=(a+5)(a-5),a 2-5a=a (a-5),∴多项式a 2-25与a 2-5a 的公因式是a-5.故选:B .【点睛】此题主要考查了公因式,正确将原式分解因式是解题的关键.7.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.8.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.9.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( )A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.10.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.12.下列等式从左到右的变形,属于因式分解的是A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)C.4x2+8x-4=4x12-xx⎛⎫+⎪⎝⎭D.4my-2=2(2my-1)【答案】D【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C、没把一个多项式转化成几个整式积的形式,故C不符合题意;D、把一个多项式转化成几个整式积的形式,故D符合题意;故选D.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.13.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.14.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A .2B .﹣6C .5D .﹣3【答案】B【解析】【分析】 先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.15.把多项式3(x -y)-2(y -x)2分解因式结果正确的是( )A .()()322x y x y ---B .()()322x y x y --+C .()()322x y x y -+-D .()()322y x x y -+-【答案】B【解析】【分析】提取公因式x y -,即可进行因式分解.【详解】 ()()232x y y x --- ()()322x y x y =--+故答案为:B .【点睛】本题考查了因式分解的问题,掌握因式分解的方法是解题的关键.16.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3) 【答案】D【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.17.已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .2【答案】C【解析】【分析】先将前两项提公因式,然后把a ﹣b =1代入,化简后再与后两项结合进行分解因式,最后再代入计算.【详解】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C .【点睛】本题考查了因式分解的应用,四项不能整体分解,关键是利用所给式子的值,将前两项先分解化简后,再与后两项结合.18.下列不是多项式32633x x x +-的因式的是( )A .1x -B .21x -C .xD .3+3x【答案】A【解析】【分析】将多项式32633x x x +-分解因式,即可得出答案.【详解】解:∵32633x x x +-=23(21)3(21)(1)x x x x x x +-=-+又∵3+3x =3(x+1)∴21x -,x ,3+3x 都是32633x x x +-的因式,1x -不是32633x x x +-的因式. 故选:A【点睛】此题主要考查了提公因式法与十字相乘法的综合运用,熟练应用十字相乘法分解因式是解题关键.19.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.20.三角形的三边a 、b 、c 满足a (b ﹣c )+2(b ﹣c )=0,则这个三角形的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形 【答案】A【解析】【分析】首先利用提取公因式法因式分解,再进一步分析探讨得出答案即可【详解】解:∵a (b-c )+2(b-c )=0,∴(a+2)(b-c )=0,∵a 、b 、c 为三角形的三边,∴b-c=0,则b=c ,∴这个三角形的形状是等腰三角形.故选:A .【点睛】本题考查了用提取公因式法进行因式分解,熟练掌握并准确分析是解题的关键.。

因式分解单元测试卷

因式分解单元测试卷

因式分解单元测试卷一、选择题(每题2分,共10分)1. 下列哪个表达式不能通过因式分解简化?A. \( x^2 - 1 \)B. \( x^2 + 2x + 1 \)C. \( x^2 - 4x + 4 \)D. \( x^2 + 5x + 6 \)2. 多项式 \( 3x^2 - 12x \) 可以通过提取公因式简化为:A. \( 3x(x - 4) \)B. \( 3x(x + 4) \)C. \( 3x^2 - 4x \)D. \( 3x(3x - 12) \)3. 表达式 \( 4a^2 - b^2 \) 是:A. 完全平方差B. 完全平方和C. 不能因式分解D. 差平方4. 多项式 \( x^3 - 8 \) 可以通过什么方法因式分解?A. 提取公因式B. 配方法C. 立方差公式D. 立方和公式5. 如果 \( x^2 + ax + b \) 可以因式分解为 \( (x + 2)(x + 3) \),那么 \( a \) 和 \( b \) 的值分别是:A. \( a = 5, b = 6 \)B. \( a = -5, b = -6 \)C. \( a = 1, b = 6 \)D. \( a = -1, b = -6 \)二、填空题(每题2分,共10分)6. 将 \( x^2 - 9 \) 因式分解为 \( ______ \)。

7. 多项式 \( 6x^2 - 7x + 1 \) 无法通过提取公因式简化,但可以通过________法因式分解。

8. 差平方公式 \( a^2 - b^2 \) 可以分解为 \( (a + b)(a - b) \),那么 \( a^2 + b^2 \) 能否因式分解?________。

