备战中考数学综合题专练∶反比例函数含详细答案

合集下载

中考数学总复习《反比例函数综合》专项测试卷(附答案)

中考数学总复习《反比例函数综合》专项测试卷(附答案)

中考数学总复习《反比例函数综合》专项测试卷(附答案)(考试时间:90分钟;试卷满分:100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(本题共10小题,每小题3分,共30分)。

1.若点A(1,3)是反比例函数y=(k≠0)图象上一点,则常数k的值为()A.3B.﹣3C.D.2.下列各点中,在反比例函数y=图象上的是()A.(3,1)B.(﹣3,1)C.(3,)D.(,3)3.如果点A(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数图象上的三个点,则下列结论正确的是()A.y1>y3>y2B.y3>y2>y1C.y2>y1>y3D.y3>y1>y24.如图,反比例函数与正比例函数y=ax(a≠0)相交于点和点B,则点B的坐标为()A.B.C.D.5.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁6.已知反比例函数,下列说法不正确的是()A.图象经过点(﹣3,2)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.x≥﹣1时,y≥67.反比例函数y=中,当x>0时,y随x的增大而增大,则m的取值范围是()A.m>B.m<2C.m<D.m>28.如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A、B两点,其中A点的横坐标为3,当y1<y2时,x的取值范围是()A.x<﹣3或x>3B.x<﹣3或0<x<3C.﹣3<x<0或0<x<3D.﹣3<x<0或x>39.在同一平面直角坐标系中,函数y=ax+b与(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.10.如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值是()A.1B.2C.4D.8二、填空题(本题共6题,每小题2分,共12分)。

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

初中数学中考复习 备战2020年中考数学一轮专项复习——反比例函数综合问题(含详细解答)

备战2020年中考数学一轮专项复习——反比例函数综合问题一、反比例函数的概念:知识要点:1、一般地,形如 y = x k ( k 是常数, k = 0 ) 的函数叫做反比例函数。

注意:(1)常数 k 称为比例系数,k 是非零常数;(2)解析式有三种常见的表达形式:(A )y = xk (k ≠ 0) ; (B )xy = k (k ≠ 0); (C )y=kx -1(k ≠0) 二、反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时,双曲线分别位于第一、三象限内;(2)当k<0时, 双曲线分别位于第二、四象限内。

3、增减性:(1)当k>0时,y = xk (k ≠ 0)为减函数,y 随x 的增大而减小; (2)当k<0时,y = xk (k ≠ 0)为增函数,y 随x 的增大而增大。

4、变化趋势:双曲线无限接近于x 、y 轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点成中心对称;(2)对于k 取互为相反数的两个反比例函数(如:y =x 6 和y = x 6 )来说,它们是关于x 轴,y 轴成轴对称。

一、选择题:1.下列函数,①y =2x ,②y =x ,③y =x ﹣1,④y =是反比例函数的个数有( ) A .0个 B .1个 C .2个 D .3个【分析】根据反比例函数的定义,反比例函数的一般式是(k ≠0)判定则可. 【解析】①y =2x 是正比例函数;②y =x 是正比例函数;③y =x ﹣1是反比例函数;④y=不是反比例函数,是反比例关系;所以共有1个.故选:B.2.(2019•济南)函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【解析】a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D符合;故选:D.3.如图,过原点的直线l与反比例函数y=﹣的图象交于M,N两点,根据图象猜想线段MN的长的最小值是()A.B.2C.2 D.1【分析】设N的横坐标是a,则纵坐标是﹣,利用a即可表示出ON的长度,然后根据不等式的性质即可求解.【解析】设N的横坐标是a,则纵坐标是﹣.则OM=ON=≥.则MN的最小值是2.故选:B.4.(2019•阜新)如图,点A在反比例函数y=(x>0)的图象上,过点A作AB⊥x轴,垂足为点B,点C在y 轴上,则△ABC的面积为()A.3 B.2 C.D.1【解析】连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB,而S△OAB=|k|=,∴S△CAB=,故选:C.5.(2019•遵义)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为4,2,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为()A.2 B.3 C.4 D.6【解析】过点A作x轴的垂线,交CB的延长线于点E,∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为4,2,∴A(,4),B(,2),∴AE=2,BE=k﹣k=k,∵菱形ABCD的面积为2,∴BC×AE=2,即BC=,∴AB=BC=,在Rt△AEB中,BE==1∴k=1,∴k=4.故选:C.6.如图,在菱形ABOC中,∠ABO=120°,它的一个顶点C在反比例函数y=的图象上,若将菱形向下平移2个单位,点A恰好落在函数图象上,则该反比函数的表达式为()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】点C作CD⊥x轴于D,设菱形的边长为a,根据菱形的性质和三角函数分别表示出C,以及点A向下平移2个单位的点,再根据反比例函数图象上点的坐标特征得到方程组求解即可.【解析】过点C作CD⊥x轴于D,设菱形的边长为a,在Rt△CDO中,OD=a•cos60°=a,CD=a•sin60°=a,则C(﹣a,a),点A向下平移2个单位的点为(﹣a﹣a,a﹣2),即(﹣a,a﹣2),则,解得.故反比例函数解析式为y=﹣.故选:B.7.(2019•淄博)如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y =(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2【解析】过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y 4=,……∴y1+y2+…+y10=2+++……=,故选:A.8.如图,已知点A,B在双曲线y=(x>0)上,AC⊥x轴于点C,BD⊥y轴于点D,AC与BD交于点P,P 是AC的中点.若△ABP的面积为4,则k的值为().A.16 B.8 C.4 D.24【分析】由△ABP的面积为4,知BP•AP=8.根据反比例函数y=中k的几何意义,知本题k=OC•AC,由反比例函数的性质,结合已知条件P是AC的中点,得出OC=BP,AC=2AP,进而求出k的值.【解答】解:∵△ABP 的面积为•BP •AP =4,∴BP •AP =8,∵P 是AC 的中点,∴A 点的纵坐标是B 点纵坐标的2倍,又∵点A 、B 都在双曲线y =(x >0)上,∴B 点的横坐标是A 点横坐标的2倍,∴OC =DP =BP ,∴k =OC •AC =BP •2AP =16.故选A.二、填空题:9.(2019山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 坐标为(-4,0),点D 的坐标为(-1,4),反比例函数)0(>=x xk y 的图象恰好经过点C ,则k 的值为 .【解析】过点D 作DE ⊥AB 于点E ,则AD=5,∵四边形ABCD 为菱形,∴CD=5∴C (4,4),将C 代入x k y =得:44k =,∴16=k10.(2019遂宁中考 第15题 4分)如图,在平面直角坐标系中,矩形OABC 的顶点O 落在坐标原点,点A 、点C 分别位于x 轴,y 轴的正半轴,G 为线段OA 上一点,将△OCG 沿CG 翻折,O 点恰好落在对角线AC 上的点P 处,反比例函数y =经过点B .二次函数y =ax 2+bx +c (a ≠0)的图象经过C (0,3)、G 、A 三点,则该二次函数的解析式为 .(填一般式)【解析】点C (0,3),反比例函数y =经过点B ,则点B (4,3),则OC =3,OA =4,∴AC =5,设OG =PG =x ,则GA =4﹣x ,PA =AC ﹣CP =AC ﹣OC =5﹣3=2, 由勾股定理得:(4﹣x )2=4+x 2,解得:x =,故点G (,0),将点C 、G 、A 坐标代入二次函数表达式得:,解得:,故答案为:y =x 2﹣x +3. 11.如图,已知点(1,3)在函数y =kx (x >0)的图象上,正方形ABCD 的边BC 在x 轴上,点E 是对角线BD 的中点,函数y =kx(x >0)的图象又经过A ,E 两点,则点E 的横坐标为____.【解析】 把(1,3)代入到y =kx,得k =3, 所以函数解析式为y =3x. 设A (a ,b ),根据图象和题意可知,点E ⎝ ⎛⎭⎪⎫a +b 2,b 2.因为y =3x 的图象经过A ,E ,所以分别把点A 和E 代入到函数解析式中得 ab =3,①b 2⎝ ⎛⎭⎪⎫a +b 2=3,② 由②得ab 2+b 24=3,把①代入得32+b 24=3, 即b 2=6,解得b =±6,因为A 在第一象限,所以b >0,所以b = 6.把b =6代入①求得a =62, 所以点E 的横坐标为a +b 2= 6.故答案为 6. 12.如图,Rt △AOB 中,∠OAB =90°,∠OBA =30°,顶点A 在反比例函数y =图象上,若Rt △AOB 的面积恰好被y 轴平分,则进过点B 的反比例函数的解析式为 .【分析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ),则ab =﹣4.根据两角对应相等的两三角形相似,得出△OAE ∽△ABF ,由相似三角形的对应边成比例,则BD 、OD 都可用含a 、b 的代数式表示,从而求出B 的坐标,进而得出结果.【解析】分别过A 、B 作AE ⊥x 轴于E ,BD ⊥y 轴交AE 于F .设A (a ,b ).∵顶点A 在反比例函数y =图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.13.如图, △OAP ,△ABQ 是等腰直角三角形,点P ,Q 在反比例函数y =4x (x >0)上,直角顶点A ,B 均在x 轴上,则点Q 的坐标为 .【解析】 ∵△OAP 是等腰直角三角形,∴PA =OA .∴设P 点的坐标是(a ,a ),把(a ,a )代入解析式y =4x,解得a =2(a =-2舍去), ∴P 的坐标是(2,2),∴OA =2,∵△ABQ 是等腰直角三角形,∴BQ =AB ,∴可以设Q 的纵坐标是b ,∴横坐标是b +2,把Q 的坐标代入解析式y =4x, 得b =4b +2,∴b =5-1(b =-5-1舍去),∴点Q 的坐标为(5+1,5-1).14.(2019•毕节市)如图,在平面直角坐标中,一次函数y =﹣4x +4的图象与x 轴、y 轴分别交于A 、B 两点.正方形ABCD 的顶点C 、D 在第一象限,顶点D 在反比例函数y =(k ≠0)的图象上.若正方形ABCD 向左平移n 个单位后,顶点C 恰好落在反比例函数的图象上,则n 的值是 .【解析】过点D 作DE ⊥x 轴,过点C 作CF ⊥y 轴,∵AB ⊥AD ,∴∠BAO =∠DAE ,∵AB =AD ,∠BOA =∠DEA ,∴△ABO ≌△DAE (AAS ),∴AE =BO ,DE =OA ,易求A (1,0),B (0,4),∴D (5,1),∵顶点D 在反比例函数y =上,∴k =5,∴y =,易证△CBF ≌△BAO (AAS ),∴CF =4,BF =1,∴C (4,5),∵C 向左移动n 个单位后为(4﹣n ,5),∴5(4﹣n )=5,∴n =3,故答案为3;三、解答题15.如图,一次函数y =kx +2的图象与反比例函数y =m x的图象在第一象限的交点为P .PA 垂直x 轴于点A .PB 垂直y 轴于点B .函数y =kx +2的图象分别交x 轴,y 轴于点C ,D .已知DB =2OD ,△PBD 的面积S △PBD =4.(1)求点D 的坐标;(2)求k ,m 的值;(3)写出当x >0时,使一次函数y =kx +2的值大于反比例函数y =m x的值的x 的取值范围.【解析】(1)在y =kx +2中,令x =0,得y =2,所以点D (0,2).(2)因为OD =2,DB =2OD =4,由S △PBD =4,可得BP =2,而OB =OD +DB =6,所以点P (2,6).将P (2,6)分别代入y =kx +2与y =mx,可得 k =2,m =12.(3) 由图象可知,当x >0时,使一次函数y =kx +2的值大于反比例函数y =mx的值的x 的取值范围是x >2.16.(2019遂宁中考 第23题 10分)如图,一次函数y =x ﹣3的图象与反比例函数y ═(k ≠0)的图象交于点A 与点B (a ,﹣4).(1)求反比例函数的表达式;(2)若动点P 是第一象限内双曲线上的点(不与点A 重合),连接OP ,且过点P 作y 轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求出点P的坐标.【解析】(1)将B(a,﹣4)代入一次函数y=x﹣3中得:a=﹣1∴B(﹣1,﹣4)将B(﹣1,﹣4)代入反比例函数y═(k≠0)中得:k=4∴反比例函数的表达式为y=;(2)如图:设点P的坐标为(m,)(m>0),则C(m,m﹣3)∴PC=|﹣(m﹣3)|,点O到直线PC的距离为m∴△POC的面积=m×|﹣(m﹣3)|=3解得:m=5或﹣2或1或2∵点P不与点A重合,且A(4,1)∴m≠4又∵m>0∴m=5或1或2∴点P的坐标为(5,)或(1,4)或(2,2).17.(2019•河池)在平面直角坐标系中,矩形ABCD的顶点坐标为A(0,0),B(6,0),C(6,8),D(0,8),AC,BD交于点E.(1)如图(1),双曲线y=过点E,直接写出点E的坐标和双曲线的解析式;(2)如图(2),双曲线y=与BC,CD分别交于点M,N,点C关于MN的对称点C′在y轴上.求证△CMN~△CBD,并求点C′的坐标;(3)如图(3),将矩形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线y=与AD交于点P.当△AEP为等腰三角形时,求m的值.【解析】(1)如图1中,∵四边形ABCD是矩形,∴DE=EB,∵B(6,0),D(0,8),∴E(3,4),∵双曲线y=过点E,∴k1=12.∴反比例函数的解析式为y=.(2)如图2中,∵点M,N在反比例函数的图象上,∴DN•AD=BM•AB,∵BC=AD,AB=CD,∴DN•BC=BM•CD,∴=,∴=,∴=,∵∠MCN=∠BCD,∴△MCN∽△BCD,∴∠CNM=∠CDB,∴MN∥BD,∴△CMN∽△CBD.∵B(6,0),D(0,8),∴直线BD的解析式为y=﹣x+8,∵C,C′关于MN对称,∴CC′⊥MN,∴CC′⊥BD,∵C(6,8),∴直线CC′的解析式为y=x+,∴C′(0,).(3)如图3中,①当AP=AE=5时,∵P(m,5),E(m+3,4),P,E在反比例函数图象上,∴5m=4(m+3),∴m=12.②当EP=AE时,点P与点D重合,∵P(m,8),E(m+3,4),P,E在反比例函数图象上,∴8m=4(m+3),∴m=3.③显然PA≠PE,若相等,则PE∥x轴,显然不可能.综上所述,满足条件的m的值为3或12.18.“六一”儿童节,小文到公园游玩.看到公园的一段人行弯道MN(不计宽度)如图,它与两面互相垂直的围墙OP,OQ之间有一块空地MPOQN(MP⊥OP,NQ⊥OQ),他发现弯道MN上任意一点到两边围墙的垂线段与围墙所围成的矩形的面积都相等.比如:A,B,C是弯道MN上的三点,矩形ADOG、矩形BEOH、矩形CFOI 的面积相等.爱好数学的他建立了平面直角坐标系(如图),图中三块阴影部分的面积分别记为S1,S2,S3,并测得S2=6(单位:平方米),OG=GH=HI.(1)求S1和S3的值;(2)设T(x,y)是弯道MN上的任一点,写出y关于x的函数解析式;(3)公园准备对区域MPOQN内部进行绿化改造,在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),已知MP=2米,NQ=3米.问一共能种植多少棵花木?【解析】(1)∵矩形ADOG 、矩形BEOH 、矩形CFOI 的面积相等,∴弯道为反比例函数图象的一部分.设反比例函数的解析式为y =k x (k ≠0),OG =GH =HI =a ,则AG =k a ,BH =k 2a ,CI =k 3a .所以S 2=k 2a •a -k 3a•a =6,解得k =36.所以S 1=k a •a -k 2a •a =12k =12×36=18,S 3=k 3a •a =13k =13×36=12;(2)由(1)得,弯道的函数解析式为y =36x .∵T(x ,y)是弯道MN 上的任一点,∴y =36x ;(3)∵MP =2,NQ =3,∴GM =362=18,OQ =363=12.∵在横坐标、纵坐标都是偶数的点处种植花木(区域边界上的点除外),∴当x =2时,y =18,可以种8棵;当x =4时,y =9,可以种4棵;当x =6时,y =6,可以种2棵;当x =8时,y =4.5,可以种2棵;当x =10时,y =3.6,可以种1棵.故一共可以种8+4+2+2+1=17(棵)花木.19、如图,已知反比例函数k y x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+. (1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【解析】(1)∵已知反比例函数k y x =经过点(1,4)A k -+,∴41k k-+=,即4k k -+= ∴2k =∴A(1,2) ∵一次函数y x b =+的图象经过点A(1,2),∴21b =+∴1b =∴反比例函数的表达式为2y x=, 一次函数的表达式为1y x =+。

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案

中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

D.当y增大时,BE·DF的值不变。

8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。

中考数学备考专题复习反比例函数含解析

中考数学备考专题复习反比例函数含解析

反比例函数一、单选题(共12题;共24分)1、(2016•龙东)已知反比例函数y= ,当1<x<3时,y的最小整数值是()A、3B、4C、5D、62、如果等腰三角形的底边长为x,底边上的高为y,则它的面积为定植S时,则x与y的函数关系式为()A、y=B、y=C、y=D、y=3、(2016•大庆)已知A(x1, y1)、B(x2, y2)、C(x3, y3)是反比例函数y= 上的三点,若x1<x2<x3, y2<y1<y3,则下列关系式不正确的是()A、x1•x2<0B、x1•x3<0C、x2•x3<0D、x1+x2<04、将一次函数y=x图象向下平移b个单位,与双曲线y=交于点A,与x轴交于点B,则OA2-OB2=( )A、-2B、2C、-D 、5、如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A、y=B、y=C、y=D、y=6、如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数y=(k≠0)图象上,当△ADE和△DCO的面积相等时,k的值为()A、-B、-C、-3D、-67、教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的()A、7:20B、7:30C、7:45D、7:508、(2015•玉林)如图,反比例函数y=的图象经过二次函数y=ax2+bx 图象的顶点(﹣,m)(m >0),则有()A、a=b+2kB、a=b﹣2kC、k<b<0D、a<k<09、如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y= (x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()A 、B 、C 、D 、10、(2016•济宁)如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB= ,反比例函数y= 在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A、60B、80C、30D、4011、(2016•湖北)一次函数y=ax+b和反比例函数y= 在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象大致为()A 、B 、C 、D 、12、(2016•天津)若点A(﹣5,y1),B(﹣3,y2),C(2,y3)在反比例函数y= 的图象上,则y1, y2, y3的大小关系是()A、y1<y3<y2B、y1<y2<y3C、y3<y2<y1D、y2<y1<y3二、填空题(共5题;共6分)13、如果函数y=x2m-1为反比例函数,则m的值是________.14、(2015•黄石)反比例函数y=的图象有一支位于第一象限,则常数a的取值范围是________ .15、(2016•宁波)如图,点A为函数y= (x>0)图象上一点,连结OA,交函数y= (x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为________.16、(2016•丽水)如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.(1)b=________(用含m的代数式表示);(2)若S△OAF+S四边形EFBC=4,则m的值是________.17、(2016•绍兴)如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为________.三、解答题(共3题;共15分)18、当m 取何值时,函数是反比例函数?19、(2016•苏州)如图,一次函数y=kx+b的图象与x轴交于点A,与反比例函数y= (x>0)的图象交于点B(2,n),过点B作BC⊥x轴于点C,点P(3n﹣4,1)是该反比例函数图象上的一点,且∠PBC=∠ABC,求反比例函数和一次函数的表达式.20、已知与是反比例函数图象上的两个点.(1)求m和k的值(2)若点C(-1,0),连结AC,BC,求△ABC的面积(3)根据图象直接写出一次函数的值大于反比例函数的值的的取值范围.四、综合题(共4题;共45分)21、(2016•曲靖)在平面直角坐标系中,把横纵坐标都是整数的点称为“整点”.(1)直接写出函数y= 图象上的所有“整点”A1, A2, A3,…的坐标;(2)在(1)的所有整点中任取两点,用树状图或列表法求出这两点关于原点对称的概率.22、(2015•广州)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.23、(2016•枣庄)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?24、(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y= 交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.答案解析部分一、单选题【答案】A【考点】反比例函数的性质【解析】【解答】解:在反比例函数y= 中k=6>0,∴该反比例函数在x>0内,y随x的增大而减小,当x=3时,y= =2;当x=1时,y= =6.∴当1<x<3时,2<y<6.∴y的最小整数值是3.故选A.【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在x>0中单调递减,再结合x的取值范围,可得出y的取值范围,取其内的最小整数,本题得解.本题考查了反比例函数的性质,解题的关键是找出反比例函数y= 在1<x<3中y的取值范围.本题属于基础题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.【答案】C【考点】根据实际问题列反比例函数关系式,三角形的面积【解析】【解答】∵S=xy,∴y=.故选C.【分析】考查列反比例函数关系式,得到三角形高的等量关系是解决本题的关键.三角形的面积= 1 2 底×高,那么高=,把相关数值代入即可求解.【答案】A【考点】反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y= 中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3, y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2<0,故选A.【分析】根据反比例函数y= 和x1<x2<x3, y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.【答案】B【考点】一次函数图象与几何变换,反比例函数与一次函数的交点问题【解析】【解答】∵平移后解析式是y=x+b,代入y=得:x+b=,即x2+bx=,y=x+b与x轴交点B的坐标是(-b,0),设A的坐标是(x,y),∴OA2-OB2=x2+y2+(-b)2=x2+(x+b)2-b2=2x2+2xb=2(x2+xb)=2×=2,故选B.【分析】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的计算能力的能力.【答案】D【考点】反比例函数图象的对称性【解析】【解答】由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP=于是π=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.反比例函数解析式为:y=.故选D.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【点评】此题是一道综合题,既要能熟练正确求出圆的面积,又要会用待定系数法求函数的解析式.【答案】C【考点】反比例函数系数k的几何意义,待定系数法求反比例函数解析式,三角形的面积【解析】【解答】如图,连接AC,∵点B的坐标为(4,0),△AO B为等边三角形,∴AO=OB=4.∴点A的坐标为(2,-2).∵C(4,0),∴AO=OC=4,∴∠OCA=∠OAC.∵∠AOB=60°,∴∠ACO=30°.又∵∠B="60°." ∴∠BAC=90°.∵S△ADE=S△DCO, S△AEC=S△ADE+S△ADC, S△AOC=S△DCO+S△ADC,∴∴S△AEC=S△AOC =×AE•AC=•CO•2,即•AE•2=×2×2,∴E点为AB的中点(3,-).把E点(3,-)代入y=中得:k=-3故选C.【分析】连接AC,由B的坐标得到等边三角形AOB的边长,得到AO与CO,得到AO=OC,利用等边对等角得到一对角相等,再由∠AOB=60°,得到∠ACO=30°,可得出∠BAC为直角,可得出A的坐标,由三角形ADE与三角形DCO面积相等,且三角形AEC面积等于三角形AED与三角形ADC面积之和,三角形AOC面积等于三角形DCO面积与三角形ADC面积之和,得到三角形AEC与三角形AOC面积相等,进而确定出AE的长,可得出E为AB中点,得出E的坐标,将E坐标代入反比例解析式中求出k的值,即可确定出反比例解析式。

