《圆柱与圆锥》知识整理
苏教版六年级数学下册第二单元知识点归纳
第二单元(圆柱和圆锥)知识点归纳 第一课时:1. 圆柱的特点:上下两个面是相同的圆形,圆柱的侧面是曲面,上下一样粗。
2. 圆锥有一个顶点,一个底面和一个侧面,底面是一个圆,侧面是一个曲面。
3. 围成圆柱的面还有一个曲面,叫做圆柱的侧面,圆柱的两个底面之间的距离叫做圆柱的高,圆柱有无数条高。
4. 以圆锥的顶点到底面圆心的距离是圆锥的高,圆锥有一条高。
第二课时:1. 圆柱的侧面积=底面周长(π×R )×高2. 圆柱的底面积(S )=π×r 23. 圆柱的表面积=侧面积+底面积×2第四课时1.圆柱的体积=底面积×高第五课时1. 体积是以外面量的,容积是以里面量的,容器的体积比它的容积大2. 圆柱的高不变,直径、半径扩大几倍,体积扩大原来体积的平方倍。
第六课时:1.圆锥的体积=底面积×高×13 ,不能忘记13。
第七课时:1.很多题目都会用等底等高的圆柱和圆锥的体积之间的关系去求圆柱和圆锥的体积。
(体积之和是几份?找准总份数、体积之差是几份,然后找到对应量,最后用总份数对应的量÷总份数=一份对应的量)2.圆锥的体积也是与它等底等高的长方体体积的1 33.已知圆锥的体积,要先求出和这个圆锥等底等高的圆柱的体积乘3,再除以底面积,最后求出高。
与求体积除以3相反。
培优:1.一个圆锥形容器里倒了一半高度的水,高是容器的一半,水面底面半径就是容器底面半径的一半,即12,则设容器的高度为h,水面高度为12h,所以得出结论:水面高是容器的一半,水面底面积是容器底面积的14;水的体积则是圆锥容器的18。
2.往圆柱形容器里加水,水的体积=底面积(水)×高(水),容器的容积=底面积(容)×高(容),因为底面积(水)和底面积(容)是一样的,则可以把底面积看成a,转化成:水的体积=a×高(水),容器的容积= a×高(容),所以,水的体积占容器容积水的体积容器的容积=a×高(水)a×高(容)=高(水)高(容),(根据分数的性质,分子和分母同时除以相同的数),所以水的体积占容器容积的比就是水面的高度占容器高度的比。
六年级数学下册圆柱与圆锥知识点
六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1.圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆。
3.(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5.把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
6.圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形。
8.温馨提示:圆柱的底面是圆形,面不是椭圆。
9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。
10.从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。
11.如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。
如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。
12.圆柱的侧面积=底面周长×高。
如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch 13.(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。
14.圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。
16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。
(完整版)圆柱圆锥知识点总结
圆柱圆锥知识点总结主要内容圆柱和圆锥的认识、圆柱的表面积考点分析1、圆柱上、下两个面叫做圆柱的底面,它们是完全相同的两个圆。
形成圆柱的面还有一个曲面,叫做圆柱的侧面.圆柱两个底面之间的距离叫做圆柱的高.2、圆锥的底面是个圆,圆锥的侧面是一个曲面。
从圆锥的顶点到底面圆心的距离是圆锥的高.3、把圆柱的侧面展开得到一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高.4、圆柱的侧面积 = 底面周长×高5、圆柱的表面积 = 侧面积 + 底面积× 2典型例题例1、(圆柱和圆锥的特征)圆柱和圆锥分别有什么特点?分析与解:长方体和正方体的六个面都是平面图形(长方形或正方形),而圆柱和圆锥除了底面是平面图例2、半径3厘米直径10米分析与解:根据圆的面积和周长计算公式计算圆柱和圆锥的底面周长和底面积。
圆柱:底面周长 3。
14 × 3 × 2 = 18。
84(厘米)底面积 3。
14 × 3 ²= 28.26(平方厘米)圆锥:底面周长 3.14 × 10 = 31。
4(米)底面积 3.14 ×(10÷2)²= 78。
5(平方米)点评:圆柱和圆锥的底面都是圆,在计算它们的周长和面积时只要按照圆的周长和面积计算公式进行计算.例3、判断:圆柱和圆锥都有无数条高.错误解法:正确分析与解:圆柱有无数条高,圆锥只有一条高。
正确解答:错误点评:圆柱两个底面之间的距离叫做圆柱的高。
两个底面之间有无数个对应的点,圆柱有无数条高。
从圆锥的顶点到底面圆心的距离是圆锥的高。
顶点和底面圆心都是唯一的点,所以圆锥只有一条高.例4、(圆柱的侧面积)体育一个圆柱,底面直径是5厘米,高是12厘米。
求它的侧面积。