9. 立方和公式 \( a^3 + b^3 \) 可以分解为 ________。

10. 如果 \( x^2 + ax + 25 \) 是完全平方公式,那么 \( a \) 的值为 ________。

第四章 因式分解单元测试卷(下)单元测试卷第四章《因式分解》(解析卷)

第四章 因式分解单元测试卷(下)单元测试卷第四章《因式分解》(解析卷)

【新北师大版八年级数学(下)单元测试卷】第四章《因式分解》(解析卷)(全卷满分100分限时90分钟)一.选择题:(每小题3分,共36分)1. 下列从左到右的变形是因式分解的是()A. (﹣a+b)2=a2﹣2ab+b2B. m2﹣4m+3=(m﹣2)2﹣1C. ﹣a2+9b2=﹣(a+3b)(a﹣3b)D. (x﹣y)2=(x+y)2﹣4xy【答案】C【解析】解:A.是整式的乘法,故A错误;B.没把一个多项式转化成几个整式积乘积的形式,故B错误;C.把一个多项式转化成几个整式积乘积的形式,故C正确;D.没把一个多项式转化成几个整式积乘积的形式,故D错误;故选C.2.多项式﹣2a(x+y)3+6a2(x+y)的公因式是()A. ﹣2a2(x+y)2B. 6a(x+y)C. ﹣2a(x+y)D. ﹣2a 【答案】C【解析】试题解析:的公因式是故选C.3.下列因式分解正确的是()A. a4b-6a3b+9a3b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】D【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B4.将下列多项式因式分解,结果中不含有因式a+1的是( )A. a2-1B. a2+aC. a2+a-2D. (a+2)2-2(a+2)+1 【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a2﹣1=(a+1)(a﹣1),a2+a=a(a+1),a2+a﹣2=(a+2)(a﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C;故答案选C.5.下列因式分解错误的是()A. 2a﹣2b=2(a﹣b)B. x2﹣9=(x+3)(x﹣3)C. a2+4a﹣4=(a+2)2D. ﹣x2﹣x+2=﹣(x﹣1)(x+2)【答案】C【解析】试题解析:A. 2a−2b=2(a−b),正确;B.,正确;C. 不能因式分解,错误;D. 正确;故选C.6.若x2+ax-24=(x+2)(x-12),则a的值为( )A. -10B. ±10C. 14D. -14【答案】A【解析】因为(x+2)(x-12)=x2-12x+2x-24=x2-10x-24,x2+ax-24=(x+2)(x-12),所以a=-10.故选A.7.若△ABC的三条边a,b,c满足a2+2ab=c2+2bc,则△ABC的形状是()A. 直角三角形B. 等腰直角三角形C. 等边三角形D. 等腰三角形【答案】D【解析】试题分析:∵a2+2ab=c2+2bc,∴a2-2bc-c2+2ab=0,∴(a+c)(a-c)+2b(a-c)=0,∴(a-c)(a+c+2b)=0,∵a、b、c是三角形的三边,∴a+c+2b>0,∴a-c=0,∴a=c.∴△ABC是等腰三角形.故选:D.8.小明用四张如图所示的纸片拼成一个大长方形,并据此写出一个多项式的因式分解,正确的是( )A. x2+2x=x(x+2)B. x2-2x+1=(x-1)2C. x2+2x+1=(x+1)2D. x2+3x+2=(x+2)(x+1)【答案】D【解析】小明用四张长方形或正方形纸片拼成一个大长方形,小亮根据小明的拼图过程,写出多项式x2+3x+2因式分解的结果为(x+1)(x+2),即x2+3x+2=(x+2)(x+1).故选D.9.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A. m+1B. 2mC. 2D. m+2【答案】D【解析】解:原式=(m﹣1)(m+1+1)=(m﹣1)(m+2).故选D.10.将多项式a(b﹣2)﹣a2(2﹣b)因式分解的结果是()A. (b﹣2)(a+a2)B. (b﹣2)(a﹣a2)C. a(b﹣2)(a+1)D. a(b﹣2)(a﹣1)【答案】C【解析】a(b﹣2)﹣a2(2﹣b)=a(b﹣2)+a2(b﹣2)=a(b-2)(1+a).故选C.11.下列多项式,能用完全平方公式分解因式的是()A. -x2-2x-1B.x2-2x-1C. x2+xy+y2D. x2+4【答案】A【解析】试题分析:A、-x2-2x-1=-(x2+2x+1)=-(x+1)2,能用完全平方公式分解因式,故此选项正确;B、x2-2x-1不符合能用完全平方公式分解因式的式子的特点,故此选项错误;C、x2+xy+y2不符合能用完全平方公式分解因式的式子的特点,故此选项错误;D、x2+4不符合能用完全平方公式分解因式的式子的特点,故此选项错误.故选:A.12.某同学粗心大意,因式分解时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A. 8,1B. 16,2C. 24,3D. 64,8【答案】B【解析】由(x2+4)(x+2)(x-▲)得出▲=2,则(x2+4)(x+2)(x-2)=(x2+4)(x2-4)=x4-16,则■=16.故选B.二.填空题(每题3分,共12分)13. 单项式8x2y2、12xy3、6x2y2的公因式是________.【答案】2xy2【解析】试题解析:单项式的公因式是故答案为:14.分解因式(a-b)(a-4b)+ab的结果是__________________.【答案】(x+2)(x+3)【解析】试题分析:===.