中考数学反比例函数综合题及答案

中考数学反比例函数综合题及答案

中考数学反比例函数综合题及答案一、反比例函数1.如图,反比例函数y= 的图象与一次函数y= x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△PAB的面积;(2)设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.【答案】(1)解:k=4,S△PAB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y= x,得到点B的坐标为(4,1),把点B(4,1)代入y= ,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15;(2)解:过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y= ,设P(m,),直线PA的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线PA的方程为y= x+ ﹣1,联立,解得直线PB的方程为y=﹣ x+ +1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)解:∠PAQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y= x+ ﹣1.当y=0时, x+ ﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠PAQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠PAQ=∠PBQ.【解析】【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP 与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△PAB=2S△AOP,要求△PAB的面积,只需求△PAO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠PAQ=∠PBQ.2.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.3.函数学习中,自变量取值范围及相应的函数值范围问题是大家关注的重点之一,请解决下面的问题.(1)分别求出当2≤x≤4时,三个函数:y=2x+1,y= ,y=2(x﹣1)2+1的最大值和最小值;(2)若y= 的值不大于2,求符合条件的x的范围;(3)若y= ,当a≤x≤2时既无最大值,又无最小值,求a的取值范围;(4)y=2(x﹣m)2+m﹣2,当2≤x≤4时有最小值为1,求m的值.【答案】(1)解:y=2x+1中k=2>0,∴y随x的增大而增大,∴当x=2时,y最小=5;当x=4时,y最大=9.∵y= 中k=2>0,∴在2≤x≤4中,y随x的增大而减小,∴当x=2时,y最大=1;当x=4时,y最小= .∵y=2(x﹣1)2+1中a=2>0,且抛物线的对称轴为x=1,∴当x=1时,y最小=1;当x=4时,y最大=19(2)解:令y= ≤2,解得:x<0或x≥1.∴符合条件的x的范围为x<0或x≥1(3)解:①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0(4)解:①当m<2时,有2(2﹣m)2+m﹣2=1,解得:m1=1,m2= (舍去);②当2≤m≤4时,有m﹣2=1,解得:m3=3;③当m>4时,有2(4﹣m)2+m﹣2=1,整理得:2m2﹣15m+29=0.∵△=(﹣15)2﹣4×2×29=﹣7,无解.∴m的值为1或3.①当k>0时,如图得当0<x≤2时,y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y= 无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,∴当k<0,a<0时,此时,y= 既无最大值,又无最小值,综上所述,a的取值范围是a<0;【解析】【分析】(1)根据k=2>0结合一次函数的性质即可得出:当2≤x≤4时,y=2x+1的最大值和最小值;根据二次函数的解析式结合二次函数的性质即可得出:当2≤x≤4时,y=2(x﹣1)2+1的最大值和最小值;(2)令y= ≤2,解之即可得出x的取值范围;(3)①当k>0时,如图得当0<x≤2时,得到y= 无最大值,有最小值,同理当a<0时,且a≤x<0时,得到y≤ 有最大值,无最小值,②当k<0时,如图得当0<x≤2时,y=无最小值,有最大值,同理当a<0时,且a≤x<0时,y≤ 有最小值,无最大值,于是得到结论;(4)分m<2、2≤m≤4和m>4三种情况考虑,根据二次函数的性质结合当2≤x≤4时有最小值为1即可得出关于m的一元二次方程(一元一次方程),解之即可得出结论.4.【阅读理解】对于任意正实数a、b,因为≥0,所以≥0,所以≥2 ,只有当时,等号成立.【获得结论】在≥2 (a、b均为正实数)中,若为定值,则≥2 ,只有当时,有最小值2 .(1)根据上述内容,回答下列问题:若 >0,只有当 =________时,有最小值________.(2)【探索应用】如图,已知A(-3,0),B(0,-4),P为双曲线(>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.【答案】(1)1;2(2)解:设P(x,),则C(x,0),D(0,),∴CA=x+3,BD= +4,∴S四边形= CA×BD= (x+3)( +4),化简得:S=2(x+ )+12.∵x>0,>0,∴x+ ≥2 ABCD=6,只有当x= ,即x=3时,等号成立,∴S≥2×6+12=24,∴四边形ABCD的面积有最小值24,此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD是菱形.【解析】【解答】解:(1)根据题目所给信息可知m+ ≥2 ,且当m= 时等号,∴当m=1时,m+ ≥2,即当m=1时,m+ 有最小值2.故答案为:1,2;【分析】(1)此题是一道阅读题,根据题中所给的信息可知:,只有当m=时等号成立,一个正数只有1和它的倒数相等,从而得出答案;(2)根据双曲线上点的坐标特点设出P点的坐标,根据垂直于坐标轴上的点的坐标特点表示出C,D两点的坐标,从而表示出AC,BD的长,根据对角线互相垂直的四边形的面积等于两对角线积的一半建立出S与x的函数关系式,根据题干提供的信息得出得出,只有在,即x=3时,等号成立,从而得出S的最小值,从而得出P,C,D三点的坐标,进而算出AB=BC=CD=DA=5,根据四边相等的四边形是菱形得出结论。

中考数学综合题专题复习【反比例函数】专题解析附答案

中考数学综合题专题复习【反比例函数】专题解析附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)

中考数学反比例函数专题训练(含答案)一、反比例函数的图象与性质1.已知反比例函数的解析式为y=( |a|-2 ) / x,则a 的取值范围是( )A. a ≠2B. a ≠-2C. a ≠±2D. a=±22.反比例函数y=-3 / x,下列说法不正确的是( )A. 图象经过点(1,-3)B. 图象位于第二、四象限C. 图象关于直线y=x 对称D. y 随x 的增大而增大3.下列各点中,与点(-3,4) 在同一个反比例函数图象上的点的是( )A. (2,-3)B. (3,4)C. (2,-6)D. (-3,-4)4.点M(a,2a) 在反比例函数y=8 / x 的图象上,那么a 的值是( )A. 4B. -4C. 2D. ±25.如果反比例函数y=(a-2) / x ( a 是常数) 的图象在第一、三象限,那么a 的取值范围是( )A. a<0B. a>0C. a<2D. a>26.若点A(-3,y1),B(-2,y2),C(1,y3) 都在反比例函数y=-12 / x 的图象上,则y1,y2,y3 的大小关系是( )A. y2<y1<y3B. y3<y1<y2C. y1<y2<y3D. y3<y2<y17.反比例函数y=k / x 的图象经过点A(-1,2),则当x>1 时,函数值y 的取值范围是( )A. y>-1B. -1<y<0C. y<-2D. -2<y<08.若点A(a,b) 在反比例函数y=3 / x 的图象上,则代数式ab-1 的值为________.9.反比例函数y=(2m-1)xm2-2,x>0时,y 随着x 的增大而增大,则m 的值是________.10.已知一个反比例函数的图象位于第二、四象限内,点P(x0,y0) 在这个反比例函数的图象上,且x0y0>-4.请你写出这个反比例函数的表达式__________.(写出符合题意的一个即可)11.已知A(x1,y1),B(x2,y2) 都在反比例函数y=-2 / x 的图象上.若x1x2=-4,则y1y2 的值为________.12.已知A(1,m),B(2,n) 是反比例函数y=k/x 图象上的两点,若m-n=4,则k 的值为________.13.已知反比例函数的图象经过三个点A(-4,-3)、B(2m,y1)、C(6m,y2).若y1-y2=4,则m 的值为________.14.已知反比例函数y=m / x 在其所在象限内y 随x 的增大而减小,点P(2-m,m+1) 是该反比例函数图象上一点,则m 的值为________.15.已知A(x1,y1),B(x2,y2) 是反比例函数y=k / x 图象上的两点,且x1+x2=-2,x1·x2=2,y1+y2=-4/3,则k=________.16.已知点A(x1,y1)、B(x2,y2) 是反比例函数y=k/x 图象上的两点,且(x1-x2)(y1-y2)=9,3x1=2x2,则k 的值为________.17.在平面直角坐标系xOy 中,点A(a,b) (a>0,b>0) 在双曲线y=k1/x 上,点A 关于x 轴的对称点B 在双曲线y=k2/x 上,则k1+k2 的值为________.18.反比例函数y=k/x 的图象上有一点P(2,n),将点P 向右平移1 个单位,再向下平移1 个单位得到点Q,若点Q 也在该函数的图象上,则k=________.19.已知A、B 两点分别在反比例函数y=(2m-3) / x ( m ≠3/2 ) 和y=(3m-2) / x ( m ≠2/3) 的图象上,且点A 与点B 关于y 轴对称,则m 的值为________.【参考答案】二、反比例函数与几何图形或一次函数结合1.若一次函数y=ax+6 (a≠0) 的图象与反比例函数y=3/x 的图象只有一个交点,则a 的值为________.2.若直线y=-x+m 与双曲线y=n/x (x>0) 交于A(2,a),B(4,b) 两点,则mn 的值为________.3.一次函数y1=-x+6 与反比例函数y2=8/x (x>0) 的图象如图所示,当y1>y2 时,自变量x 的取值范围是________.4. 如图,在平面直角坐标系中,直线y=-x+2 与反比例函数y=1/x 的图象有唯一公共点.若直线y=-x+b 与反比例函数y=1/x 的图象没有公共点,则b 的取值范围是________.5.如图,过x 轴的正半轴上任意一点P,作y 轴的平行线,分别与反比例函数y=3/x (x>0),y=-6/x (x>0) 的图象相交于点A,B,若C 为y 轴上任意一点,连接AC,BC,则△ABC 的面积为________.6.如图,矩形ABCD 的顶点A,C 在反比例函数y=k/x (k>0,x>0) 的图象上,若点A 的坐标为(3,4),AB=2,AD∥x 轴,则点C 的坐标为________.7.如图,正方形ABCD 的边长为2,点B 与原点O 重合,与反比例函数y=k/x 的图象交于E、F 两点,若△DEF 的面积为9/8,则k 的值为________.8.如图,已知反比例函数y=4/x 的图象经过Rt△OAB 斜边OB 的中点D,与直角边AB 相交于点C,则△OBC 的面积为________.9.如图,反比例函数y=k/x 的图象经过平行四边形ABCD 对角线的交点P,已知点A、C、D 在坐标轴上,BD⊥DC,平行四边形ABCD 的面积为6,则k=________.10.如图,点A,C 分别是正比例函数y=x 的图象与反比例函数y=4/x 的图象的交点,过A 点作AD⊥x 轴于点D,过C 点作CB⊥x 轴于点B,则四边形ABCD 的面积为________.11.如图,点A 是反比例函数y=-8/x 图象上的一点,过点A 的直线与y 轴交于点B,与反比例函数y=k/x (x>0) 的图象交于点C、D.若AB=BC=CD,则k 的值为________.12.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=k/x 在第一象限的图象经过点B,若OA2-AB2=8,则k 的值为________.【参考答案】。

决战中考数学压轴题综合提升训练:《反比例函数》(解析版)

决战中考数学压轴题综合提升训练:《反比例函数》(解析版)

决战2020中考数学压轴题综合提升训练:《反比例函数》1.如图,反比例函数y1=和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.解:(1)∵点A(1,3)在反比例函数y1=的图象上,∴k=1×3=3,∴反比例函数的解析式为y1=,∵点B(﹣3,a)在反比例函数y1=的图象上,∴﹣3a=3,∴a=﹣1,∴B(﹣3,﹣1),∵点A(1,3),B(﹣3,﹣1)在一次函数y2=mx+n的图象上,∴,∴,∴一次函数的解析式为y2=x+2;(2)如图,∵△OAP为以OA为腰的等腰三角形,∴①当OA=OP时,∵A(1,3),∴OA=,∵OP=,∵点P在x轴上,∴P(﹣,0)或(,0),②当OA=AP时,则点A是线段OP的垂直平分线上,∵A(1,3),∴P(2,0),即:在x轴上存在点P,使得△OAP为以OA为腰的等腰三角形,此时,点P的坐标为(﹣,0)或(2,0)或(,0).2.在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A(3,2),直线l:y =kx﹣1(k≠0)与y轴交于点B,与图象G交于点C.(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,C之间的部分与线段BA,BC围成的区域(不含边界)为W.①当直线l过点(2,0)时,直接写出区域W内的整点个数;②若区域W内的整点不少于4个,结合函数图象,求k的取值范围.解:(1)把A(3,2)代入y=得m=3×2=6,(2)①当直线l过点(2,0)时,直线解析式为y=x﹣1,解方程=x﹣1得x 1=1﹣(舍去),x2=1+,则C(1+,),而B(0,﹣1),如图1所示,区域W内的整点有(3,1)一个;②如图2,直线l在AB的下方时,直线l:y=kx﹣1过(6,1)时,1=6k﹣1,解得k =,当直线在OA的上方时,直线经过(1,4)时,4=k﹣1,解得k=5,观察图象可知:当k≤或k≥5时,区域W内的整点不少于4个.3.如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,0),B(4,3),C(0,3).动点P从点O出发,以每秒个单位长度的速度沿边OA向终点A运动;动点Q从点B同时出发,以每秒1个单位长度的速度沿边BC向终点C运动,设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=时,求t的值;(3)连接OB交PQ于点D,若双曲线y=经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.解:(1)过点P作PE⊥BC于点E,如图1所示.当运动时间为t秒时(0≤t≤4)时,点P的坐标为(t,0),点Q的坐标为(4﹣t,3),∴PE=3,EQ=|4﹣t﹣t|=|4﹣t|,∴PQ2=PE2+EQ2=32+|4﹣t|2=t2﹣20t+25,∴y关于t的函数解析式及t的取值范围:;故答案为:.(2)当时,整理,得5t2﹣16t+12=0,解得:t1=2,.(3)经过点D的双曲线的k值不变.连接OB,交PQ于点D,过点D作DF⊥OA于点F,如图2所示.∵OC=3,BC=4,∴.∵BQ∥OP,∴△BDQ∽△ODP,∴,∴OD=3.∵CB∥OA,∴∠DOF=∠OBC.在Rt△OBC中,,,∴,,∴点D的坐标为,∴经过点D的双曲线的k值为.4.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B (n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积;(3)若P(x1,y1),Q(x2,y2)是该反比例函数图象上的两点,且当x1<x2时,y1>y2,指出点P、Q各位于哪个象限?解:(1)将A(﹣3,m+8)代入反比例函数y=得﹣3(m+8)=m,解得m=﹣6,∴点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得﹣6n=﹣6,解得n=1,∴点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x﹣4;(2)设AB与x轴相交于点C,如图,当﹣2x﹣4=0,解得x=﹣2,则点C的坐标为(﹣2,0),∴S△AOB=S△AOC+S△BOC,=×2×2+×2×6,=2+6,=8;(3)∵当x1<x2时,y1>y2,∴点P和点Q不在同一象限,∴P在第二象限,Q在第四象限.5.如图,平面直角坐标系中,一次函数y=x﹣1的图象与x轴,y轴分别交于点A,B,与反比例函数y=的图象交于点C,D,CE⊥x轴于点E,=.(1)求反比例函数的表达式与点D的坐标;(2)以CE为边作▱ECMN,点M在一次函数y=x﹣1的图象上,设点M的横坐标为a,当边MN与反比例函数y=的图象有公共点时,求a的取值范围.解:(1)由题意A(1,0),B(0,﹣1),∴OA=OB=1,∴∠OAB=∠CAE=45°∵AE=3OA,∴AE=3,∵EC⊥x轴,∴∠AEC=90°,∴∠EAC=∠ACE=45°,∴EC=AE=3,∴C(4,3),∵反比例函数y=经过点C(4,3),∴k=12,由,解得或,∴D(﹣3,﹣4).(2)如图,设M(a,a﹣1).当点N在反比例函数的图象上时,N(a,),∵四边形ECMN是平行四边形,∴MN=EC=3,∴|a﹣1﹣|=3,解得a=6或﹣2或﹣1±(舍弃),∴M(6,5)或(﹣2,﹣3),观察图象可知:当边MN与反比例函数y=的图象有公共点时4<a≤6或﹣3≤a≤﹣2.6.如图,一次函数y=kx+2的图象与y轴交于点A,正方形ABCD的顶点B在x轴上,点D在直线y=kx+2上,且AO=OB,反比例函数y=(x>0)经过点C.(1)求一次函数和反比例函数的解析式;(2)点P是x轴上一动点,当△PCD的周长最小时,求出P点的坐标;(3)在(2)的条件下,以点C、D、P为顶点作平行四边形,直接写出第四个顶点M 的坐标.解:(1)设一次函数y=kx+2的图象与x轴交于点E,连接BD,如图1所示.当x=0时,y=kx+2=2,∴OA=2.∵四边形ABCD为正方形,OA=OB,∴∠BAE=90°,∠OAB=∠OBA=45°,∴∠OAE=∠OEA=45°,∴OE=2,点E的坐标为(﹣2,0).将E(﹣2,0)代入y=kx+2,得:﹣2k+2=0,解得:k=1,∴一次函数的解析式为y=x+2.∵∠OBD=∠ABD+∠OBA=90°,∴BD∥OA.∵OE=OB=2,∴BD=2OA=4,∴点D的坐标为(2,4).∵四边形ABCD为正方形,∴点C的坐标为(2+2﹣0,0+4﹣2),即(4,2).∵反比例函数y=(x>0)经过点C,∴n=4×2=8,∴反比例函数解析式为y=.(2)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时△PCD的周长取最小值,如图2所示.∵点D的坐标为(2,4),∴点D′的坐标为(2,﹣4).设直线CD′的解析式为y=ax+b(a≠0),将C(4,2),D′(2,﹣4)代入y=ax+b,得:,解得:,∴直线CD′的解析式为y=3x﹣10.当y=0时,3x﹣10=0,解得:x=,∴当△PCD的周长最小时,P点的坐标为(,0).(3)设点M的坐标为(x,y),分三种情况考虑,如图3所示.①当DP为对角线时,,解得:,∴点M1的坐标为(,2);②当CD为对角线时,,解得:,∴点M2的坐标为(,6);③当CP为对角线时,,解得:,∴点M3的坐标为(,﹣2).综上所述:以点C、D、P为顶点作平行四边形,第四个顶点M的坐标为(,2),(,6)或(,﹣2).7.如图在平面直角坐标系中,一次函数y=﹣2x﹣4的图象与反比例函数y=的图象交于点A(1,n),B(m,2)(1)求反比例函数关系式及m的值;(2)若x轴正半轴上有一点M满足△MAB的面积为16,求点M的坐标;(3)根据函数图象直接写出关于x的不等式在<﹣2x﹣4的解集解:(1)∵一次函数y=﹣2x﹣4的图象过点A(1,n),B(m,2)∴n=﹣2﹣4,2=﹣2m﹣4∴n=﹣6,m=﹣3,∴A(1,﹣6)把A(1,﹣6)代入y=得,k=﹣6,∴反比例函数关系式为y=﹣;(2)设直线AB与x轴交于N点,则N(﹣2,0),设M(m,0),m>0,∵S△MAB=S△BMN+S△AMN,△MAB的面积为16,∴|m+2|×(2+6)=16,解得m=2或﹣6(不合题意舍去),∴M(2,0);(3)由图象可知:不等式在<﹣2x﹣4的解集是x<﹣3或0<x<1.8.如图,在平面直角坐标系中,点A(3,5)与点C关于原点O对称,分别过点A、C 作y轴的平行线,与反比例函数的图象交于点B、D,连结AD、BC,AD与x轴交于点E(﹣2,0).(1)求直线AD对应的函数关系式;(2)求k的值;(3)直接写出阴影部分图形的面积之和.解:(1)设直线AD对应的函数关系式为y=ax+b.∵直线AD过点A(3,5),E(﹣2,0),∴解得∴直线AD的解析式为y=x+2.(2)∵点A(3,5)关于原点O的对称点为点C,∴点C的坐标为(﹣3,﹣5),∵CD∥y轴,∴设点D的坐标为(﹣3,a),∴a=﹣3+2=﹣1,∴点D的坐标为(﹣3,﹣1),∵反比例函数y=的图象经过点D,∴k=﹣3×(﹣1)=3;(3)如图:∵点A和点C关于原点对称,∴阴影部分的面积等于平行四边形CDGF的面积,∴S阴影=4×3=12.9.如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.解:(1)把点A(4,3)代入函数得:a=3×4=12,∴y=,OA=5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:∴y=2x﹣5;(2)作MD⊥y轴.∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5).∵MB=MC,∴CD=BD,∴x2+(8﹣2x+5)2=x2+(﹣5﹣2x+5)2∴8﹣(2x﹣5)=2x﹣5+5解得:x=∴2x﹣5=,∴点M的坐标为(,).10.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=(k≠0)的第一象限内的图象上,OA=3,OC=5,动点P在x轴的上方,且满足S△=S矩形OABC.PAO(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PA,求PO+PA的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.解:(1)由题意,可知:点B的坐标为(3,5).∵点B在反比例函数y=(k≠0)的第一象限内的图象上,∴k=3×5=15,∴反比例函数的解析式为y=.∵S△PAO=S矩形OABC,∴×3×y P=×3×5,∴y P=3.当y=3时,=3,解得:x=5,∴当点P在这个反比例函数的图象上时,点P的坐标为(5,3).(2)由(1)可知:点P在直线y=3上,作点O关于直线y=3的对称点O′,连接AO′交直线y=3于点P,此时PO+PA取得最小值,如图1所示.∵点O的坐标为(0,0),∴点O′的坐标为(0,6).∵点A的坐标为(3,0),∴AO′==3,∴PO+PA的最小值为3.(3)∵AB∥y轴,AB=5,点P的纵坐标为3,∴AB不能为对角线,只能为边.设点P的坐标为(m,3),分两种情况考虑,如图2所示:①当点Q在点P的上方时,AP=AB=5,即(m﹣3)2+(3﹣0)2=25,解得:m1=﹣1,m2=7,∴点P1的坐标为(﹣1,3),点P2的坐标为(7,3).又∵PQ=5,且PQ∥AB∥y轴,∴点Q1的坐标为(﹣1,8),点Q2的坐标为(7,8);②当点Q在点P的下方时,BP=AB=5,即(m﹣3)2+(3﹣5)2=25,解得:m3=3﹣,m4=3+,同理,可得出:点Q3的坐标为(3﹣,﹣2),点Q4的坐标为(3+,﹣2).综上所述:当以A、B、P、Q为顶点的四边形是菱形时,点Q的坐标为(﹣1,8),(7,8),(3﹣,﹣2)或(3+,﹣2).11.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.12.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴、y轴上,D是对角线的交点,若反比例函数y=的图象经过点D,且与矩形OABC的两边AB,BC分别交于点E,F.(1)若D的坐标为(4,2)①则OA的长是8 ,AB的长是 4 ;②请判断EF是否与AC平行,井说明理由;③在x轴上是否存在一点P.使PD+PE的值最小,若存在,请求出点P的坐标及此时PD+PE的长;若不存在.请说明理由.(2)若点D的坐标为(m,n),且m>0,n>0,求的值.解:(1)①∵点D的坐标为(4,2),∴点B的坐标为(8,4),∴OA=8,AB=4.故答案为:8;4.②EF∥AC,理由如下:∵反比例函数y=的图象经过点D(4,2),∴k=4×2=8.∵点B的坐标为(8,4),BC∥x轴,AB∥y轴,∴点F的坐标为(2,4),点E的坐标为(8,1),∴BF=6,BE=3,∴=,=,∴=.∵∠ABC=∠EBF,∴△ABC∽△EBF,∴∠BCA=∠BFE,∴EF∥AC.③作点E关于x轴对称的点E′,连接DE′交x轴于点P,此时PD+PE的值最小,如图所示.∵点E的坐标为(8,1),∴点E′的坐标为(8,﹣1),∴DE′==5.设直线DE′的解析式为y=ax+b(a≠0),将D(4,2),E′(8,﹣1)代入y=ax+b,得:,解得:,∴直线DE′的解析式为y=﹣x+5.当y=0时,﹣x+5=0,解得:x=,∴当点P的坐标为(,0)时,PD+PE的值最小,最小值为5.(2)∵点D的坐标为(m,n),∴点B的坐标为(2m,2n).∵反比例函数y=的图象经过点D(m,n),∴k=mn,∴点F的坐标为(m,2n),点E的坐标为(2m,n),∴BF=m,BE=n,∴=,=,∴=.又∵∠ABC=∠EBF,∴△ABC∽△EBF,∴==.13.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A (﹣3,1),B(1,n)两点.(1)求反比例函数和一次函数解析式;(2)结合图象直接写出不等式﹣kx﹣b>0的解.解:(1)∵点A(﹣3,1)在反比例函数y=(m≠0)的图象上,∴m=(﹣3)×1=﹣3,∴反比例函数的表达式为y=﹣,∵点B(1,n)也在反比例函数y=﹣的图象上,∴n=﹣=﹣3,即B(1,﹣3),把点A(﹣3,1),点B(1,﹣3)代入一次函数y=kx+b中,得,解得,∴一次函数的表达式为y=﹣x﹣2;(2)如图所示,当>kx+b时,x的取值范围是﹣3<x<0或x>1,所以不等式﹣kx﹣b>0的解是:﹣3<x<0或x>1.14.如图,在平面直角坐标系xOy内,函数y=的图象与反比例函数y=(k≠0)图象有公共点A,点A的坐标为(8,a),AB⊥x轴,垂足为点B.(1)求反比例函数的解析式;(2)点P在线段OB上,若AP=BP+2,求线段OP的长;(3)点D为射线OA上一点,在(2)的条件下,若S△ODP=S△ABO,求点D的坐标.解:(1)∵函数y=的图象过点A(8,a),∴a=×8=4,∴点A的坐标为(8,4),∵反比例函数y=(k≠0)图象过点A(8,4),∴4=,得k=32,∴反比例函数的解析式为y=;(2)设BP=b,则AP=b+2,∵点A(8,4),AB⊥x轴于点B,∴AB=4,∠ABP=90°,∴b2+42=(b+2)2,解得,b=3,∴OP=8﹣3=5,即线段OP的长是5;(3)设点D的坐标为(d,d),∵点A(8,4),点B(8,0),点P(5,0),S△ODP=S△ABO,∴,解得,d=,∴d=,∴点D的坐标为(,).15.阅读理解:如图(1),在平面直角坐标系xOy中,已知点A的坐标是(1,2),点B的坐标是(3,4),过点A、点B作平行于x轴、y轴的直线相交于点C,得到Rt△ABC,由勾股定理可得,线段AB==.得出结论:(1)若A点的坐标为(x1,y1),B点的坐标为(x2,y2)请你直接用A、B两点的坐标表示A、B两点间的距离;应用结论:(2)若点P在y轴上运动,试求当PA=PB时,点P的坐标.(3)如图(2)若双曲线L1:y=(x>0)经过A(1,2)点,将线段OA绕点O旋转,使点A恰好落在双曲线L2:y=﹣(x>0)上的点D处,试求A、D两点间的距离.解:(1)∵A点的坐标为(x1,y1),B点的坐标为(x2,y2),∴根据两点间的距离公式得,AB=;(2)设点P(0,a),∵A的坐标是(1,2),点B的坐标是(3,4),∵PA=,PB=,∵PA=PB,∴=,∴a=5,∴P(0,5);(3)∵双曲线L1:y=(x>0)经过A(1,2)点,∴OA=,k=1×2=2,∴双曲线L1:y=(x>0),双曲线L2:y=﹣(x>0),设点D坐标为(m,﹣)(m>0),∴OD=,由旋转知,OA=OD,∴=,∴m=±1或m=±2,∵m>0,∴m=1或m=2,∴D(1,﹣2)或(2,﹣1).∵A(1,2),∴AD=4或.。