分析与解:高沿着圆柱侧面的一条高剪开,将侧面展开,就得到一个长方形.这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
因此,用圆柱的底面周长乘圆柱的高就得到这个长方形的面积,即圆柱的侧面积。
圆柱与圆锥知识点整理六年级
圆柱与圆锥知识点整理六年级一、圆柱的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr侧面积:S侧=2πrh表面积:S表=2S底+S侧=2πr²+2πrh体积:V柱=πr²h1.圆柱的切割:①横切:切面是圆,表面积增加2倍底面积,即S增=2πr²②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh2.圆柱的特征:①底面的特征:圆柱的底面是完全相等的两个圆。
②侧面的特征:圆柱的侧面是一个曲面。
③高的特征:圆柱有无数条高。
3.圆柱的侧面展开图:①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形②不沿着高展开,展开图形是平行四边形或不规则图形③无论怎么展开都得不到梯形二、圆锥的相关计算公式:底面积:S底=πr²底面周长:C底=πd=2πr体积:V锥=1/3πr²h1.圆锥的切割:①横切:切面是圆②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,即S增=2rh2.圆锥的特征:①底面的特征:圆锥的底面一个圆。
②侧面的特征:圆锥的侧面是一个曲面。
③高的特征:圆锥有一条高。
3.圆柱和圆锥的关系①圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。
②圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。
③圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。
④圆柱与圆锥等底等高,体积相差2/3Sh专项练习题一、填空。
1. 把圆柱的侧面沿高剪开,得到一个( ),这个( )的长等于圆柱底面的( ),宽等于圆柱的( ),所以圆柱的侧面积等于( )。
2. 415平方厘米=( )平方分米 4.5立方米=( )立方分米2.4立方分米=( )升( )毫升 4070立方分米=()立方米3立方分米40立方厘米=()立方厘米325 立方米=()立方分米538 升=()升()毫升3. 将4个棱长为1分米的正方体拼成一个长方体,这个长方体的表面积是( )平方分米,体积是( )立方分米。
《圆柱与圆锥》单元知识点整理(含答案)
填一填抄一抄读一读
1、圆柱由一个(侧面)和两个(底面)组成。
2、圆锥由一个(侧面)和一个(底面)组成。
3、(两个底面之间的距离)叫做圆柱的高,圆柱有(无数)条高。
(从顶点到底面圆心的距离)叫做圆锥的高,圆锥有( 1 )高。
4、用r表示圆柱的底面半径,C表示底面周长,S底表示底面积,h 表示高,S侧表示圆柱的侧面积。
那么,圆柱的底面周长C=(2πr),
圆柱的底面积S底=(πr²)
圆柱的侧面积S侧=( C h )=(2πrh )
圆柱的表面积S表=(S侧)+( 2 S底)
圆柱的体积V圆柱=( S底h)=( πr²h)
5、用r表示圆锥的底面半径,S底表示底面积,h表示高,
那么圆锥的体积V圆锥=(1/3 S底h)或(1/3 πr²h)6、等底等高的圆柱和圆锥,圆柱的体积是圆锥体积的(3倍),圆锥体积是圆柱体积的(1/3)。
7、底面积和体积都相等的圆柱和圆锥,圆锥高是圆柱高的(3倍)。
人教版六年级数学下《圆柱与圆锥》相同点和不同点
圆柱和圆锥的相同点和不同点如下:
相同点:
1.两者都有一个曲面。
2.它们的底面都是圆形。
3.它们都有高。
4.圆柱和圆锥都是立体图形,具有可视化的特点,即可以在不同角度下被观
察和理解。
5.无论是圆柱还是圆锥,只要围绕着轴线进行旋转,其形状和特征都不会改
变。
不同点:
1.圆柱有无数条高,而圆锥只有一条高。
2.圆锥有一个顶点,而圆柱没有。
3.将两者的侧面展开,圆柱的侧面展开图是长方形,而圆锥的侧面展开图是
扇形。
4.两者的表面积和体积的计算方式不同。
总的来说,圆柱和圆锥在形状、高、侧面展开图以及表面积和体积的计算方式等方面存在差异,而在底面形状、可视化特点以及旋转对称性等方面具有相似之处。
六年级数学下册圆柱与圆锥知识点总结(全面)
圆柱与圆锥一.圆柱1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得到的;圆柱也可以由长方形卷曲而得到。
2、圆柱各部分的名称:圆柱的的两个圆面叫做底面(又分上底和下底);周围的面叫做侧面;两个底面之间的距离叫做高(高有无数条他们的数值是相等的)。
3、圆柱的侧面展开图:A、沿着高展开,展开图形是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时(h=2πR),侧面沿高展开后是一个正方形,展开图形为正方形。
B、不沿着高展开,展开图形是平行四边形或不规则图形。
C、无论如何展开都得不到梯形.侧面积=底面周长×高S侧=Ch=πd×h=2πr×h4、圆柱的表面积:圆柱表面的面积,叫做这个圆柱的表面积。
圆柱的表面积=2×底面积+侧面积,即S表=S侧+S底×2=2πr×h+2×πr2(实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,都要用进一法)圆柱的体积:圆柱所占空间的大小,叫做这个圆柱的体积。
圆柱切拼成近似的长方体,分的份数越多,拼成的图形越接近长方体。
