新人教版八年级下册数学第十七章勾股定理单元测试题 (2)
人教版八年级数学下册第十七章《勾股定理》单元测试卷附答案
第十七章《勾股定理》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.如图,一根垂直于地面的旗杆在离地面5 m的B处撕裂折断,旗杆顶部落在离旗杆底部12 m的A处,则旗杆折断部分AB的高度是()A.5 mB.12 mC.13 mD.18 m第1题图第3题图第5题图2.下列各组数据中,不能作为直角三角形的三边长的是()A.3,4,6B.7,24,25C.6,8,10D.9,12,153.如图,在Rt△ABC中,∠ACB=90°.若AB=10,则正方形ADEC和正方形BCFG的面积和为()A.100B.120C.140D.1604.若直角三角形的两条直角边长分别是3和4,则斜边长为()A.2.4B.5C.√7D.75.如图,以数轴的单位长线段为边作一个正方形,数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A,则点A表示的数是()A.1B.1.4C.√2D.√36.在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.a2+b2=c2B.a2+c2=b2C.b2+c2=a2D.以上都有可能7.若一个直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60B.30C.20D.328.如图,将风筝放至高30 m,牵引线与水平面夹角约为45°的高空中,则牵引线AB的长约是()A.30 mB.45 mC.20√3 mD.30√2 m第8题图第9题图第10题图9.(跨学科融合)如图,在物理实验课上,小明将长为8 cm的橡皮筋放置在水平面上,固定两端A和B,然后把中点C垂直向上拉升3 cm至点D,则橡皮筋被拉长了()A.3 cmB.2 cmC.6 cmD.4 cm10.如图所示的一块地,已知∠ADC=90°,AD=12 m,CD=9 m,AB=25 m,BC=20 m,则这块地的面积为()A.96 m2B.204 m2C.196 m2D.304 m2二、填空题(共5小题,每小题3分,共15分)11.如图,两个正方形的面积分别是100和36,则字母B所代表的正方形的面积是.第11题图第13题图12.若△ABC的三边长满足a2=b2+c2,则△ABC是直角三角形且∠=90°.13.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了步路(假设2步为1米),却踩伤了花草.14.如图,∠C=∠ABD=90°,AC=4,BC=3,BD=12,则AD的长等于.第14题图第15题图15.(数学文化)如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果AH=6,EF=2,那么AB的长等于.三、解答题(一)(共3小题,每小题8分,共24分)16.如图,根据所给条件,求BC的长.17.如果三角形的三边长分别为√2,√6,2,那么这个三角形是直角三角形吗?。
八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)
八年级数学下册《第十七章-勾股定理》单元测试卷及答案(人教版)一 选择题(每小题3分 共30分)1. 如果下列各组数是三角形的三边长,那么不能组成直角三角形的一组数是( )A. √2 √3 √5B. 1.5C. 32 42 52D. 1 22. 点A(−3,−4)到原点的距离为( )A. 3B. 4C. 5D. 73. 有一个直角三角形的两边长分别为3和4,则第三边的长为( )A. 5B. √7C. √5D. 5或√74.如果直角三角形两直角边的比为5∶12, 则斜边上的高与斜边的比为( ) A 60∶13B 5∶12C 12∶13D 60∶1695. 若一直角三角形两边长分别为12和5 则第三边长为( ) A .13 B .13或C .13或15D .156.一个圆桶底面直径为24cm ,高32cm ,则桶内所能容下的最长木棒为( )A .20cmB .50cmC .40cmD .45cm7.如图 小明准备测量一段水渠的深度 他把一根竹竿AB 竖直插到水底 此时竹竿AB 离岸边点C 处的距离米.竹竿高出水面的部分AD 长0.5米 如果把竹竿的顶端A 拉向岸边点C 处 竿顶和岸边的水面刚好相齐 则水渠的深度BD 为( )A .2米B .2.5米C .2.25米D .3米1.5CD8.如图, “赵爽弦图”是用四个相同的直角三角形与一个小正方形无缝隙地铺成一个大正方形 已知大正方形面积为25 (x +y)2=49 用x y 表示直角三角形的两直角边(x >y) 下列选项中正确的是( )A. 小正方形面积为4B. x 2+y 2=5C. x 2−y 2=7D. xy =249.如图,在△ABC 中 ∠C =90° AC =4 BC =2.以AB 为一条边向三角形外部作正方形 则正方形的面积是( )A. 8B. 12C. 18D. 2010.如图 在Rt △ABC 中 ∠ACB =90° AC =3 BC =4 BE 平分∠ABC CD ⊥AB 于D BE 与CD 相交于F 则CF 的长是( )A. 1B. 43C. 53D. 2二 填空题(每题3分 共24分)11.若一个三角形的三边之比为5:12:13 且周长为60cm 则它的面积为_____cm 2. 12.如图所示 所有的四边形都是正方形 所有的三角形都是直角三角形 其中最大的正方形的边长为7cm 正方形A B C 的面积分别是28cm 210cm 214cm 则正方形D 的面积是___________2cm .13.在ABC中90C∠=︒AB=5 则222AB AC BC++=______.14.如图在△ABC中∠ABC=90° 分别以BC AB AC为边向外作正方形面积分别记为S1S2,S3若S2=4 S3=6则S1=__________.15.方程思想如图在Rt△ABC中∠C=90° BC=6cm AC=8cm 按图中所示方法将△BCD沿BD折叠使点C落在AB边的点C’处那么△ADC’的面积是_____cm2. 16.如图一架秋千静止时踏板离地的垂直高度DE=0.5m将它往前推送1.5m(水平距离BC=1.5m)时秋千的踏板离地的垂直高度BF=1m秋千的绳索始终拉直则绳索AD的长是m.17.如图小明利用升旗用的绳子测量学校旗杆BC的高度他发现绳子刚好比旗杆长11米若把绳子往外拉直绳子接触地面A点并与地面形成30°角时绳子末端D距A点还有1米那么旗杆BC的高度为米.18.在△ABC中AB=AC=5 BC=6.若点P在边AC上移动则BP的最小值是.三、解答题(满分46分,19题6分20 21 22 23 24题每题8分)19.小明将一副三角板如图所示摆放在一起发现只要知道其中一边的长就可以求出其它各边的长若已知CD=2求AC的长.20.如图折叠长方形的一边AD使点D落在边BC的点F处已知AB=8cm BC=10cm求(1)FC的长.(2)EF的长.21 (8分)如图已知∠ADC=90°AD=8 CD=6 AB=26 BC=24.(1)证明:△ABC是直角三角形.(2)请求图中阴影部分的面积.22.如图 在长方形中 点在边上 把长方形沿直线折叠 点落在边上的点处。
人教版数学八年级下册《第十七章勾股定理》单元测试题(含答案)
人教版数学八年级下册第十七章勾股定理单元测试题一、选择题1.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为(C)A. 米B. 米C. (+1)米D. 3米2.发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( C )A.1组B.2组C.3组D.4组3.下列各组数:①3、4、5 ②4、5、6 ③2.5、6、6.5 ④8、15、17,其中是勾股数的有(C)A. 4组B. 3组C. 2组D. 1组4.若一个三角形的三边长的平方分别为:32,42,x2则此三角形是直角三角形的x2的值是( D )A.4B.52C.7D.52或75.由下列条件不能判定△ABC为直角三角形的是(B)A. ∠A+∠C=∠BB. a=13,b=14,c=15C. (b+a)(b-a)=c2D. ∠A:∠B:∠C=5:3:26.已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为( C )A.5B.25C.7D.157. 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D点,M,N是AC,BC上的动点,且∠MDN=90°,下列结论:①AM=CN;②四边形MDNC的面积为定值;③AM2+BN2=MN2;④NM平分∠CND.其中正确的是(A)A.①②③B. ①②④C. ①③④D. ①②③④8.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状( A )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形9.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15 m,则目测点到杆顶的距离为(设目高为1 m)( B ).A.20m B.25mC.30m D.35m10.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形,则展开后三角形的周长是(B).A.2+B.2+C.12D.1811.直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( C )A. B. C. D.12.如图,P是等边三角形ABC内的一点,连结PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连结CQ.若PA∶PB∶PC=3∶4∶5,连结PQ,试判断△PQC的形状( A )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形二、填空题13.如图,数轴上点A表示的实数是__________.【答案】5114.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.【答案】①锐角;②直角;③钝角.15.如果一梯子底端离建筑物9 m远,那么15 m长的梯子可到达建筑物的高度是_______m.【答案】1216.如图所示,在△ABC中,AB∶BC∶CA=3∶4∶5,且周长为36 cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3s 时,△BPQ的面积为cm2.【答案】1817.如果Rt△的两直角边长分别为k2-1,2k(k >1),那么它的斜边长是【答案】k2+118. 如图,D为△ABC的边BC上一点,已知AB=13,AD=12,AC=15,BD=5,则BC的长为__________.【答案】14三、解答题19.如图,在四边形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.(1)求∠DAB的度数.(2)求四边形ABCD的面积.【答案】(1)∠BAD=135°;(2)四边形ABCD的面积2+解析:(1)∵∠B=90°,AB=BC=2,∴AC==2,∠BAC=45°,又∵CD=3,DA=1,∴AC2+DA2=8+1=9,CD2=9,∴AC2+DA2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DAB=45°+90°=135°.故∠DAB的度数为135°.(2)连接AC,如图所示:在直角△ABC中,AC为斜边,且AB=BC=2,则AC=,∵AD=1,CD=3,∴AC2+CD2=AC2,即△ACD为直角三角形,且∠ADC=90°,四边形ABCD的面积=S△ABC+S△ACD=AB×BC+AD×AC=2+.20.如图,在5×5的方格纸中,每一个小正方形的边长都为1。
人教版八年级下册数学 第17章 勾股定理 单元测试卷(含答案)
人教版八年级下册数学第17章勾股定理单元测试卷(时间:120分钟分值:120分)一、选择题(每小题3分,共30分)1.在△ABC中,∠A,∠B,∠C的对应边分别是a,b,c,若∠B=90°,则下列等式中成立的是( )A.a2+b2=c2B.b2+c2=a2C.a2+c2=b2D.c2-a2=b22.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=( )A. 6 B.6 2 C.6 3 D. 123.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于( )A.10 B.11 C.12 D.134.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为( )A.4米B.8米C.9米D.7米5.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为( )A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形或钝角三角形6.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF的度数为( )A.50° B.60° C.70° D.80°7.在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于( )A.10 B.8 C.6或10 D.8或108.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为( )A.0.7米B.1.5米C.2.2米D.2.4米9.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为( )A.3-1B.3+1C.5-1D.5+110.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC 的度数为( )A.90° B.60° C.45° D.30°二、填空题(每小题4分,共24分)11.直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为.12.如图,在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD =.13.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑米.14.如图,阴影部分是一个正方形,则此正方形的面积为.。
人教版八年级数学下册 第17章勾股定理 单元测试题(有答案)