中考数学易错题专题训练-反比例函数练习题及答案解析

中考数学易错题专题训练-反比例函数练习题及答案解析

中考数学易错题专题训练-反比例函数练习题及答案解析一、反比例函数1.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.2.如图,点P( +1,﹣1)在双曲线y= (x>0)上.(1)求k的值;(2)若正方形ABCD的顶点C,D在双曲线y= (x>0)上,顶点A,B分别在x轴和y 轴的正半轴上,求点C的坐标.【答案】(1)解:点P(,)在双曲线上,将x= ,y= 代入解析式可得:k=2;(2)解:过点D作DE⊥OA于点E,过点C作CF⊥OB于点F,∵四边形ABCD是正方形,∴AB=AD=BC,∠CBA=90°,∴∠FBC+∠OBA=90°,∵∠CFB=∠BOA=90°,∴∠FCB+∠FBC=90°,∴∠FBC=∠OAB,在△CFB和△AOB中,,∴△CFB≌△AOB(AAS),同理可得:△BOA≌△AED≌△CFB,∴CF=OB=AE=b,BF=OA=DE=a,设A(a,0),B(0,b),则D(a+b,a)C(b,a+b),可得:b(a+b)=2,a(a+b)=2,解得:a=b=1.所以点C的坐标为:(1,2).【解析】【分析】(1)由待定系数法把P坐标代入解析式即可;(2)C、D均在双曲线上,它们的坐标就适合解析式,设出C坐标,再由正方形的性质可得△CFB≌△AOB△BOA≌△AED≌△CFB,代入解析式得b(a+b)=2,a(a+b)=2,即可求出C坐标.3.如图、在矩形OABC中,,双曲线与矩形两边BC,AB 分别交于E,F两点.(1)如图一,若E是BC中点,求点F的坐标;(2)如图二,若将沿直线EF对折,点B恰好落在x轴上的点D处,求k的值. 【答案】(1)解:矩形OABC中,,,E是BC中点,点 .点E在双曲线上,..点F的横坐标为4,且在双曲线上,,即点;(2)解:过点E做轴于H点,点点, ., .,,,∽ .,,.,,.【解析】【分析】(1)根据E点坐标求出k的值,而后把F点的横坐标代入反比例函数解析式求出纵坐标;(2)过点E做轴于H点,根据∽,分别用k 表示出DF、AF、AD长度,根据勾股定理构造出关于k的方程.4.在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为梦之点,例如,点(1,1),(﹣ 2,﹣ 2),(,),…,都是梦之点,显然梦之点有无数个.(1)若点P(2,b)是反比例函数 (n为常数,n≠0)的图象上的梦之点,求这个反比例函数解析式;(2)⊙O的半径是,①求出⊙O上的所有梦之点的坐标;②已知点M(m,3),点Q是(1)中反比例函数图象上异于点P的梦之点,过点Q的直线l与y轴交于点A,∠OAQ=45°.若在⊙O上存在一点N,使得直线MN∥l或MN⊥l,求出m的取值范围.【答案】(1)解:∵P(2,b)是梦之点,∴b=2∴P(2,2)将P(2,2)代入中得n=4∴反比例函数解析式是(2)解:①设⊙O上梦之点坐标是(,)∴∴=1或 =-1∴⊙O上所有梦之点坐标是(1,1)或(-1,-1)②由(1)知,异于点P的梦之点Q的坐标为(-2,-2)由已知MN∥l或MN⊥l∴直线MN为y=-x+b或y=x+b当MN为y=-x+b时,m=b-3由图可知,当直线MN平移至与⊙O相切时,且切点在第四象限时,b取得最小值,此时MN记为,其中为切点,为直线与y轴的交点∵△O 为等要直角三角形,∴O =∴O =2∴b的最小值是-2,∴m的最小值是-5当直线MN平移至与⊙O相切时,且切点在第二象限时,b取得最大值,此时MN记为,其中为切点,为直线与y轴的交点。

中考数学 反比例函数综合试题含详细答案

中考数学 反比例函数综合试题含详细答案

中考数学反比例函数综合试题含详细答案一、反比例函数1.如图,直线y=﹣x+b与反比例函数y= 的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△PAC= S△AOB?若存在请求出点P坐标,若不存在请说明理由.【答案】(1)解:将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4= ,解得:b=5,k=4(2)解:一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1(3)解:过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴,∵,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△PAC= OP•CD+ OP•AE= OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).【解析】【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.2.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.3.如图,四边形OP1A1B1、A1P2A2B2、A2P3A3B3、…、A n﹣1P n A n B n都是正方形,对角线OA1、A1A2、A2A3、…、A n﹣1A n都在y轴上(n≥1的整数),点P1(x1,y1),点P2(x2,y2),…,P n(x n, y n)在反比例函数y= (x>0)的图象上,并已知B1(﹣1,1).(1)求反比例函数y= 的解析式;(2)求点P2和点P3的坐标;(3)由(1)、(2)的结果或规律试猜想并直接写出:△P n B n O的面积为 ________ ,点P n的坐标为________ (用含n的式子表示).【答案】(1)解:在正方形OP1A1B1中,OA1是对角线,则B1与P1关于y轴对称,∵B1(﹣1,1),∴P1(1,1).则k=1×1=1,即反比例函数解析式为y=(2)解:连接P2B2、P3B3,分别交y轴于点E、F,又点P1的坐标为(1,1),∴OA1=2,设点P2的坐标为(a,a+2),代入y=得a=-1,故点P2的坐标为(-1,+1),则A1E=A2E=2-2,OA2=OA1+A1A2=2,设点P3的坐标为(b,b+2),代入y=(>0)可得b=-,故点P3的坐标为(-,+)(3)1;(-,+)【解析】【解答】解:(3)∵=2=2×=1,=2=2×=1,…∴△P n B n O的面积为1,由P1(1,1)、P2(﹣1, +1)、P3(﹣,+ )知点P n的坐标为(﹣,+ ),故答案为:1、(﹣, +).【分析】(1)由四边形OP1A1B1为正方形且OA1是对角线知B1与P1关于y轴对称,得出点P1(1,1),然后利用待定系数法求解即可;(2)连接P2B2、P3B3,分别交y轴于点E、F,由点P1坐标及正方形的性质知OA1=2,设P2的坐标为(a,a+2),代入解析式求得a的值即可,同理可得点P3的坐标;(3)先分别求得S△P1B1O、S△P2B2O的值,然后找出其中的规律,最后依据规律进行计算即可.4.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B (0,4).过点C(﹣6,1)的双曲线y= (k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=________,k=________,点E的坐标为________;(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣ x2+bx+c的顶点.①当点P在双曲线y= 上时,求证:直线MN与双曲线y= 没有公共点;②当抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【答案】(1)6;-6;(﹣,4)(2)解:①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣ x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣ x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t= 或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【解析】【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)【分析】(1)根据A点的坐标即可得出OA的长,将C点的坐标代入双曲线y=,即可求出k的值,得出双曲线的解析式,根据平行于x轴的直线上的点的坐标特点得出点E的纵坐标为4,将y=4代入双曲线的解析式即可算出对应的自变量的值,从而得出E点的坐标;(2)①用待定系数法求出直线MN解析式,将M,N两点的坐标代入抛物线y=﹣x2+bx+c,得出关于b,c的方程组,求解得出b,c的值,根据顶点坐标公式表示出P点的坐标,再将P点的坐标代入双曲线即可求出t的值,从而得出直线MN解析式,解联立直线MN解析式与双曲线的解析式组成的方程组,根据根的判别式的值小于0,得出直线MN与双曲线没有公共点;②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,故4=5t﹣2,求解得出t的值,当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点,故,求解得出t的值,综上所述得出答案;③根据P点的坐标判断出当1≤t≤6时,y P随t的增大而增大,此时,点P在直线x=﹣1上向上运动进而表示出F点的坐标,将F点的纵坐标配成顶点式,得出当1≤t≤4时,随者y F随t的增大而增大,此时,随着t的增大,点F在y轴上向上运动,故1≤t≤4,当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3),当t=4﹣时,直线MN过点A.根据割补法算出当1≤t≤4时,直线MN在四边形AEBO中扫过的面积。

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案

中考数学复习《反比例函数》专题练习-附带参考答案一、选择题1.下列函数关系式中,y 是x 的反比例函数的是( )A .y =x +3B .y =x 3C .y =3x 2D .y =3x 2.若反比例函数y=6x 的图像经过点(﹣2,a ),则a 的值是( )A .6B .﹣2C .﹣3D .3 3.已知反比例函数y =−1x ,下列结论不正确...的是( ) A .该函数图象经过点(−1,1)B .该函数图象位于第二、四象限C .y 的值随着x 值的增大而增大D .该函数图象关于原点成中心对称 4.反比例函数(其中),当时,y 随x 的增大而增大,那么m 的取值范围是( ) A . B .C .D . 5.在同一直角坐标系中,函数y =−kx +k 与y =k x (k ≠0)的大致图象可能为( )A .B .C .D .6.反比例函数y =6x 图象上有三个点(x 1,y 1),(x 2,y 2),(x 3,y 3)其中y 1<y 2<0<y 3,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 3<x 1<x 2C .x 2<x 1<x 3D .x 3<x 2<x 1 7.如图,A 、B 是第二象限内双曲线y =k x 上的点,A 、B 两点的横坐标分别是a ,3a ,线段AB 的延长线交x轴于点C ,S △AOC =12.则k 的值为( )A .﹣6B .﹣5C .﹣4D .﹣38.如图,矩形OABC与反比例函数y1=k1x(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=k2x(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.32D.−32二、填空题9.已知点A(−3,2)在反比例函数y=kx的图象上,则k的值为.10.若点P1(﹣1,m),P2(﹣2,n)在反比例函数y=kx(k<0)的图象上,则m n.(填“>”,“<”或“=”)11.正比例函数y=k1x(k1≠0)和反比例函数y= k2x(k2≠0)的一个交点为(m,n),则另一个交点为12.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=2x (x>0),y=kx(x<0)的图象于B,C两点,若△ABC的面积是3,则k的值为.13.如图,在平面直角坐标系中,过点M(-3,2)分别作x轴、y轴的垂线与反比例函数y=4x的图象交于A,B两点,则四边形MAOB的面积为.三、解答题14.如图,一次函数的图象与反比例函数的图象在第一象限交于点,与轴的负半轴交于点,且.(1)求一次函数与反比例函数的表达式;(2)请直接写出不等式的解集.15.1896年,挪威生理学家古德贝发现,每个人有一条腿迈出的步子比另一条腿迈出的步子长的特点,这就导致每个人在蒙上眼睛行走时,虽然主观上沿某一方向直线前进,但实际上走出的是一个大圆圈!这就是有趣的“嗐转圈”现象.经研究,某人蒙上眼睛走出的大圆圈的半径y/米是其两腿迈出的步长之差x/厘米(x>0)的反比例函数,y与x之间有如表关系:请根据表中的信息解决下列问题:(1)求出y与x之间的函数解析式;(2)若某人蒙上眼睛走出的大圆圈的半径为35米,则其两腿迈出的步长之差是多少厘米?(k>0).16.如图,设反比例函数的解析式为y=3kx(1)若反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若反比例函数的图象与过点M (﹣2,0)的直线l :y =kx+b 的图象交于A 、B 两点,如图,当△ABO 的面积为12时,求直线l 的解析式.17.某医药研究所研制了一种新药,在试验药效时发现:成人按规定剂量服用后,检测到从第10分钟起每分钟每毫升血液中含药量增加0.3微克,第100分钟达到最高,接着开始衰退.血液中含药量y (微克)与时间x (分钟)的函数关系如图,并发现衰退时y 与x 成反比例函数关系.(1) ; (2)分别求出当和时,y 与x 之间的函数关系式; (3)如果每毫升血液中含药量不低于12微克时是有效的,求一次服药后的有效时间是多少分钟?18.如图,一次函数 y ax b =+ 的图象与反比例函数 k y x=的图象交于第一象限C ,D 两点,坐标轴交于A 、B 两点,连结OC ,OD (O 是坐标原点).(1)利用图中条件,求反比例函数的解析式和m 的值;(2)求△DOC 的面积.(3)双曲线上是否存在一点P ,使得△POC 和△POD 全等?若存在,给出证明并求出点P 的坐标;若不存在,说明理由.参考答案1.B2.C3.C4.A5.D6.C7.A8.B9.k=-610.>11.(-m,-n).12.−413.1014.(1)解:点在反比例函数的图象上反比例函数解析式为;OA=OB,点在轴负半轴上点.把点、代入中得解得:一次函数的解析式为;(2) 15.(1)解:设y 与x 之间的函数解析式为y =k x 将(2,7)代入得7=k 2∴k =14∴y 与x 之间的函数解析式为y =14x . (2)解:当y =35时,即14x =35,解得x =0.4∴某人蒙上眼睛走出的大圆圈的半径为35米,其两腿迈出的步长之差是0.4厘米.16.(1)解:∵反比例函数与正比例函数y =2x 的图象有一个交点的纵坐标为2 把y =2代入y =2x 求得x =1∴反比例函数与正比例函数y =2x 的图象交点的坐标为(1,2)把(1,2)代入y =3k x (k >0),得到3k =2 ∴k =23;(2)解:把M (﹣2,0)代入y =kx+b ,可得b =2k∴y =kx+2k解{y =3k x y =kx +2k 得{x =−3y =−k 或{x =1y =3k∴B (﹣3,﹣k ),A (1,3k )∵△ABO 的面积为12∴12•2•3k+12•2•k =12解得k =3∴直线l 的解析式为y =3x+6.17.(1)27(2)解:当时,设y 与x 之间的函数关系式为∵经过点 ∴解得:,∴解析式为;当时,y 与x 之间的函数关系式为∵经过点∴解得:∴函数的解析式为; (3)解:令解得:令,解得:∴分钟 ∴服药后能持续175分钟.18.(1)∵点C (1,2)在反比例函数 图象上 ∴k=2∴反比例函数解析式为 2y x= ∵点B (2,m )在反比例函数 图象上 ∴m= 22=1. (2)如图,过点C 作⊥OA 于E ,过点D 作DF ⊥OA 于 Fk y x =2y x =∵C (1,2),D (2,1)∴CE=2,DF=1∵C 、D 在一次函数 的图象上∴221a b a b +=⎧⎨+=⎩解得: 13a b =-⎧⎨=⎩∴一次函数解析式为y=-x+3当y=0时,x=3∴A 点坐标为(3,0)∴OA=3∴DOC S =S △AOC -S △AOD = 1122OA CE OA DF ⋅-⋅ = 11323122⨯⨯-⨯⨯ =1.5.(3)设点P 坐标为(n , 2n )∵C (2,1),D (1,2)∴OC=OD∵△POC 和△POD 全等∴PC=PD ∴222222(1)(2)(2)(1)n n n n -+-=-+-解得: 2n =∴P (, )或P ( 2 , ) ∴双曲线上存在一点P ,使得△POC 和△POD 全等,P ( , )或P ( , ). y ax b =+222-2222。

