【真卷】2018年浙江省金华市中考数学一模试卷和解析
(2021年整理)2018年浙江省金华市中考数学试卷
(完整版)2018年浙江省金华市中考数学试卷编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年浙江省金华市中考数学试卷)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年浙江省金华市中考数学试卷的全部内容。
(完整版)2018年浙江省金华市中考数学试卷编辑整理:张嬗雒老师尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布到文库,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是我们任然希望(完整版)2018年浙江省金华市中考数学试卷这篇文档能够给您的工作和学习带来便利。
同时我们也真诚的希望收到您的建议和反馈到下面的留言区,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请下载收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为 <(完整版)2018年浙江省金华市中考数学试卷〉这篇文档的全部内容.2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.(3分)如图,∠B的同位角可以是( )A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱 B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10) C.(9,10) D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是( )A.0 B.1 C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)计算(﹣a)3÷a结果正确的是( )A.a2B.﹣a2C.﹣a3D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是( )A.直三棱柱 B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P 的坐标表示正确的是( )A.(5,30)B.(8,10) C.(9,10) D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出BC=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A. B. C. D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是( )A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1 .【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是6。
2018年浙江省金华市中考数学试卷答案解析(Word版本)
2018年浙江省金华市中考数学试卷答案解析(版本)一、一、选择题(共10题;共20分)1.在0,1,,−1四个数中,最小的数是()A. 0B. 1C.D. −1【解析】【解答】解:,,,即-1是最小的数.故答案为:D。
【分析】这些都是有理数,有正数和负数,0时,比较有理数的大小,一般有两种方法:一是根据比较有理数大小的规则;二是根据有理数在数轴上的位置,数轴上右边的数总比左边的数大2.计算结果正确的是()A.B.C.D.【解析】【解答】解:,故答案为:B。
【分析】考查同底数幂的除法法则;= ,则可用同底数幂的除法法则计算即可。
3.如图,∠B的同位角可以是()A. ∠1B. ∠2C. ∠3D. ∠4【解析】【解答】解:直线和直线被直线所截成的∠ B与∠ 4构成同位角,故答案为:D【分析】考查同位角的定义;需要找一个角与∠ B构造的形状类似于“F”4.若分式的值为0,则x的值是()A. 3B.C. 3或D. 0【解析】【解答】解:若分式的值为0,则,解得.故答案为:A.【分析】分式指的是分母是含字母的整式且分母的值不为0的代数式;当分式为0时,则分子为零,分母不能为0.5.一个几何体的三视图如图所示,该几何体是()A. 直三棱柱B. 长方体C. 圆锥D. 立方体【解析】【解答】主视图是三角形的几何图形可能是直三棱柱和圆锥,左视图是长方形的,也只有直三棱柱,故答案为:A。
【分析】考查由简单几何图形的三视图描述几何图形;根据三视图分别对应选项中,判断是否符号,并逐个排除.其中,主视图是三角形的可能是直三棱柱(直三棱柱有一个面是三角形),也可能是圆锥;也可以根据三视图直接得到几何图形的形状。
6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解析】【解答】解:P(指针停止后落在黄色区域)= ,故答案为:B。
[精品]2018年浙江省金华市中考数学试卷含答案
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【解答】解:∠B的同位角可以是:∠4.故选:D.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【解答】解:原式=x2﹣1,故答案为:x2﹣112.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣115.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.(6分)解不等式组:【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【解答】解:符合条件的图形如图所示;21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.。
2018年金华市中考数学试卷带答案(含答案解析版)
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣12.计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 43.如图,∠B 的同位角可以是( )A .∠1B .∠2C .∠3D .∠44.若分式x−3x+3的值为0,则x 的值为( )A .3B .﹣3C .3或﹣3D .05.一个几何体的三视图如图所示,该几何体是()A .直三棱柱B .长方体C .圆锥D .立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .7127.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( )A .(5,30)B .(8,10)C .(9,10)D .(10,10)8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( )A .tanαtanβB .sinβsinαC .sinαsinβD .cosβcosα9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~20XX年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=ax+by.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则ABBC的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.18.解不等式组:{x3+2<x2x+2≥3(x−1)19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B .(1)求证:AD 是⊙O 的切线.(2)若BC=8,tanB=12,求⊙O 的半径.22.如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=mx与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣12,﹣1四个数中,最小的数是( ) A .0 B .1 C .−12 D .﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣12<0<1, ∴最小的数是﹣1,故选:D .【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018•金华)计算(﹣a )3÷a 结果正确的是( )A .a 2B .﹣a 2C .﹣a 3D .﹣a 4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018•金华)若分式x−3x+3的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是( )A .16B .14C .13D .712【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为90360=14, 即转动圆盘一次,指针停在黄区域的概率是14, 故选:B .【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.tanαtanβB.sinβsinαC.sinαsinβD.cosβcosα【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=AC sinα,在Rt△ACD中,AD=ACsinβ,∴AB:AD=ACsinα:ACsinβ=sinβsinα,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误.综上即可得出结论.【解答】解:A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确;B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确;C 、设当x ≥25时,y A =kx +b ,将(25,30)、(55,120)代入y A =kx +b ,得:{25k +b =3055k +b =120,解得:{k =3b =−45,∴y A =3x ﹣45(x ≥25),当x=35时,y A =3x ﹣45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x ≥50时,y B =mx +n ,将(50,50)、(55,65)代入y B =mx +n ,得:{50m +n =5055m +n =65,解得:{m =3n =−100,∴y B =3x ﹣100(x ≥50),当x=70时,y B =3x ﹣100=110<120,∴结论D 错误.故选:D .【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中{∠BEC=∠ADC ∠EBC=∠DAC AC=BC,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018•金华)如图是我国2013~20XX年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%, 则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018•金华)对于两个非零实数x ,y ,定义一种新的运算:x*y=a x +b y.若1*(﹣1)=2,则(﹣2)*2的值是 ﹣1 .【考点】2C :实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴a 1+b −1=2 即a ﹣b=2∴原式=a −2+b 2=−12(a ﹣b )=﹣1 故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E ,F 分别在边AB ,BC 上,三角形①的边GD在边AD 上,则AB BC 的值是 √2+14.【考点】LB :矩形的性质;IM :七巧板.【专题】556:矩形 菱形 正方形.【分析】设七巧板的边长为x ,根据正方形的性质、矩形的性质分别表示出AB ,BC ,进一步求出AB BC 的值.【解答】解:设七巧板的边长为x ,则AB=12x +√22x , BC=12x +x +12x=2x , AB BC =12x+√22x 2x =√2+14. 故答案为:√2+14. 【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30√3cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10√5﹣10cm.【考点】M3:垂径定理的应用;KU:勾股定理的应用;M5:圆周角定理.【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30̂的圆心,∴D1是B1AC1∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15√3,∴B1C1=30√3∴弓臂两端B1,C1的距离为30√3(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=120⋅π⋅30180,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2=√302−202=10√5∴D1D2=10√5﹣10.故答案为30√3,10√5﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:√8+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2√2+1﹣4×√2 2+2=2√2+1﹣2√2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)(2018•金华)解不等式组:{x3+2<x2x+2≥3(x−1)【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式x3+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018•金华)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC ,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B .(1)求证:AD 是⊙O 的切线.(2)若BC=8,tanB=12,求⊙O 的半径.【考点】ME :切线的判定与性质;T7:解直角三角形.【专题】55A :与圆有关的位置关系.【分析】(1)连接OD ,由OD=OB ,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r ,利用锐角三角函数定义求出AB 的长,再利用勾股定理列出关于r 的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD ,∵OB=OD ,∴∠3=∠B ,∵∠B=∠1,∴∠1=∠3,在Rt △ACD 中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD ⊥AD ,则AD 为圆O 的切线;(2)设圆O 的半径为r ,在Rt △ABC 中,AC=BCtanB=4,根据勾股定理得:AB=√42+82=4√5,∴OA=4√5﹣r ,在Rt △ACD 中,tan ∠1=tanB=12, ∴CD=ACtan ∠1=2,根据勾股定理得:AD 2=AC 2+CD 2=16+4=20,在Rt △ADO 中,OA 2=OD 2+AD 2,即(4√5﹣r )2=r 2+20,解得:r=3√52.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018•金华)如图,抛物线y=ax 2+bx (a <0)过点E (10,0),矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C ,D 在抛物线上.设A (t ,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形的面积时,求抛物线平移的距离.