长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
长方体的体积=底面积×高圆柱体积=底面积×高V柱=S h=πr2hh=V柱÷S=V柱÷(πr2)S=V柱÷h5、圆柱的切割:A.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2B.竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh考试常见题型:A.已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长B.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积C.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积D.已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积E.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算。
(完整版)六年级数学下册圆柱与圆锥知识点
六年级数学下册《圆柱与圆锥》知识点六年级数学下册《圆柱与圆锥》知识点知识点1。
圆柱是由两个底面和一个侧面三部分组成的。
2.(1)圆柱的两个圆面叫做底面。
(2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。
(3)底面的特征:圆柱底面是完全相同的两个圆.3。
(1)圆柱周围的面叫做侧面。
(2)特征:圆柱的侧面是曲面。
4.(1)圆柱两个底面之间的距离叫做圆柱的高。
(2)一个圆柱有无数条高。
5。
把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。
6。
圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。
7.在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形.8。
温馨提示:圆柱的底面是圆形,面不是椭圆。
9.温馨提示:沿高剪开时,圆柱的侧面展开图是一个长方形。
10。
从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形).11。
如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。
如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。
12。
圆柱的侧面积=底面周长×高.如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch13。
(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。
(2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。
14。
圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。
15.圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。
16.(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。
圆柱和圆锥知识点总结
圆柱和圆锥知识点总结一、圆柱的定义和性质1.定义:圆柱是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆柱由两个平行的底面、两个底面之间的侧面和两个底面的圆所组成。
3.特点:(1)底面积相等:圆柱的两个底面积相等。
(2)高度:圆柱的高度是连接两个底面的垂直线段。
(3)侧面积:圆柱的侧面积等于底面周长乘以高度。
(4)体积:圆柱的体积等于底面积乘以高度。
(5)闭曲面:圆柱的底面和侧面构成闭合的曲面。
4.圆柱的投影:圆柱的投影形态为一个矩形。
二、圆锥的定义和性质1.定义:圆锥是由一个圆沿着一个平行于圆所在平面的直线移动形成的,在移动过程中,圆始终垂直于移动线段。
2.元素:圆锥由一个底面、一个尖顶和底面与尖顶之间的侧面组成。
3.特点:(1)底面:圆锥的底面是一个圆。
(2)高度:圆锥的高度是连接底面和尖顶的垂直线段。
(3)侧面:圆锥的侧面是由底面上任意一点到尖顶的直线构成。
(4)侧面积:圆锥的侧面积等于圆周长乘以半斜高。
(5)体积:圆锥的体积等于底面面积乘以高度再除以3(6)闭曲面:圆锥的底面和侧面构成闭合的曲面。
4.圆锥的投影:圆锥的投影形态为一个三角形。
三、圆柱和圆锥的应用1.圆柱的应用:圆柱广泛应用于各个领域,如:(1)建筑:柱子、立柱、柱圈等结构都是圆柱体的应用。
(2)机械:轴、销、滚筒等都是圆柱体的应用。
(3)制造:瓶子、罐子、圆筒形容器等都是圆柱体的应用。
(4)数学:柱体的几何性质是数学中的重要内容,如计算底面积、侧面积、体积等。
(5)其他:圆柱的轴对称性质也常用于解决几何问题。
2.圆锥的应用:圆锥也有广泛的应用,如:(1)建筑:塔、锥形屋顶、圆锥形尖塔等都是圆锥体的应用。
(2)环境工程:漏斗、喷泉、喷水池等都是圆锥体的应用。
(3)制造:圆锥形工件的制造是机械加工中常见的任务。
(4)数学:圆锥的几何性质也是数学中的重要内容,如计算底面积、侧面积、体积等。
人教版六年级数学下册第三单元《圆柱与圆锥》知识点汇总
人教版六年级下册第三单元《圆柱与圆锥》知识点汇总一、圆柱的认识1、圆柱的形成:(1)圆柱是以长方形的一边为轴旋转而得到的。