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)

中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。

备战中考数学分点透练真题反比例函数 (解析版)

备战中考数学分点透练真题反比例函数 (解析版)

第十讲反比例函数命题点1 反比例函数的图像与性质1.(2021•黔西南州)对于反比例函数y=,下列说法错误的是()A.图象经过点(1,﹣5)B.图象位于第二、第四象限C.当x<0时,y随x的增大而减小D.当x>0时,y随x的增大而增大【答案】C【解答】解:∵反比例函数y=,∴当x=1时,y=﹣=﹣5,故选项A不符合题意;k=﹣5,故该函数图象位于第二、四象限,故选项B不符合题意;当x<0,y随x的增大而增大,故选项C符合题意;当x>0时,y随x的增大而增大,故选项D不符合题意;故选:C.2.(2021•阜新)已知点A(x1,y1),B(x2,y2)都在反比例函数y=﹣的图象上,且x1<0<x2,则y1,y2的关系一定成立的是()A.y1>y2B.y1<y2C.y1+y2=0D.y1﹣y2=0【答案】A【解答】解:∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2,∴A在第二象限,B在第四象限,∴y1>0,y2<0,∴y1>y2.故选:A.3.(2021•广安)若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y1【答案】A【解答】解:∵反比例函数中k<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣3<0,﹣1<0,∴点A(﹣3,y1),B(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣3<﹣1<0,∴0<y1<y2.∵2>0,∴点C(2,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故选:A.4.(2021•滨州)若点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为.【答案】y2<y1<y3【解答】解:∵反比例函数y=(k为常数),k2+1>0,∴该函数图象在第一、三象限,在每个象限内y随x的增大而减小,∵点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,﹣1<﹣,点A、B在第三象限,点C在第一象限,∴y2<y1<y3,故答案为:y2<y1<y3.5.(2021•郴州)在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是.【答案】m<3【解答】解:比例函数y=图象上的每一条曲线上,y随x的增大而增大,∴m﹣3<0,∴m<3.故答案为:m<3.命题点2 反比例函数解析式的确定类型一直接带点型6.(2020•铜仁市)已知点(2,﹣2)在反比例函数y=的图象上,则这个反比例函数的表达式是.【答案】y=﹣【解答】解:∵反比例函数y=(k≠0)的图象上一点的坐标为(2,﹣2),∴k=﹣2×2=﹣4,∴反比例函数解析式为y=﹣,故答案为:y=﹣.7.(2018•陕西)若一个反比例函数的图象经过点A(m,m)和B(2m,﹣1),则这个反比例函数的表达式为.【答案】【解答】解:设反比例函数的表达式为y=,∵反比例函数的图象经过点A(m,m)和B(2m,﹣1),∴k=m2=﹣2m,解得m1=﹣2,m2=0(舍去),∴k=4,∴反比例函数的表达式为.故答案为:.类型二利用几何图形性质求点型8.(2020•黔西南州)如图,在菱形ABOC中,AB=2,∠A=60°,菱形的一个顶点C在反比例函数y=(k≠0)的图象上,则反比例函数的解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【答案】B【解答】解:∵在菱形ABOC中,∠A=60°,菱形边长为2,∴OC=2,∠COB=60°,过C作CE⊥OB于E,则∠OCE=30°,∴OE=OC=1,CE=,∴点C的坐标为(﹣1,),∵顶点C在反比例函数y=的图象上,∴=,得k=﹣,即y=﹣,故选:B.9.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【答案】C【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.10.(2018•东营)如图,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为.【答案】y=【解答】解:设A坐标为(x,y),∵B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,∴x+5=0+3,y+0=0﹣3,解得:x=﹣2,y=﹣3,即A(﹣2,﹣3),设过点A的反比例解析式为y=,把A(﹣2,﹣3)代入得:k=6,则过点A的反比例函数解析式为y=,故答案为:y=11.(2020•黔南州)如图,正方形ABCD的边长为10,点A的坐标为(﹣8,0),点B在y 轴上,若反比例函数y=(k≠0)的图象过点C,则该反比例函数的解析式为.【答案】y=【解答】解:如图,过点C作CE⊥y轴于E,∵四边形ABCD是正方形,∴AB=BC=10,∠ABC=90°,∴OB===6,∵∠ABC=∠AOB=90°,∴∠ABO+∠CBE=90°,∠ABO+∠BAO=90°,∴∠BAO=∠CBE,又∵∠AOB=∠BEC=90°,∴△ABO≌△BCE(AAS),∴CE=OB=6,BE=AO=8,∴OE=2,∴点C(6,2),∵反比例函数y=(k≠0)的图象过点C,∴k=6×2=12,∴反比例函数的解析式为y=,故答案为:y=.类型三利用k得到几何意义求解析式12.(2017•铜仁市)如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=B.y=C.y=D.y=﹣【答案】C【解答】解:∵S△AOC=4,∴k=2S△AOC=8;∴y=;故选:C.13.(2016•铁岭)如图,▱ABCD的顶点A在反比例函数图象上,边CD落在x轴上,点B 在y轴上,AD交y轴于点E,OE:EB=1:2,四边形BCDE的面积为6,则这个反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【答案】C【解答】解:∵DE∥BC,∴△EOD∽△BOC,∵OE:EB=1:2,∴=,∴=,∴=,解得:S△EOD=,∵AB∥DO,∴△ABE∽△DOE,∵=,∴=4,∴S△ABE=4×=3,∴四边形ABCD的面积为6+3=9,如图,过A作AF⊥x轴于F,则S矩形ABOF=S平行四边形ABCD=9,即|k|=9,又∵函数图象在二、四象限,∴k=﹣9,即函数解析式为:y=﹣.故选:C.14.(2019•青海)如图,P是反比例函数y=图象上的一点,过点P向x轴作垂线交于点A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.【答案】y=【解答】解:依据比例系数k的几何意义可得,△P AO面积等于|k|,即|k|=1,k=±2,由于函数图象位于第一、三象限,则k=2,∴反比例函数的解析式为y=;故答案为:y=.15.(2016•西藏)如图是反比例函数图象的一部分,面积为4的矩形OBAC的边OB在x轴上,顶点A在反比例函数图象上,则这个反比例函数的解析式为.【答案】y=﹣【解答】解:设反比例函数解析式y=,∵面积为4的矩形OBAC的边OB在x轴上,∴|k|=4,而k<0,∴k=﹣4,所以反比例函数解析式为y=﹣.命题点3 反比例函数与一次函数结合类型一同一坐标系中函数图像的判断16.(2021•荆门)在同一平面直角坐标系中,函数y=kx﹣k与y=(k≠0)的大致图象是()A.①②B.②③C.②④D.③④【答案】B【解答】解:当k>0时,一次函数y=kx﹣k经过一、三、四象限,函数的y=(k≠0)的图象在一、二象限,故选项②的图象符合要求.当k<0时,一次函数y=kx﹣k经过一、二、四象限,函数的y=(k≠0)的图象经过三、四象限,故选项③的图象符合要求.故选:B.类型二反比例函数与一次函数综合题17.(2020•青海)若ab<0,则正比例函数y=ax与反比例函数y=在同一平面直角坐标系中的大致图象可能是()A.B.C.D.【答案】B【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax的图象过原点、第一、三象限,反比例函数y =图象在第二、四象限,无选项符合.(2)当a<0,b>0时,正比例函数y=ax的图象过原点、第二、四象限,反比例函数y =图象在第一、三象限,故B选项正确;故选:B.18.(2021•荆州)已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是()A.t=2B.△AOB是等腰直角三角形C.k=1D.当x>1时,y2>y1【答案】D【解答】解:∵点P(1,t)在双曲线y2=上,∴t==2,正确;∴A选项不符合题意;∴P(1,2).∵P(1,2)在直线y1=kx+1上,∴2=k+1.∴k=1,正确;∴C选项不符合题意;∴直线AB的解析式为y=x+1令x=0,则y=1,∴B(0,1).∴OB=1.令y=0,则x=﹣1,∴A(﹣1,0).∴OA=1.∴OA=OB.∴△OAB为等腰直角三角形,正确;∴B选项不符合题意;由图像可知,当x>1时,y1>y2.∴D选项不正确,符合题意.故选:D.19.(2021•宁波)如图,正比例函数y1=k1x(k1<0)的图象与反比例函数y2=(k2<0)的图象相交于A,B两点,点B的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2B.﹣2<x<0或x>2C.x<﹣2或0<x<2D.﹣2<x<0或0<x<2【答案】C【解答】解:由反比例函数与正比例函数相交于点A、B,可得点A坐标与点B坐标关于原点对称.故点A的横坐标为﹣2.当y1>y2时,即正比例函数图象在反比例图象上方,观察图象可得,当x<﹣2或0<x<2时满足题意.故选:C.20.(2021•淮安)如图,正比例函数y=k1x和反比例函数y=图象相交于A、B两点,若点A的坐标是(3,2),则点B的坐标是.【答案】(﹣3,﹣2)【解答】解:∵正比例函数与反比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A的坐标为(3,2),∴B的坐标为(﹣3,﹣2).故答案为:(﹣3,﹣2).21.(2021•南京)如图,正比例函数y=kx与函数y=的图象交于A,B两点,BC∥x轴,AC∥y轴,则S△ABC=.【答案】12【解答】解:方法一:连接OC,设AC交x轴于点N,BC交y轴于M点,∵正比例函数y=kx与函数y=的图象交于A,B两点,∴点A与点B关于原点对称,∴S△AON=S△OBM,∵BC∥x轴,AC∥y轴,∴S△AON=S△CON,S△OBM=S△OCM,即S△ABC=4S△AON=4×x A•y A=4×=12;方法二:根据题意设A(t,),∵正比例函数y=kx与函数y=的图象交于A,B两点,∴B(﹣t,﹣),∵BC∥x轴,AC∥y轴,∴C(t,﹣),∴S△ABC=BC•AC=×[t﹣(﹣t)]×[﹣(﹣)]=12;故答案为:12.22.(2021•河北)用绘图软件绘制双曲线m:y=与动直线l:y=a,且交于一点,图1为a=8时的视窗情形.(1)当a=15时,l与m的交点坐标为;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O始终在视窗中心.例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,则整数k=.【答案】(1)(4,15), (2)4【解答】解:(1)a=15时,y=15,由得:,故答案为:(4,15);(2)由得,∴A(﹣50,﹣1.2),由得,∴B(﹣40,﹣1.5),为能看到m在A(﹣50,﹣1.2)和B(﹣40,﹣1.5)之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的,∴整数k=4.故答案为:4.23.(2021•阿坝州)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A (m,6),B(n,3)两点.(1)求一次函数的解析式;(2)求△AOB的面积.【答案】(1)y=﹣x+9.(2)9【解答】解:(1)把A(m,6),B(n,3)两点坐标代入y=(x>0)可得m=2,n =4,∴A(2,6),B(4,3),∵一次函数y=kx+b的图象经过点A、B,∴,解得,∴一次函数的解析式为y=﹣x+9.(2)设直线与x轴的交点为C,把y=0代入y=﹣x+9,则﹣x+9=0,解得x=6,∴C(6,0),∴S△AOB=S△AOC﹣S△BOC=×6﹣=9.24.(2021•兰州)如图,一次函数y=﹣x+b与反比例函数y=﹣(x >0)的图象分别交于点A(﹣2,m),B(4,n),与y轴交于点C,连接OA,OB.(1)求一次函数y=﹣x+b和反比例函数y=(x>0)的表达式;(2)求△AOB的面积.【答案】(1)y=.(2)12【解答】解:(1)∵点A在反比例函数y=上,∴﹣2m=﹣10,解得m=5,∴点A坐标为(﹣2,5).把(﹣2,5)代入y=﹣x+b得5=1+b,解得b=4,∴一次函数表达式为y=x+4,把B(4,n)代入y=x+4得n=﹣2+4=2,∴点B坐标为(4,2),∵点B在反比例函数y=图象上,∴k=4×2=8,∴反比例函数表达式为y=.(2)把x=0代入y=x+4得y=4,∴点C坐标为(0,4),∴S△AOB=S△AOC+S△BOC=×4×2+×4×4=12.命题点4 反比例函数与几何图形结合25.(2021•梧州)如图,在同一平面直角坐标系中,直线y=t(t为常数)与反比例函数y1=,y2=﹣的图象分别交于点A,B,连接OA,OB,则△OAB的面积为()A.5t B.C.D.5【答案】C【解答】解:如图,设AB交y轴于T.∵AB⊥y轴,∴S△OBT=,S△OAT==2,∴S△AOB=S△OBT+S△OAT=+2=,故选:C.26.(2020•自贡)如图,直线y=﹣x+b与y轴交于点A,与双曲线y=在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4,前25个等边三角形的周长之和为.【答案】4,60.【解答】解:设直线y=﹣x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=﹣x+b,∴当y=0时,x=b,即点D的坐标为(b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=﹣b.∵在Rt△AOD中,tan∠ADO==,∴∠ADO=60°.∵直线y=﹣x+b与双曲线y=在第三象限交于B、C两点,∴﹣x+b=,整理得,﹣x2+bx﹣k=0,由韦达定理得:x1x2=k,即EB•FC=k,∵=cos60°=,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=k=16,解得:k=4.由题意可以假设D1(m,m),∴m2•=4,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,n),∵(4+n)•n=4,解得n=2﹣2,∴E1E2=4﹣4,即第二个三角形的周长为12﹣12,设D3(4+a,a),由题意(4+a)•a=4,解得a=2﹣2,即第三个三角形的周长为12﹣12,…,∴第四个三角形的周长为12﹣12,∴前25个等边三角形的周长之和12+12﹣12+12﹣12+12﹣12+…+12﹣12=12=60,故答案为:4,60.27.(2019•永州)如图,直线y=4﹣x与双曲线y=交于A,B两点,过B作直线BC⊥y 轴,垂足为C,则以OA为直径的圆与直线BC的交点坐标是.【答案】(﹣1,1)和(2,1)【解答】解:由求得或,∴A(1,3),B(3,1),∴OA==,设OA的中点为P,以OA为直径的⊙P与直线BC的交点为M、N,过P点作PD⊥x轴于D,交BC于E,连接PN,∵P是OA的中点,∴P(,),∴PD=,E(,1),∵BC⊥y轴,垂足为C,∴BC∥x轴,∴PD⊥BC,∴PE=﹣1=,在Rt△PEN中,EM=EN===,∴M(﹣1,1),N(2,1).∴以OA为直径的圆与直线BC的交点坐标是(﹣1,1)和(2,1),故答案为(﹣1,1)和(2,1).28.(2021•烟台)如图,正比例函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥y轴于点B,OB=4,点C在线段AB上,且AC=OC.(1)求k的值及线段BC的长;(2)点P为B点上方y轴上一点,当△POC与△P AC的面积相等时,请求出点P的坐标.【答案】(1) k=32,BC=3 (2)P(0,10).【解答】解:(1)∵点A在正比例函数y=x上,AB⊥y轴,OB=4,∵点B的坐标为(0,4),∴点A的纵坐标是4,代入y=x,得x=8,∴A(8,4),∵点A在反比例函数y=(x>0)的图象上,∴k=4×8=32,∵点C在线段AB上,且AC=OC.设点C(c,4),∵OC==,AC=AB﹣BC=8﹣c,∴=8﹣c,解得:c=3,∴点C(3,4),∴BC=3,∴k=32,BC=3;(2)如图,设点P(0,p),∵点P为B点上方y轴上一点,∴OP=p,BP=p﹣4,∵A(8,4),C(3,4),∴AC=8﹣3=5,BC=3,∵△POC与△P AC的面积相等,∴×3p=×5(p﹣4),解得:p=10,∴P(0,10).29.(2021•宁夏)如图,在△AOB中,AO=AB,点B在x轴上,且点A的坐标为(1,3),过点C(0,2)的直线l∥x轴,分别交AO、AB于D、E两点.反比例函数y=(k ≠0,x>0)的图象与线段AB相交于点M,将△ADE沿直线l对折后,点A的对应点H 恰好落在该反比例函数的图象上.(1)求这个反比例函数的表达式;(2)求点M的坐标.(结果保留根号)【答案】(1)y=;(2)(,3﹣)【解答】解:(1)∵将△ADE沿直线l对折后,点A的对应点H恰好落在该反比例函数的图象上,且过点C(0,2)的直线l∥x轴,∴点A与点H关于直线y=2对称,又∵点A的坐标为(1,3),∴H点坐标为(1,1),将H(1,1)代入y=中,1=,解得:k=1,∴反比例函数的解析式为y=;(2)∵AO=AB,点B在x轴上,且点A的坐标为(1,3),∴B点坐标为(2,0),设直线AB的函数解析式为y=mx+n,把(1,3),(2,0)代入,可得:,解得:,∴直线AB的解析式为y=﹣3x+6,联立方程组,解得:,,∵点M在线段AB上,∴M点的横坐标大于1,∴M点坐标为(,3﹣).30.(2021•河南)如图,大、小两个正方形的中心均与平面直角坐标系的原点O重合,边分别与坐标轴平行,反比例函数y=的图象与大正方形的一边交于点A(1,2),且经过小正方形的顶点B.(1)求反比例函数的解析式;(2)求图中阴影部分的面积.【答案】(1)y=;(2)8【解答】解:(1)∵反比例函数y=的图象经过点A(1,2),∴2=,∴k=2,∴反比例函数的解析式为y=;(2)∵小正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,∴设B点的坐标为(m,m),∵反比例函数y=的图象经过B点,∴m=,∴m2=2,∴小正方形的面积为4m2=8,∵大正方形的中心与平面直角坐标系的原点O重合,边分别与坐标轴平行,且A(1,2),∴大正方形在第一象限的顶点坐标为(2,2),∴大正方形的面积为4×22=16,∴图中阴影部分的面积=大正方形的面积﹣小正方形的面积=16﹣8=8.命题点5 反比例函数与一次函数及几何图形结合31.(2021•内江)如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(1,2)、B(﹣2,n)两点.(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b>的x的取值范围;(3)若点P在线段AB上,且S△AOP:S△BOP=1:4,求点P的坐标.【答案】(1)y=x+1 (2)P点坐标为(,)【解答】解:(1)∵反比例函数y=经过A(1,2),∴k2=1×2=2,∴反比例函数解析式为y=,∵B(﹣2,n)在反比例函数y=的图象上,∴n==﹣1,∴B(﹣2,﹣1),∵直线y=k1x+b经过A(1,2),B(﹣2,﹣1),∴,解得,∴一次函数的解析式为y=x+1;(2)观察图象,k1x+b>的x的取值范围是﹣2<x<0或x>1;(3)设P(x,x+1),∵S△AOP:S△BOP=1:4,∴AP:PB=1:4,即PB=4P A,∴(x+2)2+(x+1+1)2=16[(x﹣1)2+(x+1﹣2)2],解得x1=,x2=2(舍去),∴P点坐标为(,).32.(2021•巴中)如图,双曲线y=与直线y=kx+b交于点A(﹣8,1)、B(2,﹣4),与两坐标轴分别交于点C、D,已知点E(1,0),连接AE、BE.(1)求m,k,b的值;(2)求△ABE的面积;(3)作直线ED,将直线ED向上平移n(n>0)个单位后,与双曲线y=有唯一交点,求n的值.【答案】(1)m=﹣8,k=﹣,b=﹣3 (2)(3)n的值为3+4【解答】解:(1)∵双曲线y=过点A(﹣8,1),∴m=﹣8×1=﹣8,又∵直线y=kx+b经过点A(﹣8,1)、B(2,﹣4),∴,解得k=﹣,b=﹣3,答:m=﹣8,k=﹣,b=﹣3;(2)由(1)可得反比例函数的关系式为y=,直线AB的关系式为y=﹣x﹣3,当y=0时,﹣x﹣3=0,解得x=﹣6,即C(﹣6,0),∴OC=6,由点E(1,0)可得OE=1,∴EC=OE+OC=1+6=7,∴S△ABE=S△ACE+S△BCE=×7×1+×7×4=;(3)设直线DE的关系式为y=kx+b,D(0,﹣3),E(1,0)代入得,b=﹣3,k+b=0,∴k=3,b=﹣3,∴直线DE的关系式为y=3x﹣3,设DE平移后的关系式为y=3x﹣3+n,由于平移后与y=有唯一公共点,即方程3x﹣3+n=有唯一解,也就是关于x的方程3x2+(n﹣3)x+8=0有两个相等的实数根,∴(n﹣3)2﹣4×3×8=0,解得n=3+4,n=3﹣4(舍去),∴n=3+4,答:n的值为3+4.33.(2021•湖北)如图:在平面直角坐标系中,菱形ABCD的顶点D在y轴上,A,C两点的坐标分别为(2,0),(2,m),直线CD:y1=ax+b与双曲线:y2=交于C,P(﹣4,﹣1)两点.(1)求双曲线y2的函数关系式及m的值;(2)判断点B是否在双曲线上,并说明理由;(3)当y1>y2时,请直接写出x的取值范围.【答案】(1)m==2 (2)点B在双曲线上(3)﹣4<x<0或x>2【解答】解:(1)将点P(﹣4,﹣1)代入y=中,得k2=﹣4×(﹣1)=4,∴反比例函数的解析式为y=,将点C(2,m)代入y=中,得m==2;(2)因为四边形ABCD是菱形,A(2,0),C(2,2),∴m=2,B(4,m),∴B(4,1),由(1)知双曲线的解析式为y2=;∵4×1=4,∴点B在双曲线上;(3)由(1)知C(2,2),由图象知,当y1>y2时的x值的范围为﹣4<x<0或x>2.34.(2021•攀枝花)在直角坐标系中,直线y=x与反比例函数y=的图象在第一、三象限分别交于A、B两点,已知B点的纵坐标是﹣2.(1)写出点A的坐标,并求反比例函数的表达式;(2)将直线y=x沿y轴向上平移5个单位后得到直线l,l与反比例函数图象在第一象限内交于点C,与y轴交于点D.(ⅰ)S△ABC S△ABD;(请用“<”或“=”或“>”填空)(ⅱ)求△ABC的面积.【答案】(1)A(6,2);(2)(ⅰ)= (ⅱ)30.【解答】解:(1)∵点B的纵坐标是﹣2,∴﹣2=x,即x=﹣6,B(﹣6,﹣2),把B的坐标代入y=,即k=12,∴反比例函数的表达式为y=,当=x时,x=6或﹣6(舍),∴A(6,2);(2)(ⅰ)S△ABC=S△ABD;∵直线l是直线y=x向上平移得到的,∴两条直线互相平行,∵平行线间的距离处处相等,∴S△ABC=S△ABD;故答案为:=;(ⅱ)由题意得,OD=5,∴S△ABD=S△BOD+S△AOD=×5×(6+6)=30,∴S△ABC=S△ABD=30.命题点6 反比例函数的实际应用35.(2021•宜昌)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p (单位:kPa)是气体体积V(单位:m3)的反比例函数:p=,能够反映两个变量p 和V函数关系的图象是()A.B.C.D.【答案】B【解答】解:∵气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=(V,p都大于零),∴能够反映两个变量p和V函数关系的图象是:.故选:B.36.(2021•丽水)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力F甲、F、F丙、F丁,将相同重量的水桶吊起同样的高度,若F乙<F丙<F甲<F丁,则这四位同乙学对杆的压力的作用点到支点的距离最远的是()A.甲同学B.乙同学C.丙同学D.丁同学【答案】B【解答】解:根据杠杆平衡原理:阻力×阻力臂=动力×动力臂可得,∵阻力×阻力臂是个定值,即水桶的重力和水桶对杆的拉力的作用点到支点的杆长固定不变,∴动力越小,动力臂越大,即拉力越小,压力的作用点到支点的距离最远,∵F乙最小,∴乙同学到支点的距离最远.故选:B.37.已知电压U、电流I、电阻R三者之间的关系式为:U=IR(或者I=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是()A.B.C.D.【答案】A【解答】解:当U一定时,电压U、电流I、电阻R三者之间的关系式为I=,I与R 成反比例函数关系,但R不能小于0,所以图象A不可能,B可能;当R一定时,电压U、电流I、电阻R三者之间的关系式为:U=IR,U和I成正比例函数关系,所以C、D均有可能,故选:A.38.(2021•乐山)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y随时间x(分钟)变化的函数图象如图所示,当0≤x<10和10≤x<20时,图象是线段;当20≤x≤45时,图象是反比例函数的一部分.(1)求点A对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.【答案】(1)A对应的指标值为20 (2)能【解答】解:(1)设当20≤x≤45时,反比例函数的解析式为y=,将C(20,45)代入得:45=,解得k=900,∴反比例函数的解析式为y=,当x=45时,y==20,∴D(45,20),∴A(0,20),即A对应的指标值为20;(2)设当0≤x<10时,AB的解析式为y=mx+n,将A(0,20)、B(10,45)代入得:,解得,∴AB的解析式为y=x+20,当y≥36时,x+20≥36,解得x≥,由(1)得反比例函数的解析式为y=,当y≥36时,≥36,解得x≤25,∴≤x≤25时,注意力指标都不低于36,而25﹣=>17,∴张老师能经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36.。