人教版八年级数学下册第17章勾股定理单元测试题一.选择题(共10小题)1.如图,线段AB=、CD=,那么,线段EF的长度为()A.B.C.D.2.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8B.4C.6D.无法计算3.如图,由4个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积是9,小正方形面积是1,直角三角形较长直角边为a,较短直角边为b,则ab的值是()A.4B.6C.8D.104.下列长度的三条线段不能组成直角三角形的是()A.3,4,5B.1,,2C.6,8,10D.1.5,2.5,35.如图,在△ABC中,AB=13,BC=10,BC边上的中线AD=12,试判定△ABC的形状()A.直角三角形B.等边三角形C.等腰三角形D.以上都不对6.下列各组数中,不是直角三角形的三条边的长的是()A.3,4,5B.6,8,10C.5,12,13D.4,5,67.下列各组数中,是勾股数的是()A.1,2,3B.0.3,0.4,0.5C.,,D.7,24,258.已知一直角三角形的木板,三边的平方和为12800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm9.从电线杆离地面6米处向地面拉一条钢缆,钢缆与地面的夹角是60°,则这根钢缆的地面固定点到电线杆底部的距离是()A.2B.2C.3D.610.小明想知道学校旗杆(垂直地面)的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子拉直后,发现绳子下端拉开5m,且下端刚好接触地面,则旗杆的高是()A.6m B.8m C.10m D.12m二.填空题(共8小题)11.如图,将一根长为15cm的筷子置于底面直径为5cm的装满水的圆柱形水杯中,已知水深为12cm,设筷子露出水面的长为hcm,则h的取值范围是.12.三角形的三边长分别为3,4,5,则这个三角形的面积是.13.如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于.14.直角三角形的两直角边是3和4,则斜边是15.已知小明和小王从同一地点出发,小明向正东方向走了2km,小王向正南方向走了3km,此时两人之间相距km.16.如图,在一个高为5m,长为13m的楼梯表面铺地毯,则地毯的长度至少是.17.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m 后是向方向走的(填方位).18.在平面直角坐标系中,已知点P的坐标为(1,﹣3),那么点P到原点O的距离OP的长度为.三.解答题(共8小题)19.已知,如图,在△ABC中,D为边BC上的一点,AB=13,AD=12,AC=15,BD=5,求BC 的长.20.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.21.已知:如图,四边形ABCD中,∠B=90°.AB=2.BC=4,CD=,AD=10,求(1)AC的长;(2)四边形ABCD的面积.22.如图,已知在△ABC中,AB=AC=13,D是AB上一点,且CD=12,BD=8.(1)求△ADC的面积.(2)求BC的长.23.如图,东西方向的河道宽2000米,水流自西向东水速为3米/秒,一船从港口A以5米/秒的速度驶向对岸,港口A的正对岸是港口B(1)若船头正对对岸,则船最终停在对岸何处?(2)若要使船正好到达港口B,请画出船头方向,并计算此时到对岸要多长时间?24.如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE的位置,当AE为多少时,AE与BD相等?25.如图,四边形ABCD中,∠B=90°,∠ACB=30°,AB=2,CD=3,AD=5.(1)求证:AC⊥CD;(2)求四边形ABCD的面积.26.如图,在平面直角坐标系中,点A(0,12),点B(m,12),且B到原点O的距离OB=20,动点P从原点O出发,沿路线O→A→B运动到点B停止,速度为每秒5个单位长度,同时,点Q从点B出发沿路线B→A→O运动到原点O停止,速度为每秒2个单位长度.设运动时间为t.(1)求出P、Q相遇时点P的坐标.(2)当P运动到AB边上时,连接OP、OQ,若△OPQ的面积为6,求t的值.参考答案与试题解析一.选择题(共10小题)1.解:∵AB==,CD==,∴图形中的网格是由边长为1的小正方形构成的,则EF==.故选:C.2.解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.3.解:由题意得:大正方形的面积是9,小正方形的面积是1,直角三角形的较长直角边为a,较短直角边为b,即a2+b2=9,a﹣b=1,所以ab=[(a2+b2)﹣(a﹣b)2]=(9﹣1)=4,即ab=4.解法2,4个三角形的面积和为9﹣1=8;每个三角形的面积为2;则ab=2;所以ab=4故选:A.4.解:A、∵32+42=52,∴此三角形是直角三角形,不符合题意;B、∵12+()2=(2)2,∴此三角形是直角三角形,不符合题意;C、∵62+82=102,∴此三角形是直角三角形,不符合题意;D、∵1.52+2.52≠32,∴此三角形不是直角三角形,符合题意;故选:D.5.解:∵AD是中线,AB=13,BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵BD=CD,∴AC=AB=13,∴△ABC的形状是等腰三角形,故选:C.6.解:∵42+52=41,62=36,41≠36,∴4,5,6不能作为直角三角形的三边长.故选:D.7.解:A、∵12+22≠32,∴这组数不是勾股数;B、∵0.32+0.42=0.52,但不是整数,∴这组数不是勾股数;C、∵+≠,∴这组数不是勾股数;D、∵72+242=252,∴这组数是勾股数.故选:D.8.解:设直角三角形的斜边长为x,∵三边的平方和为12800cm2,∴x2=6400cm2,解得x=80cm.故选:A.9.解:如图,已知∠C=60°,AB=6,在Rt△ABC中,设BC=x米,则AC=2x米,由勾股定理得:x2+62=(2x)2,解得:x=2,故选:B.10.解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m在Rt△ABC中,AB2+BC2=AC2∴x2+52=(x+1)2解得x=12∴AB=12∴旗杆的高12m.故选:D.二.填空题(共8小题)11.解:∵将一根长为15cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,h=12,最长时等于杯子斜边长度,即:h==13,∴h的取值范围是:(15﹣13)≤h≤(15﹣12),即2≤h≤3.故答案为:2≤h≤3.12.解:∵三角形的三边长分别为3,4,5,∴52=32+42,∴此三角形为直角三角形,∴这个三角形的面积=×3×4=6.故答案为:6.13.解:设设三角形的两直角边分别为x,y,则,由②得x2+y2﹣2xy=4…③,①﹣③得2xy=48则(x+y)2=x2+y2+2xy=52+48=100,x+y==10.故答案是:10.14.解:在直角三角形中,三边边长符合勾股定理,已知两直角边为3、4,则斜边边长==5,故答案为5.15.解:如图所示,∠ACB=90°,∴AB===(km).故答案为:.16.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17米.故答案为:17m.17.解:如图,AB=6m,BC=BD=8m,AC=AD=10m,∵602+802=1002,∴∠ABC=∠ABD=90°,故小明向东走6m后是向北或向南走的.故答案为:北或南.18.解:∵点P的坐标为(1,﹣3),点O为坐标原点,∴OP==.答:点P到原点O的距离OP的长度为.故答案为:.三.解答题(共8小题)19.解:∵AD2+BD2=144+25=169,AB2=169,∴AD2+BD2=AB2,∴AD⊥BC,即∠ADC=90°,∴CD===9,∴BC=CD+BD=5+9=14.20.解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.21.解:(1)如图,连接AC,∵∠B=90°,∴△ABC为直角三角形,又∵AB=2,BC=4,∴根据勾股定理得:AC=;(2)又∵CD=,AD=10,∴AD 2=102=100,CD 2+AC 2==80+20=100,∴CD 2+AC 2=AD 2,∴△ACD 为直角三角形,∠ACD =90°,则S 四边形ABCD =S △ABC +S △ACD =AB •BC +AC •CD =×2×4+×× =4+20=24.故四边形ABCD 的面积为24.22.解:(1)∵AB =13,BD =8,∴AD =AB ﹣BD =5,∴AC =13,CD =12,∴AD 2+CD 2=AC 2,∴∠ADC =90°,即△ADC 是直角三角形,∴△ADC 的面积=×AD ×CD =×5×12=30;(2)在Rt △BDC 中,∠BDC =180°﹣90°=90°,由勾股定理得:BC ===4,即BC 的长是4. 23.解:(1)2000÷5=400(秒),3×400=1200(米).答:船最终停在港口B 东边的1200米处.(2)在Rt △ACD 中,AC =5米/秒,CD =3米/秒,∴AD ==4(米/秒).2000÷4=500(秒).答:此时到对岸要500秒钟.24.解:(1)∵一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米,∴BC==4(m),答:BC的长为4m;(2)当BD=AE,则设AE=x,故(4﹣x)2+(3+x)2=25解得:x1=1,x2=0(舍去),故AE=1m.25.(1)证明:在Rt△ABC中,∠B=90°,∠ACB=30°,AB=2,∴AC=2AB=4,在△ACD中,AC=4,CD=3,AD=5,∵42+32=52,即AC2+CD2=AD2,∴∠ACD=90°,∴AC⊥CD;(2)解:在Rt△ABC中,∠B=90°,AB=2,AC=4,∴BC==2,∴Rt△ABC的面积为AB•BC=×2×2=2,又∵Rt△ACD的面积为AC•CD=×4×3=6,∴四边形ABCD的面积为:2+6.26.解:(1)设t秒后P,Q相遇.在Rt△AOB中,∵∠BAO=90°,OA=12,OB=20,∴AB===16,由题意:5t+2t=12+16,解得t=4,此时BQ=8.AQ=AB﹣BQ=16﹣8=8,∴P(8,12).(2)当P,Q都在AB边上时,•|16﹣(5t﹣12)﹣2t|×12=6,解得t=或当点Q在OA上时,•16•(28﹣2t)=6,解得t=,综上所述,满足条件的值为或或.。
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)
人教版八年级数学下册第十七章《勾股定理》单元测试题(含答案)分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.已知三角形的三条边分别为a,b,c,则下列不能判断三角形为直角三角形的是A. B. C. D.2.下列各组数是勾股数的是A. ,,B. 1,1,C. ,,D. 5,12,133.如图,中,,,,点P是BC边上的动点,则AP的长不可能是A. B. 4 C. D. 7(第3题图)(第4题图)4.如图,矩形ABCD中,,,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M为A. 2B.C.D.5.如图所示,正方形ABGF和正方形CDBE的面积分别是100和36,则以AD为直径的半圆的面积是A. B. C. D.(第5题图)(第6题图)6.如图,一次飓风灾害中,一棵大树在离地面3米处折断,树的顶端落在离树干底部4米处,那么这棵树折断之前的高度是A. 5米B. 6米C. 7米D. 8米7.如图,在的网格中,每个小正方形的边长均为1,点A,B,C都在格点上.若BD是的高,则BD的长为A. B. C. D.(第7题图)(第9题图)8.下列命题中正确的是A. 在直角三角形中,两条边的平方和等于第三边的平方B. 如果一个三角形两边的平方差等于第三边的平方,那么这个三角形是直角三角形C. 在中,,,的对边分别为a,b,c,若,则D. 在中,若,,则9.如下图,在长方形ABCD中,,,将此长方形折叠,使点D与点B 重合,折痕为EF,则的面积为A. B. C. D.10.如下图,在中,,,,CD平分交AB于点D ,E是AC的中点,P是CD上一动点,则的最小值是A. B. 6 C. D.(第10题图)(第11题图)11.如图,透明的圆柱形容器容器厚度忽略不计的高为,底面周长为,在容器内壁离容器底部的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部的点A处,则蚂蚁吃到饭粒需爬行的最短路程是A. B. C. D.12.勾股定理是几何中的一个重要定理,在我国古算书周髀算经中就有“若勾三、股四、则弦五”的记载。
初中八年级数学下册第十七章勾股定理单元检测复习题二(含答案) (47)
初中八年级数学下册第十七章勾股定理单元检测习题二(含答案)在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;(2)求原来的路线AC的长.【答案】(1)CH是从村庄C到河边的最近路,理由见解析;(2)原来的路线AC的长为2.5千米.【解析】【分析】(1)根据勾股定理的逆定理解答即可;(2)根据勾股定理解答即可【详解】(1)是,理由是:在△CHB中,∵CH2+BH2=(2.4)2+(1.8)2=9BC2=9∴CH2+BH2=BC2∴CH⊥AB,所以CH是从村庄C到河边的最近路(2)设AC=x在Rt△ACH中,由已知得AC=x,AH=x﹣1.8,CH=2.4由勾股定理得:AC2=AH2+CH2∴x2=(x﹣1.8)2+(2.4)2解这个方程,得x=2.5,答:原来的路线AC的长为2.5千米.【点睛】此题考查勾股定理及其逆定理的应用,熟练掌握基础知识是解题的关键.92.已知a、b、c满足(a﹣7.5)2+|c﹣8.5|=0.求:(1)a、b、c的值;(2)求以a、b、c为边构成的三角形面积.【答案】(1)a=7.5,b=4,c=8.5;(2)S△=15.【解析】【分析】(1)根据非负数的性质得到方程,解方程即可得到结果;(2)根据勾股定理的逆定理得出以a、b、c为边的三角形是直角三角形,再根据面积公式求解即可.【详解】解:(1)∵a、b、c满足(a﹣7.5)2﹣8.5|=0,∴a﹣7.5=0,b﹣4=0,c﹣8.5=0,解得:a=7.5,b=4,c=8.5;(2)∵a=7.5,b=4,c=8.5,∴a2+b2=7.52+42=72.25=8.52=c2,∴此三角形是直角三角形,∴S△=12×7.5×4=15.故答案为:(1)a=7.5,b=4,c=8.5;(2)S△=15.【点睛】本题考查了勾股定理的逆定理,非负数的性质.本题要特别注意非负数的性质:有限个非负数的和为零,那么每一个加数也必为零;初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).93.先阅读下列一段文字,再回答问题:已知平面内两点P1(x1,y1)、P2(x2,y2),这两点间的距离P1P2=直于坐标轴时,两点间的距离公式可简化为|x2﹣x1|或|y2﹣y1|.(1)已知点A(2,3)、B(4,2),试求A、B两点间的距离;(2)已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,试求A、B两点间的距离;(3)已知一个三角形的各顶点坐标为A(﹣2,1)、B(1,4)、C(1﹣a,5),试用含a的式子表示△ABC的面积.【答案】(1)(2)AB=2;(3)①当1-a<2,即a>-1时,S△ABC=3 2a+32,②当1-a>2,即a<-1时,S△ABC=-32a-32.【解析】【分析】(1)直接利用公式计算即可;(2)根据两点之间的距离的定义计算即可;(3)法两种情形分别求解即可解决问题.【详解】(1)(2)∵已知点A、B在平行于x轴的直线上,点A的横坐标为7,点B的横坐标为5,∴AB=7-5=2.(3)由题意,直线AB的解析式为y=x+3,延长AB交直线y=5于N(2,5).①当1-a<2,即a>-1时,作CM∥y轴交AB于M.则M(1-a,4-a),∴CM=5-(4-a)=a+1,∴S△ABC=12•CM•(B x-A x)=12•(a+1)•3=32a+32.②当1-a>2,即a<-1时,同法可得S△ABC=-32a-32.【点睛】本题考查勾股定理、坐标与图形的性质、一次函数的应用、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题.94.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.【答案】(1)见解析;(2)EF=DE+BF,见解析;(3)2π【解析】【分析】(1)依题意补全图形即可;(2)延长AD到点H,使DH=BF,连接CH,证明△CDH≌△CBF(SAS).得出CH=CF,∠DCH=∠BCF.证明△ECH≌△ECF(SAS).得出EH=EF.即可得出结论;(3)确定点G的运动轨迹,利用弧长公式计算即可.【详解】解:(1)补全图形如图1.(2)线段DE,EF,BF的数量关系是EF=DE+BF证明:延长AD到点H,使DH=BF,连接CH(如图2).易证△CDH△△CBF.△CH= CF,△DCH=△BCF.△△ECF=45°,△△ECH=△ECD+△DCH= △ECD +△BCF =45°.△△ECH=△ECF=45°.又△CE= CE,△△ECH△△ECF.△EH= EF.△EF=DE+BF.(3)点G运动的路线长为2π【点睛】本题考查是四边形综合题,考查了正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、角平分线的性质定理、弧长公式等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.95.为丰富少年儿童的业余文化生活,某社区要在如图所示的AB所在的直线上建一图书阅览室,该社区有两所学校,所在的位置分别在点C和点D处。
