–FrameworksConcurrentprogrammingstructures E.1[Data Structures]Distributeddatastructures F
c++ 中常用的设计编程思维
c++ 中常用的设计编程思维一、面向对象编程思想在C语言中,面向对象编程思想主要体现在结构体(struct)的使用上。
通过结构体,可以将具有相同属性和行为的多个数据项封装成一个整体,方便对对象进行操作和分类。
例如,可以将一组学生封装成一个学生对象,每个对象都具有姓名、年龄、性别等属性,以及成绩、班级等行为。
二、模块化编程模块化编程是将程序拆分成若干个独立的模块,每个模块完成一部分特定的功能,然后将这些模块组合起来实现整个程序。
在C语言中,可以通过函数(function)实现模块化编程。
通过将代码分解为可重用的函数,可以提高代码的可读性和可维护性,同时方便后续的扩展和修改。
三、数据结构的设计在C语言中,常用的数据结构包括数组(array)、链表(linked list)、栈(stack)、队列(queue)等。
通过对这些数据结构进行合理的设计和运用,可以大大提高程序的效率和性能。
例如,在实现一个排序算法时,需要选择合适的数据结构来存储待排序的元素,并利用数据结构的特性来实现高效的排序算法。
四、错误处理机制在C语言中,错误处理机制非常重要。
程序员需要考虑到各种可能的错误情况,并设计相应的处理策略。
常用的错误处理机制包括返回值(return value)、错误码(error code)、异常处理(exception handling)等。
通过这些机制,可以保证程序的稳定性和可靠性。
五、内存管理在C语言中,程序员需要手动分配和释放内存。
正确的内存管理可以避免内存泄漏和野指针等问题,提高程序的效率和性能。
程序员需要了解内存分配和释放的基本原理,并熟练掌握malloc()、calloc()、free()等内存管理函数的使用。
总的来说,C语言是一种基础且强大的编程语言,需要程序员具备较高的编程思维和技巧。
通过掌握面向对象编程思想、模块化编程、数据结构设计、错误处理机制和内存管理等方面的设计编程思维,可以更好地使用C语言进行开发工作。
并发编程的七个模型
并发编程的七个模型线程与锁:线程与锁模型有很多众所周知的不⾜,但仍是其他模型的技术基础,也是很多并发软件开发的⾸选。
函数式编程:函数式编程⽇渐重要的原因之⼀,是其对并发编程和并⾏编程提供了良好的⽀持。
函数式编程消除了可变状态,所以从根本上是线程安全的,⽽且易于并⾏执⾏。
Clojure之道——分离标识与状态:编程语⾔Clojure是⼀种指令式编程和函数式编程的混搭⽅案,在两种编程⽅式上取得了微妙的平衡来发挥两者的优势。
actor:actor模型是⼀种适⽤性很⼴的并发编程模型,适⽤于共享内存模型和分布式内存模型,也适合解决地理分布型问题,能提供强⼤的容错性。
通信顺序进程(Communicating Sequential Processes,CSP):表⾯上看,CSP模型与actor模型很相似,两者都基于消息传递。
不过CSP模型侧重于传递信息的通道,⽽actor模型侧重于通道两端的实体,使⽤CSP模型的代码会带有明显不同的风格。
数据级并⾏:每个笔记本电脑⾥都藏着⼀台超级计算机——GPU。
GPU利⽤了数据级并⾏,不仅可以快速进⾏图像处理,也可以⽤于更⼴阔的领域。
如果要进⾏有限元分析、流体⼒学计算或其他的⼤量数字计算,GPU的性能将是不⼆选择。
Lambda架构:⼤数据时代的到来离不开并⾏——现在我们只需要增加计算资源,就能具有处理TB级数据的能⼒。
Lambda架构综合了MapReduce和流式处理的特点,是⼀种可以处理多种⼤数据问题的架构。
1. 线程与锁原始,底层(既是优点也是缺点),有效,仍然是开发并发软件的⾸选。
⼏乎每种编程语⾔都以某种形式提供了⽀持,我们应该了解底层的原理,但是,多数时候,应该使⽤更上层的类库,更⾼效,更不易出错。
这种⽅式⽆外乎⼏种经典的模式,互斥锁(临界区),⽣产者-消费者,同步等等。