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)

中考数学《反比例函数》专项练习题(附带答案)一、单选题1.如图,反比例函数y= 2x的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A.2B.4C.5D.82.小兰画了一个函数y= ax−1的图象如图,那么关于x的分式方程ax−1=2的解是()A.x=1B.x=2C.x=3D.x=43.若A(a1,b1),B(a2,b2)是反比例函数y = –√2x图象上的两点,且a1<a2,则b1与b2的大小关系是()A.b1<b2B.b1 = b2C.b1>b2D.不能确定4.某公司计划新建一个容积V(m3)一定的长方体污水处理池,池的底面积S(m2)与其深度h(m)之间的函数关系式为S=Vℎ(ℎ≠0),这个函数的图象大致是()A.B.C.D.5.若反比例函数y=k x(k为常数,且k≠0)的图象过点(3,-4),则下列各点在该图象上的是()A.(6,-8)B.(-6,8)C.(-3,4)D.(-3,-4)6.已知反比例函数y=k x(k>0)的图象与直线y=﹣x+6相交于第一象限A、B的两点.如图所示,过A、B两点分别作x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②四边形OCPD 是正方形;③若k=5.则△ABP的面积是8;④P点一定在直线y=x上,其中正确命题的个数是几个()A.4B.3C.2D.17.已知点P(3,2)在反比例函数y=k x(k≠0)图象上,则下列各点中在此反比例函数图象上的是()A.(−3,−2)B.(3,−2)C.(−2,3)D.(2,−3)8.下列函数:①y=−x;②y=−1x;③y=√2x;④y=120x2+240x+3(x<0)中,y随x的增大而减小的函数有()A.1个B.2个C.3个D.4个9.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=k x(x >0)的图象上,若△C=60°,AB=2,则k的值为()A.√2B.√3C.1D.2 10.对于反比例函数y=﹣1x,下列说法正确的是()A.图象经过点(1,1)B.图象位于第一、三象限C.图象是中心对称图形D.当x<0时,y随x的增大而减小11.一次函数y=ax+a与反比例函数y=−ax(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.12.面积为2的△ABC,一边长为x,这边上的高为y,则y与x的变化规律用图象表示大致是() A.B.C.D.二、填空题13.如图,在平面直角坐标系中,菱形ABCD的顶点A与D在函数y=k x(x>0)的图象上,AC⊥x轴,垂足为C,∠BCO=30°,点B的坐标为(0,1),则k的值为.14.如图,反比例函数y=6x在第一象限的图象上有两点A,B,它们的横坐标分别是2,6,则△AOB 的面积是.15.反比例函数y=7x图象与正比例函数y=kx图象交于A(x1,y1),B(x2,y2),则x1y2+x2y1的值为.16.如图,正比例函数y1=ax(a≠0)与反比例函数y2=k x(k≠0)的图象相交于A,B两点,其中点A的坐标为(1,3).当y1<y2时,x的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,平行四边形ABCD的边AB在x轴上、顶点D在y 轴的正半轴上,点C在第二象限,将△AOD沿y轴翻折,使点A落在x轴上的点E处、点B恰好为OE的中点.DE与BC交于点F.若y=kx(k≠0)图象经过点C,且S△BEF=12,则k的值为.18.如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点M,N,与反比例函数y=kx的图象在第一象限内交于点B,过点B作BA△x轴,BC△y轴.垂足分别为点A,C.当矩形OABC与△OMN 的面积相等时,点B的坐标为.三、综合题19.如图,双曲线y1=k x(k为常数,且k≠0)与直线y2=﹣13x+b交于点A(﹣2,a)和B(3c,2﹣c).(1)求k,b的值;(2)求直线与x轴的交点坐标.20.如图,已知一次函数y=2x+2的图象与y轴交于点B,与反比例函数y= k1x的图象的一个交点为A(1,m).过点B作AB的垂线BD,与反比例函数y= k2x(x>0)的图象交于点D(n,﹣2).(1)求k1和k2的值;(2)若直线AB、BD分别交x轴于点C、E,试问在y轴上是否存在一个点F,使得△BDF△△ACE?若存在,求出点F的坐标;若不存在,请说明理由.21.如图,直线y=2x+1与双曲线相交于点A(m,32)与x轴交于点B.(1)求双曲线的函数表达式:(2)点P在x轴上,如果△ABP的面积为6,求点P坐标.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,观察分析函数特征,概括函数性质的过程,已知函数y=﹣2|x−2|x−1上,结合已有的学习经验,完成下列各小题.(1)请在表格中空白处填入恰当的数据:x…﹣3﹣2﹣101243322345…y (5)2834﹣40﹣1﹣43…(2)根据表中的数据,在所给的平面直角坐标系中画出函数y=﹣2|x−2|x−1的图象;(3)根据函数图象,写出该函数的一条性质:;(4)结合所画函数图象,直接写出不等式﹣2|x−2|x−1<﹣53x+5的解集为:.(保留1位小数,误差不超过0.2)23.在平面直角坐标系xOy中,点A(x1,y1),B(x2,y2)在抛物线y=−x2+2ax−a2−a+2(a 是常数)上.(1)若该二次函数图象的顶点在第二象限时,求a的取值范围;(2)若抛物线的顶点在反比例函数y=−8x(x<0)的图象上,且y1=y2,求x1+x2的值;(3)若当1<x1<x2时,都有y2<y1<1,求a的取值范围.24.如图,点A(m,m+1),B(m+3,m﹣1)是反比例函数y=k x(x>0)与一次函数y=ax+b的交点.求:(1)反比例函数与一次函数的解析式;(2)根据图象直接写出当反比例函数的函数值大于一次函数的函数值时x的取值范围.参考答案1.【答案】B2.【答案】A3.【答案】D4.【答案】C5.【答案】C6.【答案】A7.【答案】A8.【答案】A9.【答案】B10.【答案】C11.【答案】A12.【答案】B13.【答案】2√314.【答案】815.【答案】-1416.【答案】x<-1或0<x<117.【答案】-1218.【答案】(−1+√3,1+√3)19.【答案】(1)解:∵点B(3c,2﹣c)在直线y2=﹣13x+b的图象上∴−13×3c+b=2−c解得:b=2∴直线解析式为y2=﹣13x+2∵点A(﹣2,a)在直线y2=﹣13x+2的图象上∴a=−13×(−2)+2=83∴点A坐标为(-2,8 3)∵点A(-2,83)在y1=kx图象上∴83=k−2解得:k=−16 3 .(2)解:∵直线解析式为y2=﹣13x+2∴当y2=0时,x=6∴直线与x轴的交点坐标为(6,0).20.【答案】(1)解:将A(1,m)代入一次函数y=2x+2中,得:m=2+2=4,即A(1,4)将A(1,4)代入反比例解析式y= k1x得:k1=4;过A作AM△y轴,过D作DN△y轴∴△AMB=△DNB=90°∴△BAM+△ABM=90°∵AC△BD,即△ABD=90°∴△ABM+△DBN=90°∴△BAM=△DBN∴△ABM△△BDN∴AMBN=BMDN,即14=2DN∴DN=8∴D(8,﹣2)将D坐标代入y= k2x得:k2=﹣16(2)解:符合条件的F坐标为(0,﹣8),理由为:由y=2x+2,求出C坐标为(﹣1,0)∵OB=ON=2,DN=8∴OE=4可得AE=5,CE=5,AC=2 √5,BD=4 √5,△EBO=△ACE=△EAC若△BDF△△ACE,则BDAC=BFAE,即√52√5=BF5解得:BF=10则F(0,﹣8).综上所述:F点坐标为(0,﹣8)时,△BDF△△ACE.21.【答案】(1)解:把A(m,32)代入直线y=2x+1得:32=2m+1,即m=14∴A(14,32)∵点A(14,32)为直线与反比例函数y=kx的交点把A点坐标代入y=k x,得k=14× 32=38则双曲线解析式为y=38x;(2)解:对于直线y=2x+1,令y=0,得到x=−12,即B(−12,0)设P(x,0),可得PB=|x+1 2|∵△ABP面积为6∴12×|x+12|×32=6,即|x+12|=8解得:x=7.5或x=﹣8.5则P坐标为(7.5,0)或(﹣8.5,0). 22.【答案】(1)解:如下表所示:x…﹣3﹣2﹣101243322345…y (5)283346﹣4-20﹣1﹣43-32…(3)当x<1时,y随x的增大而增大(4)x<0.3或1<x<3.723.【答案】(1)解:∵y=−x2+2ax−a2−a+2=−(x−a)2−a+2第 11 页 共 11 页 ∴ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点为 (a ,−a +2) ∵ 抛物线的顶点在第二象限∴{a <0−a +2>0解得 2<a <0 ;(2)解: ∵ 抛物线 y =−x 2+2ax −a 2−a +2 的顶点在反比例函数 y =−8x(x <0) 的图象上 ∴a(−a +2)=−8解得 a =4 或 a =−2∵a <0∴a =−2∴ 顶点为 (−2,4)∵y 1=y 2∴ 点 A(x 1,y 1) , B(x 2,y 2) 关于直线 x =−2 对称∴x 1+x22=−2∴x 1+x 2=−4 ;(3)解: ∵ 当 1<x 1<x 2 时,都有 y 2<y 1<1∴ 抛物线的对称轴 x =a <1 ,经过点为 (1,1)∴{a <1−1+2a −a 2−a +2=1解得 a =0 或 a =−3故 a 的取为0或-3.24.【答案】(1)解:由题意可知,m (m+1)=(m+3)(m ﹣1). 解得m=3.∴A (3,4),B (6,2); ∴k=4×3=12, ∴y =12x∵A 点坐标为(3,4),B 点坐标为(6,2), ∴{3a +b =46a +b =2 , ∴{a =−23b =6 ,∴y=﹣ 23 x+6 (2)解:根据图象得x 的取值范围:0<x <3或x >6.。

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案

中考数学专题复习《反比例函数与几何综合》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________1.如图 在直角坐标系中 A B C D 四点在反比例函数k y x=线段AC BD ,都过原点O ()4,2A 点B 点纵坐标为4 连接AB CD DA ,,.(1)求该反比例函数的解析式(2)当-2y ≥时 写出x 的取值范围(3)求四边形ABCD 的面积.2.如图 在平面直角坐标系中 直线2y x b =+经过点()2,0A - 与y 轴交于点B 与反比例函数()0k y x x =>的图象交于点(),6C m 过点B 作BD y ⊥轴 交反比例函数()0k y x x=>的图象于点D 连接AD CD 、.(1)b =______ k =______(2)求ACD 的面积.3.如图 一次函数y kx b =+与反比例函数m y x=的图象相交于A B 两点(点A 在点B 的左侧) 与x 轴相交于点C 已知点()1,4A 连接OB .(1)求反比例函数的解析式(2)若BOC 的面积为3 求AOB 的面积(3)在(2)的条件下 根据图象 直接写出m kx b x>+的解集. 4.小明借助反比例函数图象设计“鱼形”图案.如图 在平面直角坐标系中 以反比例函数ky x =图象上的点()2A 和点B 为顶点 分别作菱形AOCD 和荾形OBEF 点D E 在x 轴上 以点O 为圆心 OA 长为半径作AC 连接BF(1)求k 值(2)计算图形阴影部分面积之和.5.在平面直角坐标系xOy 中 反比例函数()0k y x x=>的图象与等腰直角三角形OAB 相交 90OBA ∠=︒ 6OA =.(1)如图1 若反比例函数的图象恰好经过OAB 的顶点B 时 求反比例函数的表达式(2)在(1)的前提下 过点A 作AQ OB 交反比例函数的图象于点Q 连接BQ 求OBQ △的面积和点Q 的坐标(3)如图2 若反比例函数的图象交OAB 的边OB 于点C 且13BC OB = 点P 是反比例函数图象上的一动点 满足OCP △的面积是3 请直接写出点P 的坐标.6.平面直角坐标系xOy 中 横坐标为a 的点A 在反比例函数()10k y x x=>的图象上 点A '与点A 关于点O 对称 一次函数2y mx n =+的图象经过点A '.(1)设2a = 点()4,2B 在函数1y 2y 的图象上 分别求函数1y 2y 的表达式.(2)如图① 设函数1y 2y 的图象相交于点B 点B 的横坐标为3aAA B '的面积为16 求k 的值(3)设12m = 如图① 过点A 作AD x ⊥轴 与函数2y 的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数2y 的图象与线段EF 的交点P 一定在函数1y 的图象上. 7.如图 在矩形OABC 中 3OA = 2OC = F 是AB 上的一个动点(F 不与A B 重合) 过点F 的反比例函数()0ky x x=>的图象与BC 边交于点E .(1)当F 为AB 的中点时 求该反比例函数的解析式和点E 的坐标.(2)当k 为何值时 CEF △的面积最大 最大面积是多少?8.已知直线11y x =+与双曲线22y x=相交于点A 和点B 如图所示 过点B 作BD y ⊥轴于点D 设直线AB 交x 轴于点C 连接CD .(1)求:BCD △的面积(2)求:当12y y ≥时 x 的取值范围.9.如图 在平面直角坐标系中 O 为坐标原点 ABO 的边AB 垂直x 轴于点B 反比例函数()0k y x x=>的图象经过AO 的中点C 与边AB 相交于点D 若D 的坐标为()4,m 3AD =.(1)反比例函数k y x=的解析式是 (2)设点E 是线段CD 上的动点 过点E 且平行y 轴的直线与反比例函数的图象交于点F 则OEF 面积的最大值是 .10.如图 一次函数1y kx b =+的图象与x 轴 y 轴分别交于点A B 与反比例函数()20m y x x=>的图象交于点()1,2C ()2,D n .(1)分别求出两个函数的解析式(2)连接OC OD 求COD △的面积(3)点P 是反比例函数上一点 PQ x ∥轴交直线AB 于Q 且3PQ = 求点P 的坐标. 11.如图 反比例函数(0)k y x x =<的图像与直线3x =-交于点P AOP 的面积等于3.(1)求反比例函数的表达式(2)利用图像 求当30x -<<时 y 的取值范围.12.如图 ABC 中 60CAB ∠= 45ABC ∠= 点A B 在x 轴上 反比例函数k y x =的图象经过点(123C , 且与BC 边交于另一点D CE x ⊥轴 垂足为点E .(1)求反比例函数的解析式(2)求点D 的坐标(3)在x 轴上是否存在点P 使得BDP △与BCE 相似 若存在 请直接写出满足条件点P 的坐标 若不存在 请说明理由.13.如图 Rt OAB 的直角顶点B 在x 轴的正半轴上 点A 在第一象限内 已知反比例函数()0k y x x =>的图象经过线段OA 的中点D 交直线AB 于点C .若OAB 的面积为6.(1)求k 的值(2)若AC OB = 求点A 的坐标.14.如图 在Rt ABO △中 直角顶点B 在x 轴正半轴上 反比例函数n y x=(0n >)的图象分别与边AO 边AB 交于点C D .(1)如果点C 的坐标为()23,且8AD = 求n 的值及点B 的坐标 (2)连结CB 如果AD DB = 求OAB OCB S S :的值.15.如图 一次函数y ax b =+与反比例函数k y x =的图象交于D E 两点 CD x ⊥轴 垂足为C 过C 作CB DE ∥交y 轴于B 已知四边形ABCD 的面积为12 E 点纵坐标为2-.(1)求反比例函数的解析式(2)当6AB =时 求一次函数的解析式(3)在(2)的条件下 直接写出k ax b x+<的自变量x 的取值范围. 参考答案:1.(1)8y x= (2)4x ≤-或0x >(3)242.(1)4 6 (2)92.3.(1)4y x= (2)3AOB S =△(3)01x <<或2x >4.(1)43(2)833π5.(1)9y x = (2)9 点Q 的坐标为()332,323+(3)()1,4或()4,16.(1)18y x=22y x =- (2)6k =7.(1)3y x = 3,22E ⎛⎫ ⎪⎝⎭ (2)3k =时 CEF S △最大为348.(1)BCD △的面积为1(2)20x -≤<或1x ≥9.(1)4y x= (2)1410.(1)13y x =-+ 22y x= (2)32(3)(3P 或(3P11.(1)()60y x x=-< (2)2y >12.(1)y =(2)()D(3)()P 或()10P ,13.(1)3(2)()3,414.(1)()660n B =,,15.(1)反比例函数的解析式为12y x=- (2)一次函数的解析式为4y x =-+(3)20x -<<或6x >.。

中考数学复习---《反比例函数综合》压轴题练习(含答案解析)

中考数学复习---《反比例函数综合》压轴题练习(含答案解析)