两种情况:○1若以长方形的长边为轴旋转而得到的圆柱,长方形的长等于圆柱的高,宽等于圆柱的底面半径。
○2若以长方形的宽边为轴旋转而得的圆柱,长方形的宽等于圆柱的高,长等于圆柱的底面半径。
(2)圆柱也可以由长方形卷曲而得到。
两种情况:○1以长方形的长为底面周长,宽为高。
○2以长方形的宽为底面周长,长为高。
其中,第一种方式得到的圆柱体体积较大。
2、圆柱的高、底面和侧面定义(1)圆柱的高:圆柱的两个底面之间的距离叫做高。
圆柱有无数条高,他们的数值是相等的。
(2)圆柱的底面:圆柱的上、下两个面叫做底面。
(3)圆柱的侧面:圆柱周围的面(上、下底面除外)叫做侧面。
3、圆柱的特征:圆柱是由两个大小相等的圆形底面(上底面、下底面)和一个侧面围成的。
圆柱高的特征:圆柱有无数条高,每条高的长度都相等。
圆柱底面的特征:圆柱的底面是完全相等的两个圆。
圆柱侧面的特征:圆柱的侧面是一个曲面。
圆柱的侧面展开图可能是长方形或正方形,也可能是平行四边形,不可能是梯形。
4、圆柱的切割:(1)横切:切面是圆,切成n段,需要n-1次,增加2×(n-1)个底面积。
如:切成3段,需要3-1=2次,增加2×(3-1)=4个底面积。
(2)竖切(过高过直径):切面是长方形(如果h=2r,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即:S增=4rh。
5、圆柱的侧面展开图:(1)如果沿着高展开,展开的图形是长方形;如果高等于底面周长,则展开的图形为正方形。
(2)如果不沿着高展开,展开图形是平行四边形或不规图形。
(3)圆柱无论怎么展开都不可能得到梯形。
二、圆柱的表面积1、圆柱的表面积:圆柱是由两个大小相等的圆形底面(上底面、下底面)和一个侧面围成的,所以圆柱的表面积=底面面积×2+侧面面积。
圆柱与圆锥期中专题复习
第一部分:面的旋转【重点知识】1、长方形以长或宽为轴旋转,得到圆柱。
补充:以谁为轴,谁就是高2、直角三角形以直角边为轴旋转,得到圆锥。
补充:以谁为轴,谁就是高;如长直角边为轴,则长直角边为高,短直角边为底面半径3、截面(1)圆柱的截面:圆形、长方形、正方形、平行四边形、梯形、椭圆、拱形。
(2)圆锥的截面:圆形、三角形、曲面(3)切一刀,增加2个面,切2刀,增加4个面,以此类推。
补充:圆柱切成多个小圆柱,切一刀,变为2个小圆柱,切2刀,变为3个小圆柱,以此类推。
4、展开图(1)圆柱的展开图:长方形、正方形、平行四边形①展开图为长方形:长方形的长=圆柱底面周长,长方形的宽=圆柱的高②展开图为正方形:圆柱的底面周长=圆柱的高=正方形的边长(2)圆锥的展开图:扇形【考试题精选】1、把一根圆柱体木料锯成三段,增加的底面有________个.()A.2B.3C.42、用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A.侧面积和高都相等B.高一定相等C.侧面积一定相等D.侧面积和高都不相等3、货架上正好装满了底面直径为32cm,高为60cm的油桶,这个货架的长至少________cm,高至少为________cm,宽为________cm.4、用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长15厘米.扎这个盒子至少用去塑料绳多少厘米?5、一个底面半径是4cm的圆锥,从顶点沿着高将它切成两部分,表面积增加了48cm2。
这个圆锥的体积是多少立方厘米?6、一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?第二部分:圆柱的表面积【重点知识】1、公式(3个)(1)底面积公式:3.14×r×r(2)侧面积公式:3.14×r×2×h (不要改变字母和数字的顺序)(3)表面积公式:(3.14×r×r)×2 + 3.14×r×2×h补充:凡是有周长、直径,不管题目求什么,第一时间求出半径。
圆柱与圆锥讲义
第三单元圆柱与圆锥知识点一:圆柱的认识【知识点讲解】1.圆柱的特征。
圆柱是由两个底面和一个侧面围成的。
它的底面是完全相同的两个圆,侧面是一个曲面。
圆柱的侧面沿高展开后是一个长方形〔或正方形〕,这个长方形〔或正方形〕的长〔或边长〕等于圆柱的底面周长,宽〔或边长〕等于圆柱的高。
2、圆柱的高:圆柱两个底面之间的距离叫做圆柱的高。
圆柱有无数条高。
要点提示:圆柱的侧面展开图可能是长方形、正方形,也可能是其他形状的图形,但不可能得到梯形。
【稳固练习】1、填空。
〔1〕圆柱的上下两个底面都是〔〕,它们的面积〔〕。
〔2〕把圆柱的侧面沿高剪开,展开图是一个长方形,圆柱的底面周长就是它的〔〕,圆柱的高就是它的〔〕。
〔3〕当圆柱的〔〕和〔〕相等时,它的侧面沿高展开后是一个正方形。
〔4〕圆柱有〔〕条高。
2.选择正确的答案填在〔〕里〔1〕下面物体的形状,不是圆柱体的是〔〕①日光灯管②汽油桶③粉笔〔2〕把圆柱的侧面展开不能得到〔〕①长方形②正方形③平行四边形④梯形〔3〕下面〔〕图形是圆柱的展开图。
〔单位:cm〕3.圆柱的侧面展开后可以是一个形,这个长方形面积是4.圆柱展开后可以看做一个形和两个形组成。
5.想一想,连一连。
6、一个圆柱的侧面沿高展开后是一个长12.56cm,宽6.28cm的长方形,求这个圆柱的底面半径。
能力提高一个底面周长是9.42cm,高是5cm的圆柱,沿底面直径把它切割成两个半圆柱后,切割面的面积一共是多少平方厘米?知识点二:圆柱的外表积【知识点讲解】1.圆柱的侧面积=底面周长×高,用字母表示为:S侧=Ch。
2.圆往的外表积:圆柱的外表积=侧面积+2×底面积,即S表= S侧+2 S底。