故答案为:.15.若二次三项式x2-kx+9是一个完全平方式,则k的值是________.【答案】±6【解析】试题分析:由于x2﹣kx+9是一个完全平方式,则x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,根据完全平方公式即可得到k的值.∵x2﹣kx+9是一个完全平方式,∴x2﹣kx+9=(x+3)2或x2﹣kx+9=(k﹣3)2,∴k=±6.16.已知(2x﹣21)(3x﹣7)﹣(3x﹣7)(x﹣13)可分解因式为(3x+a)(x+b),其中a、b均为整数,则a+3b=__.【答案】﹣31【解析】(2x-21)(3x-7)-(3x-7)(x-13)=(3x-7)[(2x-21)-(x-13)]=(3x-7)(x-8),因为(3x+a)(x+b)=(3x-7)(x-8),所以a=-7,b=-8,则a+3b=-7+3×(-8)=-31.故答案为-31.三.解答题(共52分)17. 将下列各式因式分解:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2;(2)(b﹣a)2+a(a﹣b)+b(b﹣a);(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a);(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d.【答案】(1)5a3b(a﹣b)2(a﹣b﹣2ab2);(2)2(a﹣b)2;(3)8(7a﹣8b)(b﹣a)(4)(b+c﹣d)(x+y﹣1).【解析】试题分析:利用直接提公因式法分解因式即可.试题解析:(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).18.已知△ABC的三边长a,b,c满足a2-bc-ab+ac=0求证△ABC为等腰三角形.【答案】见解析【解析】试题分析:本题考查了分组分解法分解因式,先将所给等式的左边分组,然后因式分解,从而得到a=b,问题即可解决.证明:∵a2-bc-ab+ac=0∴ (a-b)(a+c)=0∵a,b为△ABC三边∴a+c>0,则a-b=0,即a=b∴△ABC为等腰三角形19.求使不等式成立的x的取值范围:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0.【答案】x≥﹣1.【解析】试题分析:将(x﹣1)3﹣(x﹣1)(x2﹣2x+3)因式分解化为(x﹣1)2(x+1),根据因(x ﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,必须x+1≥0,解不等式即可求得x的取值范围.试题解析:(x﹣1)3﹣(x﹣1)(x2﹣2x+3)=(x﹣1)3﹣(x﹣1)2(x﹣2)=(x﹣1)2(x+1);因(x﹣1)2是非负数,要使(x﹣1)3﹣(x﹣1)(x2﹣2x+3)≥0,只要x+1≥0即可,即x≥﹣1.20.如图,求圆环形绿化区的面积.【答案】1000π(m2)【解析】试题分析:绿化面积是一个环形,环形面积=大圆的面积-小圆的面积.试题解析:21.如果a+b=﹣4,ab=2,求式子4a2b+4ab2﹣4a﹣4b的值.【答案】﹣16【解析】试题分析:已知给出了要求式子的值,只要对要求的式子进行转化,用与表示,代入数值可得答案.试题解析:∵a+b=−4,ab=2,答:式子的值为−16.22.阅读下列解题过程:已知a,b,c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,①∴c2(a2-b2)=(a2+b2)(a2-b2).②∴c2=a2+b2.③∴△ABC为直角三角形.问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号③;(2)写出该题正确的解法.【答案】见解析【解析】:(ⅰ)③;(ⅱ)忽略了a2- b2=0的可能;(ⅲ)接第③步:∵c2(a2- b2)=(a2- b2)(a2+ b2),∴c2(a2- b2)-(a2- b2)(a2+ b2)=0,∴(a2- b2)[c2-(a2+ b2)]=0,∴a2- b2=0或c2-(a2+ b2)=0.故a=b或c2= a2+ b2,∴△ABC是等腰三角形或直角三角形或等腰直角三角形23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)28和2 020这两个数是“神秘数”吗?为什么?(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的“神秘数”是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是“神秘数”吗?为什么?【答案】(1)是,理由见解析;(2)是,理由见解析;(3)不是,理由见解析【解析】试题分析:(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;(2)化简两个连续偶数为2k+2和2k的差,再判断;(3)设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.试题解析:(1)因为28=82-62,2 020=5062-5042,所以28和2 020都是“神秘数”.(2)(2k+2)2-(2k)2=4(2k+1),因此由2k+2和2k构造的“神秘数”是4的倍数.(3)由(2)知“神秘数”可表示为4的倍数但一定不是8的倍数.设两个连续奇数为2k+1和2k-1,则(2k+1)2-(2k-1)2=8k,所以两个连续奇数的平方差不是“神秘数”.。