中考数学复习---《反比例函数综合》压轴题练习(含答案解析)一.反比例函数系数k的几何意义(共4小题)1.(2022•十堰)如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图像上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9【答案】B【解答】解:连接AC交于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B.2.(2022•通辽)如图,点D是▱OABC内一点,AD与x轴平行,BD与y轴平行,BD=,∠BDC=120°,S△BCD=,若反比例函数y=(x<0)的图像经过C,D两点,则k的值是()A.﹣6B.﹣6C.﹣12D.﹣12【答案】C【解答】解:过点C作CE⊥y轴,延长BD交CE于点F,∵四边形OABC为平行四边形,∴AB∥OC,AB=OC,∴∠COE=∠1,∵BD与y轴平行,∴∠1=∠ABD,∠ADB=90°,∴∠COE=∠ABD,在△COE和△ABD中,,∴△COE≌△ABD(AAS),∴OE=BD=,∵S△BDC=BD•CF=,∴CF=9,∵∠BDC=120°,∴∠CDF=60°,∴DF=3,点D的纵坐标为4,设C(m,),则D(m+9,4),∵反比例函数y=(x<0)的图像经过C,D两点,∴k=m=4(m+9),∴m=﹣12,∴k=﹣12,故选:C.3.(2022•宜宾)如图,△OMN是边长为10的等边三角形,反比例函数y=(x >0)的图像与边MN、OM分别交于点A、B(点B不与点M重合).若AB ⊥OM于点B,则k的值为.【答案】9【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图,∵△OMN是边长为10的等边三角形,∴OM=ON=MN=10,∠MON=∠M=∠MNO=60°设OC=b,则BC=,OB=2b,∴BM=OM﹣OB=10﹣2b,B(b,b),∵∠M=60°,AB⊥OM,∴AM=2BM=20﹣4b,∴AN=MN﹣AM=10﹣(20﹣4b)=4b﹣10,∵∠AND=60°,∴DN==2b﹣5,AD=AN=2b﹣5,∴OD=ON﹣DN=15﹣2b,∴A(15﹣2b,2b﹣5),∵A、B两点都在反比例函数y=(x>0)的图像上,∴k=(15﹣2b)(2b﹣5)=b•b,解得b=3或5,当b=5时,OB=2b=10,此时B与M重合,不符题意,舍去,∴b=3,∴k=b•b=9,故答案为:9.4.(2022•乐山)如图,平行四边形ABCD的顶点A在x轴上,点D在y=(k >0)上,且AD⊥x轴,CA的延长线交y轴于点E.若S△ABE=,则k=.【答案】3【解答】解:设BC与x轴交于点F,连接DF、OD,∵四边形ABCD为平行四边形,∴AD∥BC,∴S△ODF=S△EBC,S△ADF=S△ABC,∴S△OAD=S△ABE=,∴k=3,故答案为:3.二.反比例函数图像上点的坐标特征(共4小题)5.(2022•宿迁)如图,点A在反比例函数y=(x>0)的图像上,以OA为一边作等腰直角三角形OAB,其中∠OAB=90°,AO=AB,则线段OB长的最小值是()A.1B.C.2D.4【答案】C【解答】解:∵三角形OAB是等腰直角三角形,∴当OB最小时,OA最小,设A点坐标为(a,),∴OA=,∵≥0,即:﹣4≥0,∴≥4,∵≥0,两边同时开平方得:a﹣=0,∴当a=时,OA有最小值,解得a1=,a2=﹣(舍去),∴A点坐标为(,),∴OA=2,∵三角形OAB是等腰直角三角形,OB为斜边,∴OB=OA=2.故选:C.6.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图像过点C,则k的值为()A.4B.﹣4C.﹣3D.3【答案】C【解答】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(4,0),∴OA=4,∵AB=5,∴OB==3,在△ABO和△BCE中,,∴△ABO≌△BCE(AAS),∴OA=BE=4,CE=OB=3,∴OE=BE﹣OB=4﹣3=1,∴点C的坐标为(﹣3,1),∵反比例函数y=(k≠0)的图像过点C,∴k=xy=﹣3×1=﹣3,故选:C.7.(2022•江西)已知点A在反比例函数y=(x>0)的图像上,点B在x 轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为.【答案】5或2或【解答】解:当AO=AB时,AB=5;当AB=BO时,AB=5;当OA=OB时,设A(a,)(a>0),B(5,0),∵OA=5,∴=5,解得:a1=3,a2=4,∴A(3,4)或(4,3),∴AB==2或AB==;综上所述,AB的长为5或2或.故答案为:5或2或.8.(2022•宁波)如图,四边形OABC为矩形,点A在第二象限,点A关于OB的对称点为点D,点B,D都在函数y=(x>0)的图像上,BE⊥x 轴于点E.若DC的延长线交x轴于点F,当矩形OABC的面积为9时,的值为,点F的坐标为.【答案】,(,0).【解答】解:如图,方法一:作DG⊥x轴于G,连接OD,设BC和OD交于I,设点B(b,),D(a,),由对称性可得:△BOD≌△BOA≌△OBC,∴∠OBC=∠BOD,BC=OD,∴OI=BI,∴DI=CI,∴=,∵∠CID=∠BIO,∴△CDI∽△BOI,∴∠CDI=∠BOI,∴CD∥OB,∴S△BOD=S△AOB=S矩形AOCB=,∵S△BOE=S△DOG==3,S四边形BOGD=S△BOD+S△DOG=S梯形BEGD+S△BOE,∴S梯形BEGD=S△BOD=,∴•(a﹣b)=,∴2a2﹣3ab﹣2b2=0,∴(a﹣2b)•(2a+b)=0,∴a=2b,a=﹣(舍去),∴D(2b,),即:(2b,),在Rt△BOD中,由勾股定理得,OD2+BD2=OB2,∴[(2b)2+()2]+[(2b﹣b)2+(﹣)2]=b2+()2,∴b=,∴B(,2),D(2,),∵直线OB的解析式为:y=2x,∴直线DF的解析式为:y=2x﹣3,当y=0时,2﹣3=0,∴x=,∴F(,0),∵OE=,OF=,∴EF=OF﹣OE=,∴=,方法二:如图,连接BF,BD,作DG⊥x轴于G,直线BD交x轴于H,由上知:DF∥OB,∴S△BOF=S△BOD=,∵S△BOE=|k|=3,∴==,设EF=a,FG=b,则OE=2a,∴BE=,OG=3a+b,DG=,∵△BOE∽△DFG,∴=,∴=,∴a=b,a=﹣(舍去),∴D(4a,),∵B(2a,),∴==,∴GH=EG=2a,∵∠ODH=90°,DG⊥OH,∴△ODG∽△DHG,∴,∴,∴a=,∴3a=,∴F(,0)故答案为:,(,0).三.待定系数法求反比例函数解析式(共1小题)9.(2022•湖州)如图,已知在平面直角坐标系xOy中,点A在x轴的负半轴上,点B在y轴的负半轴上,tan∠ABO=3,以AB为边向上作正方形ABCD.若图像经过点C的反比例函数的解析式是y=,则图像经过点D的反比例函数的解析式是.【答案】y=﹣【解答】解:如图,过点C作CT⊥y轴于点T,过点D作DH⊥CT交CT的延长线于点H.∵tan∠ABO==3,∴可以假设OB=a,OA=3a,∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠AOB=∠BTC=90°,∴∠ABO+∠CBT=90°,∠CBT+∠BCT=90°,∴∠ABO=∠BCT,∴△AOB≌△BTC(AAS),∴BT=OA=3a,OB=TC=a,∴OT=BT﹣OB=2a,∴C(a,2a),∵点C在y=上,∴2a2=1,同法可证△CHD≌△BTC,∴DH=CT=a,CH=BT=3a,∴D(﹣2a,3a),设经过点D的反比例函数的解析式为y=,则有﹣2a×3a=k,∴k=﹣6a2=﹣3,∴经过点D的反比例函数的解析式是y=﹣.故答案为:y=﹣.四.反比例函数与一次函数的交点问题(共2小题)10.(2022•怀化)如图,直线AB交x轴于点C,交反比例函数y=(a>1)的图像于A、B两点,过点B作BD⊥y轴,垂足为点D,若S△BCD=5,则a 的值为()A.8B.9C.10D.11【答案】D【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.11.(2022•巴中)将双曲线y=向右平移2个单位,再向下平移1个单位,得到的新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3, (1011)相交于2022个点,则这2022个点的横坐标之和为.【答案】4044【解答】解:直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)可由直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)向右平移2个单位,再向下平移1个单位得到,∴直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)到直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的平移方式与双曲线双曲线的相同,∴新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点也可以由双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点以同样的方式平移得到,设双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点的横坐标为x i,x'i,(i=1,2,3,⋅⋅⋅,1011),则新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点的横坐标为x i+2,x'i+2(i=1,2,3,⋅⋅⋅,1011),根据双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)图像都关于原点对称,可知双曲线与直线y=k i x(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点也关于原点对称,∴x i+x'i=0,(i=1,2,3,⋅⋅⋅,1011),∴(x i+2)+(x'i+2)=4(i=1,2,3,⋅⋅⋅,1011),即新双曲线与直线y=k i(x﹣2)﹣1(k i>0,i=1,2,3,⋅⋅⋅,1011)的交点的横坐标之和都是4,∴这2022个点的横坐标之和为:4×1011=4044.故答案是:4044.。