人教版八年级数学下册第十七章勾股定理单元练习题(含答案)
第十七章勾股定理一、选择题1.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,这里的水深为()A. 1.5米B. 2米C. 2.5米D. 1米2.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4等于()A. 86B. 64C. 54D. 483.如图表示的是一个十字路口,O是两条公路的交点,点A、B、C、D表示的是公路上的四辆车,若OC=8 cm,AC=17 cm,AB=5 cm,BD=10m,则C,D两辆车之间的距离为()A. 5 mB. 4 mC. 3 mD. 2 m4.如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于()A.B. 2+1C.D. 55.如图,长方体的透明玻璃鱼缸,假设其长AD=80 cm,高AB=60 cm,水深为AE=40 cm,在水面上紧贴内壁G处有一鱼饵,G在水面线EF上,且EG=60 cm;一小虫想从鱼缸外的A点沿壁爬进鱼缸内G处吃鱼饵,则小动物爬行的最短路线长为()A. 40 cmB. 60 cmC. 80 cmD. 100 cm6.三角形三边长为6、8、10,那么最长边上的高为()A. 6B. 4.5C. 4.8D. 87.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2 m,梯子的顶端B到地面的距离为7 m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3 m,同时梯子的顶端B下降至B′,那么BB′()A.小于1 mB.大于1 mC.等于1 mD.小于或等于1 m8.如图,一根垂直于地面的旗杆在离地面5 m处撕裂折断,旗杆顶部落在离旗杆底部12 m处,旗杆折断之前的高度是()A. 5 mB. 12 mC. 13 mD. 18 m二、填空题9.直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为________.10.一个三角形的三边长之比为5∶12∶13,它的周长为120,则它的面积是________.11.如图,分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,则△ABC________直角三角形.(填“是”或“不是”)12.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.13.中国古代的数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是三国时期的数学家赵爽,不仅最早对勾股定理进行了证明,而且创制了“勾股圆方图”,开创了“以形证数”的思想方法.在图1中,小正方形ABCD的面积为1,如果把它的各边分别延长一倍得到正方形A1B1C1D1,则正方形A1B1C1D1的面积为________;再把正方形A1B1C1D1的各边分别延长一倍得到正方形A2B2C2D2(如图2),如此进行下去,得到的正方形AnBnCnDn的面积为________(用含n的式子表示,n为正整数).14.如图,四边形ABCD中,AB⊥AD于A,AB=8,AD=8,BC=7,CD=25,则四边形ABCD的面积为__________.15.如图,以直角△ABC的三边向外作正方形,其面积分别为S1,S2,S3且S1=4,S2=8,则S3=________.16.在△ABC中,已知AB=BC=CA=4 cm,点P、Q分别从B、C两点同时出发,其中点P沿BC向终点C 运动,速度为1 cm/s;点Q沿CA、AB向终点B运动,速度为2 cm/s,设它们运动的时间为x(s),当x=__________,△BPQ是直角三角形.三、解答题17.如图所示的一块地,AD=9 m,CD=12 m,∠ADC=90°,AB=39 m,BC=36 m,求这块地的面积.18.如图,在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度全速前进,2小时后甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船沿那个方向航行吗?19.在△ABC中,AB=15,BC=14,AC=13,求△ABC的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程.20.为了弘扬“社会主义核心价值观”,乐至县政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的距离分别是5米和3米.(1)求公益广告牌的高度AB;(2)求∠BDC的度数.21.阅读与应用:阅读以下材料,并按要求完成相应的任务.中国最早的一部数学著作--《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地的数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识,其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5.这个原理是大禹在治水的时候就总结出来的呵.”任务:(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做__________定理;(2)请你利用以上数学原理解决问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,求问题中葛藤的最短长度是多少尺.答案解析1.【答案】A【解析】设水深为h米,则红莲的高(h+1)米,且水平距离为2米,则(h+1)2=22+h2,解得h=1.5.故选A.2.【答案】C【解析】如图1,S1=AC2,S2=AB2,S3=BC2,∵BC2=AB2-AC2,∴S2-S1=S3,如图2,S4=S5+S6,∴S3+S4=45-16+11+14=54.故选C.3.【答案】D【解析】在Rt△AOC中,∵OA2+OC2=AC2,∴OA===15(m),∴OB=OA+AB=20 m,在Rt△BOD中,∵BD2=OB2+OD2,∴OD===10(m),∴CD=OD-OC=2 m,故选D.4.【答案】A【解析】如图所示,由图可知,AB==.故选A.5.【答案】D【解析】如图所示作点A关于BC的对称点A′,连接A′G交BC与点Q,小虫沿着A→Q→G的路线爬行时路程最短.在直角△A′EG中,A′E=80 cm,EG=60 cm,∴AQ+QG=A′Q+QG=A′G==100 cm.∴最短路线长为100 cm.故选D.6.【答案】C【解析】∵62+82=102,∴这个三角形是直角三角形,∴最长边上的高为6×8÷10=4.8.故选C.7.【答案】A【解析】在直角三角形AOB中,因为OA=2,OB=7,由勾股定理,得AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得OB′=,∴BB′=7-<1.故选A.8.【答案】D【解析】旗杆折断后,落地点与旗杆底部的距离为12 m,旗杆离地面5 m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13 m,所以旗杆折断之前高度为13 m+5 m=18 m.故选D.9.【答案】6【解析】∵直角三角形斜边长是5,一直角边的长是3,∴另一直角边长为=4.该直角三角形的面积S=×3×4=6.10.【答案】480【解析】设三边的长是5x,12x,13x,则5x+12x+13x=120,解得x=4,则三边长是20,48,52.∵202+482=522,∴三角形是直角三角形,∴三角形的面积是×20×48=480.11.【答案】是【解析】由分别以△ABC的三边为直径向外作3个半圆,它们的面积分别为4、5、9,得BC2+AC2=AB2,则△ABC是直角三角形.12.【答案】96【解析】连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为S△ABC-S△ACD=×10×24-×6×8=96.13.【答案】55n【解析】已知小正方形ABCD的面积为1,则把它的各边延长一倍后,△AA1B1的面积是1,新正方形A1B1C1D1的面积是5,从而正方形A2B2C2D2的面积为5×5=25=52,…正方形AnBnCnDn的面积为5n.14.【答案】84+96【解析】连接BD,∵AB⊥AD,∴∠A=90°,∴BD=24,∵BC2+BD2=72+242=625=252=CD2,∴△CBD为直角三角形,∴S四边形ABCD=S△ABD+S△BCD=×8×8+×24×7=96+84.15.【答案】12【解析】∵△ABC直角三角形,∴BC2+AC2=AB2,∵S1=BC2,S2=AC2,S3=AB2,S1=4,S2=8,∴S3=S1+S2=12.16.【答案】2或【解析】根据题意,得BP=t cm,CQ=2t cm,BQ=(8-2t) cm,若△BPQ是直角三角形,则∠BPQ=90°或∠BQP=90°,①当∠BPQ=90°时,Q在A点,CQ=CA=4 cm,4÷2=2(s);②当∠BQP=90°时,∵∠B=60°,∴∠BPQ=90°-60°=30°,∴BQ=BP,即8-2t=t,解得t=,故当t=2或秒时,△BPQ是直角三角形.17.【答案】解连接AC,则在Rt△ADC中,AC2=CD2+AD2=122+92=225,∴AC=15,在△ABC中,AB2=1521,AC2+BC2=152+362=1521,∴AB2=AC2+BC2,∴∠ACB=90°,∴S△ABC-S△ACD=AC·BC-AD·CD=×15×36-×12×9=270-54=216.答:这块地的面积是216平方米.【解析】连接AC,运用勾股定理逆定理可证△ACD,△ABC为直角三角形,可求出两直角三角形的面积,此块地的面积为两个直角三角形的面积差.18.【答案】解BM=8×2=16海里,BP=15×2=30海里,在△BMP中,BM2+BP2=256+900=1156,PM2=1156,BM2+BP2=PM2,∴∠MBP=90°,180°-90°-60°=30°,故乙船沿南偏东30°方向航行.【解析】先根据路程=速度×时间,求出BM,BP的长,再根据勾股定理的逆定理得到∠MBP=90°,进一步即可求解.19.【答案】解如图,在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=14-x,由勾股定理,得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,故152-x2=132-(14-x)2,解之得x=9.∴AD=12.∴S△ABC=BC·AD=×14×12=84.【解析】根据题意利用勾股定理表示出AD2的值,进而得出等式求出答案.20.【答案】解(1)在直角三角形ADC中,AC ===4(m),在直角三角形BDC中,BC ===3(m),故AB=AC-BC=1(米),答:公益广告牌的高度AB的长度为1 m;(2)∵在直角三角形BDC中,BC=CD=3 m,∴△DBC是等腰直角三角形,∴∠BDC=45°.【解析】(1)直接利用勾股定理得出AC的长,进而得出BC的长即可得出AB的长;(2)利用已知结合(1)中所求得出△DBC是等腰直角三角形,进而得出答案.21.【答案】解(1)上面周公与商高的这段对话,反映的数序原理在数学上叫做勾股定理;故答案是勾股;(2)如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).答:问题中葛藤的最短长度是25尺.【解析】(1)根据勾股定理的概念填空;(2)这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.。
人教版八年级数学下册 第十七章 勾股定理 单元测试题及答案二
人教版八年级数学下册 第十七章 勾股定理 单元测试题及答案一、选择题1.《九章算术》是我国古代最重要的数学著作之一,它的出现标志着中国古代数学形成了完整的体系.“折竹抵地”问题源自《九章算术》﹔“今有竹高一丈,末折抵地,去本四尺,问折者高几何?”翻译成数学问题是:如图所示,ABC 中,90ACB ∠=︒,10AC AB +=尺,4BC =尺,求AC 的长.则AC 的长为( )A .4.2尺B .4.3尺C .4.4尺D .4.5尺2.如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,若30B ∠=︒,AC =2AD =,则ABD △的面积为( )A B .2 C .D .33.如图,在Rt ABC ∆中,90,45,B BCA AC ︒︒∠=∠==D 在BC 边上,将ABD ∆沿直线AD 翻折,点B 恰好落在AC 边上的点E 处,若点P 是直线AD 上的动点,连接,PE PC ,则PEC ∆的周长的最小值为( )A .2BC 1D .14.在ABC 中,10AB =,AC ,BC 边上的高6AD =,则另一边BC 等于( )A .10B .8C .6或10D .8或105.如图,是一个三级台阶,它的每一级的长,宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物,请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是( )A .12B .13C .14D .156.如图,是一段楼梯,高BC 是1.5m ,斜边AC 是2.5m ,如果在楼梯上铺地毯,那么至少需要地毯( )A .2.5mB .3mC .3.5mD .4m7.如图,在矩形ABCD 中,BC =,ADC ∠的平分线交边BC 于点E ,AH DE ⊥于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O .给出下列命题:①AEB AEH ∠=∠;②DH =;③12HO AE =;④BC BF -.其中正确命题为( )A .①②B .①③C .①③④D .①②③④8.如图,A 、B 两点在直线l 的两侧,点A 到直线l 的距离AC=4,点B 到直线l 的距离BD=2,且CD=6,P 为直线CD 上的动点, 则PA PB -的最大值是( )A .B .C .D .69.如图,等腰直角三角形ABC 的直角顶点C 与平面直角坐标系的坐标原点O 重合,AC ,BC 分别在坐标轴上,AC =BC =1,△ABC 在x 轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点C 第一次落在x 轴正半轴上时,点A 的对应点A 1的横坐标是( )A .2B .3C .D .10.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .若b 2+c 2=2b +4c ﹣5且a 2=b 2+c 2﹣bc ,则△ABC 的面积为( )A B C D 二、填空题11.ABC 中,75BAC ∠=︒,6AB =,AC =P 为ABC 内一个动点,则PA PB PC ++的最小值为_____. 12.如图,在ABC 中,∠ACB =90°,AC =2,BC =1,点A 、C 分别在x 轴、y 轴上,当点A 在x 轴运动时,点C 随之在y 轴上运动,在运动过程中,点B 到原点O 的最大距离为____.13.