【考点】HF :二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E 的坐标设抛物线的交点式,再把点D 的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t ,据此知AB=10﹣2t ,再由x=t 时AD=﹣14t 2+52t ,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A 、B 、C 、D 及对角线交点P 的坐标,由直线GH 平分矩形的面积知直线GH 必过点P ,根据AB ∥CD 知线段OD 平移后得到的线段是GH ,由线段OD 的中点Q 平移后的对应点是P 知PQ 是△OBD 中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax (x ﹣10),∵当t=2时,AD=4,∴点D 的坐标为(2,4),∴将点D 坐标代入解析式得﹣16a=4,解得:a=﹣14, 抛物线的函数表达式为y=﹣14x 2+52x ;(2)由抛物线的对称性得BE=OA=t ,∴AB=10﹣2t ,当x=t 时,AD=﹣14t 2+52t , ∴矩形ABCD 的周长=2(AB +AD )=2[(10﹣2t )+(﹣14t 2+52t )] =﹣12t 2+t +20 =﹣12(t ﹣1)2+412, ∵﹣12<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为41 2;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=12OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=m x与y=nx(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,m4),进而得出A(4﹣t,m4+t),即:(4﹣t)(m4+t)=m,即可得出点D (4,8﹣m 4),即可得出结论. 【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=4x, 当x=4时,y=1,∴B (4,1),当y=2时,∴2=4x, ∴x=2,∴A (2,2),设直线AB 的解析式为y=kx +b ,∴{2k +b =24k +b =1, ∴{k =−12b =3, ∴直线AB 的解析式为y=﹣12x +3;②四边形ABCD 是菱形,理由如下:如图2,由①知,B (4,1),∵BD ∥y 轴,∴D (4,5),∵点P 是线段BD 的中点,∴P (4,3),当y=3时,由y=4x 得,x=43, 由y=20x 得,x=203, ∴PA=4﹣43=83,PC=203﹣4=83, ∴PA=PC ,∵PB=PD ,∴四边形ABCD 为平行四边形,∵BD ⊥AC ,∴四边形ABCD 是菱形;(2)四边形ABCD 能是正方形,理由:当四边形ABCD 是正方形,记AC ,BD 的交点为P ,∴PA=PB=PC=PD ,(设为t ,t ≠0),当x=4时,y=m x =m 4, ∴B (4,m 4), ∴A (4﹣t ,m 4+t ),C (4+t ,m 4+t ), ∴(4﹣t )(m 4+t )=m , ∴t=4﹣m 4, ∴C (8﹣m 4,4),∴(8﹣m 4)×4=n , ∴m +n=32,∵点D 的纵坐标为m 4+2t=m 4+2(4﹣m 4)=8﹣m 4, ∴D (4,8﹣m 4), ∴4(8﹣m 4)=n , ∴m +n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF ∽△GEF ,推出FG AF =EG AC,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题; (2)分四种情形:①如图2中,当点D 中线段BC 上时,此时只有GF=GD ,②如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,③如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE 中,DG=GE=6,中Rt △AEG 中,AG=√AE 2+EG 2=6√5,∵EG ∥AC ,∴△ACF ∽△GEF ,∴FG AF =EG AC, ∴FG AF =612=12, ∴FG=13AG=2√5.②如图1中,正方形ACDE 中,AE=ED ,∠AEF=∠DEF=45°,∵EF=EF ,∴△AEF ≌△DEF ,∴∠1=∠2,设∠1=∠2=x ,∵AE ∥BC ,∴∠B=∠1=x ,∵GF=GD ,∴∠3=∠2=x ,在△DBF 中,∠3+∠FDB +∠B=180°,∴x +(x +90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt △ABC 中,BC=AC tan30°=12√3. (2)在Rt △ABC 中,AB=√AC 2+BC 2=√122+92=15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴AE BC =AF BF, ∴9−3x 9=15−9x 9x, 整理得:x 2﹣6x +5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴AE BC =AF BF, ∴3x 9=9x+129x+27, 解得x=2或﹣2(舍弃),∴腰长DG=4x +12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG ,过点D 作DH ⊥FG .设AE=3x ,则EG=4x ,AG=5x ,DG=4x +12,∴FH=GH=DG•cos ∠DGB=(4x +12)×45=16x+485, ∴GF=2GH=32x+965, ∴AF=GF ﹣AG=7x+965,∵AC ∥DG , ∴△ACF ∽△GEF ,∴AC EG =AF FG,∴124x =7x+96532x+965, 解得x=12√147或﹣12√147(舍弃), ∴腰长GD=4x +12=84+48√147, 如图5中,当点D 中线段CB 的延长线上时,此时只有DF=DG ,作DH ⊥AG 于H . 设AE=3x ,则EG=4x ,AG=5x ,DG=4x ﹣12,∴FH=GH=DG•cos ∠DGB=16x−485, ∴FG=2FH=32x−965, ∴AF=AG ﹣FG=96−7x 5,∵AC ∥EG , ∴△ACF ∽△GEF ,∴AC EG =AF FG, ∴124x =96−7x 532x−965, 解得x=12√147或﹣12√147(舍弃), ∴腰长DG=4x ﹣12=−84+48√147, 综上所述,等腰三角形△DFG 的腰长为4或20或84+48√147或−84+48√147.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
浙江省金华市中考数学真题试题(含答案)
浙江省金华市2018年中考数学真题试题考生须知:1.全卷共三大题,24小题,满分为120分.考试时间为120分钟,本次考试采用开卷形式.2.全卷分为卷Ⅰ(选择题)和卷Ⅱ(非选择题)两部分,全部在答题纸上作答.卷Ⅰ的答案必须用2B 铅笔填涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔写在答题纸相应位置上.3.请用黑色字迹钢笔或签字笔在答题纸上先填写姓名和准考证号.4.作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔描黑.5.本次考试不得使用计算器.卷 Ⅰ说明:本卷共有1大题,10小题,共30分.请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,12-,-1四个数中,最小的数是( ▲ )A. 0B.1C. 12- D. -1 2.计算()3a a -÷结果正确的是( ▲ )A. 2a B. 2a - C. 3a - D. 4a -3.如图,∠B 的同位角可以是( ▲ )A.∠1B.∠2C.∠3D.∠44.若分式33x x -+的值为0,则x 的值是( ▲ ) A.3 B.3- C.3或3- D.0 5.一个几何体的三视图如图所示,该几何体是( ▲ )A. 直三棱柱B. 长方体C. 圆锥D.立方体 6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°. 让转盘自由转动,指针停止后落在黄色区域的概率是( ▲ ) A .61 B .41 C .31 D .1277.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x 轴,对称轴为y 轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm ,则图中转折点P 的坐标表示正确的是( ▲ )A.(5,30)B.(8,10)C.(9,10)D.(10,10)第5题图 第6题图 第7题图 红 黄单位:mm3010 16 50 主视图 左视图俯视图A B D C E1 234 第3题图8.如图,两根竹竿AB 和AD 斜靠在墙CE 上,量得∠ABC=α,∠ADC=β,则竹竿AB 与AD 的长度之比为( ▲ )A. tan tan αβB. sin sin βαC. sin sin αβD. cos cos βα9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A,D,E 在同一条直线上,∠ACB =20°,则∠ADC 的度数是( ▲ )A.55°B.60°C.65°D.70°10.某通讯公司就上宽带网推出A,B,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x (h )的函数关系如图所示,则下列判断错误..的是( ▲ ) A.每月上网时间不足25 h 时,选择A 方式最省钱B.每月上网费用为60元时,B 方式可上网的时间比A 方式多C.每月上网时间为35h 时,选择B 方式最省钱D.每月上网时间超过70h 时,选择C 方式最省钱卷 Ⅱ说明:本卷共有2大题,14小题,共90分.请用黑色字迹钢笔或签字笔将答案写在答题纸的相应位置上.二、填空题 (本题有6小题,每小题4分,共24分) 11.化简()()11x x -+的结果是 ▲ .12.如图,△ABC 的两条高AD,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 ▲ .13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 ▲ .14.对于两个非零实数x ,y ,定义一种新的运算:a bx y x y*=+.若()112*-=,则()22-*的值是 ▲ . 15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD 内,装饰图中的三角形顶点E,F 分别在边AB,BC 上,三角形①的边GD 在边AD 上,则ABBC的值是 ▲ . A B D C E 第8题图 第9题图第12题图 第13题图 第15题图 BA DC E F αβ A B DC E F 图1 图2D F 2013~2017年国内生产总值增长速度统计图 2013年 2014年 2015年 2016年2017年16.如图1是小明制作的一副弓箭, 点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC =60cm.沿AD 方向拉弓的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm,∠B 1D 1C 1=120°.(1)图2中,弓臂两端B 1,C 1的距离为 ▲ cm.(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 ▲ cm. 三、解答题 (本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)+0(2018)--4sin45°+2-.18.(本题6分)解不等式组:232+23(1).xx x x +<-⎧⎪⎨⎪⎩,①≥②19.(本题6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图. 请根据图中信息解答下列问题:(1)求参与问卷调查的总人数. (2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数. 20.(本题8分)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.第19题图 各种支付方式的扇形统计图 A 支付宝支付 B 微信支付C 现金支付D 其他 C 15% A 40% B D10%图1:以点A 为顶点的三角形图3:以点A 为对角线交 点的平行四边形图2:以点A 为顶点的 平行四边形各种支付方式中不同年龄段人数条形统计图支付方式 第16题图1图 1 图2 图3 A D A C B D A 2 D21.(本题8分)如图,在Rt △ABC 中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆,分别与BC,AB 相交于点D ,E ,连结AD .已知∠CAD=∠B . (1)求证:AD 是⊙O 的切线. (2)若BC =8,tan B =12,求⊙O 的半径.22.(本题10分)如图,抛物线2y ax bx =+(a ≠0)过点E (10,0), 矩形ABCD 的边AB 在线段OE 上(点A 在点B 的左边),点C,D 在抛物线上.设A (t ,0),当t =2时,AD=4. (1)求抛物线的函数表达式. (2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少? (3)保持t =2时的矩形ABCD 不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H ,且直线..GH 平分矩形的面积时,求抛物线平移的距离.23.(本题10分)如图,四边形ABCD 的四个顶点分别在反比例函数y xm=与y x n=(x >0,0<m <n )的图象上,对角线BD ∥y 轴,且BD ⊥AC 于点P .已知点B 的横坐标为4. (1)当m =4,n =20时.①若点P 的纵坐标为2,求直线AB 的函数表达式.②若点P 是BD 的中点,试判断四边形ABCD 的形状,并说明理由. (2)四边形ABCD 能否成为正方形?若能,求此时m,n 之间的数量关系;若不能,试说明理由.24.(本题12分)在Rt△ABC 中,∠ACB =90°,AC =12.点D 在直线CB 上,以CA,CD 为边作矩形ACDE ,直线AB 与直线CE ,DE 的交点分别为F,G .(1)如图,点D 在线段CB 上,四边形ACDE 是正方形. ①若点G 为DE 中点,求FG 的长. ②若DG=GF ,求BC 的长. (2)已知BC =9,是否存在点D ,使得△DFG 是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.A B DC F G E第24题图第23题备用图第23题图。
2018年浙江省金华市中考数学试卷带答案[附答案解析版]