2020年九年级数学中考压轴题专项综合训练:《反比例函数》含答案

2020年九年级数学中考压轴题专项综合训练:《反比例函数》含答案

2020年九年级数学中考压轴题专项综合训练:《反比例函数》1.如图,四边形ABCD是以坐标原点O为对称中心的矩形,A(1,3),B(﹣3,﹣1),该矩形的边与坐标轴分别交于点E、F、G、H,连接EC.(1)直接写出点C的坐标;(2)判断点(1,﹣1.2)在矩形ABCD的内部还是外部;(3)求四边形ECHO的面积;(4)如果反比例函数的图象过点A,那么它是否一定过点D?请说明理由.解:(1)∵A、C关于原点对称,A(1,3),∴C(﹣1,﹣3).(2)∵B、D关于原点对称,B(﹣3,﹣1),∴D(3,1),设直线CD的解析式为y=kx+b,则有,解得,∴直线CD的解析式为y=x﹣2,∵x=1时,y=﹣1,﹣12<﹣1,∴点(1,﹣1.2)在直线CD的下方,∴点(1,﹣1.2)在矩形ABCD的外部.(3)∵直线CD的解析式为y=x﹣2,∴H(0,﹣2),F(2,0),∵E 、F 关于原点对称,∴E (﹣2,0),连接OC ,∴S 四边形ECHO =S △EOC +S △OHC =×2×3+×2×1=4.(4)一定过点D .理由:∵过点A (1,3)的反比例函数的解析式为y =,∵x =3时,y =1,∴D (3,1)也在反比例函数的图象上.2.如图,直线y 1═﹣x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=(x <0)的图象交于点P ,过点P ,作PB ⊥x 轴于点B ,且AC =BC(1)求反比例函数y 2的解析式;(2)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.解:(1)∵一次函数y=﹣x+1的图象与x轴交于点A,与y轴交于点C,1∴A(4,0),C(0,1),又∵AC=BC,CO⊥AB,∴O是AB的中点,即OA=OB=4,且BP=2OC=2,∴P的坐标是(﹣4,2),将P(﹣4,2)代入y=,得m=﹣8,2=﹣;即反比例函数的解析式为y2(2)假设存在这样的点D,使四边形BCPD为菱形,如图,连接DC,与PB交于点E.∵四边形BCPD是菱形,∴CE=DE=4,∴CD=8,将x=﹣8代入反比例函数解析式y=﹣,得y=1,∴D的坐标是(﹣8,1),即反比例函数的图象上存在点D使四边形BCPD是菱形,此时D的坐标是(﹣8,1).3.如图,一次函数y 1=﹣x +b 的图象与反比例函数y 2=(k ≠0)的图象交于A ,B 两点,与x 轴、y 轴分别交于C ,D 两点.已知:点B 的坐标为(,﹣2).(1)求该反比例函数的解析式和点D 的坐标;(2)点M 在CA 延长线上,且AM =AC ,连接OM ,OB ,求△MOB 的面积.解:(1)∵反比例函数y 2=(k ≠0)的图象经过点B (,﹣2).∴k =﹣2×=﹣3,∴反比例函数为y 2=﹣;∵一次函数y 1=﹣x +b 的图象经过点B (,﹣2),∴﹣2=﹣×+b ,解得b =﹣1,∴y 1=﹣x ﹣1,当x =0时,y =﹣1,∴D (0,﹣1);(2)连接OM ,OB , 解方程组,可得,,∴A (﹣3,1),B (,﹣2),∵直线AB :y 1=﹣x ﹣1,当y =0时,x =﹣,∴C(﹣,0),∴S△COD =S△BOD,∵MA=AC,∴S△MAO =S△ACO,∴S△MOB =2S△AOD=2××|y D|×|x A|=2××1×3=3.4.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).(1)求正比例函数和反比例函数的表达式;(2)M(m,n)是反比例函数图象上的一动点,其中0<m<3过点M作直线MN∥x轴,交y轴于点B,过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM 的面积为6时,请判断线段BM与DM的大小关系,并说明理由.解:(1)∵正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2).∴2=3a,2=∴a=,k=6∴正比例函数表达式:y =x ,反比例函数的表达式:y =(2)BM =MD∵直线MN ∥x 轴,直线AC ∥y 轴∴四边形BDCO 是平行四边形且∠BOC =90°∴▱BDCO 为矩形∴BD =OC =3∵M (m ,n )是反比例函数图象上的一动点∴mn =6即S △BMO =3∵S △AOC =OC ×AC =3,且S OADM =6∴S BDCO =S △AOC +S △BMO +S OADM =12且S BDCO =OC ×BO∴12=3×OB∴OB =4∴n =4即m =∴BM =且BD =3∴DM =∴BM =DM5.如图,已知,点O 为坐标原点,点C 在x 轴的正半轴上.在▱AOCB 中,边AO =2,OC =4,∠AOC =60°,∠AOC 的角平分线交AB 于点D .点P 从点O 出发,以每秒个单位长度的速度沿射线OD 方向移动:同时点Q 从点O 出发,以每秒2个单位长度的速度沿射线OC 方向移动,连结QP ,BQ ,BP ,设移动时间t 秒.(1)求B ,D 两点的坐标;(2)若反比例函数y =(k ≠0)的图象的一个分支过点P ,且经过BQ 的中点,求k 的值;(3)当t 为何值时,△PQB 是直角三角形.解:(1)如图1中,作AH⊥OC于H.在Rt△AOH中,∵OA=2,∠AOH=60°,∴OH=OA=1,AH=,∴A(1,),∵四边形ABCD是平行四边形,∴AB=OC=4,AB∥OC,∴∠ADO=∠DOC,∵∠AOD=∠DOC,∴∠AOD=∠ADO,∴AO=AD=2,∴D(3,),B(5,).(2)如图2中,设BQ的中点为T,作BM⊥x轴于M,TN⊥x轴于N.由题意P(t,t),BM=,∵QT=TB,TN∥BM,∴QN=NM,∴TM=BM=,∵P、T在y=上,根据横坐标与纵坐标的乘积相等可得T(t2,),∴(2t+5)=t2∴3t2﹣2t﹣5=0,∴t=或﹣1(舍弃),∴T(,),∴k=.(3)由题意P(t,t),Q(2t,0),B(5,),∴PB2=(t﹣5)2+(t﹣)2,BQ2=(5﹣2t)2+3,PQ2=(t)2+(t)2,①当PB为斜边时,(t﹣5)2+(t﹣)2=(5﹣2t)2+3+(t)2+(t)2,解得t=1或0(舍弃).②当PQ为斜边时,(t﹣5)2+(t﹣)2+(5﹣2t)2+3=(t)2+(t)2,解得t=4或.③当BQ为斜边时,(t﹣5)2+(t﹣)2+(t)2+(t)2=(5﹣2t)2+3,解得t=0(不合题意)综上所述,满足条件的t的值为1或4或.6.如图,在平面直角坐标系中,点B在x轴正半轴上,以OB为对角线作正方形OABC,一次函数y=kx+b的图象过A、B两点,反比例函数y=(x>0)的图象过线段AB的中点M,点M的坐标为(3,1).(1)求一次函数和反比例函数的表达式;(2)设反比例函数的图象与直线AB的另一个交点为N,点D是线段MN上一点,过点D 作DE⊥x轴于点E,连接OD,若△ODE的面积为S,求S的取值范围.解:(1)设A(a,b)∵OABC是正方形,OB为对角线∴B(2a,0)∵M(3,1)是AB的中点∴b=2,a=2∴解得:∴解析式y=﹣x+4∵反比例函数y=(x>0)的图象过M点∴m=3×1=3∴反比例函数解析式:y=(2)∵反比例函数的图象与直线AB的另一个交点为N,∴∴x1=1,x2=3(舍去)∴N(1,3)设D(x,﹣x+4)∴S△ODE=×x×(﹣x+4)=﹣x2+2x(1≤x≤3)∴≤S△ODE≤27.如图,四边形ABCD是正方形,点A的坐标是(0,1),点B的坐标是(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点,两函数图象的另一个交点E的坐标是(m,3).(1)分别求出一次函数与反比例函数的解析式.(2)求出m的值,并根据图象回答:当x为何值时,一次函数的值大于反比例函数的值.(3)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求点P坐标.解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴BC=AB=3,∴C(3,﹣2),把C(3,﹣2)代入y=,得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣;把C(3,﹣2),A(0,1)代入y=ax+b,得,解得,∴一次函数解析式为y=﹣x+1;(2)∵反比例函数y=﹣的图象过点E(m,3),∴m=﹣2,∴E点的坐标为(﹣2,3);由图象可知,当x<﹣2或0<x<3时,一次函数落在反比例函数图象上方,即当x<﹣2或0<x<3时,一次函数的值大于反比例函数的值;(3)设P(t,﹣),∵△AOP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).8.如图所示,一次函数y=kx+b交y轴于点D,交x轴于点E,且与反比例函数y=的图象交于A(2,3).B(﹣3,n)两点.(1)分别求出一次函数与反比例函数的表达式.(2)过点B作BC⊥x轴于点C,过点A作AF⊥y轴于点F,求四边形AFCB的面积S;(3)当kx+b<时,x的取值范围是x<﹣3或0<x<2..解:(1)∵点A(2,3)在y=上,∴m=6,∴y=,∵B(﹣3,n)在y=上,∴n=﹣2,∴B(﹣3,﹣2),把A、B两点坐标代入y=kx+b,则有,解得,∴y=x+1.(2)连接CD.由题意F(0,3),D(0,1),C(﹣3,0),∴S△AFCB =S△ADF+S△CDF+S△BCD=×3×2+×2×3+×2×3=8.(3)观察图象可知,当kx+b<时,x的取值范围是x<﹣3或0<x<2.故答案为x<﹣3或0<x<2.9.如图:直线y=x与反比例函数y=(k>0)的图象在第一象限内交于点A(2,m).(1)求m、k的值;(2)点B在y轴负半轴上,若△AOB的面积为2,求AB所在直线的函数表达式;(3)将△AOB沿直线AB向上平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=的图象上时,求点A'的坐标.解:(1)∵直线y=x经过A(2,m),∴m=2,∴A(2,2),∵A在y=的图象上,∴k=4.(2)设B(0,n),由题意:×(﹣n)×2=2,∴n=﹣2,∴B(0,﹣2),设直线AB的解析式为y=k′x+b,则有,∴,∴直线AB的解析式为y=2x﹣2.(3)当点O'恰好落在反比例函数y=的图象上时,点A'的坐标(2+,2+2).10.如图1,在平面直角坐标系中,A点的坐标为(m,3),AB⊥x轴于点B,tan∠OAB=,反比例函数y1=的图象的一支经过AO的中点C,且与AB交于点D.(1)求反比例函数解析式;(2)设直线OA的解析式为y2=nx,请直接写出y1<y2时,自变量x的取值范围﹣2<x<0或x>2 .(3)如图2,若函数y=3x与y1=的图象的另一支交于点M,求△OMB与四边形OCDB的面积的比值.解:(1)在Rt △AOB 中,∵AB =3,∠ABO =90°,∴tan ∠OAB ==,∴OB =4,∴点A (4,3),∵点C 是OA 中点,∴点C 坐标(2,),∵反比例函数y 1=的图象的一支经过点C ,∴k =3,∴反比例函数解析式为y 1=.(2)如图1,由反比例函数图象的对称性质得到点C 关于原点对称的C ′的坐标为(﹣2,﹣),结合图象得到:当y 1<y 2时,自变量x 的取值范围是﹣2<x <0或x >2.故答案是:﹣2<x <0或x >2.(3)由解得或, ∵点M 在第三象限,∴点M 坐标(﹣1,﹣3),∵点D 坐标(4,),∴S△OBM =×4×3=6,S四边形OBDC=S△AOB﹣S△ACD=×4×3﹣×2×=,∴三角形OMB与四边形OCDB的面积的比=6:=8:5.11.如图,直线y=ax+2与x轴交于点A(1,0),与y轴交于点B(0,b).将线段AB 先向右平移1个单位长度、再向上平移t(t>0)个单位长度,得到对应线段CD,反比例函数y=(x>0)的图象恰好经过C、D两点,连接AC、BD.(1)求a和b的值;(2)求反比例函数的表达式及四边形ABDC的面积;(3)点N在x轴正半轴上,点M是反比例函数y=(x>0)的图象上的一个点,若△CMN是以CM为直角边的等腰直角三角形时,求所有满足条件的点M的坐标.解:(1)将点A(1,0)代入y=ax+2,得0=a+2.∴a=﹣2.∴直线的解析式为y=﹣2x+2.将x=0代入上式,得y=2.∴b=2.(2)由(1)知,b=2,∴B(0,2),由平移可得:点C(2,t)、D(1,2+t).将点C(2,t)、D(1,2+t)分别代入y=,得∴.∴反比例函数的解析式为y=,点C(2,2)、点D(1,4).如图1,连接BC、AD.∵B(0,2)、C(2,2),∴BC∥x轴,BC=2.∵A(1,0)、D(1,4),∴AD⊥x轴,AD=4.∴BC⊥AD.=×BC×AD=×2×4=4.∴S四边形ABDC(3)①当∠NCM=90°、CM=CN时,如图2,过点C作直线l∥x轴,交y轴于点G.过点M作MF⊥直线l于点F,交x轴于点H.过点N作NE⊥直线l于点E.∵∠MCN=90°,∴∠MCF+∠NCE=90°.∵NE⊥直线l于点E,∴∠ENC+∠NCE=90°.∴∠MCF=∠ENC.又∵∠MFC=∠NEC=90°,CN=CM,∴△NEC≌△CFM(AAS).∴CF=EN=2,FM=CE.∴FG=CG+CF=2+2=4.∴x M=4.将x=4代入y=,得y=1.∴点M(4,1);②当∠NMC =90°、MC =MN 时,如图3,过点C 作直线l ⊥y 轴与点F ,则CF =x C =2.过点M 作MG ⊥x 轴于点G ,MG 交直线l 与点E ,则MG ⊥直线l 于点E ,EG =y C =2. ∵∠CMN =90°,∴∠CME +∠NMG =90°.∵ME ⊥直线l 于点E ,∴∠ECM +∠CME =90°.∴∠NMG =∠ECM .又∵∠CEM =∠NGM =90°,CM =MN ,∴△CEM ≌△MGN (AAS ).∴CE =MG ,EM =NG .设CE =MG =n ,则y M =n ,x M =CF +CE =2+n .∴点M (2+n ,n ).将点M (2+n ,n )代入y =,得n =. 解得n 1=﹣1,n 2=﹣﹣1(因为点M 在第一象限,所以n 大于0,所以舍去). ∴x M =2+n =+1. ∴点M (+1,﹣1).综合①②可知:点M 的坐标为(4,1)或(+1,﹣1).12.如图,在平面直角坐标系中,已知A(3,﹣3)、B(6,0),且OA=OB.(1)若△OA′B′与△OAB关于原点O成中心对称,则点A、B的对称点A′、B'的坐标分别为A′(﹣3,3),B′(﹣6,0);(2)若将△OAB沿x轴向左平移m个单位,此时点A恰好落在反比例函数y=的图象上,求m的值;(3)若△OAB绕点O按逆时针方向旋转α°(0<α<90);①当α=30时点B恰好落在反比例函数y=的图象上,求k的值;②问点A、B能否同时落在①中的反比例函数的图象上,若能,直接写出α的值,若不能,请说明理由.解:(1)∵△OA′B′与△OAB关于原点O成中心对称,且A(3,﹣3)、B(6,0),∴A'(﹣3,3),B'(﹣6,0)故答案为(﹣3,3),(﹣6,0)(2)∵将△OAB沿x轴向左平移m个单位,∴点A平移后的坐标为(3﹣m,﹣3)∴﹣3=m=5(3)①设点B逆时针旋转30°后对应点为B1.如图:过点B1作B1C⊥OB∵旋转∴OB1=6,∠COB1=30°∴B1C=3,OC=OB1=3∴B1(3,3)∴3=∴k=9∴解析式为y=②α=60°如图2,过点A作AD⊥OB,∵A(3,﹣3)∴OD=3,DA=3∵tan∠BOA==∴∠AOB =30°设点A 逆时针旋转60°后对应点为A 1.∴∠A 1OB =30°,且OA =OB =6=OA 1.∴A 1(3,3)设点B 逆时针旋转60°后对应点为B 2.∴∠B 2OB =60°,且OB 2=OB =6∴B 2(3,3) 当x =3时,y ==3,当x =3时,y ==3∴点A 1,点B 2在反比例y =的图象上 ∴将△OAB 绕点O 按逆时针方向旋转60°时,点A 、B 能同时落在反比例函数的图象上.13.阅读理解:若点P 是△ABC 内部或边上的点(顶点除外),在△PAB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的相似特征点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠PCB =∠ABC ,则△BCP ∽△ABC ,故点P 为△ABC 的相似特征点.问题解决:在平面直角坐标系中,点M 是双曲线C :y =(x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,在Rt △ONM 中,∠ONM =90°,点N (,0)点P 是△ONM 内一点,且∠PON =∠M ,NP ⊥OP ,垂足为P ,试说明点P 是△ONM 的相似特征点,并求出点P 的坐标;(2)如图3,点N 的坐标是(2,0)时,且∠MON =30°,连接MN ,求△MON 的相似特征点的坐标;(3)当△MON 无相似持征点时,请直接写出这两点M ,N 的坐标;(4)在△MON 中,点M 的横坐标为m (m >0),点N 的模坐标为n ,点P 在线段OM 上,且∠PNO =∠M ,试用含m ,n 的式子表示点P 的坐标.解:(1)∵∠PON=∠M,∠OPN=∠MNO=90°,∴△OPN∽△MNO,∴点P是△MON的自相似点;如图2中,过P作PD⊥x轴于D,则tan∠POD=tan∠OMN==,∴∠POD=∠OMN=30°,∴OP=ON×cos30°=,∴OD=OP cos30°=,PD=OP•sin30°,∴P(,);(2)作MH⊥x轴于H,如图3所示:由题意点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴=,即=,解得:PN=,即P的纵坐标为,代入y=x得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2 ,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.(4)如图5中,作PH⊥x轴于H,MF⊥x轴于F.∵M(m,),N(n,0),∴ON=n,OM=,∵∠PON=∠ONP=∠OMN,∴△ONP∽△OMN,∴ON2=OP•OM,∴OP=,∵PH∥MF,∴==,∴PH=,OH=,∴P(,).14.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,OA=2,OC=4,直线y=﹣x+3交AB,BC分别于点M,N,反比例函数y=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA =BC =2,将y =2代入y =﹣x +3得:x =2, ∴M (2,2),把M 的坐标代入y =得:k =4, ∴反比例函数的解析式是y =;(2)把x =4代入y =得:y =1, 即CN =1,∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得:OP ×AM =4, ∵AM =2, ∴OP =4,∴点P 的坐标是(0,4)或(0,﹣4).15.已知点P 的坐标为(m ,0),点Q 在x 轴上(不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数y =﹣的图象上.(1)如图所示,若点P 的坐标为(1,0),求出图中点M 的坐标;(2)当P (1,0)时,在(1)图中已经画出一个符合条件的菱形PQMN ,请您在原图上画出另一个符合条件的菱形PQ 1M 1N 1,并求点M 1的坐标;(3)随着m 的取值不同,这样的菱形还可以画出三个和四个,当符合上述条件的菱形刚好能画出三个时,请直接写出点M 的坐标.解:(1)如图,∵四边形PQMN 是菱形, ∴PN ∥QM ,MN ∥PQ , ∴∠OPN =∠PQM =60°, ∵P (1,0),∴OP =1,PN =PQ =MN =2OP =2,OM =OP =∴M (2,﹣).(2)如下图中,∵四边形PQ 1M 1N 1是菱形, ∴Q 1P =Q 1M 1, ∵∠PQ 1M 1=60°, ∴△PQ 1M 1是等边三角形, ∴∠Q 1PM 1=60°, ∴直线PM 1的解析式为y =﹣x +,由解得或,∴M1(﹣1,2).(3)如下图,当过点P与x轴的夹角为60°的直线与反比例函数的交点的个数只有3个时,满足条件的菱形只有3个.设直线PM1的解析式为y=x+b,由,消去y得到:x2+bx+2=0,由题意:△=0,∴b=±2,当b=﹣2时,可得y=x﹣2,由:,解得,∴M1(,﹣),由解得或,∴M2(+2,﹣2),M2(﹣2,+2),当b=2时,同法可得满足条件的点M的坐标为(﹣,)或(﹣﹣2,2﹣)或(﹣+2,﹣2﹣).16.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(x >0,m≠0)的图象交于点C,与x轴、y轴分别交于点D、B,已知OB=3,点C的横坐标为4,cos∠0BD=(1)求一次函数及反比例函数的表达式;(2)将一次函数图象向下平移,使其经过原点O,与反比例函数图象在第四象限内的交点为A,连接AC,求四边形OACB的面积.解:(1)∵OB=3,∴B(0,3),∵cos∠0BD=,∴∠OBD=45°,∴△OBD是等腰直角三角形,∴OD=OD=3,∴D(3,0),将点D,B代入y=kx+b得,,解得:,∴一次函数的表达式为:y=﹣x+3;∴C(4,﹣1),∵点C在反比例函数y=(x>0,m≠0)的图象上,∴m=﹣1×4=﹣4,∴反比例函数的解析式为:y=﹣;(2)由平移可得直线OA的解析式为:y=﹣x,∴,解得:,,∴A(2,﹣2),过A 作AE ⊥x 轴交BC 于E ,则AE =OB =3,∴S 四边形OACB =S 四边形OAEB +S △ACE =OB •x A +AE •(x C ﹣x A )=3×2+(4﹣2)=9.17.如图,在平面直角坐标系xOy 内,函数y =x 的图象与反比例函数y =(k ≠0)图象有公共点A ,点A 的坐标为(4,a ),AB ⊥x 轴,垂足为点B . (1)求反比例函数的解析式;(2)点C 是第一象限内直线OA 上一点,过点C 作直线CD ∥AB ,与反比例函数y =(k ≠0)的图象交于点D ,且点C 在点D 的上方,CD =AB ,求点D 的坐标.解:(1)∵点A 在函数y =的图象上,点A 的坐标为(4,a ),∴a =2,∴点A 坐标为(4,2).∵点A 在反比例函数y =(k ≠0)的图象上, ∴2=,解得k =8.∴反比例函数的解析式为y =. (2)∵AB ⊥x 轴,点A 坐标为(4,2), ∴AB =2.∵点C 为第一象限内直线y =x 上一点,∴设点C坐标为(m,m)(m>0).又∵CD∥AB,且点D在反比例函数y=的图象上,∴设点D坐标为(m,).∵点C在点D的上方,可得CD=m﹣.∵CD=AB,∴m﹣=×2,∴解得m=8或m=﹣2.∵m>0,∴m=8.∴点D的坐标为(8,1).18.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(﹣,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)在x轴的正半轴上存在一点P,使得S△AOP =S△AOB,求点P的坐标;(3)若将△AOB绕点B按顺时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,并说明理由.解:(1)把A(﹣,1)代入反比例函数y=,则k=﹣,∴反比例函数y=﹣;(2)设P(m,0),m>0,从点A(﹣,1)的坐标,tan∠AOC=,∴∠AOC=30°,∵OA⊥OB,AB⊥x轴,∴∠ABO=30°,∴OB=2OC=2,S△AOP=•OP•AC=m,S△AOB=AO•BO=×2=2,S△AOP =S△AOB,∴m=4,∴点P的坐标为(4,0);(3)△AOB绕点B按顺时针方向旋转60°得到△BDE,∴∠OBE=60°﹣30°=30°,如下图,连接OE,∵AB=BE,BO=BO,∠BOA=∠BOE=30°,∴△BOA≌△BOE,∴AO=EO,而OA⊥OB,∴A、O、E在一条直线上,∴点E是点A关于原点的对称点,∴E(,﹣1),也在反比例函数上.19.如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(1,3).已知点A (3,0),B(0,2),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的解析式;(3)直接写出线段AB扫过的面积.解:(1)将点P(1,3)代入直线y=k1x得,k1=3,将P(1,3)代入双曲线y=得,k2=1×3=3,(2)∵A(3,0),B(0,2),∴AO=3,BO=2,由平移知,A'(4,3),B'(1,5),∵A'C∥y轴交双曲线于点C,∴C点的横坐标为1+3=4,当x=4时,y=,∴C(4,),设直线PC的解析式为y=kx+b,把点P(1,3),C(4,)代入得,,∴,(3)如图,延长A'C交x轴于D,过点B'作B'E⊥y轴于E,∴A'D=3,B'E=1,由平移得,△AOB≌△A'PB',∴线段AB扫过的面积为S▱POBB'+S▱AOPA'=BO×B'E+AO×A'D=2×1+3×3=11.20.如图,一次函数y=kx﹣2(k≠0)的图象与y轴交于点A,与反比例函数y=(x>0)的图象交于点B(3,b).点C是线段AB上的动点(与点A、B不重合),过点C且平行于y轴的直线CD交这个反比例函数的图象于点D,O为坐标原点.(1)求△OCD面积为时,点D的坐标;(2)求△OCD面积的最大值;(3)当△OCD面积最大时,以点O为圆心,r为半径画⊙O,是否存在r的值,使得A、B、C、D四个点中恰好有2个在圆内?如果存在,求出r的取值范围;如果不存在,请说明理由.解:(1)∵点B(3,b)在反比例函数y=的图象上,∴3b=3,∴b=1,∴B(3,1),∵点B(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,∴k=1,∴直线AB的解析式为y=x﹣2,设点C的坐标为(m,m﹣2)(0<m<3),∵C且平行于y轴的直线CD交这个反比例函数的图象于点D,∴D(m,),∴CD=﹣(m﹣2)=+2﹣m,=CD•m=(+2﹣m)×m=﹣(m2﹣2m﹣3),∴S△OCD∵△OCD面积为,∴﹣(m2﹣2m﹣3)=,∴m=0(舍)或m=2,∴D(2,),(2)由(1)知,S=﹣(m2﹣2m﹣3)=﹣(m﹣1)2+2,△OCD∵0<m<3,∴m=1时,△OCD面积的最大值为2.(3)存在,理由:∵直线AB的解析式为y=x﹣2,∴A(0,﹣2),∴OA=2,由(1)知,B(3,1),∴OB==由(2)知,m=1,∴C(1,﹣1),D(1,3),∴OC==,OD==,∴OC<OA<OB=OD,∵以点O为圆心,r为半径画⊙O,使得A、B、C、D四个点中恰好有2个在圆内.∴2<r≤.。

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)