第四章 因式分解 单元测试卷

第四章 因式分解 单元测试卷

第四章因式分解单元测试卷题号一二三总分得分一、选择题(每题3分,共30分)1.下列式子是因式分解的是()A.x(x-1)=x2-1B.x2错误!未找到引用源。

=x2+xC.x2+x=x(x+1)D.x2-x=(x+1)(x-1)2.把a2-2a分解因式,正确的是()A.a(a-2)B.a(a+2)C.a(a2-2)D.a(2-a)3.简便计算57×99+44×99-99,正确的是()A.原式=99×(57+44)=99×101=9 999B.原式=99×(57+44-1)=99×100=9 900C.原式=99×(57+44+1)=99×102=10 098D.原式=99×(57+44-99)=99×2=1984.若代数式x2+a在实数范围内可以进行因式分解,则常数a不可以取()A.-1B.2C.-4D.-95.因式分解x3-2x2+x正确的是()A.(x-1)2B.x(x-1)2C.x(x2-2x+1)D.x(x+1)26.如果x2+kx+64是一个整式的平方,那么k的值是()A.8B.-8C.8或-8D.16或-167.已知a+b=2,则a2-b2+4b的值是()A.2B.3C.4D.68.214+213不能被()整除.A.3B.4C.5D.69.若多项式mx2-错误!未找到引用源。

可分解因式得错误!未找到引用源。

,则m,n的值为()A.m=4,n=5B.m=-4,n=5C.m=16,n=25D.m=-16,n=2510.如图,边长为m+3的正方形纸片,剪下一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则与其相邻的一边长是()A.m+3B.m+6C.2m+3D.2m+6二、填空题(每题3分,共24分)11.分解因式:m3n-4mn=___________.12.一个正方形的面积为x2+4x+4(x>0),则它的边长为__________.13.若多项式mx2+ny2只能分解为2x+3y与2x-3y的积,则m·n=__________.14.当a=错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解单元测试
一、填空题:(每小题2分,共24分) 1、 把下列各式的公因式写在横线上:
①y x x 2
2
255-、 ; ②n
n x x 4264--= (
)n
x
232+
2、 填上适当的式子,使以下等式成立: (1))(222⋅=-+xy xy y x xy (2))(
22⋅=+++n n n n a a a a
3、 在括号前面填上“+”或“-”号,使等式成立: (1)22)()(y x x y -=
-; (2))2)(1()2)(1(--=
--x x x x 。