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣12.计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°, 0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.67.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB= 0°,则∠ADC的度数是()A.55°B.60°C.65°D. 0°10.某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.化简(x﹣1)(x+1)的结果是.12.如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B 1D1C1= 0°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.计算:+(﹣2018)0﹣ sin 5°+|﹣2|.18.解不等式组:<19.为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C. D.﹣1【考点】18:有理数大小比较.【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°, 0°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.6B.C.D.【考点】X5:几何概率.【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为9060=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【考点】T8:解直角三角形的应用.【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB= 0°,则∠ADC的度数是()A.55°B.60°C.65°D. 0°【考点】R2:旋转的性质.【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB= 0°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣ 0°= 0°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC= 0°,∵∠EDC+∠E+∠DCE= 0°,∴∠ADC=∠E+ 0°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC= 5°在△ADC中,∠ADC+∠DAC+∠DCA= 0°,即 5°+ 0°+∠ADC= 0°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,yA与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时yA的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,yB与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时yB的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,yA=kx+b,将(25,30)、(55,120)代入yA=kx+b,得:5 0 55 0,解得:5,∴yA=3x﹣45(x≥25),当x=35时,yA=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,yB=mx+n,将(50,50)、(55,65)代入yB=mx+n,得:50 50 55 65,解得:00,∴yB=3x﹣100(x≥50),当x=70时,yB=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1 .【考点】4F:平方差公式.【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC .【考点】KB:全等三角形的判定.【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中∠ ∠ ∠ ∠ ,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9% .【考点】W5:众数.【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1 .【考点】2C:实数的运算.【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【考点】LB:矩形的性质;IM:七巧板.【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB ,BC 的长.16.(4分)(2018•金华)如图1是小明制作的一副弓箭,点A ,D 分别是弓臂BAC 与弓弦BC 的中点,弓弦BC=60cm .沿AD 方向拉动弓弦的过程中,假设弓臂BAC 始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D 1时,有AD 1=30cm ,∠B 1D 1C 1= 0°.(1)图2中,弓臂两端B 1,C 1的距离为 30 cm .(2)如图3,将弓箭继续拉到点D 2,使弓臂B 2AC 2为半圆,则D 1D 2的长为 10 5﹣10 cm .【考点】M3:垂径定理的应用;KU :勾股定理的应用;M5:圆周角定理. 【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B 1C 1交DD 1于H .解直角三角形求出B 1H ,再根据垂径定理即可解决问题;(2)如图3中,连接B 1C 1交DD 1于H ,连接B 2C 2交DD 2于G .利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B 1C 1交DD 1于H . ∵D 1A=D 1B 1=30 ∴D 1是 的圆心, ∵AD 1⊥B 1C 1,∴B 1H=C 1H=30×sin60°= 5 ,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr= 0 0 0,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2= 0 0=105∴D1D2=105﹣10.故答案为30,105﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)(2018•金华)计算:+(﹣2018)0﹣ sin 5°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.<18.(6分)(2018•金华)解不等式组:【考点】CB:解一元一次不等式组.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠ =90°,∴∠ = 0°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==45,∴OA=45﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(45﹣r)2=r2+20,解得:r=5.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A (t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+5t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+5 x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+5t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+5 t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y= 0得,x=,∴PA=4﹣=,PC= 0﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB 上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠ = 0°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==65,∵EG∥AC,∴△ACF∽△GEF,∴=,∴=6=,∴FG=AG=25.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF= 5°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B= 0°,∴x+(x+90°)+x= 0°,解得x= 0°,∴∠B= 0°,∴在Rt △ABC 中,BC=0°=12 . (2)在Rt △ABC 中,AB= = 9 =15,如图2中,当点D 中线段BC 上时,此时只有GF=GD ,∵DG ∥AC ,∴△BDG ∽△BCA ,设BD=3x ,则DG=4x ,BG=5x ,∴GF=GD=4x ,则AF=15﹣9x ,∵AE ∥CB ,∴△AEF ∽△BCF ,∴ =, ∴9 9= 5 9 9, 整理得:x 2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD 为=4x=4.如图3中,当点D 中线段BC 的延长线上,且直线AB ,CE 的交点中AE 上方时,此时只有GF=DG ,设AE=3x ,则EG=4x ,AG=5x ,∴FG=DG=12+4x ,∵AE ∥BC ,∴△AEF ∽△BCF ,∴ =, ∴ 9=9 9, 解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D 在线段BC 的延长线上,且直线AB ,EC 的交点中BD 下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×5=65,∴GF=2GH=96 5,∴AF=GF﹣AG=96 5,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=965965,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB= 65,∴FG=2FH=96 5,∴AF=AG﹣FG=965,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=965965,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年浙江省金华市中考数学试卷包含答案
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【解答】解:∠B的同位角可以是:∠4.故选:D.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P 的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,AB=OD﹣OA=40﹣30=10,∴P(9,10);故选:C.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25 h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【解答】解:原式=x2﹣1,故答案为:x2﹣112.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC ≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣115.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉弓的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10 cm.【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.(6分)解不等式组:【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【解答】解:符合条件的图形如图所示;21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.(10分)如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.。
2018年浙江省金华市中考数学试卷含解析(完美打印版)
2018年浙江省金华市中考数学试卷(含解析)一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠44.(3分)若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB =20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F 分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A 在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0B.1C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.3.(3分)如图,∠B的同位角可以是()A.∠1B.∠2C.∠3D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.4.(3分)若分式的值为0,则x的值为()A.3B.﹣3C.3或﹣3D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题.【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB =20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣112.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣115.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.18.(6分)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB 相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tan B=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BC tan B=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tan B=,∴CD=AC tan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A 在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ 是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),∵直线GH平分矩形的面积,∴点P是GH和BD的中点,∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出P A,PC,即可得出结论;(2)先确定出B(4,),D(4,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴P A=4﹣=,PC=﹣4=,∴P A=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴BD=AC当x=4时,y==,y==∴B(4,),D(4,),∴P(4,),∴A(,),C(,)∵AC=BD,∴﹣=﹣,∴m+n=3224.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE的中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D在线段BC上时,此时只有GF=GD,②如图3中,当点D在线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题.【解答】解:(1)①在正方形ACDE中,DG=GE=6,在Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D在线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD=4x=4.如图3中,当点D在线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃)∴腰长GD=4x+12=,如图5中,当点D在线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰△DFG的腰长为4或20或或.。
2018年浙江省金华市中考数学一模试卷及答案(解析版)