如图,C 为线段BD 上一动点,分别过点B 、D 作AB∠BD ,ED∠BD ,连接AC 、EC .已知AB=5,DE=1,BD=8,设CD=x .则AC+CE 的最小值是_____.14.如图所示,四边形ABCD 是长方形,把∠ACD 沿AC 折叠到∠ACD′,AD′与BC 交于点E ,若AD =4,DC =3,求BE 的长.15.如图,等腰Rt∠ABC 中,∠BAC =90°,AB =AC = 2,点F 是边BC 上不与点B ,C 重合的一个动点,直线l 垂直平分BF ,垂足为D ,当∠AFC 是等腰三角形时,BD 的长为____.三、解答题16.如图,小区有一块三角形空地ABC ,为响应沙区创文创卫,美化小区的号召,小区计划将这块三角形空地进行新的规划,过点D 作垂直于AB 的小路DE .经测量,15AB =米,13AC =米,12AD =米,5DC =米.(1)求BD 的长;(2)求小路DE 的长.17.如图,地面上放着一个小凳子,点A 距离墙面40cm ,在图∠中,一根细长的木杆一端与墙角重合,木杆靠在点A 处,50cm OA =.在图∠中,木杆的一端与点B 重合,另一端靠在墙上点C 处.(1)求小凳子的高度;(2)若90cm OC =,木杆的长度比AB 长60cm ,求木杆的长度和小凳子坐板的宽AB .18.(1)如图1,平面直角坐标系中A(0,a ),B(a ,0)(a >0).C 为线段AB 的中点,CD∠x 轴于D ,若∠AOB 的面积为2,则∠CDB 的面积为.(2)如图2,∠AOB 为等腰直角三角形,O 为直角顶点,点E 为线段OB 上一点,且OB =3OE ,C 与E 关于原点对称,线段AB 交x 轴于点D ,连CD ,若CD∠AE ,试求AD DB的值. (3)如图3,点C 、E 在x 轴上,B 在y 轴上,OB =OC ,∠BDE 是以B 为直角顶点的等腰直角三角形,直线CB 、ED 交于点A ,CD 交y 轴于点F ,试探究:CO EO BF-是否为定值?如果是定值,请求出该定值;如果不是,请求出其取值范围.19.如图,ABC 中,90ABC ∠=︒,25AC cm =,15BC cm =.(1)直接写出AB 的长度;(2)设点P 在AB 上,若PAC PCA ∠=∠,求AP 的长;(3)设点M 在AC 上.若MBC △为等腰三角形,直接写出AM 的长.20.若点P 满足PA PB =,则称P 为线段AB 的“中轴点”,其中,当060APB ︒<∠<︒时,称P 为线段AB 的“远中轴点”;当60180APB ∠≤︒≤︒时,称P 为线段AB 的“近中轴点”(1)如图1,点,A B 的坐标分别为(1,0),(5,0),则在1234(1,4),(3,2),(3,6),(4,1)P P P P 中,线段AB 的“近中轴点”是____________;(2)如图2,点A 的坐标为(6,0),点B 在y 轴正半轴上,且30OAB ∠=︒,∠若P 为线段AB 的“远中轴点”,直接写出点P 的横坐标x 的取值范围____________;∠点C 为y 轴上的动点(不与点B 重合且BC AB ≠),若Q 为线段AB 的“中轴点”,当线段QB 与QC 的和最小时,点Q 的坐标为___________,这个最小值是___________.21.问题情境:已知Rt∠ABC 的周长为56,斜边长c=25,求∠ABC 的面积.解法展示:设Rt∠ABC 的两直角边长分别为a ,b ,则a+b+c= ___,因为c=25,所以a+b=___,所以(a+b )2=___,所以a 2+___=961因为a 2+b 2=c 2,所以c 2+2ab=961,所以 ___+2ab=961,所以ab= 168(第1步)所以∠ABC 的面积=ab=× 168= 84(第2步).合作探究:(1)填空:填写题目中横线处的内容.(2)上述解题过程中,由第1步到第2步体现出来的数学思想是___(填序号).∠整体思想; ∠数形结合思想; ∠分类讨论思想.方法迁移:(3)已知一直角三角形的面积为6,斜边长为5,求这个直角三角形的周长.22.如图,在平面直角坐标系中,点O 为原点,∠OAB 为等边三角形,P 、Q 分别为AO ,AB 边上的动点,点P ,点Q 同时从点A 出发,若P 以32个单位每秒的速度从点A 向点O 运动,点Q 以2个单位每秒的速度从点A 向点B 运动,设运动时间为t .(1)如图1,已知点A 的坐标为(a ,b ),且满足(a ﹣3)2a ﹣b|=0,则A 点坐标;(2)如图1,连接BP ,OQ 交于点C ,请问当t 为何值时,∠OCP =60°;(3)如图2,D 为OB 边上的中点,P ,Q 在运动过程中,D ,P ,Q 三点是否能构成使∠PDQ =120°的等腰三角形?若能,试求:∠运动时间t ;∠此时四边形APDQ 的面积;若不能,请说明理由.23.如图,已知在Rt ABC 中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动,设点P 的运动时间为t .连结AP .(1)当5t =秒时,求AP 的长度;(2)当ABP △为等腰三角形时,求t 的值;(3)过点D 做DE AP ⊥于点E ,在点P 的运动过程中,当t 为何值时,能使DE CD =?【参考答案】1.A2.A3.B4.C5.B6.C7.B8.C9.D10.B11.12.1+13.1014.78151 16.(1)9米;(2)365米. 17.(1)30cm ;(2)木杆长100cm ,AB =40 cm . 18.(1)12;(2)2AD DB =;(3)是定值,2CO EO BF-=. 19.(1)20cm ;(2)1258AP =cm ;(3)10cm 或7cm 或12.5cm . 20.(1)P 2;(2)∠x >3或x <0;∠(2,0),6 21.(1)56,31,961,2ab+b 2,625;(2)∠;(3)1222.(1)A (3,);(2)当t=127时,∠OCP=60°;(3)4.23.(1)10;(2)16、5;(3)5或11。
人教版数学八年级下册 第十七章 勾股定理 单元测试卷(含答案解析)
人教版数学八年级下册第十七章勾股定理单元测试卷一、单选题(共10题;共20分)1.下列说法:①无理数分为正无理数,零,负无理数;②-4是16的平方根;③如果a,b,c为一组勾股数,那么4a,4b,4c仍是勾股数;④任何实数都有立方根,其中正确的有()A. 4B. 3C. 2D. 12.若一个直角三角形的三边分别为a、b、c,a2=144,b2=25,则c2=()A. 169B. 119C. 169或119D. 13或253.如图,∠B=∠ACD=90°;AD=13;CD=12;BC=3,则AB的长为()A. 4B. 5C. 8D. 104.下列各组数是勾股数的是()A. 12、15、18B. 6、8、12C. 4、5、6D. 7、24、255.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处.若M,N两点相距100海里,则∠NOF的度数为()A. 50°B. 60°C. 70°D. 90°6.如图以数轴的单位长线段为边作一个正方形,以数轴的原点为旋转中心,将过原点的对角线顺时针旋转,使对角线的另一端点落在数轴正半轴的点处,则点表示的数是()A. B. C. D.7.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂0A=OB=10分米,晾衣臂支架HG=FE=5分米,HO=FO=4分米。
当∠AOC=90°,且OB∥CD时,线段OG与OE的长分别为( )A. 3和7B. 3和C. 3和2+D. 和2+8.如图,圆柱形容器高为18cm,底面周长为32cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好也在杯内壁,离杯上沿2cm与蜂蜜正相对的点A处,则蚂蚁从内壁A处到达内壁B处的最短距离为()A. 13cmB. cmC. 2 cmD. 20cm9.如图,在△ABC中,AB=AC,∠BAC=60°,BC=2,AD⊥BC于D,点F是AB的中点,点E在AD边上,则BE+EF的最小值是( )A. 1B.C. 2D.10.如图,小江同学把三角尺含有60°角的一端以不同的方向穿入进另一把三角尺(含有45°角)的孔洞中。
人教版八年级下数学《第17章勾股定理》单元测试(含答案)
人教版八年级下数学《第17章勾股定理》单元测试(含答案)第17 章勾股定理一、选择题1.以下列各组数为边长,能构成直角三角形的是()A. 5、6、7B. 10、8、4C. 7、24、25D. 9、15、172.△ABC中,AB=13cm,AC=15cm,高AD=12,则BC的长为()A. 14B. 4C. 14或4D. 以上都不对3.下列四组数中,其中有一组与其他三组规律不同,这一组是()A. 3,4,5B. 6,8,10C. 5,12,13D. 4,5,74.在△ABC中,若AC=15,BC=13,AB边上的高CD=12,则△ABC的周长为()A. 32B. 42C. 32或42D. 以上都不对5.如图,正方形ABCD的边长为9.将正方形折叠.使顶点D落在BC边上的点E处,折痕为GH.若BE:EC=2:1,则线段CH的长是( )A. 3B. 4C. 5D. 66.如图,正方形小方格边长为1,则网格中的△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上答案都不对7.给出下列长度的四组线段:①1,2,2;②5,12,13;③6,7,8;④3m,4m,5m(m>0).其中能组成直角三角形的有()A. ①②B. ②④C. ②③D. ③④8.如图,一架25分米的梯子,斜立在一竖直的墙上,这时梯的底部距墙底端7分米,如果梯子的顶端沿墙下滑4分米,那么梯的底部将平滑()A. 9分米B. 15分米C. 5分米D. 8分米9.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. ,,B. 2,3,4C. 3,4,5D. 6,8,1210.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A. 8B. 4C. 6D. 无法计算11.在Rt△ABC中,∠ACB=90°,AC= ,BC=2,则AB的长为()A. B. C. D. 612.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+ =0,则△ABC()A. 不是直角三角形B. 是以a为斜边的直角三角形C. 是以b为斜边的直角三角形D. 是以c为斜边的直角三角形二、填空题13.如图,Rt△ABC的周长为cm,以AB、AC为边向外作正方形ABPQ和正方形ACMN.若这两个正方形的面积之和为25 cm2,则△ABC的面积是________cm2.14.观察下列式子:当n=2时,a=2×2=4,b=22﹣1=3,c=22+1=5n=3时,a=2×3=6,b=32﹣1=8,c=32+1=10n=4时,a=2×4=8,b=42﹣1=15,c=42+1=17…根据上述发现的规律,用含n(n≥2的整数)的代数式表示上述特点的勾股数a=________ ,b=________ ,c=________15.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为________米(答案可保留根号)16.平面直角坐标系内点P(﹣2,0),与点Q(0,3)之间的距离是________.17.如图是“赵爽弦图”,△ABH,△BCG,△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=10,EF=2,那么AH等于________18.如图,O为矩形ABCD内的一点,满足OD=OC,若O点到边AB的距离为d,到边DC的距离为3d,且OB=2d,求该矩形对角线的长 ________19.我们学习了勾股定理后,都知道“勾三、股四、弦五”.观察:3、4、5;5、12、13;7、24、25;9、40、41;…,发现这些勾股数的勾都是奇数,且从3起就没有间断过.(1)请你根据上述的规律写出下一组勾股数:________.(2)若第一个数用字母n(n为奇数,且n≥3)表示,那么后两个数用含n的代数式分别表示为________和________,请用所学知识说明它们是一组勾股数.20.四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,则△BDC为________三角形.21.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=________.三、解答题22.如图,在△ABC中,D为BC边上的一点,已知AB=13,AD=12,AC=15,BD=5,求CD的长.23.如图,在四边形ABCD中,已知AB=4cm,BC=3cm,AD=12cm,DC=13cm,∠B=90°,求四边形ABCD的面积。
人教版八年级数学下《第十七章勾股定理》单元测试题(含答案)
人教版八年级数学下册《第十七章勾股定理》单元测试题一.选择题(共10小题,满分40分,每小题4分)1.已知一个直角三角形的两直角边长分别为5和12,则第三边长的平方是()A.169B.119C.13D.1442.在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.3.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别是4,9,1,4,则最大正方形E的面积是()A.18B.114C.194D.3244.如图是一个直角三角形,它的未知边的长x等于()A.13B.C.5D.5.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣6,0),(0,8),以点A为圆心,以AB长为半径画弧,交x轴正半轴于点C,则点C的坐标为()A.(10,0)B.(0,4)C.(4,0)D.(2,0)6.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,77.下列各组数据中,不是勾股数的是()A.3,4,5B.7,24,25C.8,15,17D.5,7,98.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:159.如图,在Rt△ABC中,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”,当AC=4,BC=2时,则阴影部分的面积为()A.4B.4πC.8πD.810.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.2D.4二.填空题(共4小题,满分20分,每小题5分)11.平面直角坐标系上有点A(﹣3,4),则它到坐标原点的距离为.12.一个直角三角形的两条直角边长分别为3,4,则第三边为.13.如图,每个小正方形边长为1,A、B、C是小正方形的顶点,则AB2=,∠ABC=°.14.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形三.解答题(共9小题,满分90分)15.在△ABC中,∠ACB=90°,AC=5,AB=BC+1,求Rt△ABC的面积.16.如图,在△ADC中,∠C=90°,AB是DC边上的中线,∠BAC=30°,若AB=6,求AD的长.17.如图,某人划船横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达点B25m,结果他在水中实际划了65m,求该河流的宽度.18.如图,在△ABC中,AB=20,AC=15,BC=25,AD⊥BC,垂足为D.求AD,BD的长.19.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC=21cm,动点P从点C出发,沿CA方向运动,动点Q从点B出发,沿BC方向运动,如果点P,Q的运动速度均为1cm/s.那么运动几秒时,它们相距15cm?20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.