书中举了个外星⽅法的⽰例,即使我们⾃⼰的代码没有死锁,但是你不知道调⽤的⽅法做了什么,或许就会导致死锁。
.net framework的理解
文章标题:深度剖析:.Net Framework的理解与应用1. .Net Framework的概念与历史.Net Framework是微软公司推出的一个应用程序框架,能够支持广泛的应用程序类型和编程语言。
它的出现标志着软件开发领域的一次革命性的进步,为开发人员提供了更灵活、高效的工具和环境。
.Net Framework的诞生源于微软对软件开发生态的全面理解和需求的深刻反思。
从最初的1.0版本到现在的4.8版本,.Net Framework经历了多次版本更新和技术迭代,已经成为软件开发领域不可或缺的一部分。
2. .Net Framework的核心概念.Net Framework的核心概念包括Common Language Runtime (公共语言运行时,CLR)、Framework Class Library(框架类库,FCL)和多种编程语言的支持。
CLR作为.Net Framework的执行引擎,负责管理程序的执行、内存分配、垃圾回收等任务;FCL则提供了丰富的类库和API,开发人员可以借助这些类库快速构建各类应用程序;.Net Framework支持多种编程语言,包括C#、、F#等,使得开发人员可以根据自己的喜好和项目需求进行选择。
3. 对. Net Framework的个人理解作为一名资深的软件开发人员,我对.Net Framework有着深入的理解和丰富的实践经验。
在我看来,.Net Framework之所以如此受欢迎和广泛应用,是因为它在开发效率、程序性能、安全性等方面都有非常出色的表现。
微软公司积极推动.Net Core的开发,为跨评台和云原生应用提供了更好的支持,使得.Net技术体系更加完善和强大。
4. .Net Framework的应用场景与拥抱未来在实际的项目开发中,.Net Framework可以适用于各种类型的应用程序开发,包括桌面应用、Web应用、移动应用、游戏开发等。
c++ 信奥赛 常用英语
c++ 信奥赛常用英语在C++ 信奥赛中(计算机奥林匹克竞赛),常用英语词汇主要包括以下几方面:1. 基本概念:- Algorithm(算法)- Data structure(数据结构)- Programming language(编程语言)- C++(C++ 编程语言)- Object-oriented(面向对象)- Function(函数)- Variable(变量)- Constants(常量)- Loops(循环)- Conditional statements(条件语句)- Operators(运算符)- Control structures(控制结构)- Memory management(内存管理)2. 常用算法与数据结构:- Sorting algorithms(排序算法)- Searching algorithms(搜索算法)- Graph algorithms(图算法)- Tree algorithms(树算法)- Dynamic programming(动态规划)- Backtracking(回溯)- Brute force(暴力破解)- Divide and conquer(分治)- Greedy algorithms(贪心算法)- Integer array(整数数组)- Linked list(链表)- Stack(栈)- Queue(队列)- Tree(树)- Graph(图)3. 编程实践:- Code optimization(代码优化)- Debugging(调试)- Testing(测试)- Time complexity(时间复杂度)- Space complexity(空间复杂度)- Input/output(输入/输出)- File handling(文件处理)- Console output(控制台输出)4. 竞赛相关:- IOI(国际信息学奥林匹克竞赛)- NOI(全国信息学奥林匹克竞赛)- ACM-ICPC(ACM 国际大学生程序设计竞赛)- Codeforces(代码力)- LeetCode(力扣)- HackerRank(黑客排名)这些英语词汇在信奥赛领域具有广泛的应用,掌握这些词汇有助于提高选手之间的交流效率,同时对提升编程能力和竞赛成绩也有很大帮助。