2018年浙江省金华市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3 B.﹣3 C .D .﹣2.(3分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量3.(3分)如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .4.(3分)本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A.11,7 B.7,5 C.8,8 D.8,75.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°7.(3分)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()A.y=3 000x B.y=6 000x C.y=D.y=8.(3分)如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.= C.=D.不能确定9.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排(不重叠)放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放()个小正方形纸片.A.14个B.15个C.16个D.17个10.(3分)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF 交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)二次根式有意义,则x的取值范围是.12.(4分)分解因式:x3﹣2x2y+xy2=.13.(4分)将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.14.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.15.(4分)如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.16.(4分)如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A 作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是三角形,则若S1﹣S2的值最大为1,则k的值为.三、解答题(本大题共8小题,共计66分,各小题都必须写出解答过程)17.(6分)计算:+|2﹣8|﹣()﹣1﹣2cos30°.18.(6分)先化简,再求值:﹣÷,其中x=﹣2.19.(6分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.21.(8分)如图,已知反比例函数y=与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.22.(10分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.23.(10分)阅读理解:如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(﹣1,0),(﹣7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有请说明理由.24.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC 相似;若存在,求t的值;若不存在,请说明理由.2018年浙江省金华市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.(3分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查热播电视剧《人民的名义》的收视率适宜采用抽样调查方式;B、调查重庆市民对皮影表演艺术的喜爱程度适宜采用抽样调查方式;C、调查某社区居民对重庆万达文旅城的知晓率适宜采用抽样调查方式;D、调查我国首艘货运飞船“天舟一号”的零部件质量适宜采用普查方式;故选:D.3.(3分)如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .【分析】俯视图是从物体上面看,所得到的图形.【解答】解:从几何体的上面看所得到的图形是两个同心圆,故选:C.4.(3分)本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A.11,7 B.7,5 C.8,8 D.8,7【分析】根据众数和中位数的定义解答可得.【解答】解:这组数据中8出现的次数最多,则其众数为8;30个数据的中位数为第15、16个数据的平均数,则其中位数为=7,故选:D.5.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.7.(3分)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()A.y=3 000x B.y=6 000x C.y=D.y=【分析】利用表格中数据得出函数关系,进而求出即可.【解答】解:由表格数据可得:此函数是反比例函数,设解析式为:y=,则xy=k=6000,故y与x之间的关系的式子是y=,故选:D.8.(3分)如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.= C.=D.不能确定【分析】连接OC,BC,过O作OE⊥AC于D交圆O于E,根据折叠的性质得到OD=OE,根据圆周角定理得到∠ACB=90°,根据三角形的中位线的性质得到OD=BC,求得∠COB=60°,得到∠AOC=120°,于是得到结论.【解答】解:连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.9.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排(不重叠)放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放()个小正方形纸片.A.14个B.15个C.16个D.17个【分析】首先求得斜边上的高线的长度,即可确定小正方形的排数,然后确定每排的个数即可.【解答】解:作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=8,BC=6,则由勾股定理,得AB=10=AB•CF=AC•BC∵S△ABC∴CF=4.8.则小正方形可以排4排.最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,=,=,解得:DE=整数部分是7.则最下边一排是7个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.=,解得GH=整数部分是5,则第二排是5个正方形;同理:第三排是:3个;第四排是:1个.则正方形的个数是:7+5+3+1=16.故选:C.10.(3分)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF 交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.【解答】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得=,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.12.(4分)分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.13.(4分)将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.【解答】解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144.14.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.【分析】根据题意和函数图象可以求得小明爸爸刚开始的速度,从而可以起求得当小鹏回到学校时,爸爸还需要的时间.【解答】解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.15.(4分)如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=•(表示为•亦可).【分析】先根据△ABC是等边三角形可求出△ABC的高,再根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2011的值.【解答】解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•sin∠A=1×=,∵DE、EF是△ABC的中位线,∴AF=,∴S1=××=;同理可得,S2=×;…∴S n=()n﹣1;∴S2011=•(表示为•亦可).故答案为:S2011=•(表示为•亦可).16.(4分)如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A 作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是等腰直角三角形,则若S1﹣S2的值最大为1,则k的值为4+4.【分析】如图连接BC、O′C,作CH⊥x轴于H.首先证明四边形BHCO′是正方形.推出∠ABC=45°,推出△ACB是等腰直角三角形,由S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,推出△DBC的面积最大时,S1﹣S2的值最大,推出当DO′⊥BC时,△DBC 的面积最大,可得m•(m+m)﹣•2m•m=1,解方程即可解决问题【解答】解:如图连接BC、O′C,作CH⊥x轴于H.由题意⊙O′与反比例函数图象均关于直线y=x对称,∴点A、C关于直线y=x对称,设A(m,2m)则C(2m,m),∴BO′=CH=m,BO′∥CH,∴四边形BHCO′是平行四边形,∵BH=CH,∠BHC=90°,∴四边形BHCO′是正方形.∴∠ABC=45°,∴△ACB是等腰直角三角形,∵S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,∴△DBC的面积最大时,S1﹣S2的值最大,∴当DO′⊥BC时,△DBC 的面积最大,∴m•(m+m)﹣•2m•m=1,∴m2=2(+1),∵k=2m2,∴k=4+4,故答案为:等腰直角三角形,4+4.三、解答题(本大题共8小题,共计66分,各小题都必须写出解答过程)17.(6分)计算:+|2﹣8|﹣()﹣1﹣2cos30°.【分析】本题涉及特殊角的三角函数值、负整数指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+|2﹣8|﹣()﹣1﹣2cos30°=3+8﹣2﹣3﹣2×=3+8﹣2﹣3﹣3=+2.18.(6分)先化简,再求值:﹣÷,其中x=﹣2.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=﹣•=﹣==﹣=119.(6分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣32x+256+64,求出MD,菱形BMDN的面积=MD•AB,即可得出结果;菱形BMDN的面积=两条对角线长积的一半,即可求出MN的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,即MD=5.菱形BMDN的面积=MD•AB=5×4=20,∵BD==4,∵菱形BMDN的面积=BD•MN=20,∴MN=2×=2.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为20%,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.【分析】(1)先利用2015年的人数和它所占的百分比计算出获奖的总人数,再计算出2013年获奖占近五年获奖总人数的百分比,然后计算出该社团2017年获奖占近五年获奖总人数的百分比和2017年获奖总人数,最后补全折线统计图;(2)画树状图(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)展示所有12种等可能的结果数,再找出所抽取两名学生恰好都来自初三年级的结果数,然后根据概率公式求解.【解答】(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.21.(8分)如图,已知反比例函数y=与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;(2)设直线AB与y轴交于C,找出点C的坐标,利用三角形的面积公式结合A、B点的横坐标即可得出结论;(3)观察函数图象,根据图象的上下关系即可找出不等式的解集.【解答】解:(1)令反比例函数y=,x=2,则y=4,∴点A的坐标为(2,4);反比例函数y=中y=﹣2,则﹣2=﹣,解得:x=﹣4,∴点B的坐标为(﹣4,﹣2).∵一次函数过A、B两点,∴,解得:,∴一次函数的解析式为y=x+2.(2)设直线AB与y轴交于C,令为y=x+2中x=0,则y=2,∴点C的坐标为(0,2),=OC•(x A﹣x B)=×2×[4﹣(﹣2)]=6.∴S△AOB(3)观察函数图象发现:当x<﹣4或0<x<2时,反比例函数图象在一次函数图象上方,∴反比例函数的函数值大于一次函数的函数值时x的取值范围为x<﹣4或0<x <2.22.(10分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.【分析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【解答】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x ≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.23.(10分)阅读理解:如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(﹣1,0),(﹣7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有请说明理由.【分析】(1)①根据题意作出圆C,根据垂径定理和勾股定理计算出相关线段的长度即可求解;②画出图形结合圆周角定理和相关推论,运用垂径定理计算出相关线段即可;(2)作出图形,运用圆周角定理和三角形的外角性质进行分析,结合矩形的性质,运用勾股定理进行计算即可.【解答】解:(1)①如图1,在x轴的上方,作以AB为斜边的直角三角形ACB,易知点A,B,P在⊙C上,连接CA,CB,过点C作CH⊥x轴于点H,∵CA=CB,∴∠ACH=90°÷2=45°,∵A(﹣1,0),B(﹣7,0),∴AB=6,由垂径定理可得,AH=AB÷2=3=CH,∴OH=4,CA=,所以C(﹣4,3),半径为,由对称性可知,点(﹣4,﹣3)也满足条件.②y轴的正半轴上存在线段AB的“等角点”.如图2所示,当圆心为C(﹣4,3)时,过点C作CD⊥y轴于点D,则D(0,3),CD=4,∵⊙C的半径为>4,∴⊙C与y轴相交,设交点为P1,P2,连接CP1,CP2,CA,则CP1=CP2=CA=,∵CD⊥y轴,CD=4,CP1=,∴,∴P 1(0,),.(2)当过A,B的圆与y轴相切于点P时,∠APB最大.理由如下:如果点P在y轴的正半轴上,如图3,设此时圆心为E,则E在第三象限,在y轴的正半轴上任意取一点M(不与点P 重合),连接MA,MB,PA,PB,设MB交⊙E于点N,连接NA,∵点P、点N在⊙E上,∴∠APB=∠ANB,∵∠ANB是△MAN的外角,∴∠ANB>∠AMB,即∠APB>∠AMB,此时,过点E作EF⊥x轴于点F,连接EA,EP,则AF=AB=3,OF=4,∵⊙E与y轴相切于点P,则EP⊥y轴,∴四边形OPEF是矩形,OP=EF,PE=OF=4,∴⊙E的半径为4,即EA=4,∴在Rt△AEF中,EF=,∴OP=,∴P(0,).24.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC 相似;若存在,求t的值;若不存在,请说明理由.【分析】(1)首先根据直线AC的解析式确定点A、C的坐标,已知AB的长,进一步能得到点B的坐标;然后由待定系数法确定抛物线的解析式.(2)根据所给的s表达式,要解答该题就必须知道ED、OP的长;BP、CE长易知,那么由OP=OB﹣BP求得OP长,由∠CED的三角函数值可得到ED的长,再代入s的表达式中可得到关于s、t的函数关系式,结合函数的性质即可得到s 的最小值.(3)首先求出BP、BD的长,若以P、B、D为顶点的三角形与△ABC相似,已知的条件是公共角∠OBC,那么必须满足的条件是夹公共角的两组对应边成比例,分两种情况讨论即可.【解答】解:(1)由直线:y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).设抛物线的解析式为:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得a=﹣∴抛物线的解析式:y=﹣(x﹣2)(x﹣4)=﹣x2+x﹣2.(2)在Rt△OBC中,OB=4,OC=2,则tan∠OCB=2;∵CE=t,∴DE=2t;而OP=OB﹣BP=4﹣2t;∴s===(0<t<2),∴当t=1时,s有最小值,且最小值为1.(3)在Rt△OBC中,OB=4,OC=2,则BC=2;在Rt△CED中,CE=t,ED=2t,则CD=t;∴BD=BC﹣CD=2﹣t;以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况:①=⇒=,解得t=;②=⇒=,解得t=;综上,当t=或时,以P、B、D为顶点的三角形与△ABC相似.。