在△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C所对的边.(1)若b=2,c=3,求a的值;(2)若a:c=3:5,b=16,求△ABC的面积.22.如图所示,四边形ABCD ,∠A =90°,AB =3m ,BC =12m ,CD =13m ,DA =4m .(1)求证:BD ⊥CB ; (2)求四边形ABCD 的面积;(3)如图2,以A 为坐标原点,以AB 、AD 所在直线为x 轴、y 轴建立直角坐标系,点P 在y 轴上,若S△PBD=S 四边形ABCD ,求P 的坐标.23.如图,一艘轮船以30km /h 的速度沿既定航线由西向东航行,途中接到台风警报,某台风中心正以20km /h 的途度由南向北移动,距台风中心200km 的圆形区域(包括边界)都属台风影响区.当这艘轮船接到台风警报时,它与台风中心的距离BC =500km ,此时台风中心与轮船既定航线的最近距离BA =300km . (1)如果这艘轮船不改变航向,那么它会不会进入台风影响区?(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?(3)假设轮船航行速度和航向不变,轮船受到台风影响一共经历了多少小时?人教版八年级数学下册《第十七章勾股定理》单元测试题参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:第三边长的平方是52+122=169.故选:A.2.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.3.【解答】解:根据勾股定理的几何意义,可得A、B的面积和为S1,C、D的面积和为S2,S1=42+92,S2=12+42,则S3=S1+S2,∴S3=16+81+1+16=114.故选:B.4.【解答】解:∵x==,故选:B.5.【解答】解:∵点A,B的坐标分别为(﹣6,0),(0,8),∴OA=6,OB=8,在Rt△AOB中,由勾股定理得:AB==10,∴AC=AB=10,∴OC=10﹣6=4,∴点C的坐标为(4,0),故选:C.6.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.7.【解答】解:A、32+42=52,能构成直角三角形,是整数,故错误;B、72+242=252,能构成直角三角形,是整数,故错误;C、82+152=172,构成直角三角形,是正整数,故错误;D、52+72≠92,不能构成直角三角形,故正确;故选:D.8.【解答】解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.9.【解答】解:由勾股定理得,AB2=AC2+BC2=20,则阴影部分的面积=×AC×BC+×π×()2+×π×()2﹣×π×()2=×2×4+×π××(AC2+BC2﹣AB2)=4,故选:A.10.【解答】解:∵正方形EFGH的面积=正方形ABCD的面积﹣4S=102﹣4×24=4,△ABE∴正方形EFGH的边长=2,故选:C.二.填空题(共4小题,满分20分,每小题5分)11.【解答】解:∵点A(﹣3,4),∴它到坐标原点的距离==5,故答案为:5.12.【解答】解:由勾股定理得:第三边为:=5,故答案为:5.13.【解答】解:连接AC.根据勾股定理可以得到:AB2=12+32=10,AC2=BC2=12+22=5,∵5+5=10,即AC2+BC2=AB2,∴△ABC是等腰直角三角形,∴∠ABC=45°.故答案为:10,45.14.【解答】解:当第三条线段为直角边时,5cm为斜边,根据勾股定理得,第三条线段长为=4cm;当第三条线段为斜边时,根据勾股定理得,第三条线段长为=cm.故答案为4或cm.三.解答题(共9小题,满分90分)15.【解答】解:如图所示:设AB=x,则BC=x﹣1,故在Rt△ACB中,AB2=AC2+BC2,故x2=52+(x﹣1)2,解得;x=13,即AB=13.∴BC=12,∴S=•AC•BC=×5×12=30.△ABC16.【解答】解:在Rt△ABC中,∠C=90°,∠BAC=30°,AB=6,∴BC=AB=3,在Rt△ABC中,AC==3,∵AB是DC边上的中线,∴DB=BC=3,所以CD=6,在Rt△ACD中,AD===3.答:AD的长是317.【解答】解:根据图中数据,由勾股定理可得:AB===60(米).∴该河流的宽度为60米.18.【解答】解:∵AB2+AC2=202+152=625=252=BC2,∴△ABC是直角三角形,∵S=×AB×AC=×BC×AD,△ACB∴15×20=25×AD,∴AD=12,由勾股定理得:BD==16.19.【解答】解:设运动x秒时,它们相距15cm,则CP=xcm,CQ=(21﹣x)cm,依题意有x2+(21﹣x)2=152,解得x1=9,x2=12.故运动9秒或12秒时,它们相距15cm.20.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°.在Rt△ABD中,∠ADB=90°,AB=10,BD=8,∴AD==6.(2)∵AD⊥BC,∠ACD=45°,∴△ACD为等腰直角三角形,又∵AD=6,∴CD=6,AC=6,=AB+BD+CD+AC=24+6.∴C△ABC21.【解答】解:(1)∵△ABC中,∠C=90°,b=2,c=3,∴a==;(2)∵a:c=3:5,∴设a=3x,c=5x,∵b=16,∴9x2+162=25x2,解得:x=4,∴a=12,∴△ABC的面积=×12×16=96.22.【解答】(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC =12m ,CD =13m , ∴BD 2+BC 2=CD 2. ∴BD ⊥CB ;(2)四边形ABCD 的面积=△ABD 的面积+△BCD 的面积=×3×4+×12×5 =6+30 =36(m 2).故这块土地的面积是36m 2;(3)∵S △PBD =S 四边形ABCD ,∴•PD •AB =×36,∴•PD ×3=9, ∴PD =6,∵D (0,4),点P 在y 轴上, ∴P 的坐标为(0,﹣2)或(0,10).23.【解答】解:(1)根据题意得:轮船不改变航向,轮船会进入台风影响区; (2)如图所示:设x 小时后,就进入台风影响区,根据题意得出: CE =30x 千米,BB ′=20x 千米, ∵BC =500km ,AB =300km ,∴AC ===400(km ),∴AE =400﹣30x ,AB ′=300﹣20x , ∴AE 2+AB ′2=EB ′2,即(400﹣30x )2+(300﹣20x )2=2002,解得:x 1=≈8.3,x 2=≈19.3,∴轮船经8.3小时就进入台风影响区;(3)由(2)知,从8.3小时到19.3小时轮船受到台风影响, ∴轮船受台风影响的时间=19.3﹣8.3=11(小时),答:轮船受到台风影响一共经历了11小时.。
人教版八年级数学下册第十七章《勾股定理》单元同步检测试题(含答案)
第十七章《勾股定理》单元检测题题号一二三总分21 22 23 24 25 26 27 28分数一、选择题:(每题3分,共30分)1.下列各组数中,是勾股数的是()A.9,40,41 B.2,2,2 C.5,4,41D.3,2,52.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为203.在三边分别为下列长度的三角形中,不是直角三角形的是()A.6,8,10 B.1,2,3C.2,3,5D.4,5,74.如图,在数轴上点A,B所表示的数分别为-1,1,CB⊥AB,BC=1,以点A为圆心,AC长为半径画弧,交数轴于点D(点D在点B的右侧),则点D所表示的数是()A.5B.51-C.2D.25-5.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A.4 B.3 C.2 D.56. 如图,在正方形网格中,每个正方形的边长为1,则在△ABC 中,边长为无理数的边数是( )A .0 B.1 C .2 D.37.如图,数轴上的点A 表示的数是1,OB ⊥OA ,垂足为O ,且BO=1,以点A 为圆心,AB 为半径画弧交数轴于点C ,则C 点表示的数为( )A .﹣0.4B .﹣2C .1﹣2D .2﹣18.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以20米/秒的速度行驶时,A 处受噪音影响的时间为( )A .16秒B .18秒C .20秒D .22秒9.三角形的三边长为22()2a b c ab +=+,则这个三角形是( ) A .等边三角形B .钝角三角形C .直角三角形D .锐角三角形10.如图,在△ABC 中,∠C =90°,AD 是△ABC 的一条角平分线.若AC =6,AB =10,则点D 到AB 边的距离为( )A .2B .2.5C .3D .4二、填空题:(每题3分,共30分)11.如图,O 为数轴原点,数轴上点A 表示的数是3,AB ⊥OA ,线段AB 长为2,以O 为圆心,OB 为半径画弧交数轴于点C .则数轴上表示点C 的数为_________.12.如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.13.已知△ABC 的三边长分别为1,3,10,则△ABC 的面积为_____. 14.如图,已知Rt ABC 中,90ABC ∠=︒,5AB =,12BC =,点D 在AC 上,ABD △是等腰三角形且AB BD ≠,则AD =__________.15.所谓的勾股数就是使等式222a b c +=成立的任何三个正整数.我国清代数学家罗士林钻研出一种求勾股数的方法,对于任意正整数m ,n(m >n),取a =22m n -,b =2mn ,c =22m n +,则a ,b ,c 就是一组勾股数.请你结合这种方法,写出85(三个数中最大),84和________组成一组勾股数.16.如图,一架梯子AB 长2.5m ,顶端A 靠墙AC 上,这时梯子下端B 与墙角C 距离为1.5m ,梯子滑动后停在DE 的位置上,测得BD 长为0.5m ,则梯子顶端A 下落了_______m.17.有一个棱长为1m且封闭的正方形体纸箱,一只蚂蚁沿纸箱表面从顶点A爬到顶点B,那么这只蚂蚁爬行的最短路程是 m.18.如图,已知矩形ABCD中,AB=4,AD=3,P是以CD为直径半圆上的一个动点,连接BP,则BP最大值是.19.如图,正方形的边长均为1,可以计算出,图(1)中正方形的对角线长为2;图(2)中长方形的对角线长为5;图(3)中长方形对角线的长为10,那么第n个长方形的对角线的长为_____.20.有一块田地的形状和尺寸如图,则它的面积为_________.三、解答题:(共60分)21.(10分)A,B两个居民楼在公路同侧,它们离公路的距离分别为AE=200米,BF =70米,它们的水平距离EF =390米.现欲在公路旁建一个超市P ,使超市到两居民楼的距离相等,则超市应建何处?为什么?22.(10分)已知某实验中学有一块四边形的空地ABCD ,如图所示,学校计划在空地上种植草坪,经测量∠A=90°,AC=3m ,BD=12m ,CB=13m ,DA=4m ,若每平方米草坪需要300元,间学校需要投入多少资金买草坪?23.(10分)如图,ABC 中,10,8,6AB cm AC cm BC cm ===,若点P 从点A 出发,以每秒2cm 的速度沿折线A C B A ---运动一周,设运动时间为t 秒()0t >.问:当t 为何值时,PA PB =?24. (10分)如图,公路MN 和公路PQ 在点P 处交汇,且∠QPN=30°,点A 处有一所中学,AP=160m.假设拖拉机行驶时,周围100m 以内会受到噪音的影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h ,那么学校受影响的时间为多少秒?25. (10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.26. (10分)如图,等边△ABC,其边长为1,D是BC中点,点E,F分别位于AB,AC边上,且∠EDF=120°.(1)直接写出DE与DF的数量关系;(2)若BE,DE,CF能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE+AF的长是否为定值?如果是,请求出该值,如果不是,请说明理由.参考答案一、选择题:1.A2.A3.D4.B5.A6.D7.C8.A9.C10.C二、填空题:11.13 12.213.3 214.5或13 215. 答案:1316.答案为:0.517.18.答案为:+2.1921n.20.96.三、解答题21.超市应建在距离E处150米的位置. 22.学校需要投入10800元买草坪23.t=258或19224.解:作AB⊥MN,垂足为B。
人教版数学八年级下第十七章《勾股定理》单元检测题含答案
《勾股定理》单元检测题一.选择题(每小题只有一个正确答案)1.设直角三角形的两条直角边分別为a 和b,斜边长为c,已知b = l2, C = 13,则a 二 ( )A. 1 B 、5 C 、10 D 、252。
在下列四组数中,不是勾股数的一组数是()A 、a = 15» b = 8, c = 17B 、d = 9, b = \2, c = 15 c 、a = 7,b = 24, c = 25D 、d = 3, b = 59 c = 1 3° —个三角形的三边长为15,20, 25,则此三角形最大边上的高为() A 、10 B 、12 C 、24 D 、484.如图,有一个由传感器控制的灯A 装在门上方离地高4、5 m 的墙上,任何东西只要移 至距该灯5 m 及5 m 以内时,灯就会自动发光,请问一个身高1、5 m 的学生要走到离墙 多远的地方灯刚好发光?()5•下列选项中,不能用来证明勾股左理的是()6c 若直角三角形的三边长分别为a —b 、a 、a + b.且°、b 都是正整数,则三角形其 中一边的长可能为()A 、22B 、32C 、62D 、82127。
如图,△ABC 中,&C=3, BC=5, AD 丄BC 交 3C 于点 D, /W 二二,延长 3C 至 E 使得 CE 二BC, 5将△&3C 沿AC 翻折得到"FC,连接EF,则线段EF 的长为()8•如图,点P 是平而坐标系中一点,则点P 到原点的距簡是()49 1 ■ ■ 1 X 1 1 X -2-10 -1 1 2 3 4X » A 、3 B 、2 C 、7 D 、5C 、 32 TD 、 32T A 、 6B 、 810c 如图,长方体的底而边长分别为2cm 和3cm,髙为6cm. 始经过4个侧而缠绕一圈达到点B,那么所用细线最短需要()A 、 11cmB N 2 >/34 cmC 、 (84*2 \/10 )cm 二、填空题11. 一个直角三角形的两条直角边长为6和&则它的斜边上的髙是 _____________ . 12 •如图所示,一段楼梯,髙3C 是3m r 斜边4C 是5 m,如果在楼梯上铺地毯,那么至少需 13•如图•在东四走向的铁路上有A 、B 两站(视为直线上的两点)相距36千米,在A 、B 的正北分別有C 、D 两个蔬菜基地,英中C 到A 站的距离为24千米,D 到B 站的距离为 12千米,现要在铁路AB 上建一个蔬菜加工厂E,使蔬菜基地C 、D 到E 的距离相等,则E 站应建在距A 站 ________ 千米的地方.15•如图,点A. B. 0是单位为1的正方形网格上的三个格点,00的半径为0A,点P是B 、 9cmD 、6 5/2 cmC 、 如果用一根细线从点A 开D 、(7+3x/5 )cm优弧AmB的中点,贝I J A APB的面积为______三、解答题16c 如图,在四边形ABCD 中,AB = BC = 1, CD=JJ,DA=1,且ZB = 90\ 求:(l)ZBAD的度数;⑵四边形ABCD的而积(结果保留根号)。
人教版数学八年级第十七章勾股定理单元测试精选(含答案)2
(1)若∠BAC=50°,求∠AEB 的度数;
(2)求证:∠AEB=∠ACF;
(3)试判断线段 EF、BF 与 AC 三者之间的等量关系,并证明你的结论.