注意:求用料多少,一般采用进一法取值,以保证原材料够用.【稳固练习】1.圆柱展开后可以看做一个形和两个形组成。
所以外表积 = 2个面积 + 一个面积。
2.一个圆柱的底面半径是3厘米,高是2厘米,这个圆柱的底面周长是〔〕厘米,底面积是〔〕平方厘米,侧面积是〔〕平方厘米,外表积是〔〕平方厘米3.一个圆柱的侧面展开得到一个长方形,长方形的长是9.42厘米,宽是3厘米,这个圆柱体的侧面积是〔〕平方厘米,外表积是〔〕平方厘米。
圆柱与圆锥期中专题复习 (含答案)
第一部分:面的旋转【重点知识】1、长方形以长或宽为轴旋转,得到圆柱。
补充:以谁为轴,谁就是高2、直角三角形以直角边为轴旋转,得到圆锥。
补充:以谁为轴,谁就是高;如长直角边为轴,则长直角边为高,短直角边为底面半径3、截面(1)圆柱的截面:圆形、长方形、正方形、平行四边形、梯形、椭圆、拱形。
(2)圆锥的截面:圆形、三角形、曲面(3)切一刀,增加2个面,切2刀,增加4个面,以此类推。
补充:圆柱切成多个小圆柱,切一刀,变为2个小圆柱,切2刀,变为3个小圆柱,以此类推。
4、展开图(1)圆柱的展开图:长方形、正方形、平行四边形①展开图为长方形:长方形的长=圆柱底面周长,长方形的宽=圆柱的高②展开图为正方形:圆柱的底面周长=圆柱的高=正方形的边长(2)圆锥的展开图:扇形【考试题精选】1、把一根圆柱体木料锯成三段,增加的底面有________个.()A.2B.3C.42、用一张长50厘米,宽20厘米的纸,以两种不同的方法围成一个圆柱,那么围成的圆柱()A.侧面积和高都相等B.高一定相等C.侧面积一定相等D.侧面积和高都不相等3、货架上正好装满了底面直径为32cm,高为60cm的油桶,这个货架的长至少________cm,高至少为________cm,宽为________cm.4、用塑料绳捆扎一个圆柱形的蛋糕盒(如图),打结处正好是底面圆心,打结用去绳长15厘米.扎这个盒子至少用去塑料绳多少厘米?5、一个底面半径是4cm的圆锥,从顶点沿着高将它切成两部分,表面积增加了48cm2。
这个圆锥的体积是多少立方厘米?6、一个圆锥的底面周长是15.7厘米,高是3厘米.从圆锥的顶点沿着高将它切成两半后,表面积之和比原圆锥的表面积增加了多少平方厘米?第二部分:圆柱的表面积【重点知识】1、公式(3个)(1)底面积公式:3.14×r×r(2)侧面积公式:3.14×r×2×h(不要改变字母和数字的顺序)(3)表面积公式:(3.14×r×r)×2+3.14×r×2×h补充:凡是有周长、直径,不管题目求什么,第一时间求出半径。
圆柱体与圆锥体的计算知识点
圆柱体与圆锥体的计算知识点圆柱体和圆锥体是几何学中常见的形体,它们在物理学、工程学、建筑学等领域都有广泛的应用。
对于圆柱体和圆锥体的计算,我们需要了解以下几个重要的知识点。
一、圆柱体的计算知识点1. 圆柱体的表面积计算公式圆柱体的表面积由两个部分组成,即底面积和侧面积。
圆柱体的底面为一个圆,可以通过半径r计算得到,底面积的计算公式为:A底= πr²。
圆柱体的侧面为一个矩形,宽度为圆周长2πr,高度为圆柱体的高h,计算出的面积为:A侧= 2πrh。
因此,圆柱体的表面积S可以通过公式计算:S = A底 + A侧= 2πr² + 2πrh。
2. 圆柱体的体积计算公式圆柱体的体积计算公式为:V = A底× h = πr² × h,其中,r为圆柱体的底面半径,h为圆柱体的高。
3. 圆柱体的直径计算公式圆柱体的直径是指通过圆柱体中心的一条直线,连接两个相对的边缘点。
直径的计算公式为:d = 2r,其中,r为圆柱体的半径。
4. 圆柱体的斜高计算公式圆柱体的斜高是指从圆柱体的底面到顶面之间的一条线段,长度为l。
可以通过勾股定理计算斜高的长度:l = √(r² + h²),其中,r为圆柱体的半径,h为圆柱体的高。
5. 圆柱体的直角侧面长度计算公式圆柱体的直角侧面是指从圆柱体的底面到顶面之间的一条与底面平行的直线段,长度为l1。
可以通过勾股定理计算直角侧面长度:l1 = √(r² + h²),其中,r为圆柱体的半径,h为圆柱体的高。
二、圆锥体的计算知识点1. 圆锥体的表面积计算公式圆锥体的表面积由底面积、侧面积和底面到顶点的直线段组成。
圆锥体的底面为一个圆,可以通过半径r计算得到,底面积的计算公式为:A底= πr²。
圆锥体的侧面为一个扇形,可以通过半径r和斜高l计算得到,侧面积的计算公式为:A侧= πrl。
圆锥体的底面到顶点的直线段为圆锥体的斜高l,可以通过勾股定理计算得到。
圆柱与圆锥知识
1、圆柱有三个面,两个底面是圆形,并且大小一样,侧面是一个曲面,侧面沿高剪开是长方形,长方形的长等于圆柱底面周长,宽等于圆柱的高。当底面周长与高相等,圆柱侧面展开是正方形。圆柱两个底面之间的距离叫高,圆柱高有无数条。
2、圆柱的侧面积=底面周长×高,既S侧=CH。
圆柱的表面积=侧面积+两个底面 Nhomakorabea。既S表=CH+2S底
6、圆柱和圆锥,等体积等底,圆柱高1份,圆锥高3份,既:圆柱的高×3=圆锥的高,圆锥的高÷3=圆柱的高。
7、圆柱和圆锥,等体积等高,圆柱底面积1份,圆锥底面积3份。既:圆柱底面积×3=圆锥底面积。
圆锥底面积÷3=圆柱底面积。
8、不规则物体的体积=底面积×水面上升的高度。
9、等体积问题的解决:综合利用不同物体求体积的方法用方程使他们体积相等。或者用除法解决。
圆柱的体积=底面积×高。既V=SH.
3、圆锥底面是个圆,侧面是一个曲面,从圆锥的顶点到底面圆心的距离是圆锥的高,圆锥的高只有一条。
4、一个圆锥和一个圆柱等底等高,圆锥体积是圆柱体积的 ,圆柱体积是圆锥体积的3倍。既:
V锥= S底H,或者V锥=S底H÷3.V柱=V锥×3.
5、圆柱和圆锥,等底等高,圆柱体积3份,圆锥体积1份。圆柱体积比圆锥体积多2倍,圆锥体积比圆柱体积少 .