2018年金华市中考数学模拟试题
2018年金华市金东区数学中考模拟试卷(M-06)一㊁选择题(本题共10小题ꎬ每小题3分ꎬ共30分)1.计算(-a3)2的结果是(㊀㊀)A.a6㊀㊀B.-a5㊀㊀C.-a5㊀㊀D.a52.如图所示ꎬ利用尺规作 与已知角相等的角 的过程中ꎬ用到的数学原理是(㊀㊀)A.SAS㊀㊀㊀B.AAS㊀㊀C.SSS㊀㊀D.HL3.如图所示ꎬ几何体是由一些正方体组合而成的立体图形ꎬ则这个几何体的左视图是(㊀㊀)4.如图ꎬ一扎面值100元的人民币ꎬ其总厚度接近1cmꎬ则这扎人民币大约有(㊀㊀)A.1000元㊀㊀B.10000元㊀㊀㊀C.10万元㊀㊀㊀D.50万元5.某地连续9天最高气温统计如表所示:最高气温/ħ22232425天数1224则这组数据的中位数与众数分别是(㊀㊀)A.24ꎬ25㊀㊀B.24.5ꎬ25㊀㊀C.25ꎬ24㊀㊀㊀D.23.5ꎬ246.木匠有32公尺的木材可以做花圃周围的边界ꎬ以下造型中ꎬ花圃周围用32公尺木材做边界不能完成的是(㊀㊀)㊀㊀㊀A㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀B㊀㊀㊀㊀C㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀D7.春天园游会有一个摊位的游戏是先旋转一个转盘的指针.如果指针箭头停在奇数的位置ꎬ玩的人就可以从袋子里抽出一个弹珠.转盘和袋子里的弹珠如图所示.当抽到黑色的弹珠就能得到奖品.小刚玩了这个游戏一次ꎬ则小刚得到奖品的可能性为(㊀㊀)㊀A.不可能㊀B.非常有可能C.不太可能D.大约50%的可能8.小明有一个旧USB随身碟ꎬ它的最新储存状态如下:音乐550MB照片338MB可用空间112MB4月8日ꎬ小明的哥哥给小明买了一个新USB随身碟ꎬ此随身碟的容量为2GB(2048MB)且没有储存任何资料ꎬ于是小明把他旧USB随身碟的所有数据转存到这个新USB随身碟中ꎬ则下面能代表新USB随身碟的储存状态的是(㊀㊀)9.一个扇形的圆心角是120ʎꎬ面积为3πcm2ꎬ那么这个扇形的半径是(㊀㊀)A.9cm㊀㊀㊀B.6cm㊀㊀㊀C.3cm㊀㊀㊀D.3cm10.有4张边长为a的正方形纸片ꎬ4张两边长分别为aꎬb(a<b)的矩形纸片ꎬ3张边长为b的正方形纸片ꎬ从其中取出若干张纸片ꎬ每种纸片至少取一张ꎬ若利用所取的纸片ꎬ确保能无空隙㊁无重叠拼接成一个正方形ꎬ则拼成的正方形的最长边长为(㊀㊀)A.a+b㊀㊀㊀B.2a+b㊀㊀㊀C.a+2b㊀㊀㊀D.3a+b二㊁填空题(本题共6小题ꎬ每小题4分ꎬ共24分)11.若aʒb=2ʒ3ꎬbʒc=4ʒ5ꎬ则aʒc=㊀㊀㊀㊀.12.如图所示ꎬ直径为单位1的硬币从1处沿着数轴无滑动的逆时针滚动一周到达A点ꎬ则A点表示的数是㊀㊀㊀㊀.13.实数aꎬb满足|a-b|=5ꎬ则实数aꎬb的方差为㊀㊀㊀㊀.14.直线y1=2xꎬy2=-xꎬy3=12x+3ꎬ所围成的封闭图形的面积是㊀㊀㊀㊀.15.计算机中常用的十六进制是逢16进1的记数制ꎬ采用数字0~9和字母A~F共16个记数符号ꎬ这些符号与十进制数的对应关系如下表:16进制0123456789ABCDEF10111210进制0123456789101112131415161718 例如ꎬ用十六进制表示5+A=FꎬE+2=10ꎬD+F=1Cꎬ则在16进制下ꎬB+E=㊀㊀㊀㊀(用十六进制数填).16.已知反比例函数图象过点A(1ꎬ3)ꎬ过点A的直线交反比例函数另一点于点Bꎬ过点A作ACʅx轴于点Cꎬ作ADʅy轴于点Dꎬ过点B作BEʅx轴于点Eꎬ作BFʅy轴于点Fꎬ当BC=AF时ꎬ点B的坐标为㊀㊀㊀㊀.三㊁解答题(本题共8小题ꎬ共66分)17.(6分)计算:|-3|+(-3)0-(12)-2+2sin30ʎ.{18.(6分)(1)解不等式2(x+1)-6ɤ3xꎻ㊀㊀(2)解方程组x+y=9ꎬx-2y=0.19.(6分)阅读材料:对于任何实数ꎬ我们规定符号a㊀bc㊀d的意义是a㊀bc㊀d=ad-bc.例如:1㊀23㊀4=1ˑ4-2ˑ3=-2ꎬ-1㊀43㊀5=(-1)ˑ5-4ˑ3=-17.(1)计算:20㊀174㊀30ꎻ㊀㊀㊀㊀(2)化简:x+1㊀x2+3x-1x㊀2x-3.20.(8分)如图ꎬ根据设计ꎬ4幅装饰画分别能完全重合的挂到墙面上的四个实线为边的矩形上ꎬ请你计算每一幅画的长与宽.(图中的7个小长方形大小㊁形状完全相同ꎬ横放长方形的下面一边与左侧相邻竖放的长方形上面的边以及右侧相邻竖放长方形下面的边都在同一条直线上)21.(8分)某中学举行了爱心捐款活动ꎬ下图根据是该校九年级某班学生捐款情况绘制的不完整的条形统计图和扇形统计图.(1)求该班人数ꎻ(2)补全条形统计图ꎻ(3)求在扇形统计图中ꎬ捐款 15元人数 所在扇形的圆心角的度数ꎻ(4)若该校九年级有800人ꎬ据此样本ꎬ请你估计该校九年级学生共捐款多少元.22.(10分)如图ꎬ已知抛物线y=(x-m)2-4m2(m>0)与x轴交于AꎬB两点ꎬ交y轴于点Cꎬ以AB为直径的圆M过抛物线的顶点Dꎬ交y轴正半轴于点E.(1)求AꎬB两点的坐标(用含m的代数式表示)ꎻ(2)求二次函数的表达式ꎻ(3)求CE的长.23.(10分)如图ꎬ已知在平面直角坐标系中ꎬ点P从原点O以每秒1个单位的速度沿x轴正方向运动ꎬ运动时间为t秒ꎬ作点P关于直线y=tx的对称点Qꎬ过点Q作x轴的垂线ꎬ垂足为点A. (1)当t=2时ꎬ求AO的长ꎻ(2)当t=3时ꎬ求AQ的长ꎻ(3)在点P的运动过程中ꎬ用含t的代数式表示线段AP的长.24.(12分)如图ꎬ已知AB为圆O的直径ꎬ点C为圆O上一点ꎬ弦CDʅABꎬ垂足为点EꎬAB=5ꎬBC=3ꎬ点F为劣弧AC中点ꎬ连结DF.(1)求AD的长ꎻ(2)求OE的长ꎻ(3)求tanøFDC的值ꎻ(4)求DF的长.。
2018年浙江省金华市金东区中考数学模拟试卷解析版
2018年浙江省金华市金东区中考数学模拟试卷解析版2018年浙江省金华市金东区中考数学模拟试卷一1.下面的数中,与-2的和为0的是()A.2B.-2C.0答案】A解析】由于-2+2=0,所以选A。
2.计算(-a^2-3)的结果是()A.a^5B.-a^5C.a^6D.-a^6答案】D解析】根据幂的乘法原则,将每个因子分别乘方,然后将得到的幂相乘。
因此,(-a^2)^3=-a^2×-a^2×-a^2=-a^6.因此,选D。
3.下列四个几何体中,主视图与其它三个不同的是()A。
B。
C。
D.答案】D解析】主视图是第一层两个小正方形,第二层左两个小正方形,因此选D。
4.已知实数a≠0,则下列事件中是必然事件的是()A.a+3≤0B.a-3≤0C.3a≥0D.a^3≥0答案】B解析】a-3≤0是必然事件,因此选B。
a+30是不可能事件,因此C错误;a^3>0是随机事件,因此D错误。
5.为了了解某班学生每天使用零花钱的情况,XXX随机调查了15名同学,结果如下表:每天使用零花钱(单位:元) 1 2 3 4 5人数 2 5 3 1 4则这15名同学每天使用零花钱的众数和中位数分别是()A.3-3B.2-3C.2-2D.3-5答案】B解析】由XXX随机调查了15名同学,根据表格数据可以知道中位数在第三组,即中位数为3.再由2出现了5次,它的出现次数最多,所以众数为2.因此,选B。
6.一个正多边形的边长为2,每个内角为135°,则这个多边形的周长是()A.8B.12C.16D.18答案】C解析】7.在矩形ABCD中,AB=2,BC=-2,以A为圆心,AD为半径画弧交线段BC于E,连接DE,则阴影部分的面积为()连接AE,根据矩形的性质,可知AE=AD=BC=2.在直角三角形ABE中,根据勾股定理可得BE=√(AB²+AE²)=√(2²+2²)=2√2,因此可知△ABE是等腰直角三角形,求得∠DAE=45°,因此可求得S阴影=S扇形DAE-S△DAE=1/8π(AD)²-1/2(AD)²=1/8π(2)²-1/2(2)²=π/4-2.8.下列四个命题中,真命题是()对角线相等且互相平分的四边形是矩形,因此B正确,其他三个命题都是错误的。
2018年浙江省金华市中考数学试卷
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3.00分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3.00分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a43.(3.00分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3.00分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3.00分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3.00分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3.00分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3.00分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3.00分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3.00分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4.00分)(2018•金华)化简(x﹣1)(x+1)的结果是.12.(4.00分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4.00分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4.00分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4.00分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4.00分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6.00分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.<18.(6.00分)(2018•金华)解不等式组:19.(6.00分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8.00分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8.00分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10.00分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD 的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10.00分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12.00分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3.00分)(2018•金华)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【考点】18:有理数大小比较.菁优网版权所有【专题】1 :常规题型;511:实数.【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3.00分)(2018•金华)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2C.﹣a3D.﹣a4【考点】48:同底数幂的除法.【专题】11 :计算题.【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3.00分)(2018•金华)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【考点】J6:同位角、内错角、同旁内角.菁优网版权所有【专题】1 :常规题型.【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3.00分)(2018•金华)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【考点】63:分式的值为零的条件.菁优网版权所有【专题】11 :计算题.【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3.00分)(2018•金华)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【考点】U3:由三视图判断几何体.菁优网版权所有【专题】55:几何图形.【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(3.00分)(2018•金华)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【考点】X5:几何概率.菁优网版权所有【专题】543:概率及其应用.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3.00分)(2018•金华)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【考点】D3:坐标确定位置.菁优网版权所有【专题】11 :计算题.【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3.00分)(2018•金华)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【考点】T8:解直角三角形的应用.菁优网版权所有【专题】552:三角形.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3.00分)(2018•金华)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.菁优网版权所有【专题】55:几何图形.【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3.00分)(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【考点】E6:函数的图象.菁优网版权所有【专题】532:函数及其图像;533:一次函数及其应用.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4.00分)(2018•金华)化简(x﹣1)(x+1)的结果是x2﹣1.【考点】4F:平方差公式.菁优网版权所有【专题】11 :计算题.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4.00分)(2018•金华)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【考点】KB:全等三角形的判定.菁优网版权所有【专题】1 :常规题型.