【答案】(1)20°;(2)证明见解析;(3)EF2+BF2=2AC2.理由见解析.
31.如图 1,在△ABC 中,∠ACB=90°,AC=BC,E 为∠ACB 平分线 CD 上一动点
C.∠C=90°
D.∠A=∠B
【答案】A
6.如图,已知点 E 在正方形 ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是
()
A.48
B.60
C.76
D.80
【答案】C
7.在 Rt△ABC 中,∠B=90°,BC=1,AC=2,则 AB 的长是( )
A.1B. 3C来自2D. 5【答案】(1) 3+1 (2)证明见解析
39.如图,在正方形 ABCD 中,点 E 是 BC 的中点,连接 DE ,过点 A 作 AG ED 交 DE 于点 F ,交 CD 于点 G . (1)证明: ADG≌DCE ; (2)连接 BF ,证明: AB=FB .
【答案】(1)见解析;(2)见解析.
A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣
n2=0
【答案】C
14.将下列长度的三根木棒首尾顺次连接,不能组成直角三角形的是( )
A.7、24、25
B.5、12、13
C.3、4、5
D.2、3、 7
【答案】D
15.下列各组数,可以作为直角三角形的三边长的是( )
人教版八年级数学下册第17章《勾股定理》单元测试卷 (word版,含解析)
人教版八年级下册第17章《勾股定理》单元测试卷满分120分一.选择题(共10小题,满分30分,每小题3分)1.下列各组数中,是勾股数的一组是( )A .6,7,8B .5,12,13C .0.6,0.8,1D .2,4,52.下列线段a ,b ,c 能组成直角三角形的是( )A .2a =,3b =,4c =B .4a =,5b =,6c =C .1a =,2b =,3c = D .7a =,3b =,6c =3.如图,在四边形ABCD 中,90DAB BCD ∠=∠=︒,分别以四边形的四条边为边向外作四个正方形,若14135S S +=,349S =,则2(S = )A .184B .86C .119D .814.如图,在22⨯的网格中,有一个格点ABC ∆,若每个小正方形的边长为1,则ABC ∆的边AB 上的高为( )A .22B .55C .510D .15.如图,在高为3米,斜坡长为5米的楼梯台阶上铺地毯,则地毯的长度至少要( )A .4米B .5米C .6米D .7米6.若直角三角形的两边长分别是5和12,则它的斜边长是( )A .13B .13或119C .119D .12或137.在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面( )尺.A .4B .3.6C .4.5D .4.558.如图,一轮船以12海里/时的速度从港口A 出发向东北方向航行,另一轮船以5海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后两船相距( )A .13海里B .16海里C .20海里D .26海里 9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条长16cm 的直吸管露在罐外部分a 的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )A .45aB .34aC .23aD .12a10.如图,在DEF ∆中,90D ∠=︒,:1:3DG GE =,GE GF =,Q 是EF 上一动点,过点Q 作QM DE ⊥于M ,QN GF ⊥于N ,43EF =,则QM QN +的长是( )A .43B .32C .4D .23二.填空题(共6小题,满分24分,每小题4分)11.在Rt ABC ∆中,斜边2AB =,则222AB BC AC ++= .12.直角坐标平面内的两点(4,5)P -、(2,3)Q 的距离为 .13.周长为24,斜边长为10的直角三角形面积为 .14.一架云梯长2.5米,如图斜靠在一面墙上,梯子的底端离墙0.7米,如果梯子的顶端下滑了0.4米,那么梯子的底端在水平方向滑动了 米.15.将一根长为30cm 的细木棒放入长、宽、高分别为8cm 、6cm 和24cm 的长方体有盖盒子中,在M 处是盒子的开口处,设细木棒露在杯子外面的长度是为h cm ,则h 的取值范围是 .16.如图,1OP =,过点P 作1PP OP ⊥,且11PP =,得12OP;再过点1P 作121PP OP ⊥且121PP =,得23OP =;又过点2P 作232P P OP ⊥且231P P =,得32OP =⋯,依此法继续作下去,得2022OP = .三.解答题(共9小题,满分66分)17.(6分)在ABC ∆中,90C ∠=︒,AB c =,BC a =,AC b =.(1)6a =,8b =,求c ;(2)8a =,17c =,求b .18.(6分)如图所示的一块地,90ADC ∠=︒,16AD m =,12CD m =,52AB m =,48BC m =,求这块地的面积.19.(6分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.20.(6分)如图,在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,3AD =,2BC =.求AB 的长.21.(8分)如图,在ABC ∆中,点D 是BC 边上一点,连接AD .若10AB =,17AC =,6BD =,8AD =.(1)求ADB ∠的度数;(2)求BC 的长.22.(8分)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪A 正前方30米的C 处,过了2秒后,小汽车行驶至B 处,若小汽车与观测点间的距离AB 为50米,请通过计算说明:这辆小汽车是否超速?23.(8分)我们新定义一种三角形:两边的平方和等于第三边平方的2倍的三角形叫做奇异三角形.例如:某三角形三边长分别是2,410因为22224202(10)+==⨯,所以这个三角形是奇异三角形.(1)若ABC ∆三边长分别是2,22和6,判断此三角形是否奇异三角形,说明理由;(2)若Rt ABC ∆是奇异三角形,直角边为a 、()b a b <,斜边为c ,求::a b c 的值.(比值从小到大排列)24.(9分)某游乐场部分平面图如图所示,点C 、E 、A 在同一直线上,点D 、E 、B 在同一直线上,DB AB ⊥.测得A 处与E 处的距离为80m ,C 处与E 处的距离为40m ,90C ∠=︒,30BAE ∠=︒.(1)请求出旋转木马E 处到出口B 处的距离;(2)请求出海洋球D 处到出口B 处的距离;(3)判断入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离是否相等?若相等,请证明;若不相等,请说明理由.25.(9分)已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动且速度为每秒1cm ,点Q 从点B 开始沿B C A→→方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,ACQ∆的面积是ABC∆面积的13;(3)当点Q在边CA上运动时,t为何值时,PQ将ABC∆周长分为23:25两部分.参考答案一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:A 、222678+≠,6∴,7,8不是一组勾股数,本选项不符合题意;B 、22251213+=,5∴,12,13是一组勾股数,本选项符合题意;C 、0.6,0.8,1不都是正整数,0.6∴,0.8,1不是一组勾股数,本选项不符合题意; D 、222245+≠,2∴,4,5不是一组勾股数,本选项不符合题意;故选:B .2.【解答】解:A 、222234+≠,不能组成直角三角形,不符合题意; B 、222456+≠,不能组成直角三角形,不符合题意;C 、2221+=,能组成直角三角形,符合题意;D 、222+≠,不能组成直角三角形,不符合题意; 故选:C .3.【解答】解:由题意可知:21S AB =,22S BC =,23S CD =,24S AD =,连接BD ,在直角ABD ∆和BCD ∆中,22222BD AD AB CD BC =+=+,即1432S S S S +=+,因此21354986S =-=,故选:B .4.【解答】解:如图,过点C 作CD AB ⊥于D ,在直角ABE ∆中,90AEB ∠=︒,1AE =,2BE =,则由勾股定理知,AB ==由1122AE BC AB CD ⋅=⋅知,AE BCCD AB ⋅===.故选:B .5.【解答】解:在Rt ABC ∆中,224AC AB BC =-=米, 故可得地毯长度7AC BC =+=米,故选:D .6.【解答】解:当12是斜边时,它的斜边长是12; 当12是直角边时,它的斜边长2212513=+=; 故它的斜边长是:12或13.故选:D .7.【解答】解:如图,由题意得:90ACB ∠=︒,3BC =尺,10AC AB +=尺, 设折断处离地面x 尺,则(10)AB x =-尺,在Rt ABC ∆中,由勾股定理得:2223(10)x x +=-, 解得: 4.55x =,即折断处离地面4.55尺.故选:D .8.【解答】解:两船行驶的方向是东北方向和东南方向, 90BAC ∴∠=︒,两小时后,两艘船分别行驶了12224⨯=(海里),5210⨯=(海里), 22241026+=(海里).答:离开港口2小时后两船相距26海里,故选:D .9.【解答】解:如图,当吸管底部在地面圆心时吸管在罐内部分b 最短, 此时b 就是圆柱形的高,即12b cm =;16124()a cm ∴=-=,当吸管底部在饮料罐的壁底时吸管在罐内部分b 最长, 2212513()b cm =+=,∴此时3a =,所以34a .故选:B .10.【解答】解:连接QG .:1:3DG GE =,∴可以假设DG k =,3EG k =,GF EG =,90D ∠=︒,3FG k ∴=,2222DF FG DG k =-=, 43EF =,222EF DE DF =+,2248168k k ∴=+,2k ∴或2,4DF ∴=,111222EFG S EG DF EG QM GF QN ∆=⋅⋅=⋅⋅+⋅⋅, 4QM QN DF ∴+==,故选:C .二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:222AB BC AC =+,2AB =,2228AB BC AC ∴++=.故答案为:8.12.【解答】解:根据题意得PQ =故答案为:.13.【解答】解:设直角三角形两直角边长为a ,b ,该直角三角形的周长为24,其斜边长为10,24()10a b ∴-+=,即14a b +=,由勾股定理得:22210100a b +==,22()14a b +=,222196a b ab ∴++=,即1002196ab +=,48ab ∴=,∴直角三角形的面积1242ab ==, 故答案为:24.14.【解答】解:设子的底端在水平方向滑动了x 米,根据勾股定理得:2.4=; 又梯子下滑了2米,即梯子距离地面的高度为(2.40.4)2-=,根据勾股定理:2222.52(0.7)x=++,解得:0.8x=或 2.2-(舍去).即梯子的底端在水平方向滑动了0.8米,故答案为:0.8.15.【解答】解:由题意知:盒子底面对角长为226810()cm+=,盒子的对角线长:22102426()cm+=,细木棒长30cm,故细木棒露在盒外面的最短长度是:30264()cm-=.所以细木棒露在外面的最短长度是4厘米.当细木棒竖直放置时,细木棒露在盒外面的最长长度是30246()cm-=, 所以细木棒露在外面的最长长度是6厘米.所以h的取值范围是46h,故答案为:46h.16.【解答】解:1OP=,12OP=,23OP=,34OP=,20222023OP∴=.故答案为:2023.三.解答题(共9小题,满分66分)17.【解答】解:(1)在Rt ABC∆中,90C∠=︒,6BC a==,8AC b==, 22226810c AB a b∴==+=+=;(2)在Rt ABC∆中,90C∠=︒,8BC a==,17AB c==,222217815b ACc a∴==-=-=.18.【解答】解:连接AC,在Rt ACD∆中,12CD m=,16AD m=,由222AD CD AC +=,解得20AC m =,在ABC ∆中,52AB m =,20AC m =,222220482704AC CB +=+=,22522704AB ==,222AC CB AB ∴+=,ABC ∴∆为直角三角形,要求这块地的面积,求ABC ∆和ACD ∆的面积之差即可,ABC ACD S S S ∆∆=-1122AC BC CD AD =⨯-⨯ 112048121622=⨯⨯-⨯⨯ 48096=-2384m =,答:这块地的面积为2384m .19.【解答】解:设旗杆的高AB 为xm ,则绳子AC 的长为(1)x m + 在Rt ABC ∆中,222AB BC AC +=2225(1)x x ∴+=+解得12x =12AB ∴=∴旗杆的高12m .20.【解答】解:延长DC 交AB 的延长线于点E ,90B D ∠=∠=︒,60A ∠=︒,3AD =,2BC =,30E ∴∠=︒,26AE AD ∴==,24CE BC ==,BE ∴===6AB AE BE ∴=-=-21.【解答】解:(1)2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,90ADB ∴∠=︒;(2)在Rt ACD ∆中,2215CD AC AD =-=,61521BC BD CD ∴=+=+=,答:BC 的长是21.22.【解答】解:90ACB ∠=︒∴由勾股定理可得:2222503040BC AB AC =--=,40米0.04=千米,2秒11800=小时. 10.0472701800÷=>. 所以超速了.23.