六年级数学下册圆锥与圆柱知识点总结
《圆柱和圆锥》知识点总结1.圆柱:以长方形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体底面2.名词:圆柱的高:两个底面之间的距离叫做高(高有无数条)。
圆柱的底面:圆柱的两个圆面叫做底面(又分上底和下底)。
圆柱的侧面:圆柱有一个曲面,叫做侧面;(展开图是长方形,正方形或平行平行四边形)。
3.圆柱的体积:圆柱所占空间的大小,叫做这个圆柱体的体积。
圆柱体积=底面积×高 V柱=Sh=πr2·h圆柱的高=体积÷底面积 h=V柱÷S=V柱÷(πr2)圆柱的底面积=体积÷高 S=V柱÷h4.圆柱的侧面积:圆柱的侧面积=底面的周长×高, S侧=Ch(注:c为πd)5.圆柱的表面积=两个底面积+一个侧面积 S表=2πr2+Ch6.圆柱的切割:a.横切:切面是圆,表面积增加2倍底面积,即S增=2πr2横切切面竖切b.柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh6.圆柱高增加减少,圆柱表面积增加减少的只是侧面积。
7.考试常见题型:a.已知圆柱的底面半径和高,求圆柱的侧面积,表面积,体积,底面周长;C=2πr S侧=2πrh S表=2πr2+2πrh V=πr2·hb.已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积;S侧=Ch S表=2π(C÷π÷2)2+ Ch V=π(C÷π÷2)2h S底=π(C÷π÷2)2c.已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积;h=V÷(C÷π÷2)2先求h=V÷(C÷π÷2)2 再求 S侧=Ch先求h=V÷C÷π÷2)2再求 S表=2π(C÷π÷2)2+ ChS底=π(C÷π÷2)2d.已知圆柱的底面直径和高,求圆柱的侧面积,表面积,体积;S侧=πdh S表=2π(d÷2)2+πdh V=π(d÷2)2he.已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积。
人教版六年级下册数学单元知识点归纳——第三单元圆柱与圆锥
3圆柱与圆锥一、圆柱的认识1. 生活中有很多物体是圆柱形的,如茶叶桶、蜡烛、罐头盒等。
2.圆柱的特点 :圆柱是由 3 个面围成的。
它的上、下两个......面叫做底面。
圆柱四周的面(上、下底面除外)叫做侧面。
圆柱....的两个底面之间的距离叫做高,圆柱有无数条高。
........3.圆柱的上、下底面是完整同样的两个圆。
圆柱的侧面.....是一个曲面 ,沿高睁开后是一个长方形(或正方形 ),这个长方形.............................(或正方形 )的长 (或边长 ) 等于圆柱的底面周长,宽 (或边长 ) 等于...............................圆柱的高。
.....4.把一张长方形的硬纸贴在木棒上 ,迅速转动木棒 ,长方形硬纸形成的图形就是圆柱。
二、圆柱的表面积1.圆柱的侧面积 =底面周长×高 ,用字母表示 :S侧=Ch。
假如..................提示 :假如沿一条斜线将圆柱的侧面睁开 ,它的侧面会是一个平行四边形 ,圆柱的底面周长是平行四边形的底 ,圆柱的高是平行四边形的高。
注意 :圆柱的侧面睁开不行能获得梯形。
已知底面直径 ,底面周长的计算公式是C=πd,圆柱的侧面积公式就是 S 侧=πdh;假如已知底面半径,底面周长的计算公式就是......C=2πr ,圆柱的侧面积公式就是S 侧=2πrh 。
.......2.圆柱的表面积 =侧面积 +底面积×2,用字母表示为S表..................=Ch 2 πr .。
+2.......三、圆柱的体积1.圆柱所占空间的大小 ,叫做这个圆柱的体积。
2.圆柱体积的推导过程 :把一个圆柱的底面沿半径分红若干个相等的扇形,依据平分线沿着圆柱的高把它们切开后,能够提示 :在实质中 ,不是全部的圆柱形物体都有两个底面 ,要详细问题详细剖析。
比如 :求一段排气筒的表面积就是求圆柱的侧面积 ,求一个水桶的表面积就是求圆柱的侧面积和一个底面积的和。
第1讲 圆柱与圆锥(小数版)(知识梳理+典例分析+举一反三+巩固提升)北师大版
第1讲圆柱与圆锥知识点一:面的旋转1.点动成线,线动成面,面动成体。
2.认识圆柱和圆锥圆柱和圆锥都有底面、侧面和高;圆柱有无数条高,圆锥只有一条高。
知识点二:圆柱的表面积1.圆柱的表面积(1)S侧=Ch或S侧=πdh或S侧=2πrh。
(2)S表=S侧+2S底或S表=2πrh+2πr2。
2.圆柱表面积的实际应用计算圆柱的表面积要注意联系实际,弄清表面积包括几个面,再灵活运用公式进行计算。
知识点三:圆柱的体积1.圆柱体积的计算公式V=Sh,V=πr2h,V=π(d÷2)2h。
2.圆柱体积计算公式的应用V=π(C÷π÷2)2h 。
知识点四:圆锥的体积1.把一个圆柱削成一个最大的圆锥,削去的体积是剩下体积的2倍。
2.圆锥体积的计算公式:圆柱的体积等于和它等底等高的圆锥的体积的3倍。
考点一:面的旋转例1.(2020秋•东安区校级期中)在圆柱的后面画“√”。