4、 直接写出因式分解的结果: (1)=
-222y y x ;(2)=
+-3632a a 。

5、 若。


,,则b a b b a =
=+-+-01222 6、 若()2
2
416-=+-x mx x ,那么m=________。

7、 如果。

,则=
+=
+-==+2222,7,
0y x xy y x xy y x 8、 简便计算:。

-=2271.229.7 9、 已知31=+
a a ,则221
a
a +的值是 。

10、如果2a+3b=1,那么3-4a-6b= 。

11、若n mx x ++2
是一个完全平方式,则n m 、的关系是 。

12、已知正方形的面积是2
2
69y xy x ++ (x>0,y>0),利用分解因式,写出表示该正方形的边长的代数式 。

二、选择题:(每小题2分,共20分)
1、下列各式从左到右的变形中,是因式分解的为( ) A 、bx ax b a x -=-)(
B 、2
22)1)(1(1y x x y x ++-=+- C 、)1)(1(12
-+=-x x x
D 、c b a x c bx ax ++=++)(
2、一个多项式分解因式的结果是)2)(2(3
3
b b -+,那么这个多项式是( )
A 、46
-b
B 、6
4b -
C 、46
+b
D 、46
--b
3、下列各式是完全平方式的是( )
A 、4
12
+
-x x B 、2
1x +
C 、1++xy x
D 、122
-+x x
4、把多项式)2()2(2
a m a m -+-分解因式等于(

A ))(2(2m m a +-
B ))(2(2
m m a -- C 、m(a-2)(m-1)
D 、m(a-2)(m+1)
5、2
2
2
2
)(4)(12)(9b a b a b a ++-+-因式分解的结果是( )
A 、2
)5(b a -
B 、2
)5(b a +
C 、)23)(23(b a b a +-
D 、2
)25(b a -
6、下列多项式中,含有因式)1(+y 的多项式是( )
A 、2
2
32x xy y --
B 、2
2
)1()1(--+y y C 、)1()1(2
2
--+y y
D 、1)1(2)1(2
++++y y
7、分解因式14
-x 得( ) A 、)1)(1(2
2-+x x
B 、2
2)1()1(-+x x C 、)1)(1)(1(2
++-x x x
D 、3
)1)(1(+-x x
8、已知多项式c bx x ++2
2分解因式为)1)(3(2+-x x ,则c b ,的值为( )
A 、1,3-==c b
B 、2,6=-=c b
C 、4,6-=-=c b
D 、6,4-=-=c b
9、c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是(

A 、直角三角形
B 、等腰三角形
C 、等腰直角三角形
D 、等边三角形
10、在边长为a 的正方形中挖掉一个边长为b 的小正方形(a>b )。

把余下的部分剪拼成一个矩形(如图)。

通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是( )
A 、))((2
2
b a b a b a -+=-
B 、2
2
2
2)(b ab a b a ++=+ C 、2
2
2
2)(b ab a b a +-=- D 、)(2
b a a ab a -=-
三、将下列各式分解因式【说明:(1)—(4)每小题4分,(5)—(8)每小题5分,共36分】 (1)3
123x x - (2)2
222)1(2ax x a -+ (3)2
1
222
+
+x x
(4)b a b a 442
2
+--
(5)2
2
4520bxy bx a -
(6)xy y x 212
2--+
(7)2m(a-b)-3n(b-a)
(8))()3()3)((2
2a b b a b a b a -+++-
四、解答题及证明题(每小题7分,共14分) 1、 已知22==+ab b a ,,求
32232
1
21ab b a b a ++的值。

2、 利用分解因式证明:12
7
525- 能被120整除。

五、大正方形的周长比小正方形的周长长96厘米,它们的面积相差960平方厘米。

求这两个正方形的边长。

选作题:
1、 已知c b a 、、是△ABC 的三边的长,且满足0)(222
2
2
=+-++c a b c b a ,试判断此三角形的形
状。

(6分)
2、 已知三个连续奇数的平方和为251,求这三个奇数。

四、附加题(10'×2=20')
1. 阅读下列因式分解的过程,再回答所提出的问题:
1+x +x (x +1)+x (x +1)2=(1+x )[1+x +x (x +1)] =(1+x )2(1+x ) =(1+x )3
(1)上述分解因式的方法是 ,共应用了 次.
(2)若分解1+x +x (x +1)+x (x +1)2+…+ x (x +1)2004,则需应用上述方法 次,结果是 . (3)分解因式:1+x +x (x +1)+x (x +1)2+…+ x (x +1)n (n 为正整数). 2. 若二次多项式2
2
32k kx x -+能被 x -1整除,试求k 的值。

相关文档
最新文档