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(4.00分)(2018•金华)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【考点】W5:众数.菁优网版权所有【专题】11 :计算题.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4.00分)(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【考点】2C:实数的运算.菁优网版权所有【专题】11 :计算题;36 :整体思想.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4.00分)(2018•金华)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【考点】IM:七巧板;LB:矩形的性质.菁优网版权所有【专题】556:矩形菱形正方形.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4.00分)(2018•金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【考点】KU:勾股定理的应用;M3:垂径定理的应用;M5:圆周角定理.菁优网版权所有【专题】559:圆的有关概念及性质.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6.00分)(2018•金华)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.菁优网版权所有【专题】11 :计算题.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.<18.(6.00分)(2018•金华)解不等式组:【考点】CB:解一元一次不等式组.菁优网版权所有【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(6.00分)(2018•金华)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.菁优网版权所有【专题】542:统计的应用.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8.00分)(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【考点】N4:作图—应用与设计作图.菁优网版权所有【专题】13 :作图题.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8.00分)(2018•金华)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【考点】ME:切线的判定与性质;T7:解直角三角形.菁优网版权所有【专题】55A:与圆有关的位置关系.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10.00分)(2018•金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【考点】HF:二次函数综合题.菁优网版权所有【专题】15 :综合题;535:二次函数图象及其性质;558:平移、旋转与对称.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10.00分)(2018•金华)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【考点】GB:反比例函数综合题.菁优网版权所有【专题】15 :综合题.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出P A,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D (4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴P A=4﹣=,PC=﹣4=,∴P A=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,记AC,BD的交点为P,∴P A=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),C(4+t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴C(8﹣,4),∴(8﹣)×4=n,∴m+n=32,∵点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12.00分)(2018•金华)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【考点】LO:四边形综合题.菁优网版权所有【专题】152:几何综合题.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∴∠B=∠1=x,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB==,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年浙江省金华市中考数学试卷
2018年浙江省金华市中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣12.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a43.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠44.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.05.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体6.(3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是.13.(4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.18.(6分)解不等式组:19.(6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.2018年浙江省金华市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)1.(3分)在0,1,﹣,﹣1四个数中,最小的数是()A.0 B.1 C.D.﹣1【分析】根据有理数的大小比较法则(正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小)比较即可.【解答】解:∵﹣1<﹣<0<1,∴最小的数是﹣1,故选:D.【点评】本题考查了对有理数的大小比较法则的应用,用到的知识点是正数都大于0,负数都小于0,正数大于一切负数,两个负数,其绝对值大的反而小.2.(3分)计算(﹣a)3÷a结果正确的是()A.a2B.﹣a2 C.﹣a3 D.﹣a4【分析】直接利用幂的乘方运算法则以及同底数幂的除法运算法则分别化简求出答案【解答】解:(﹣a)3÷a=﹣a3÷a=﹣a3﹣1=﹣a2,故选:B.【点评】此题主要考查了幂的乘方运算以及同底数幂的除法运算,正确掌握运算法则是解题关键.3.(3分)如图,∠B的同位角可以是()A.∠1 B.∠2 C.∠3 D.∠4【分析】直接利用两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角,进而得出答案.【解答】解:∠B的同位角可以是:∠4.故选:D.【点评】此题主要考查了同位角的定义,正确把握定义是解题关键.4.(3分)若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.【解答】解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.5.(3分)一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体【分析】根据三视图的形状可判断几何体的形状.【解答】解:观察三视图可知,该几何体是直三棱柱.故选:A.【点评】本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.6.(金华3分)如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是(B)A.B.C.D.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.(3分)小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点P的坐标表示正确的是()A.(5,30)B.(8,10)C.(9,10)D.(10,10)【分析】先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【解答】解:如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2﹣16=9,OA=OD﹣AD=40﹣30=10,∴P(9,10);故选:C.【点评】此题考查了坐标确定位置,根据题意确定出CD=9,AD=10是解本题的关键.8.(3分)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为()A.B.C.D.【分析】在两个直角三角形中,分别求出AB、AD即可解决问题;【解答】解:在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故选:B.【点评】本题考查解直角三角形的应用、锐角三角函数等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.9.(3分)如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°【分析】根据旋转的性质和三角形内角和解答即可.【解答】解:∵将△ABC绕点C顺时针旋转90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°﹣20°=70°,∵点A,D,E在同一条直线上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质和三角形内角和解答.10.(3分)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A 方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)化简(x﹣1)(x+1)的结果是x2﹣1.【分析】原式利用平方差公式计算即可得到结果.【解答】解:原式=x2﹣1,故答案为:x2﹣1【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.12.(4分)如图,△ABC的两条高AD,BE相交于点F,请添加一个条件,使得△ADC≌△BEC(不添加其他字母及辅助线),你添加的条件是AC=BC.【分析】添加AC=BC,根据三角形高的定义可得∠ADC=∠BEC=90°,再证明∠EBC=∠DAC,然后再添加AC=BC可利用AAS判定△ADC≌△BEC.【解答】解:添加AC=BC,∵△ABC的两条高AD,BE,∴∠ADC=∠BEC=90°,∴∠DAC+∠C=90°,∠EBC+∠C=90°,∴∠EBC=∠DAC,在△ADC和△BEC中,∴△ADC≌△BEC(AAS),故答案为:AC=BC.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(金华4分)如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是 6.9%.【分析】根据众数的概念判断即可.【解答】解:这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为:6.9%.【点评】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.14.(4分)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解答】解:∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣1【点评】本题考查代数式运算,解题的关键是熟练运用整体的思想,本题属于基础题型.15.(4分)如图2,小靓用七巧板拼成一幅装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在边AD上,则的值是.【分析】设七巧板的边长为x,根据正方形的性质、矩形的性质分别表示出AB,BC,进一步求出的值.【解答】解:设七巧板的边长为x,则AB=x+x,BC=x+x+x=2x,==.故答案为:.【点评】考查了矩形的性质,七巧板,关键是熟悉七巧板的特征,表示出AB,BC的长.16.(4分)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC 的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为30cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为10﹣10cm.【分析】(1)如图1中,连接B1C1交DD1于H.解直角三角形求出B1H,再根据垂径定理即可解决问题;(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.利用弧长公式求出半圆半径即可解决问题;【解答】解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,【点评】本题考查垂径定理的应用、勾股定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)17.(6分)计算:+(﹣2018)0﹣4sin45°+|﹣2|.【分析】根据零指数幂和特殊角的三角函数值进行计算.【解答】解:原式=2+1﹣4×+2=2+1﹣2+2=3.【点评】本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.18.(6分)解不等式组:【分析】首先分别解出两个不等式的解集,再求其公共解集即可.【解答】解:解不等式+2<x,得:x>3,解不等式2x+2≥3(x﹣1),得:x≤5,∴不等式组的解集为3<x≤5.【点评】此题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.19.(金华6分)为了解朝阳社区20~60岁居民最喜欢的支付方式,某兴趣小组对社区内该年龄段的部分居民展开了随机问卷调查(每人只能选择其中一项),并将调查数据整理后绘成如下两幅不完整的统计图.请根据图中信息解答下列问题:(1)求参与问卷调查的总人数.(2)补全条形统计图.(3)该社区中20~60岁的居民约8000人,估算这些人中最喜欢微信支付方式的人数.【分析】(1)根据喜欢支付宝支付的人数÷其所占各种支付方式的比例=参与问卷调查的总人数,即可求出结论;(2)根据喜欢现金支付的人数(41~60岁)=参与问卷调查的总人数×现金支付所占各种支付方式的比例﹣15,即可求出喜欢现金支付的人数(41~60岁),再将条形统计图补充完整即可得出结论;(3)根据喜欢微信支付方式的人数=社区居民人数×微信支付所占各种支付方式的比例,即可求出结论.【解答】解:(1)(120+80)÷40%=500(人).答:参与问卷调查的总人数为500人.(2)500×15%﹣15=60(人).补全条形统计图,如图所示.(3)8000×(1﹣40%﹣10%﹣15%)=2800(人).答:这些人中最喜欢微信支付方式的人数约为2800人.【点评】本题考查了条形统计图、扇形统计图以及用样本估计总体,解题的关键是:(1)观察统计图找出数据,再列式计算;(2)通过计算求出喜欢现金支付的人数(41~60岁);(3)根据样本的比例×总人数,估算出喜欢微信支付方式的人数.20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.