1.(2020•农安县)标出下面圆锥的顶点、高、底面半径.2.(2020•滕州市)如图所示长方形、半圆形、梯形、三角形快速旋转一周,能形成什么图形?请你连一连.3.(2020•盐城模拟)用刀将橡皮泥捏成的圆柱切成两个部分,截面会是什么形状?请你在图中简单地将切法表示出来,画出四种.(注意:位置不同、截面形状相同的只算一种)考点二:圆柱的表面积例2.(2020•桃江县)圆柱的侧面展开后变成了一个长方形,在括号里填出长和宽的数据.(π取3.14,单位:cm)1.(2020•保定)动手操作,用心思考.同学们,在学习圆柱体体积时,我们经历了观察、操作、讨论等活动过程,理解了圆柱体体积计算的推导过程,下面,请你用画图或文字材料说明圆柱体体积的推导过程,要讲清楚吆!2.(2020•喀什地区模拟)一个圆柱形的游泳池,底面直径是10米,高是4米.在它的四周和底部涂水泥,每千克水泥可涂5平方米,共需多少千克水泥?3.(2020春•偃师市期中)把一个圆柱的底面平均分成若干个扇形,然后切开拼成一个近似的长方体,表面积比原来增加了200平方厘米.已知圆柱高20厘米,求圆柱的体积.考点三:圆柱的体积例3.(2020春•南海区期中)一个圆柱形水池,底面直径为10m,高为5m,要在它的四周和底面抹上水泥.(1)抹水泥部分的面积是多少平方米?(2)如果抹水泥的人工费是每平方米12元,抹完整个水池一共需要人工费多少钱?1.(2020•大同)一个底面周长是3.14分米的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的.将两个同样大小的鸡蛋放入杯子中,浸没在水中.这时水面上升8厘米,刚好与杯子口相平,求玻璃杯的容积.2.(2020•炎陵县)一个底面内直径是4分米的圆柱形无盖的铁桶,高5分米.①做这个铁桶需用铁皮多少?(接口处忽略不计)②如果铁桶装有的水,那么装的水有多少升?3.(2019春•中原区期末)利用卷尺或直尺,求出如图这个装有一些水的瓶子的容积?写出你设计的操作过程,不用计算.(瓶子的厚度忽略不计)考点四:圆锥的体积例4.(2020春•偃师市期中)计算如图圆锥的体积.(单位:厘米)1.(2020•长白县)一个圆锥形沙堆,底面积是28.26平方米,高是2.5米.用这堆沙在10米宽的公路上铺2厘米厚的路面,能铺多少米?2.(2019春•陈仓区期中)求如图的表面积和体积,圆锥只求体积.3.(2019春•中原区期末)设计一个与体积相等的圆锥,写出你设计圆锥的有关数据.1.(2020春•阜平县期末)把绕O点逆时针旋转90°后得到的图形是()A.B.C.D.2.(2020春•南海区期末)从2时到8时,时针绕中心点顺时针旋转()°.A.180B.90C.603.(2020•农安县)求一只圆柱形油桶能装油多少升,是求它的___;求这只铁桶所占空间的大小,是求它的____.()A.表面积;体积B.体积;容积C.容积;体积4.(2020•清丰县)把一团圆柱体橡皮泥揉成与它等底的圆锥体,圆锥的高与之前圆柱的高比较()A.圆锥高是圆柱高的3倍B.圆锥高是圆柱高的6倍C.圆锥高是圆柱高的D.不变5.(2020春•雁塔区期中)圆柱形水管的内直径是2分米,水在水管内的流速是每秒3分米,每秒流过的水有()升.A.3.14B.6.28C.9.42D.12.566.(2020•茶陵县)圆柱体积公式推导:把圆柱的底面分成许多相等的扇形,然后把它切开拼成一个近似的长方体,这个近似长方体的底面积等于圆柱的底面积,高等于圆柱的高……这个推导过程蕴含了()的数学思想.A.一一对应B.数形结合C.类比归纳D.转化7.(2020春•峄城区期末)把长60厘米的圆柱体按3:2截成了一长一短两个小圆柱体后,表面积总和增加了30平方厘米.截成的较长一个圆柱的体积是()立方厘米.A.360B.540C.720D.10808.(2020春•峄城区期末)一个圆柱和一个圆锥等底等高,圆锥的体积比圆柱的体积少0.8立方分米,那么圆柱的体积是()立方分米.A.0.4B.0.8C.1.2D.2.49.(2020春•宽城县期末)钟表的时针从“1”到“3”,是按方向旋转了度.10.(2020春•唐县期末)你知道方格纸上图形的位置关系吗?(1)图形B可以看作图形A绕点顺时针方向旋转90°得到的.(2)图形C可以看作图形B绕点O顺时针方向旋转得到的.(3)图形B绕点O顺时针旋转180°到图形所在位置.(4)图形D可以看作图形A绕点O方向旋转得到的.11.(2020•固阳县)把一段重12千克的圆柱形钢材切削成一个最大的圆锥体,这个圆锥体重千克. 12.(2020•平罗县)如图是一个直角三角形,它的面积是cm2,如果以AB所在直线为轴旋转一周,那么形成的立体图形的体积是cm3.13.(2020春•莱阳市期末)一个圆锥和一个圆柱等底等高,它们的体积相差60立方厘米,这个圆锥的体积是.14.(2020春•莱阳市期末)一个圆柱的底面半径是5分米,高12分米,沿着这个圆柱的底面直径垂直锯开,它的表面积增加平方米.15.(2020春•莱阳市期末)一个长方形的长和宽分别为3厘米和2厘米,以3厘米的边为轴旋转,旋转后形成一个圆柱体.这个圆柱的底面积是平方厘米,体积是立方厘米.16.(2020春•雁塔区期中)如图是一个底边6cm,高8cm的等题三角形,以这条高为轴,旋转形成的立体图形是,它的高是cm,底面积是cm2,体积是cm3.17.