【解答】解:(1)2222(22)122(6)+==⨯,ABC ∴∆是奇异三角形,(2)Rt ABC ∆中,90C ∠=︒,222a b c ∴+=,c b a >>,2222c b a ∴>+,2222a b c <+,Rt ABC ∆是奇异三角形,2222b a c ∴=+,22222b a a b ∴=++,222b a ∴=,2b a ∴=,222a b c +=,223c a ∴=,c ∴,::a b c ∴=24.【解答】解:(1)在Rt ABE ∆中,30BAE ∠=︒,118040()22BE AE m ∴==⨯=, ∴旋转木马E 处到出口B 处的距离为40m ;(2)30BAE ∠=︒,CED AEB ∠=∠,90C ABE ∠=∠=︒30D BAE ∴∠=∠=︒,280()DE CE m ∴==,8040120()DE BE m ∴+=+=,∴海洋球D 处到出口B 处的距离为:120m ;(3)在Rt CDE ∆与Rt ABE ∆中,由勾股定理得:)AB m ==,)CD m ==,AB CD ∴=,∴入口A 到出口B 处的距离与海洋球D 到过山车C 处的距离相等.25.【解答】解:(1)当2t s =时,点Q 在边BC 上运动,则2AP cm =,24()BQ t cm ==,8AB cm =,826()BP AB AP cm ∴=-=-=,在Rt BPQ ∆中,由勾股定理可得)PQ cm =,PQ ∴的长为;(2)12ACQ S CQ AB ∆=⋅,12ABC S BC AB ∆=⋅,点Q 在边BC 上运动时,ACQ ∆的面积是ABC ∆面积的13,1162()33CQ BC cm ∴==⨯=,624()BQ BC CQ cm ∴=-=-=,422t ∴==,∴当点Q 在边BC 上运动时,t 为2时,ACQ ∆的面积是ABC ∆面积的13;(3)在Rt ABC ∆中,由勾股定理得:10()AC cm =, 当点P 达到点B 时,881t ==,当点Q 达到点A 时,610292 1.53t =+=,当其中一个点到达终点时,另一个点也随之停止, 08t ∴,AP t =cm ,(8)BP t cm ∴=-,点Q 在CA 上运动时,61.5()(1.5 4.5)()2CQ t t cm =⨯-=-,10(1.5 4.5)( 1.514.5)()AQ t t cm ∴=--=-+,86 1.5 4.5(0.59.5)()BP BC CQ t t t cm ∴++=-++-=+,( 1.514.5)(0.514.5)()AP AQ t t t cm +=+-+=-+, 分两种情况: ①2325BP BC CQAP AQ ++=+, 即0.59.5230.514.525t t +=-+,解得:4t =,经检验,4t =是原方程的解,4t ∴=; ②2523BP BC CQAP AQ ++=+, 即0.59.5250.514.523t t +=-+,解得:6t =,经检验,6t =是原方程的解,6t ∴=;综上所述,当点Q 在边CA 上运动时,t 为4或6时,PQ 将ABC ∆周长分为23:25两部分.。
人教版八年级数学下册第17章【 勾股定理】单元测试卷(二)含答案与解析
人教版八年级数学下册第17章单元测试卷(二)勾股定理学校:__________姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.在△ABC 中,∠ACB=90°,AC=40,CB=9,M 、N 在AB 上且AM=AC ,BN=BC ,则MN 的长为( )A .6B .7C .8D .92.如图,AE ,AD 分别是ABC 的高和角平分线,30B ∠=︒,70C ∠=︒,则DAE ∠的度数为( )A .40°B .20°C .10°D .30° 3.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,垂足为E ,AB=23,AC=4,BD=8,则点D 到线段BC 的距离为( )A 3B .3C 221D 421 4.如图,矩形EFGH 的四个顶点分别在矩形ABCD 的各条边上,AB EF =,3FG =,4GC =.有以下四个结论:①BGF CHG ∠=∠;②BFG DHE △△≌;③1tan 3BFG ∠=;④矩形EFGH 的面积是92.其中正确的结论为( )A .①②B .①②③C .①②④D .①②③④ 5.如图:点E 、F 为线段BD 的两个三等分点,四边形AECF 是菱形,且菱形AECF 的周长为20,BD 为24,则四边形ABCD 的面积为( )A .24B .36C .72D .1446.如图,在四边形ABCD 中,如果AD//BC ,AE//CF ,BE=DF ,那么下列等式中错误的是( )A .∠DAE=∠BCFB .AB=CDC .∠BAE=∠DCFD .∠ABE=∠EBC 7.如图,在长方形ABCD 中,点E 在边BC 上,过点E 作EF ⊥AD ,垂足为F ,若EF=BE ,则下列结论中正确的是( )A .EF 是∠AED 的平分线B .DE 是∠FDC 的平分线 C .AE 是∠BAF 的平分线D .EA 是∠BED 的平分线8.如图,将一边长为12的正方形纸片ABCD 的顶点A 折叠至DC 边上的点E ,使DE =5,折痕为PQ,则PQ的长为()A.12B.13C.14D.159.如图,⊙O的直径AB与弦CD交于点,AE=6,BE=2,CD=214,则∠AED的度数是()A.30°B.60°C.45°D.36°10.在平面直角坐标系中,已知直线与x轴、y轴分别交于A、B两点,点C(0,n)是y轴上一点.把坐标平面沿直线AC折叠,使点B刚好落在x轴上,则点C的坐标是()A.(0,) B.(0,) C.(0,3) D.(0,4)11.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( )A.2016B.2017C.2018D.201912.如图,已知AB∥CD,∠A=60°,∠C =25°,则∠E等于()A .60°B .25°C .35°D .45°二、填空题(本大题共6小题,每小题3分,共18分)13.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,CD 是斜边AB 上的高,若AB=8,则BD=__________.14.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为_____.15.如图所示,把长方形纸片ABCD 沿EF 折叠后,点D 与点B 重合,点C 落在点C '的位置上若160︒∠=,1AE =.则长方形纸片ABCD 的面积为________.16.如图,将一矩形纸片ABCD 沿着虚线EF 剪成两个全等的四边形纸片.根据图中标示的长度与角度,求出剪得的四边形纸片中较短的边AE 的长是_____.17.如图,一系列等腰直角三角形(编号分别为①,②,③,④,…)组成了一个螺旋形,其中第 1 个三角形的直角边长为 1,则第 n 个等腰直角三角形的面积为_____________18.如图,将矩形ABCD 绕点A 顺时针旋转90°后,得到矩形AB′C′D′,若CD =2,DA=2,那么CC′=____________.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.如图,四边形ABCD 中,AB ∥CD ,AC 与BD 相交于点O ,AO=CO .(1)求证:四边形ABCD 是平行四边形;(2)若AC ⊥BD ,AB=10,求BC 的长.20.一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2,火柴盒的一个侧面ABCD 倒下到AEFG 的位置,连结CF ,AB =a ,BC =b ,AC =c .(1)请你结合图1用文字和符号语言分别叙述勾股定理;(2)请利用直角梯形BCFG 的面积证明勾股定理:222+=a b c .21.如图,一次函数y kx b =+的图象与直线34y x =交于点()4,3A ,与y 轴交于点B ,且OA OB =.(1)求一次函数的表达式;(2)求两直线与y 轴围成的三角形的面积.(3)在x 轴上是否存在点C ,使AOC △是以OA 为腰的等腰三角形,若存在,直接写出C 的坐标;若不存在,说明理由.22.如图,一棵高32m 的大树在一次暴风雨中被刮断,树顶C 落在离树根B 点16m 处.研究人员要查看断痕A 处的情况,在离树根5m 的D 处竖起一架梯子AD ,请问这架梯子的长是多少?23.如图,在平面直角坐标系中,抛物线2y ax bx c =++的图象与x 轴交于A B 、两点(点A在点B 的左边),与y 轴交于点C ,点A 的坐标为()1,0-,抛物线顶点D 的坐标为()1,4-,直线BC 与对称轴相交于点E .(1)求抛物线的解析式;(2)点M 为直线1x =右方抛物线上的一点(点M 不与点B 重合),设点M 的横坐标为m ,记A B C M 、、、四点所构成的四边形面积为S ,若3BCD S S ∆=,请求出m 的值; (3)点P 是线段BD 上的动点,将DEP ∆沿边EP 翻折得到'D EP ∆,是否存在点P ,使得'D EP ∆与BEP ∆的重叠部分图形为直角三角形?若存在,请直接写出BP 的长,若不存在,请说明理由.24.如图,在一条东西走向河流的一侧有一村庄,C 河边原有两个取水点,A ,B 其中,AB AC =由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H A H B (、、在同一条直线上),并新修一条路,CH 测得 1.5CB =千米, 1.2CH =千米,0.9HB =千米.(1)问CH 是否为从村庄C 到河边的最近路.请通过计算加以说明;(2)求新路CH 比原路CA 少多少千米. 参考答案与解析二、选择题(本大题共12小题,每小题3分,共36分。
初中八年级数学下册第十七章勾股定理单元检测复习题二(含答案) (77)
初中八年级数学下册第十七章勾股定理单元检测习题二(含答案)如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .2【答案】B【解析】【分析】 根据平行线的性质,得出A FCE ∠=∠,ADE F ∠=∠,根据全等三角形的判定,得出ADE CFE ∆≅∆,根据全等三角形的性质,得出AD CF =,根据4AB =,3CF =,即可求线段DB 的长.【详解】∵//CF AB ,∴A FCE ∠=∠,ADE F ∠=∠,在ADE ∆和FCE ∆中A FCE ADE F DE FE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ADE CFE AAS ∆≅∆,∴3AD CF ==,∵4AB =,∴431DB AB AD =-=-=.故选:B .【点睛】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ADE FCE ∆≅∆是解此题的关键.32.如图,在ABC ∆中,ACB ∠为钝角.用直尺和圆规在边AB 上确定一点D .使ADC 2B ∠=∠,则符合要求的作图痕迹是( )A .B .C .D .【答案】B【解析】【分析】由ADC 2B ∠=∠且ADC B BCD ∠=∠+∠知B BCD ∠=∠,据此得DB DC =,由线段的中垂线的性质可得答案.【详解】解:∵ADC 2B ∠=∠且ADC B BCD ∠=∠+∠,∴B BCD ∠=∠,∴DB DC =,∴点D 是线段BC 中垂线与AB 的交点,故选B【点睛】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.33.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=3,b=4,则该矩形的面积为()A.20 B.24 C.994D.532【答案】B【解析】【分析】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据矩形的面积的即等于两个三角形的面积之和,也等于长乘以宽,列出方程,化简再代入a,b的值,得出x2+7x=12,再根据矩形的面积公式,整体代入即可.【详解】设小正方形的边长为x,则矩形的一边长为(a+x),另一边为(b+x),根据题意得:2(ax+x2+bx)=(a+x)(b+x),化简得:ax+x2+bx-ab=0,又∵ a = 3 ,b = 4 ,∴x2+7x=12;∴该矩形的面积为=(a+x)(b+x)=(3+x)(4+x)=x2+7x+12=24.故答案为B.【点睛】本题考查了勾股定理的证明以及运用和一元二次方程的运用,求出小正方形的边长是解题的关键.34.顺次连接一个四边形的各边中点,得到了一个正方形,这个四边形最可能是()A.正方形B.矩形C.菱形D.平行四边形【答案】A【解析】【分析】利用连接四边形各边中点得到的四边形是正方形,则结合正方形的性质及三角形的中位线的性质进行分析,从而不难求解.【详解】解:如图点E,F,G,H分别是四边形ABCD各边的中点,且四边形EFGH是正方形.∵点E,F,G,H分别是四边形各边的中点,且四边形EFGH是正方形.∴EF=EH,EF⊥EH,∵BD=2EF,AC=2EH,∴AC=BD,AC⊥BD,即四边形ABCD满足对角线相等且垂直,选项A满足题意.故选:A.【点睛】本题考查了利用三角形中位线定理得到新四边形各边与相应线段之间的数量关系和位置.熟练掌握特殊四边形的判定是解题的关键.35.以下列各组数为三角形的三边,能构成直角三角形的是()A.4,5,6 B.1,1C.6,8,11 D.5,12,23【答案】B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】解:A、222+≠,故不是直角三角形,故此选项错误;456B、222+=,故是直角三角形,故此选项正确;11C、2226811+≠,故不是直角三角形,故此选项错误;D、222+≠,故不是直角三角形,故此选项错误.51223故选:B.【点睛】本题考查勾股定理的逆定理的应用,解题关键在于判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.36.如图,把△ABC纸片沿DE,EF,DG折叠后,A,B,C三点都与BC 边上的点M重合,得到矩形DEFG,连接DF,若△DGM和△DMF均是等腰三角形,DG=1,则△ABC的周长为()A .B .C .D .