【分析】利用数形结合的思想解决问题即可;【解答】解:符合条件的图形如图所示:【点评】本题考查作图﹣应用与设计,三角形的面积,平行四边形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线.(2)若BC=8,tanB=,求⊙O的半径.【分析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到∠1=∠3,求出∠4为90°,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果.【解答】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)设圆O的半径为r,在Rt△ABC中,AC=BCtanB=4,根据勾股定理得:AB==4,∴OA=4﹣r,在Rt△ACD中,tan∠1=tanB=,∴CD=ACtan∠1=2,根据勾股定理得:AD2=AC2+CD2=16+4=20,在Rt△ADO中,OA2=OD2+AD2,即(4﹣r)2=r2+20,解得:r=.【点评】此题考查了切线的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.22.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.【分析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;(2)由抛物线的对称性得BE=OA=t,据此知AB=10﹣2t,再由x=t时AD=﹣t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据AB∥CD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是P知PQ是△OBD中位线,据此可得.【解答】解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G、H中有一点落在线段AD或BC上时,直线GH不可能将矩形的面积平分,当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,∵AB∥CD,∴线段OD平移后得到的线段GH,∴线段OD的中点Q平移后的对应点是P,在△OBD中,PQ是中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及平移变换的性质等知识点.23.(10分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x >0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.【分析】(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;(2)先确定出B(4,),进而得出A(4﹣t,+t),即:(4﹣t)(+t)=m,即可得出点D(4,8﹣),即可得出结论.【解答】解:(1)①如图1,∵m=4,∴反比例函数为y=,当x=4时,y=1,∴B(4,1),当y=2时,∴2=,∴x=2,∴A(2,2),设直线AB的解析式为y=kx+b,∴,∴,∴直线AB的解析式为y=﹣x+3;②四边形ABCD是菱形,理由如下:如图2,由①知,B(4,1),∵BD∥y轴,∴D(4,5),∵点P是线段BD的中点,∴P(4,3),当y=3时,由y=得,x=,由y=得,x=,∴PA=4﹣=,PC=﹣4=,∴PA=PC,∵PB=PD,∴四边形ABCD为平行四边形,∵BD⊥AC,∴四边形ABCD是菱形;(2)四边形ABCD能是正方形,理由:当四边形ABCD是正方形,∴PA=PB=PC=PD,(设为t,t≠0),当x=4时,y==,∴B(4,),∴A(4﹣t,+t),∴(4﹣t)(+t)=m,∴t=4﹣,∴点D的纵坐标为+2t=+2(4﹣)=8﹣,∴D(4,8﹣),∴4(8﹣)=n,∴m+n=32.【点评】此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.24.(12分)在Rt△ABC中,∠ACB=90°,AC=12.点D在直线CB上,以CA,CD 为边作矩形ACDE,直线AB与直线CE,DE的交点分别为F,G.(1)如图,点D在线段CB上,四边形ACDE是正方形.①若点G为DE中点,求FG的长.②若DG=GF,求BC的长.(2)已知BC=9,是否存在点D,使得△DFG是等腰三角形?若存在,求该三角形的腰长;若不存在,试说明理由.【分析】(1)①只要证明△ACF∽△GEF,推出=,即可解决问题;②如图1中,想办法证明∠1=∠2=30°即可解决问题;(2)分四种情形:①如图2中,当点D中线段BC上时,此时只有GF=GD,②如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,③如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,分别求解即可解决问题;【解答】解:(1)①在正方形ACDE中,DG=GE=6,中Rt△AEG中,AG==6,∵EG∥AC,∴△ACF∽△GEF,∴=,∴==,∴FG=AG=2.②如图1中,正方形ACDE中,AE=ED,∠AEF=∠DEF=45°,∵EF=EF,∴△AEF≌△DEF,∴∠1=∠2,设∠1=∠2=x,∵AE∥BC,∵GF=GD,∴∠3=∠2=x,在△DBF中,∠3+∠FDB+∠B=180°,∴x+(x+90°)+x=180°,解得x=30°,∴∠B=30°,∴在Rt△ABC中,BC==12.(2)在Rt△ABC中,AB===15,如图2中,当点D中线段BC上时,此时只有GF=GD,∵DG∥AC,∴△BDG∽△BCA,设BD=3x,则DG=4x,BG=5x,∴GF=GD=4x,则AF=15﹣9x,∵AE∥CB,∴△AEF∽△BCF,∴=,∴=,整理得:x2﹣6x+5=0,解得x=1或5(舍弃)∴腰长GD为=4x=4.如图3中,当点D中线段BC的延长线上,且直线AB,CE的交点中AE上方时,此时只有GF=DG,设AE=3x,则EG=4x,AG=5x,∴FG=DG=12+4x,∵AE∥BC,∴△AEF∽△BCF,∴=,解得x=2或﹣2(舍弃),∴腰长DG=4x+12=20.如图4中,当点D在线段BC的延长线上,且直线AB,EC的交点中BD下方时,此时只有DF=DG,过点D作DH⊥FG.设AE=3x,则EG=4x,AG=5x,DG=4x+12,∴FH=GH=DG•cos∠DGB=(4x+12)×=,∴GF=2GH=,∴AF=GF﹣AG=,∵AC∥DG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长GD=4x+12=,如图5中,当点D中线段CB的延长线上时,此时只有DF=DG,作DH⊥AG于H.设AE=3x,则EG=4x,AG=5x,DG=4x﹣12,∴FH=GH=DG•cos∠DGB=,∴FG=2FH=,∴AF=AG﹣FG=,∵AC∥EG,∴△ACF∽△GEF,∴=,∴=,解得x=或﹣(舍弃),∴腰长DG=4x﹣12=,综上所述,等腰三角形△DFG的腰长为4或20或或.【点评】本题考查四边形综合题、正方形的性质、矩形的性质、相似三角形的判定和性质、锐角三角函数、平行线的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
浙江省金华市中考数学一模试卷
浙江省金华市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)当a2=b2时,下列等式中成立的是()A . a=bB .C . a3=b3D .2. (2分)(2018·安徽) 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A .B .C .D .3. (2分)(2018·深圳模拟) 一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A . 6πB . 4πC . 8πD . 44. (2分)如图,在扇形纸片AOB中,OA =10,AOB=36°,OB在桌面内的直线l上.现将此扇形沿l按顺时针方向旋转(旋转过程中无滑动),当OA落在l上时,停止旋转.则点O所经过的路线长为().A . 12πB . 11πC . 10πD . 10π+55. (2分)(2019·驻马店模拟) 下列运算正确的是()A .B .C .D .6. (2分)当x=-2时,代数式3x+2x2-1与代数式x2-3x的差是()A . -9B . 0C . 1D . -37. (2分)用一个半径为6cm的半圆围成一个圆锥的侧面,则这个圆锥的表面积为()cm2 .A . 6π+6B . 12πC . 27πD . 18π8. (2分) (2019九下·深圳月考) 如图,点D是△ABC外接圆圆弧AC上的点,AB=AC且∠CAB=50°,则∠ADC 度数为()A . 130°B . 125°C . 105°D . 115°9. (2分) (2018九上·成都期中) 函数y=mx+n与,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是()A .B .C .D .10. (2分)(2018·嘉兴模拟) 如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D 重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当时,DE的长为()A . 2B .C .D . 4二、填空题 (共6题;共7分)11. (1分)关于x的方程=a−1无解,则a的值是________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年浙江省金华市中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3 B.﹣3 C .D .﹣2.(3分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量3.(3分)如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .4.(3分)本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A.11,7 B.7,5 C.8,8 D.8,75.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°7.(3分)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()A.y=3 000x B.y=6 000x C.y=D.y=8.(3分)如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.= C.=D.不能确定9.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排(不重叠)放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放()个小正方形纸片.A.14个B.15个C.16个D.17个10.(3分)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF 交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)二次根式有意义,则x的取值范围是.12.(4分)分解因式:x3﹣2x2y+xy2=.13.(4分)将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是度.14.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要分钟才能到家.15.(4分)如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=.16.(4分)如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A 作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是三角形,则若S1﹣S2的值最大为1,则k的值为.三、解答题(本大题共8小题,共计66分,各小题都必须写出解答过程)17.(6分)计算:+|2﹣8|﹣()﹣1﹣2cos30°.18.(6分)先化简,再求值:﹣÷,其中x=﹣2.19.(6分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.21.(8分)如图,已知反比例函数y=与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.22.(10分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.23.(10分)阅读理解:如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(﹣1,0),(﹣7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有请说明理由.24.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC 相似;若存在,求t的值;若不存在,请说明理由.2018年浙江省金华市中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣3的相反数是()A.3 B.﹣3 C.D.﹣【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.2.(3分)下列调查中,适宜采用普查方式的是()A.调查热播电视剧《人民的名义》的收视率B.调查重庆市民对皮影表演艺术的喜爱程度C.调查某社区居民对重庆万达文旅城的知晓率D.调查我国首艘货运飞船“天舟一号”的零部件质量【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、调查热播电视剧《人民的名义》的收视率适宜采用抽样调查方式;B、调查重庆市民对皮影表演艺术的喜爱程度适宜采用抽样调查方式;C、调查某社区居民对重庆万达文旅城的知晓率适宜采用抽样调查方式;D、调查我国首艘货运飞船“天舟一号”的零部件质量适宜采用普查方式;故选:D.3.(3分)如图所示的几何体为圆台,其俯视图正确的是()A .B .C .D .【分析】俯视图是从物体上面看,所得到的图形.【解答】解:从几何体的上面看所得到的图形是两个同心圆,故选:C.4.(3分)本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:那么这30名同学四月份诗词背诵数量的众数和中位数分别是()A.11,7 B.7,5 C.8,8 D.8,7【分析】根据众数和中位数的定义解答可得.【解答】解:这组数据中8出现的次数最多,则其众数为8;30个数据的中位数为第15、16个数据的平均数,则其中位数为=7,故选:D.5.(3分)如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°【分析】设∠ADC的度数=α,∠ABC的度数=β,由题意可得,求出β即可解决问题.【解答】解:设∠ADC的度数=α,∠ABC的度数=β;∵四边形ABCO是平行四边形,∴∠ABC=∠AOC;∵∠ADC=β,∠ADC=α;而α+β=180°,∴,解得:β=120°,α=60°,∠ADC=60°,故选:C.6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°【分析】根据平行线的性质即可得到结论.【解答】解:∵直线m∥n,∴∠2=∠ABC+∠1=30°+20°=50°,故选:D.7.(3分)在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:则可以反映y与x之间的关系的式子是()A.y=3 000x B.y=6 000x C.y=D.y=【分析】利用表格中数据得出函数关系,进而求出即可.【解答】解:由表格数据可得:此函数是反比例函数,设解析式为:y=,则xy=k=6000,故y与x之间的关系的式子是y=,故选:D.8.(3分)如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.= C.=D.