(2020春•陕州区期末)一根长2米的直圆柱木料,横着截去2分米,和原来比,剩下的圆柱体木料的表面积减少12.56平方分米,原来圆柱体木料的底面半径是分米,底面积是平方分米,体积是立方分米.18.(2020秋•槐荫区期末)把圆柱的侧面沿高展开,得到的是一个形;把圆锥的侧面展开,得到的是一个形.19.(2020春•雁塔区期中)底面直径是d,高是d的圆柱的侧面展开图是正方形.(判断对错)20.(2020春•成武县期末)正常运行的时钟,时针从指向“6”到指向“3”,是逆时针旋转.(判断对错)21.(2020•官渡区)如果圆柱的高不变,底面半径扩大到原来的2倍,那么体积扩大到原来的8倍.(判断对错)22.(2020•苍溪县)用一张正方形纸围成一个圆柱(接口处忽略不计),这个圆柱的底面周长和高相等.(判断对错)23.(2020•桃江县)圆锥与长方体的底面积和高分别相等,长方体体积一定是圆锥体积的3倍.(判断对错)24.(2020春•定陶区校级期中)计算圆锥的体积.25.(2020•英山县)计算如图圆柱的表面积和体积.(单位:厘米)26.如图,在直角三角形ABC中,以AC所在的直线为轴旋转一周.(1)可以得到一个什么图形?这个图形的高是多少?(2)它的底面周长是多少?27.转动长方形ABCD.形成右边的两个圆柱,说一说它们分别是以长方形的哪条边为轴旋转形成的?底面半径和高分别是多少?28.今天是红红的生日,同学们送给她一个大蛋糕,蛋糕是圆柱形的.服务员阿姨说要配上十字形的丝带才漂亮.你知道至少要多长的丝带才合适吗?(打结处要10 dm)29.(2020•长沙)图中所示图形是一个底面直径为30厘米的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为8厘米,高12厘米的一个圆锥体铅锤,水面刚好盖住铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?(π=3.14结果保留两位小数)30.(2020•峨山县)数学课本91页第12题是这样的:把一块棱长10厘米的正方体铁块熔铸成一个底面直径是20厘米的圆锥形铁块.这个圆锥形铁块的高约是多少?(得数保留整数).解答时,乐乐列出了下面的综合算式,老师却认为是错误的.乐乐:10×10×10÷[3.14×(20÷22](1)乐乐的方法错在了哪里?请作出分析.(2)请用正确的方法重新解答这道题.31.(2020春•灌阳县期末)一个圆柱形容器,从里面量底面直径是12cm.容器中完全浸入一个高为9cm 的圆锥形铁锭,当铁锭取出时,水面下降了2cm.这个圆锥形铁锭的体积约是多少立方厘米?(结果保留整数)32.(2020春•诸城市期末)制作一个底面直径20厘米,高5厘米的无盖圆柱形水桶,至少需要多少平方厘米的铁皮?33.(2020春•雁塔区期中)在一个棱长为4厘米的正方体上面的中心,挖去一个底面半径为1厘米、高2厘米的圆柱,求所得物体的表面积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
增加的是原来圆柱的底面积 (和切割次数有关,1次多2个底面积)
S 底=∏r ² S 侧=ch
S 表= S 侧+S 底×2
增加的是切出来的2个长方形的切割面 (长方形的一条边长是原来圆柱的高, 另一条边长是原来圆柱的底面直径)
切割后所有形体的表面积与原来形体比
底面
底面
侧面
(高)《圆柱与圆锥》知识整理
一、基本特征
(直)圆柱 圆锥 底面: 2个完全相同的圆 1个圆 侧面: 曲面(展开后是长/正方形) 曲面
高: 无数条 1条(顶点到底面圆心) 长方形和正方形旋转后形成是圆柱体,直角三角形绕直角边旋转后形成的是圆锥体。
(旋转轴就是高,另一条边就是底面半径)
二、圆柱的表面积
1、基本类型
沿高剪开
(底面周长)
注意:要根据题意或生活实际确定到底是求整个圆柱的表面积还是求其中某一部分。
如:
“无盖”、“四周”、通风管(下水管)、大棚等题目。
2、表面积的变化
圆柱的高增加或减少一段后,圆柱的表面积就是增加或减少了那一段的侧面积,底没变。
增加的是切出来的2个等腰三角形的面积
(三角形的底就是底面直径,三角形的高就是原来圆锥的高)
长方体的长=圆柱底面周长的一半
长方体的宽=圆柱的底面半径 长方体的高=圆柱的高
长方体上+下两个面=圆柱两个底面 长方体前+后两个面=圆柱的侧面
长方体的表面积增加了2个侧面积 (长方体的侧面积=半径×高)
三、体积
V ==3
1Sh
当圆柱和圆锥等底等高时,圆锥的体积是圆柱的
3
1;(“1 2 3 4”) 当圆柱和圆锥等体积等高时,圆柱的底面积是圆锥的3
1
;等体积等底面积时,圆柱的
高是圆锥的3
1。
四、其它
1、用长方形纸卷一个圆柱,有2种方法:以长做底面周长,宽做高得到的圆柱表面积
和体积最大;若用正方形纸卷,正方形的边长既是底面周长,也是高。
2、在长方体里切一个圆柱或圆锥,有3种切法,不论是哪一种切法,底面直径都是长方体那个面上较短的棱,与底面垂直的棱就是高。
正方体就不分了,棱长既是直径,也是高。
3、在圆柱里切一个最大的圆锥,两者等底等高,可运用各部分之间“1 2 3 4”的关系解决相应问题。
4、将一种形体熔铸成另一种形体,抓住体积不变来思考解决。
如:长方体(圆柱体)铁块熔铸成圆锥体铁块、运沙子、沙子铺路等题目。
5、物体放入水中,上升水的体积就是浸入水中物体的体积。