【答案】B【解析】【分析】 根据折叠的性质知:,,,BG GM AD DM DB AE EM EC MF FC ======,根据△DGM 和△DMF 均是等腰三角形,DG=1用勾股定理求算出相应的边,再算周长.【详解】解:∵△ABC 纸片沿DE ,EF ,DG 折叠后,A ,B ,C 三点都与BC 边上的点M 重合,得到矩形DEFG∴,,,BG GM AD DM DB AE EM EC MF FC ======又∵△DGM 和△DMF 均是等腰三角形,DG=1∴1,GM BG AD DM BD MF FC =======又∵四边形DEFG 是矩形∴1EF =∴ME AE EC ====∴△ABC 的周长为:2AB BC CA ++=+故答案选:B .【点睛】本题考查折叠性质、勾股定理.利用折叠的基本性质转化相关的线段是解题关键.37.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为( )A.2.2米B.2.3米C.2.4米D.2.5米【答案】A【解析】【分析】将梯子斜靠在墙上时,形成的图形看做直角三角形,根据勾股定理,直角边的平方和等于斜边的平方,可以求出梯子的长度,再次利用勾股定理即可求出梯子底端到右墙的距离,从而得出答案.【详解】如图,在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,222=+AB AC BC ∴222AB=+=0.7 2.4 6.25在Rt△A‘BD中,∵∠A’BD=90°,A’D=2米,2'2'2+=BD A D A B∴222 6.25BD+=∴2 2.25BD=∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米即小巷的宽度为2.2米,故答案选A【点睛】本题考查的是勾股定理,熟知并熟练运用勾股定理求斜边和直角边是解题的关键38.在下列长度的各组线段中,能组成直角三角形的是()A.1,4,8B.3,5,7C.3,4,5D.5,7,8【答案】C【解析】【分析】依据勾股定理的逆定理即可判断.【详解】解:A.∵222+≠,故本选项不能组成直角三角形;148B.∵222357+≠,故本选项不能组成直角三角形;C.∵222+=,故本选项符合题意;345D.∵222+≠,故本选项不能组成直角三角形.578故选:C.【点睛】本题考查了勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.39.在△ABC中,AB=8,AC=15,BC=17,则该三角形为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【答案】B【解析】试题分析:根据已知可得三边符合勾股定理的逆定理判断即可.解:∵∵ABC中,AB=8,BC=17,AC=17,∵152+82=172,即AC2+AB2=BC2,∵三角形是直角三角形,故选B考点:勾股定理的逆定理.40.在直角三角形中,若勾为3,股为4,则弦为()A.5 B.6 C.7 D.25【答案】A【解析】【分析】题中已知两直角边分别为3和4,要求弦,即为求直角三角形中的斜边长度;然后根据勾股定理可知,斜边的平方等于两直角边平方的和,据此代入数据计算即可.【详解】==5.故选A.【点睛】本题考查的是勾股定理,关键是掌握勾股定理计算方法;。
人教版八年级数学下册《第17章勾股定理》单元检测卷含答案
人教版八年级数学下册《第17章勾股定理》单元检测卷含答案一、选择题:1.下列长度的3条线段能构成直角三角形的是()①8,15,17;②4,5,6;③7.5,4,8.5;④24,25,7;⑤5,8,17.A.①②④B.②④⑤C.①③⑤D.①③④2.在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.如图,在△ABC中,CE平分∠ACB,CF平分∠ACD,且EF∥BC交AC于M,若CM=5,则CE2+CF2等于()A.75B.100C.120D.1254.若一个三角形的三边长分别为6、8、10,则这个三角形最长边上的中线长为()A.3.6B.4C.4.8D.55.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形6.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则( )A.∠A为直角B.∠C为直角C.∠B为直角D.不是直角三角形7.直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为()A.20B.22C.24D.268.如图,在一个高为3米,长为5米的楼梯表面铺地毯,则地毯长度为()米A.4米B.5米C.7米D.8米9.在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A.30B.40C.50D.6010.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.米B.米C.(+1)米D.3米11.如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3:4B.5:8C.9:16D.1:212.如图,在△ABC中,∠ACB=90°,AC=40,CB=9,点M,N在AB上,且AM=AC,BN=BC,则MN的长为()A.6B.7C.8D.9二、填空题:13.已知直角三角形两直角边的长分别为3cm,4cm,第三边上的高为__________.14.三边为9、12、15的三角形,其面积为 .15.一个直角三角形的周长为60,一条直角边和斜边的长度之比为4:5,这个直角三角形三边长从小到大分别为_______.16.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了步路(假设2步为1米),却踩伤了花草.17.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,则EB=.18.在△ABC中,AB=13,AC=20,BC边上的高为12,则△ABC的面积为.三、解答题:19.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a:b=3:4,c=75cm,求a、b;(2)若a:c=15:17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高h c;(5)若a、b、c为连续整数,求a+b+c.20.如图,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.21.如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22.已知在△ABC中,a=m2-n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n.试判断:△ABC是否为直角三角形?23.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.24.如图,C为线段BD上一动点,分别过点B、D作AB BD,ED BD,连结AC、EC,已知线段AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)请问点C满足什么条件时,AC+CE最小?最小为多少?(3)根据(2)中的规律和结论,请构图求代数式的最小值.参考答案1.D2.B3.B4.D5.C6.A7.C9.A10.C11.B12.C13.答案为:2.4cm;14.3615.答案为:15,20,25;16.答案为:少走了4步.17.答案为:1.518.答案为:126或66.19. (1)a=45cm.B=60cm; (2)540; (3)a=30,c=34;(4)6; (5)12.20.解:如图,∵在直角△ABO中,∠B=90°,BO=3cm,AB=4cm,∴AO==5cm.则在直角△AFO中,由勾股定理得到:FO==13cm,∴图中半圆的面积=π×()2=π×=(cm2).答:图中半圆的面积是cm2.21.22.∵a=m2-n2,b=2mn,c=m2+n2,∴a2+b2=(m2-n2)2+4m2n2=m4+n4-2m2n2+4m2n2=m4+n4+2m2n2=(m2+n2)2=c2.∴△ABC是为直角三角形.23.24.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
B
C
图2
第十七章 勾股定理单元测试题(莫)
总分120分 时间120分钟
一、选择题(本大题共l0小题,每小题3分.共52分)
1. 若直角三角形的两条直角边长分别为3cm 、4cm ,则斜边上的高为 ( ) A 25cm B 125cm C 5 cm D 512cm
2. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( ) A 钝角三角形 B 锐角三角形 C 直角三角形 D 等腰三角形
3. 在直角坐标系中,点P (-2,3)到原点的距离是 ( ) A 5 B 13 C 11 D 2
4. 如图2,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆.设直线AB 左边阴影部分的面积为S 1,右边阴影部分的面积和为S 2,则( ) A S 1=S 2
B S 1<S 2
C S 1>S 2
D 无法确定
5. 如图3,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,则阴影部分的面积是:
A 16
B 18
C 19
D 21
6. 已知,如图4,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( ) A 25海里
B 30海里
C 35海里
D 40海里
7. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长
(A )4 cm (B )8 cm
(C )10 cm
(D )12 cm
8. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25
(B )14 (C )7 (D )7或25
C
B
D
E
A
图3
北
南
A
东
图4
15题
C
9. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
7
24
25
207
15
2024
25
7
25
20
24
257
202415
(A)
(B)
(C)
(D)
10. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 11.三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )
(A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐12.下列命题:①如果a 、b 、c 为一组勾股数,那么4a 、4b 、4c 仍是勾股数;②如果直角三角形的两边是3,4,那么斜边必是5;③如果一个三角形的三边是12,25,21,那么此三角形必是直角三角形;④一个等腰直角三角形的三边是a 、b 、c ,(a >b=c ),那么a 2:b 2:c 2=2:1:1.其中正确的是( ) A 、①② B 、①③ C 、①④ D 、②④ 13.一直角三角形的三边分别为4、5、x ,那么以x
A 、13
B 、5
C 、41或9
D 、4
14.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D
二、填空题(本大题共8小题,每小题3分,共24分)
15.在正方形ABCD 中,对角线为22,则正方形边长为 。
16.飞机在空中水平飞行,某一时刻刚好飞到小刚头顶正上方4000米处,过了20秒,飞机距离小刚5000米,则飞机每小时飞行 千米。
17. 已知一个直角三角形的两边长分别是3和4,则第三边长为 。
18. 如图,数轴上有两个直角三角形Rt △ABO 、Rt △CDO ,OA 、OC 是斜边,且OB=1,AB=1,CD=1,OD=2,分别以O 为圆心,OA 、OC 为半径画弧交x 轴于E 、F ,则E 、F 分别对应的数是 。
19.在Rt △ABC 中,斜边AB=2,则AB 2
+BC 2
+AC 2
= .
C
20.“对顶角相等”的逆命题是_ ______ __ .
21.如图所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为8,正方形A 的面积是10,B 的面积是11,C 的面积是13,则D 22.如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的母线L 是___________
三、解答题
23.如图,∠C=90°,AC=12,BC=9,AD=8,BD=17,求△ABD 的面积.(6分)
24. 如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,
求EC 的长.(6分)
25.(8分)如图14,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24
米.
(1)这个梯子底端离墙有多少米?
(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?
26.(8分)如图10,方格纸上每个小正方形
的面积为1个单位.
(1)在方格纸上,以线段AB 为边画正方形并计算所画正方形的面积。
(2)你能在图上画出面积依次为5个单位、10个单位、13个单位的正方形吗?(请画出来,并计算,)
27.(8分)如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.
(1)求E 应建在距A 多远处?(2)DE 和EC 垂直吗?试说明理由
28.(8分)如图,直线与x 轴、y 轴交于A (3,0)、B (0,-3)两点,求线段AB
的长及AB 边上的高。