不能确定【分析】连接OC,BC,过O作OE⊥AC于D交圆O于E,根据折叠的性质得到OD=OE,根据圆周角定理得到∠ACB=90°,根据三角形的中位线的性质得到OD=BC,求得∠COB=60°,得到∠AOC=120°,于是得到结论.【解答】解:连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.9.(3分)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.在△ABC内并排(不重叠)放入边长为1的小正方形纸片,第一层小纸片的一条边都在AB上,首尾两个正方形各有一个顶点分别在AC、BC上,依次这样摆放上去,则最多能摆放()个小正方形纸片.A.14个B.15个C.16个D.17个【分析】首先求得斜边上的高线的长度,即可确定小正方形的排数,然后确定每排的个数即可.【解答】解:作CF⊥AB于点F.在Rt△ABC中,∠C=90°,AC=8,BC=6,则由勾股定理,得AB=10∵S=AB•CF=AC•BC△ABC∴CF=4.8.则小正方形可以排4排.最下边的一排小正方形的上边的边所在的直线与△ABC的边交于D、E.∵DE∥AB,=,=,解得:DE=整数部分是7.则最下边一排是7个正方形.第二排正方形的上边的边所在的直线与△ABC的边交于G、H.=,解得GH=整数部分是5,则第二排是5个正方形;同理:第三排是:3个;第四排是:1个.则正方形的个数是:7+5+3+1=16.故选:C.10.(3分)如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF 交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A.1个 B.2个 C.3个 D.4个【分析】根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.【解答】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得=,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选:B.二、填空题(本大题共6小题,每小题4分,共24分)11.(4分)二次根式有意义,则x的取值范围是x≥3.【分析】二次根式的被开方数x﹣3≥0.【解答】解:根据题意,得x﹣3≥0,解得,x≥3;故答案为:x≥3.12.(4分)分解因式:x3﹣2x2y+xy2=x(x﹣y)2.【分析】先提取公因式x,再对余下的多项式利用完全平方公式继续分解.【解答】解:x3﹣2x2y+xy2,=x(x2﹣2xy+y2),=x(x﹣y)2.故答案为:x(x﹣y)2.13.(4分)将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,所得的侧面展开图的圆心角是144度.【分析】根据圆锥的侧面积公式得出圆锥侧面积,再利用扇形面积求出圆心角的度数.【解答】解:∵将一个半径为6cm,母线长为15cm的圆锥形纸筒沿一条母线剪开并展平,∴圆锥侧面积公式为:S=πrl=π×6×15=90πcm2,∴扇形面积为90π=,解得:n=144,∴侧面展开图的圆心角是144度.故答案为:144.14.(4分)小鹏早晨到校发现作业忘带,就打电话叫爸爸立即把作业送到学校,小鹏也同时往家赶,两人相遇后,小鹏以原速度返回学校,爸爸则以原速度的返回家.设爸爸行走的时间为x分钟,小鹏和爸爸两人之间的距离为y米,y与x的函数关系如图所示,则当小鹏回到学校时,爸爸还需要 2.5分钟才能到家.【分析】根据题意和函数图象可以求得小明爸爸刚开始的速度,从而可以起求得当小鹏回到学校时,爸爸还需要的时间.【解答】解:设爸爸从家到与小明相遇的过程中的速度为a米/分钟,由题意和图象可得,,解得,a=120,∴当小鹏回到学校时,爸爸还需要:=2.5(分钟),故答案为:2.5.15.(4分)如图,△ABC是边长为1的等边三角形.取BC边中点E,作ED∥AB,EF∥AC,得到四边形EDAF,它的面积记作S1;取BE中点E1,作E1D1∥FB,E1F1∥EF,得到四边形E1D1FF1,它的面积记作S2.照此规律作下去,则S2011=•(表示为•亦可).【分析】先根据△ABC是等边三角形可求出△ABC的高,再根据三角形中位线定理可求出S1的值,进而可得出S2的值,找出规律即可得出S2011的值.【解答】解:∵△ABC是边长为1的等边三角形,∴△ABC的高=AB•sin∠A=1×=,∵DE、EF是△ABC的中位线,∴AF=,∴S1=××=;同理可得,S2=×;…∴S n=()n﹣1;∴S2011=•(表示为•亦可).故答案为:S2011=•(表示为•亦可).16.(4分)如图,点A是反比例函数y=(k>0)图象第一象限上一点,过点A 作AB⊥x轴于B点,以AB为直径的圆恰好与y轴相切,交反比例函数图象于点C,在AB的左侧半圆上有一动点D,连结CD交AB于点E.记△BDE的面积为S1,△ACE的面积为S2,连接BC,△ACB是等腰直角三角形,则若S1﹣S2的值最大为1,则k的值为4+4.【分析】如图连接BC、O′C,作CH⊥x轴于H.首先证明四边形BHCO′是正方形.推出∠ABC=45°,推出△ACB是等腰直角三角形,由S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,推出△DBC的面积最大时,S1﹣S2的值最大,推出当DO′⊥BC时,△DBC 的面积最大,可得m•(m+m)﹣•2m•m=1,解方程即可解决问题【解答】解:如图连接BC、O′C,作CH⊥x轴于H.由题意⊙O′与反比例函数图象均关于直线y=x对称,∴点A、C关于直线y=x对称,设A(m,2m)则C(2m,m),∴BO′=CH=m,BO′∥CH,∴四边形BHCO′是平行四边形,∵BH=CH,∠BHC=90°,∴四边形BHCO′是正方形.∴∠ABC=45°,∴△ACB是等腰直角三角形,∵S1﹣S2=S△DBC﹣S△ACB,△ABC的面积是定值,∴△DBC的面积最大时,S1﹣S2的值最大,∴当DO′⊥BC时,△DBC 的面积最大,∴m•(m+m)﹣•2m•m=1,∴m2=2(+1),∵k=2m2,∴k=4+4,故答案为:等腰直角三角形,4+4.三、解答题(本大题共8小题,共计66分,各小题都必须写出解答过程)17.(6分)计算:+|2﹣8|﹣()﹣1﹣2cos30°.【分析】本题涉及特殊角的三角函数值、负整数指数幂、二次根式化简、绝对值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:+|2﹣8|﹣()﹣1﹣2cos30°=3+8﹣2﹣3﹣2×=3+8﹣2﹣3﹣3=+2.18.(6分)先化简,再求值:﹣÷,其中x=﹣2.【分析】根据分式的运算法则即可求出答案.【解答】解:当x=﹣2时,原式=﹣•=﹣==﹣=119.(6分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.【分析】(1)根据矩形性质求出AD∥BC,推出∠MDO=∠NBO,∠DMO=∠BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN;(2)根据菱形性质求出DM=BM,在Rt△AMB中,根据勾股定理得出BM2=AM2+AB2,推出x2=x2﹣32x+256+64,求出MD,菱形BMDN的面积=MD•AB,即可得出结果;菱形BMDN的面积=两条对角线长积的一半,即可求出MN的长.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠MDO=∠NBO,∠DMO=∠BNO,在△DMO和△BNO中,,∴△DMO≌△BNO(ASA),∴OM=ON,∵OB=OD,∴四边形BMDN是平行四边形,∵MN⊥BD,∴平行四边形BMDN是菱形.(2)解:∵四边形BMDN是菱形,∴MB=MD,设MD长为x,则MB=DM=x,在Rt△AMB中,BM2=AM2+AB2即x2=(8﹣x)2+42,解得:x=5,即MD=5.菱形BMDN的面积=MD•AB=5×4=20,∵BD==4,∵菱形BMDN的面积=BD•MN=20,∴MN=2×=2.20.(8分)为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为20%,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.【分析】(1)先利用2015年的人数和它所占的百分比计算出获奖的总人数,再计算出2013年获奖占近五年获奖总人数的百分比,然后计算出该社团2017年获奖占近五年获奖总人数的百分比和2017年获奖总人数,最后补全折线统计图;(2)画树状图(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)展示所有12种等可能的结果数,再找出所抽取两名学生恰好都来自初三年级的结果数,然后根据概率公式求解.【解答】(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.21.(8分)如图,已知反比例函数y=与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标是2,点B的纵坐标是﹣2.求:(1)一次函数的解析式;(2)△AOB的面积;(3)直接写出使反比例函数的值大于一次函数的值的x的取值范围.【分析】(1)由点A、B的横纵坐标结合反比例函数解析式即可得出点A、B的坐标,再由点A、B的坐标利用待定系数法即可得出直线AB的解析式;(2)设直线AB与y轴交于C,找出点C的坐标,利用三角形的面积公式结合A、B点的横坐标即可得出结论;(3)观察函数图象,根据图象的上下关系即可找出不等式的解集.【解答】解:(1)令反比例函数y=,x=2,则y=4,∴点A的坐标为(2,4);反比例函数y=中y=﹣2,则﹣2=﹣,解得:x=﹣4,∴点B的坐标为(﹣4,﹣2).∵一次函数过A、B两点,∴,解得:,∴一次函数的解析式为y=x+2.(2)设直线AB与y轴交于C,令为y=x+2中x=0,则y=2,∴点C的坐标为(0,2),∴S△AOB=OC•(x A﹣x B)=×2×[4﹣(﹣2)]=6.(3)观察函数图象发现:当x<﹣4或0<x<2时,反比例函数图象在一次函数图象上方,∴反比例函数的函数值大于一次函数的函数值时x的取值范围为x<﹣4或0<x <2.22.(10分)某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往A,B两地区收割水稻,其中30台派往A地区,20台派往B地区,两地区与该农机公司商定的每天租赁价格如表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.【分析】(1)根据题意和表格中的数据可以得到y关于x的函数关系式;(2)根据题意可以得到相应的不等式,从而可以解答本题;(3)根据(1)中的函数解析式和一次函数的性质可以解答本题.【解答】解:(1)设派往A地区x台乙型联合收割机,则派往B地区x台乙型联合收割机为(30﹣x)台,派往A、B地区的甲型联合收割机分别为(30﹣x)台和(x﹣10)台,∴y=1600x+1200(30﹣x)+1800(30﹣x)+1600(x﹣10)=200x+74000(10≤x ≤30);(2)由题意可得,200x+74000≥79600,得x≥28,∴28≤x≤30,x为整数,∴x=28、29、30,∴有三种分配方案,方案一:派往A地区的甲型联合收割机2台,乙型联合收割机28台,其余的全派往B地区;方案二:派往A地区的甲型联合收割机1台,乙型联合收割机29台,其余的全派往B地区;方案三:派往A地区的甲型联合收割机0台,乙型联合收割机30台,其余的全派往B地区;(3)派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高,理由:∵y=200x+74000中y随x的增大而增大,∴当x=30时,y取得最大值,此时y=80000,∴派往A地区30台乙型联合收割机,20台甲型联合收割机全部派往B地区,使该公司50台收割机每天获得租金最高.23.(10分)阅读理解:如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(﹣1,0),(﹣7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A、B、P三点共圆.①设A、B、P三点所在圆的圆心为C,直接写出点C的坐标和⊙C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由;(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有请说明理由.【分析】(1)①根据题意作出圆C,根据垂径定理和勾股定理计算出相关线段的长度即可求解;②画出图形结合圆周角定理和相关推论,运用垂径定理计算出相关线段即可;(2)作出图形,运用圆周角定理和三角形的外角性质进行分析,结合矩形的性质,运用勾股定理进行计算即可.【解答】解:(1)①如图1,在x轴的上方,作以AB为斜边的直角三角形ACB,易知点A,B,P在⊙C上,连接CA,CB,过点C作CH⊥x轴于点H,∵CA=CB,∴∠ACH=90°÷2=45°,∵A(﹣1,0),B(﹣7,0),∴AB=6,由垂径定理可得,AH=AB÷2=3=CH,∴OH=4,CA=,所以C(﹣4,3),半径为,由对称性可知,点(﹣4,﹣3)也满足条件.②y轴的正半轴上存在线段AB的“等角点”.如图2所示,当圆心为C(﹣4,3)时,过点C作CD⊥y轴于点D,则D(0,3),CD=4,∵⊙C的半径为>4,∴⊙C与y轴相交,设交点为P1,P2,连接CP1,CP2,CA,则CP1=CP2=CA=,∵CD⊥y轴,CD=4,CP1=,∴,∴P 1(0,),.(2)当过A,B的圆与y轴相切于点P时,∠APB最大.理由如下:如果点P在y轴的正半轴上,如图3,设此时圆心为E,则E在第三象限,在y轴的正半轴上任意取一点M(不与点P 重合),连接MA,MB,PA,PB,设MB交⊙E于点N,连接NA,∵点P、点N在⊙E上,∴∠APB=∠ANB,∵∠ANB是△MAN的外角,∴∠ANB>∠AMB,即∠APB>∠AMB,此时,过点E作EF⊥x轴于点F,连接EA,EP,则AF=AB=3,OF=4,∵⊙E与y轴相切于点P,则EP⊥y轴,∴四边形OPEF是矩形,OP=EF,PE=OF=4,∴⊙E的半径为4,即EA=4,∴在Rt△AEF中,EF=,∴OP=,∴P(0,).24.(12分)已知:如图一,抛物线y=ax2+bx+c与x轴正半轴交于A、B两点,与y轴交于点C,直线y=x﹣2经过A、C两点,且AB=2.(1)求抛物线的解析式;(2)若直线DE平行于x轴并从C点开始以每秒1个单位的速度沿y轴正方向平移,且分别交y轴、线段BC于点E,D,同时动点P从点B出发,沿BO方向以每秒2个单位速度运动,(如图2);当点P运动到原点O时,直线DE与点P都停止运动,连DP,若点P运动时间为t秒;设s=,当t为何值时,s有最小值,并求出最小值.(3)在(2)的条件下,是否存在t的值,使以P、B、D为顶点的三角形与△ABC 相似;若存在,求t的值;若不存在,请说明理由.【分析】(1)首先根据直线AC的解析式确定点A、C的坐标,已知AB的长,进一步能得到点B的坐标;然后由待定系数法确定抛物线的解析式.(2)根据所给的s表达式,要解答该题就必须知道ED、OP的长;BP、CE长易知,那么由OP=OB﹣BP求得OP长,由∠CED的三角函数值可得到ED的长,再代入s的表达式中可得到关于s、t的函数关系式,结合函数的性质即可得到s 的最小值.(3)首先求出BP、BD的长,若以P、B、D为顶点的三角形与△ABC相似,已知的条件是公共角∠OBC,那么必须满足的条件是夹公共角的两组对应边成比例,分两种情况讨论即可.【解答】解:(1)由直线:y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).设抛物线的解析式为:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得a=﹣∴抛物线的解析式:y=﹣(x﹣2)(x﹣4)=﹣x2+x﹣2.(2)在Rt△OBC中,OB=4,OC=2,则tan∠OCB=2;∵CE=t,∴DE=2t;而OP=OB﹣BP=4﹣2t;∴s===(0<t<2),∴当t=1时,s有最小值,且最小值为1.(3)在Rt△OBC中,OB=4,OC=2,则BC=2;在Rt△CED中,CE=t,ED=2t,则CD=t;∴BD=BC﹣CD=2﹣t;以P、B、D为顶点的三角形与△ABC相似,已知∠OBC=∠PBD,则有两种情况:①=⇒=,解得t=;②=⇒=,解得t=;综上,当t=或时,以P、B、D为顶点的三角形与△ABC相似.。