中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。

中考数学反比例函数的综合复习含详细答案

中考数学反比例函数的综合复习含详细答案

中考数学反比例函数的综合复习含详细答案一、反比例函数1.如图,一次函数y1=k1x+b与反比例函数y2= 的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)m=________,k1=________;(2)当x的取值是________时,k1x+b>;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP 与线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.【答案】(1)4;(2)﹣8<x<0或x>4(3)解:由(1)知,y1= x+2与反比例函数y2= ,∴点C的坐标是(0,2),点A 的坐标是(4,4).∴CO=2,AD=OD=4.∴S梯形ODAC= •OD= ×4=12,∵S四边形ODAC:S△ODE=3:1,∴S△ODE= S梯形ODAC= ×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的解析式是y= x,∴直线OP与y2= 的图象在第一象限内的交点P的坐标为(4 ,2 ).【解析】【解答】解:(1)∵反比例函数y2= 的图象过点B(﹣8,﹣2),∴k2=(﹣8)×(﹣2)=16,即反比例函数解析式为y2= ,将点A(4,m)代入y2= ,得:m=4,即点A(4,4),将点A(4,4)、B(﹣8,﹣2)代入y1=k1x+b,得:,解得:,∴一次函数解析式为y1= x+2,故答案为:4,;(2)∵一次函数y1=k1x+2与反比例函数y2= 的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4,故答案为:﹣8<x<0或x>4;【分析】(1)由A与B为一次函数与反比例函数的交点,将B坐标代入反比例函数解析式中,求出k2的值,确定出反比例解析式,再将A的坐标代入反比例解析式中求出m的值,确定出A的坐标,将B坐标代入一次函数解析式中即可求出k1的值;(2)由A与B 横坐标分别为4、﹣8,加上0,将x轴分为四个范围,由图象找出一次函数图象在反比例函数图象上方时x的范围即可;(3)先求出四边形ODAC的面积,由S四边形ODAC:S△ODE=3:1得到△ODE的面积,继而求得点E的坐标,从而得出直线OP的解析式,结合反比例函数解析式即可得.2.平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,AD交y轴于P点(1)已知点A的坐标是(2,3),求k的值及C点的坐标;(2)在(1)的条件下,若△APO的面积为2,求点D到直线AC的距离.【答案】(1)解:∵点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,∴3= ,点C与点A关于原点O对称,∴k=6,C(﹣2,﹣3),即k的值是6,C点的坐标是(﹣2,﹣3);(2)解:过点A作AN⊥y轴于点N,过点D作DM⊥AC,如图,∵点A(2,3),k=6,∴AN=2,∵△APO的面积为2,∴,即,得OP=2,∴点P(0,2),设过点A(2,3),P(0,2)的直线解析式为y=kx+b,,得,∴过点A(2,3),P(0,2)的直线解析式为y=0.5x+2,当y=0时,0=0.5x+2,得x=﹣4,∴点D的坐标为(﹣4,0),设过点A(2,3),B(﹣2,﹣3)的直线解析式为y=mx+b,则,得,∴过点A(2,3),C(﹣2,﹣3)的直线解析式为y=1.5x,∴点D到直线AC的直线得距离为:= .【解析】【分析】(1)根据点A的坐标是(2,3),平行四边形ABCD的两个顶点A、C在反比例函数y= (k≠0)图象上,点B、D在x轴上,且B、D两点关于原点对称,可以求得k的值和点C的坐标;(2)根据△APO的面积为2,可以求得OP的长,从而可以求得点P的坐标,进而可以求得直线AP的解析式,从而可以求得点D的坐标,再根据点到直线的距离公式可以求得点D到直线AC的距离.3.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.4.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.5.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.6.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.7.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b与反比例函数(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.【答案】(1)解:当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)把A(﹣4,),B(﹣1,2)代入y=kx+b得,解得,所以一次函数解析式为y= x+ ,把B(﹣1,2)代入y= 得m=﹣1×2=﹣2;(3)解:如下图所示:设P点坐标为(t,t+ ),∵△PCA和△PDB面积相等,∴• •(t+4)= •1•(2﹣t﹣),即得t=﹣,∴P点坐标为(﹣,).【解析】【分析】(1)观察函数图象得到当﹣4<x<﹣1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求一次函数解析式,然后把B点坐标代入y= 可计算出m的值;(3)设P点坐标为(t, t+ ),利用三角形面积公式可得到• •(t+4)= •1•(2﹣ t﹣),解方程得到t=﹣,从而可确定P点坐标.2.如图,反比例函数y1= 的图象与一次函数y2= x的图象交于点A、B,点B的横坐标是4,点P(1,m)在反比例函数y1= 的图象上.(1)求反比例函数的表达式;(2)观察图象回答:当x为何范围时,y1>y2;(3)求△PAB的面积.【答案】(1)解:把x=4代入y2= x,得到点B的坐标为(4,1),把点B(4,1)代入y1= ,得k=4.反比例函数的表达式为y1=(2)解:∵点A与点B关于原点对称,∴A的坐标为(﹣4,﹣1),观察图象得,当x<﹣4或0<x<4时,y1>y2(3)解:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图,∵点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△PAB=2S△AOP.y1= 中,当x=1时,y=4,∴P(1,4).设直线AP的函数关系式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,则,解得.故直线AP的函数关系式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC= OC•AR+ OC•PS= ×3×4+ ×3×1= ,∴S△PAB=2S△AOP=15.【解析】【分析】(1)把x=4代入y2= x,得到点B的坐标,再把点B的坐标代入y1=,求出k的值,即可得到反比例函数的表达式;(2)观察图象可知,反比例函数的图象在一次函数图象上方的部分对应的自变量的取值范围就是不等式y1>y2的解集;(3)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,由点A与点B关于原点对称,得出OA=OB,那么S△AOP=S△BOP,S△PAB=2S△AOP.求出P点坐标,利用待定系数法求出直线AP的函数关系式,得到点C的坐标,根据S△AOP=S△AOC+S△POC求出S△AOP= ,则S△PAB=2S△AOP=15.3.如图,在平面直角坐标系中,反比例函数y= 的图象与一次函数y=ax+b的图象交于点A(﹣2,3)和点B(m,﹣2).(1)求反比例函数和一次函数的解析式;(2)直线x=1上有一点P,反比例函数图象上有一点Q,若以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,直接写出点Q的坐标.【答案】(1)解:∵点A(﹣2,3)在反比例函数y= 的图形上,∴k=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B在反比例函数y=﹣的图形上,∴﹣2m=﹣6,∴m=3,∴B(3,﹣2),∵点A,B在直线y=ax+b的图象上,∴,∴,∴一次函数的解析式为y=﹣x+1(2)解:∵以A、B、P、Q为顶点的四边形是以AB为边的平行四边形,∴AB=PQ,AB∥PQ,设直线PQ的解析式为y=﹣x+c,设点Q(n,﹣),∴﹣ =﹣n+c,∴c=n﹣,∴直线PQ的解析式为y=﹣x+n﹣,∴P(1,n﹣﹣1),∴PQ2=(n﹣1)2+(n﹣﹣1+ )2=2(n﹣1)2,∵A(﹣2,3).B(3,﹣2),∴AB2=50,∵AB=PQ,∴50=2(n﹣1)2,∴n=﹣4或6,∴Q(﹣4. )或(6,﹣1)【解析】【分析】(1)先利用待定系数法求出反比例函数解析式,进而求出点B的坐标,再用待定系数法求出直线解析式;(2)先判断出AB=PQ,AB∥PQ,设出点Q的坐标,进而得出点P的坐标,即可求出PQ,最后用PQ=AB建立方程即可得出结论.4.如图,点P(x,y1)与Q(x,y2)分别是两个函数图象C1与C2上的任一点.当a≤x≤b 时,有﹣1≤y1﹣y2≤1成立,则称这两个函数在a≤x≤b上是“相邻函数”,否则称它们在a≤x≤b 上是“非相邻函数”.例如,点P(x,y1)与Q (x,y2)分别是两个函数y=3x+1与y=2x﹣1图象上的任一点,当﹣3≤x≤﹣1时,y1﹣y2=(3x+1)﹣(2x﹣1)=x+2,通过构造函数y=x+2并研究它在﹣3≤x≤﹣1上的性质,得到该函数值的范围是﹣1≤y≤1,所以﹣1≤y1﹣y2≤1成立,因此这两个函数在﹣3≤x≤﹣1上是“相邻函数”.(1)判断函数y=3x+2与y=2x+1在﹣2≤x≤0上是否为“相邻函数”,并说明理由;(2)若函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,求a的取值范围;(3)若函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,直接写出a的最大值与最小值.【答案】(1)解:是“相邻函数”,理由如下:y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,∵y=x+1在﹣2≤x≤0,是随着x的增大而增大,∴当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,∴﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”(2)解:y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,∵y=x2﹣2x+a=(x﹣1)2+(a﹣1),∴顶点坐标为:(1,a﹣1),又∵抛物线y=x2﹣2x+a的开口向上,∴当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,∵函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴0≤a≤1(3)解:y1﹣y2= ﹣(﹣2x+4)= +2x﹣4,构造函数y= +2x﹣4,∵y= +2x﹣4∴当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,即a﹣2≤y≤ ,∵函数y= 与y=﹣2x+4在1≤x≤2上是“相邻函数”,∴﹣1≤y1﹣y2≤1,即,∴1≤a≤2;∴a的最大值是2,a的最小值1【解析】【分析】(1)y1﹣y2=(3x+2)﹣(2x+1)=x+1,构造函数y=x+1,因为y=x+1在﹣2≤x≤0,是随着x的增大而增大,所以当x=0时,函数有最大值1,当x=﹣2时,函数有最小值﹣1,即﹣1≤y≤1,所以﹣1≤y1﹣y2≤1,即函数y=3x+2与y=2x+1在﹣2≤x≤0上是“相邻函数”;(2)y1﹣y2=(x2﹣x)﹣(x﹣a)=x2﹣2x+a,构造函数y=x2﹣2x+a,因为y=x2﹣2x+a=(x﹣1)2+(a﹣1),所以顶点坐标为:(1,a﹣1),又抛物线y=x2﹣2x+a的开口向上,所以当x=1时,函数有最小值a﹣1,当x=0或x=2时,函数有最大值a,即a﹣1≤y≤a,因为函数y=x2﹣x与y=x﹣a在0≤x≤2上是“相邻函数”,所以﹣1≤y1﹣y2≤1,即0≤a≤1;(3)当x=1时,函数有最小值a﹣2,当x=2时,函数有最大值,因为函数y=与y=﹣2x+4在1≤x≤2上是“相邻函数”,﹣1≤y1﹣y2≤1,即1≤a≤2,所以a的最大值是2,a 的最小值1.5.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.6.已知:如图,正比例函数y=ax的图象与反比例函数y= 的图象交于点C(3,1)(1)试确定上述比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点D(m,n)是反比例函数图象上的一动点,其中0<m<3,过点C作直线AC⊥x 轴于点A,交OD的延长线于点B;若点D是OB的中点,DE⊥x轴于点E,交OC于点F,试求四边形DFCB的面积.【答案】(1)解:将点C(3,1)分别代入y= 和y=ax,得:k=3,a= ,∴反比例函数解析式为y= ,正比例函数解析式为y= x;(2)解:观察图象可知,在第二象限内,当0<x<3时,反比例函数值大于正比例函数值;(3)解:∵点D(m,n)是OB的中点,又在反比例函数y= 上,∴OE= OA= ,点D(,2),∴点B(3,4),又∵点F在正比例函数y= x图象上,∴F(,),∴DF= 、BC=3、EA= ,∴四边形DFCB的面积为 ×( +3)× = .【解析】【分析】(1)利用待定系数法把C坐标代入解析式即可;(2)须数形结合,先找出交点,在交点的左侧与y轴之间,反比例函数值大于正比例函数值.(3)求出DF、BC、EA,代入梯形面积公式即可.7.如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y= 的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO= ,OB=4,OE=2.(1)求反比例函数的解析式;(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.【答案】(1)解:∵OB=4,OE=2,∴BE=OB+OE=6.∵CE⊥x轴,∴∠CEB=90°.在Rt△BEC中,∠CEB=90°,BE=6,tan∠ABO= ,∴CE=BE•tan∠ABO=6× =3,结合函数图象可知点C的坐标为(﹣2,3).∵点C在反比例函数y= 的图象上,∴m=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣(2)解:∵点D在反比例函数y=﹣第四象限的图象上,∴设点D的坐标为(n,﹣)(n>0).在Rt△AOB中,∠AOB=90°,OB=4,tan∠ABO= ,∴OA=OB•tan∠ABO=4× =2.∵S△BAF= AF•OB= (OA+OF)•OB= (2+ )×4=4+ .∵点D在反比例函数y=﹣第四象限的图象上,∴S△DFO= ×|﹣6|=3.∵S△BAF=4S△DFO,∴4+ =4×3,解得:n= ,经验证,n= 是分式方程4+ =4×3的解,∴点D的坐标为(,﹣4).【解析】【分析】(1)由边的关系可得出BE=6,通过解直角三角形可得出CE=3,结合函数图象即可得出点C的坐标,再根据点C的坐标利用反比例函数图象上点的坐标特征,即可求出反比例函数系数m,由此即可得出结论;(2)由点D在反比例函数在第四象限的图象上,设出点D的坐标为(n,﹣)(n>0).通过解直角三角形求出线段OA的长度,再利用三角形的面积公式利用含n的代数式表示出S△BAF,根据点D在反比例函数图形上利用反比例函数系数k的几何意义即可得出S△DFO的值,结合题意给出的两三角形的面积间的关系即可得出关于n的分式方程,解方程,即可得出n值,从而得出点D的坐标.8.如图,在平面直角坐标系中,平行四边形的边,顶点坐标为,点坐标为 .(1)点的坐标是________,点的坐标是________(用表示);(2)若双曲线过平行四边形的顶点和,求该双曲线的表达式;(3)若平行四边形与双曲线总有公共点,求的取值范围.【答案】(1);(2)解:∵双曲线过点和点,∴,解得,∴点的坐标为,点的坐标为,把点的坐标代入,解得,∴双曲线表达式为(3)解:∵平行四边形与双曲线总有公共点,∴当点在双曲线,得到,当点在双曲线,得到,∴的取值范围 .【解析】【分析】(1)由四边形ABCD为平行四边形,得到A与B纵坐标相同,C与D纵坐标相同,横坐标相差2,得出B、C坐标即可;(2)根据B与D在反比例图象上,得到C与D横纵坐标乘积相等,求出b的值确定出B坐标,进而求出k的值,确定出双曲线解析式;(3)抓住两个关键点,将A坐标代入双曲线解析式求出b的值;将C坐标代入双曲线解析式求出b的值,即可确定出平行四边形与双曲线总有公共点时b的范围.9.如图,直线 y=kx与双曲线 =-交于A、B两点,点C为第三象限内一点.(1)若点A的坐标为(a,3),求a的值;(2)当k=-,且CA=CB,∠ACB=90°时,求C点的坐标;(3)当△ABC为等边三角形时,点C的坐标为(m,n),试求m、n之间的关系式.【答案】(1)解:把(a,3)代入 =-,得,解得a=-2;(2)解:连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,当CA=CB,∠ACB=90°时,∴CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO≌△OEC,又k=-,由y=- x和y=-解得,,所以A点坐标为(-2,3),由△ADO≌△OEC得,CE=OD=3,EO=DA=2,所以C(-3,-2);(3)解:连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,则∠ADO=∠CEO=90°,∴∠DAO+∠AOD=90°,∵直线 y=kx与双曲线 =-交于A、B两点,∴OA=OB,∵△ABC为等边三角形,∴CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,∵∠AOD=∠BOE,∴∠DAO=∠EOC,∴△ADO∽△OEC,∴,∵∠ACO= ∠ACB=30°,∠AOC=90°,∴,∵C的坐标为(m,n),∴CE=-m,OE=-n,∴AD=- n,OD=- m,∴A( n,- m),代入y=-中,得mn=18.【解析】【分析】(1)将点A的坐标代入反比例函数的解析式即可求出a的值;(2)连接CO,作AD⊥y轴于D点,作CE垂直y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,当CA=CB,∠ACB=90°时,根据直角三角形斜边上的中线等于斜边的一半及等腰三角形的三线合一得出CO=AO,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而利用AAS判断出△ADO≌△OEC,,解联立直线与双曲线的解析式组成的方程组,得出A 点的坐标,由△ADO≌△OEC得,CE=OD=3,EO=DA=2,进而得出C点坐标;(3)连接CO,作AD⊥y轴于D点,作CE⊥y轴于E点,根据垂直的定义得出∠ADO=∠CEO=90°,故∠DAO+∠AOD=90°,根据双曲线的对称性得出OA=OB,△ABC为等边三角形,故CA=CB,∠ACB=60°,∠BOC=90°,即∠COE+∠BOE=90°,根据等角的余角相等得出∠DAO=∠EOC,从而判断出△ADO∽△OEC,根据相似三角形的旋转得出,根据锐角三角函数的定义,及特殊锐角三角函数值得出,C的坐标为(m,n),故CE=-m,OE=-n,AD=- n,OD=-m,从而得出A点的坐标,再代入反比例函数的解析式即可求出mn=18.10.如图1,在平面直角坐标系,O为坐标原点,点A(﹣2,0),点B(0,2 ).(1)直接写求∠BAO的度数;(2)如图1,将△AOB绕点O顺时针得△A′OB′,当A′恰好落在AB边上时,设△AB′O的面积为S1,△BA′O的面积为S2, S1与S2有何关系?为什么?(3)若将△AOB绕点O顺时针旋转到如图2所示的位置,S1与S2的关系发生变化了吗?证明你的判断.【答案】(1)解:∵A(−2,0),B(0,),∴OA=2,OB=,在Rt△AOB中,tan∠BAO=,∴∠BAO=60°(2)解:S1=S2;理由:∵∠BAO=60°,∠AOB=90°,∴∠ABO=30°,∴OA'=OA= AB,△AOA'是等边三角形,∴OA'=AA'=AO=A'B,∵∠B'A'O=60°,∠A'OA=60°,∴B'A'∥AO,根据等边三角形的性质可得,△AOA'的边AO、AA'上的高相等,即△AB′O中AO边上高和△BA′O中BA′边上的高相等,∴△BA'O的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2(3)证明:S1=S2不发生变化;理由:如图,过点A'作A'M⊥OB.过点A作AN⊥OB'交B'O的延长线于N,∵△A'B'O是由△ABO绕点O旋转得到,∴BO=OB',AO=OA',∵∠AON+∠BON=90°,∠A'OM+∠BON=90°,∴∠AON=∠A'OM,在△AON和△A'OM中,,∴△AON≌△A'OM(AAS),∴AN=A'M,∴△BOA'的面积和△AB'O的面积相等(等底等高的三角形的面积相等),即S1=S2.【解析】【分析】(1)先求出OA,OB,再用锐角三角函数即可得出结论;(2)根据旋转的性质和直角三角形的性质可证得OA'=AA'=AO=A'B,然后根据等边△AOA'的边AO、AA'上的高相等,即可得到S1=S2;(3)根据旋转的性质可得BO=OB',AA'=OA',再求出∠AON=∠A'OM,然后利用“角角边”证明△AON和△A'OM全等,根据全等三角形对应边相等可得AN=A'M,然后利用等底等高的三角形的面积相等证明.11.已知抛物线与轴的两个交点间的距离为2.(1)若此抛物线的对称轴为直线,请判断点(3,3)是否在此抛物线上?(2)若此抛物线的顶点为(S,t),请证明;(3)当时,求的取值范围【答案】(1)解:抛物线的对称轴为直线,且抛物线与轴的两个交点间的距离为2,可得抛物线与轴的两个交点为(0,0)和(2,0),所以抛物线的解析式为与当时,所以点(3,3)在此抛物线上 .(2)解:抛物线的顶点为,则对称轴为直线,且抛物线与轴的两个交点间的距离为2,可得抛物线与轴的两个交点为(,,0)和(,0)所以抛物线的解析式为与由得所以;(3)解:由(2)知即整理得由对称轴为直线,且二次项系数可知当时,b的随a的增大而增大当a=10时,得当a=20时,得所以当时,【解析】【分析】(1)根据已知条件得出两个交点坐标,利用待定系数法求出解析式,然后验证点(3,3)是否在这条抛物线上即可;(2)先确定对称轴为直线,再得出与x 轴的两交点坐标为(,0)和(,0),再利用待定系数法求出解析式的顶点式可得解;(3)把t=-1代入顶点坐标公式,得到二次函数解析式,根据函数的增减性分别计算a=10和20时b的值从而得解.12.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D 在直线l上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.(1)【探究发现】如图2,某数学兴趣小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;(2)【数学思考】如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程;(3)【拓展引申】如图4,在(1)的条件下,M是AB边上任意一点(不含端点A、B),N是射线BD上一点,且AM=BN,连接MN与BC交于点Q,这个数学兴趣小组经过多次取M点反复进行实验,发现点M在某一位置时BQ的值最大.若AC=BC=4,请你直接写出BQ的最大值.【答案】(1)解:∵∠ACB=90°,AC=BC∴∠CAB=∠CBA=45°∵CD∥AB∴∠CBA=∠DCB=45°,且BD⊥CD∴∠DCB=∠DBC=45°∴DB=DC即DB=DP(2)解:∵DG⊥CD,∠DCB=45°∴∠DCG=∠DGC=45°∴DC=DG,∠DCP=∠DGB=135°,∵∠BDP=∠CDG=90°∴∠CDP=∠BDG,且DC=DG,∠DCP=∠DGB=135°,∴△CDP≌△GDB(ASA)∴DB=DP(3)解:如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,∵MH⊥MN,∴∠AMH+∠NMB=90°∵CD∥AB,∠CDB=90°∴∠DBM=90°∴∠NMB+∠MNB=90°∴∠HMA=∠MNB,且AM=BN,∠CAB=∠CBN=45°∴△AMH≌△BNQ(ASA)∴AH=BQ∵∠ACB=90°,AC=BC=4,∴AB=4 ,AC-AH=BC-BQ∴CH=CQ∴∠CHQ=∠CQH=45°=∠CAB∴HQ∥AB∴∠HQM=∠QMB∵∠ACB=∠HMQ=90°∴点H,点M,点Q,点C四点共圆,∴∠HCM=∠HQM∴∠HCM=∠QMB,且∠A=∠CBA=45°∴△ACM∽△BMQ∴∴∴BQ= +2∴AM=2 时,BQ有最大值为2.【解析】【分析】(1)DB=DP,理由如下:根据等腰直角三角形的性质得出∠CAB=∠CBA=45°,根据二直线平行,内错角相等得出∠CBA=∠DCB=45°,根据三角形的内角和得出∠DCB=∠DBC=45°,最后根据等角对等边得出 DB=DC ,即DB=DP;(2)利用ASA判断出△CDP≌△GDB ,再根据全等三角形的对应边相等得出DB=DP;(3)如图4,过点M作MH⊥MN交AC于点H,连接CM,HQ,利用ASA判断出△AMH≌△BNQ 根据全等三角形的对应边相等得出AH=BQ,进而判断出点H,点M,点Q,点C四点共圆,根据圆周角定理得出∠HCM=∠HQM ,然后判断出△ACM∽△BMQ ,根据相似三角形的对应边成比例得出,根据比例式及偶数次幂的非负性即可得出求出答案.13.在平面直角坐标系xOy中,抛物线y=-x2+mx+n与x轴交于点A,B(A在B的左侧).(1)抛物线的对称轴为直线x=-3,AB=4.求抛物线的表达式;(2)平移(1)中的抛物线,使平移后的抛物线经过点O,且与x正半轴交于点C,记平移后的抛物线顶点为P,若△OCP是等腰直角三角形,求点P的坐标;(3)当m=4时,抛物线上有两点M(x1, y1)和N(x2, y2),若x1<2,x2>2,x1+x2>4,试判断y1与y2的大小,并说明理由.【答案】(1)解:抛物线 y=-x2+mx+n的对称轴为直线x=-3,AB=4.∴点 A(-5,0),点B(-1,0).∴抛物线的表达式为y=-(x+5)( x+1)∴y=-x2-6x-5.(2)解:如图1,依题意,设平移后的抛物线表达式为:y=-x2+bx.∴抛物线的对称轴为直线x=,抛物线与x正半轴交于点C(b,0).∴b>0.记平移后的抛物线顶点为P,∴点P的坐标(,),∵△OCP是等腰直角三角形,∴ =∴b=2.∴点P的坐标(1,1).(3)解:如图2,当m=4时,抛物线表达式为:y=-x2+4x+n.∴抛物线的对称轴为直线 x=2.∵点M(x1, y1)和N(x2, y2)在抛物线上,且x1<2,x2>2,∴点M在直线x=2的左侧,点N在直线x=2的右侧.∵x1+x2>4,∴2-x1<x2-2,∴点M到直线x=2的距离比点N到直线x=2的距离近,∴y1>y2.【解析】【分析】(1)先根据抛物线和x轴的交点及线段的长,求出抛物线的解析式;(2)根据平移后抛物线的特点设出抛物线的解析式,再利用等腰直角三角形的性质求出抛物线解析式;(3)根据抛物线的解析式判断出点M,N的大概位置,再关键点M,N的横坐标的范围即可得出结论.14.如图,反比例函数y= 的图象经过点A(﹣1,4),直线y=﹣x+b(b≠0)与双曲线y= 在第二、四象限分别相交于P,Q两点,与x轴、y轴分别相交于C,D两点.(1)求k的值;(2)当b=﹣2时,求△OCD的面积;(3)连接OQ,是否存在实数b,使得S△ODQ=S△OCD?若存在,请求出b的值;若不存在,请说明理由.【答案】(1)解:∵反比例函数y= 的图象经过点A(﹣1,4),∴k=﹣1×4=﹣4;(2)解:当b=﹣2时,直线解析式为y=﹣x﹣2,∵y=0时,﹣x﹣2=0,解得x=﹣2,∴C(﹣2,0),∵当x=0时,y=﹣x﹣2=﹣2,∴D(0,﹣2),∴S△OCD= ×2×2=2(3)解:存在.当y=0时,﹣x+b=0,解得x=b,则C(b,0),∵S△ODQ=S△OCD,∴点Q和点C到OD的距离相等,而Q点在第四象限,∴Q的横坐标为﹣b,当x=﹣b时,y=﹣x+b=2b,则Q(﹣b,2b),∵点Q在反比例函数y=﹣的图象上,∴﹣b•2b=﹣4,解得b=﹣或b= (舍去),∴b的值为﹣.【解析】【分析】(1)根据反比例函数的图象上点的坐标特征易得k=﹣4;(2)当b=﹣2时,直线解析式为y=﹣x﹣2,则利用坐标轴上点的坐标特征可求出C(﹣2,0),D(0,﹣2),然后根据三角形面积公式求解;(3)先表示出C(b,0),根据三角形面积公式,由于S△ODQ=S△OCD,所以点Q和点C到OD的距离相等,则Q的横坐标为(﹣b,0),利用直线解析式可得到Q(﹣b,2b),再根据反比例函数的图象上点的坐标特征得到﹣b•2b=﹣4,然后解方程即可得到满足条件的b的值.15.如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx+3.(1)设点P的纵坐标为p,写出p随k变化的函数关系式.(2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明;(3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由.【答案】(1)解:∵y轴和直线l都是⊙C的切线,∴OA⊥AD,BD⊥AD;又∵OA⊥OB,∴∠AOB=∠OAD=∠ADB=90°,∴四边形OADB是矩形;∵⊙C的半径为2,∴AD=OB =4;∵点P在直线l上,∴点P的坐标为(4,p);又∵点P也在直线AP上,∴p=4k+3(2)解:连接DN.∵AD是⊙C的直径,∴∠AND=90°,∵∠ADN=90°﹣∠DAN,∠ABD=90°﹣∠DAN,∴∠ADN=∠ABD,又∵∠ADN=∠AMN,∴∠ABD=∠AMN,∵∠MAN=∠BAP,∴△AMN∽△ABP(3)解:存在.理由:把x=0代入y=kx+3得:y=3,即OA=BD=3,AB=,∵S△ABD=AB•DN=AD•DB∴DN==,∴AN2=AD2﹣DN2=,∵△AMN∽△ABP,∴,即当点P在B点上方时,∵AP2=AD2+PD2=AD2+(PB﹣BD)2=42+(4k+3﹣3)2=16(k2+1),或AP2=AD2+PD2=AD2+(BD﹣PB)2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=PB•AD=(4k+3)×4=2(4k+3),∴,整理得:k2﹣4k﹣2=0,解得k1=2+ ,k2=2﹣当点P在B点下方时,∵AP2=AD2+PD2=42+(3﹣4k﹣3)2=16(k2+1),S△ABP=PB•AD= [﹣(4k+3)]×4=﹣2(4k+3)∴化简得:k2+1=﹣(4k+3),解得:k=﹣2,综合以上所得,当k=2± 或k=﹣2时,△AMN的面积等于【解析】【分析】(1)由切线的性质知∠AOB=∠OAD=∠ADB=90°,所以可以判定四边形OADB是矩形;根据⊙O的半径是2求得直径AD=4,从而求得点P的坐标,将其代入直线方程y=kx+3即可知p变化的函数关系式;(2)连接DN.∵直径所对的圆周角是直角,∴∠AND=90°,根据图示易证∠AND=∠ABD;然后根据同弧所对的圆周角相等推知∠ADN=∠AMN,再由等量代换可知∠ABD=∠AMN;最后利用相似三角形的判定定理AA 证明△AMN∽△ABP;(3)存在.把x=0代入y=kx+3得y=3,即OA=BD=3,然后由勾股定理求得AB=5;又由相似三角形的相似比推知相似三角形的面积比.分两种情况进行讨论:①当点P在B点上方时,由相似三角形的面积比得到k2−4k−2=0,解关于k的一元二次方程;②当点P在B点下方时,由相似三角形的面积比得到k2+1=−(4k+3),解关于k的一元二次方程.。

相关文档
最新文档