framework源码解读笔记
文稿标题:深度解读framework源码目录一、理解framework源码的重要性二、 framework源码的基本结构三、深入解读framework源码1. 基础概念梳理2. 核心模块分析3. 关键函数解读4. 模块间通信机制理解四、对framework源码的个人观点和理解五、结语一、理解framework源码的重要性在当今软件开发行业,掌握源码阅读的能力是非常重要的。
而对于一个优秀的程序员来说,通过深入学习和解读开源框架的源码,可以加深对框架设计思想和原理的理解,提升代码水平,丰富编程经验。
尤其是对于较为庞大和复杂的软件框架,如何阅读和理解其源码是一个具有挑战性的任务。
本文将针对framework源码展开深入解读,帮助读者理解其设计理念和核心实现。
二、framework源码的基本结构framework作为一个常用的软件开发框架,其源码结构通常包括配置文件、核心模块、扩展模块等部分。
对于刚开始阅读源码的人来说,首先需要了解框架的基本结构,其主要模块和组件之间的调用关系。
通过对源码整体结构的理解,能够为后续的深入解读打下基础。
三、深入解读framework源码1. 基础概念梳理在深入解读源码之前,需要对一些基础概念进行梳理,比如框架的初始化流程、模块加载机制、依赖注入等。
这些基础概念将贯穿整个源码解读的过程,并且对于理解框架的设计思想和实现原理至关重要。
2. 核心模块分析框架的核心模块通常包括事件管理、路由解析、模板引擎、数据库操作等,这些模块的设计和实现直接关系到框架的性能和稳定性。
在源码解读的过程中,需要对这些核心模块进行深入分析,理解其内部逻辑和工作原理。
3. 关键函数解读在源码中,会存在很多关键函数和方法,它们通常负责实现框架的核心功能。
通过对这些函数的解读和理解,能够更加清晰地了解框架的运行机制和实现细节。
4. 模块间通信机制理解框架通常由多个模块组成,这些模块之间需要进行通信和协作才能保证整个框架的正常运行。
c语言基本框架
c语言基本框架C语言是一门经典的程序设计语言,其基本框架是实现程序功能的核心。
本文将从语言基本结构和常见程序模板两方面详解C语言基本框架。
一、C语言基本结构C语言作为一种高级语言,其程序的基本结构可以仅用4个关键字if、else、for、while就能构造出基本算法。
而C语言程序的基本框架可以按照以下结构分为三个部分:头文件、主函数和函数体。
1. 头文件#include是C语言中预编译命令,作用是在编译(Compile)程序之前将预编译命令 #include 的头文件直接插入到程序中,以提高编译效率。
C语言中常用的头文件包括:(1) stdio.h头文件是C语言标准输入输出头文件,其包含了输入输出函数的声明,如printf、scanf、gets、puts等。
(2)stdlib.h头文件是C语言标准库头文件,其包含了一些常用函数的声明,如malloc、rand、exit等。
(3)string.h头文件是C语言标准字符串头文件,其包含了一些字符串函数的声明,如strcpy、strcat、strlen等。
(4)math.h头文件是C语言数学头文件,其包含了一些数学函数的声明,如sin、cos、sqrt等。
2. 主函数C语言程序的主函数是程序的入口,每一个程序都必须有且仅有一个主函数。
其格式为:int main() { //程序代码 return 0; }其中,main表示C语言程序的入口,int代表该函数返回值的数据类型,return 0表示函数调用结束并返回结果。
3. 函数体函数是C语言程序的基本模块,是一段可以被单独调用的代码。
C语言程序经常使用自定义函数,以便将程序按照逻辑划分到不同的函数中。
C语言函数的基本格式:函数类型函数名称 (参数列表) { //函数体return 返回值; }其中,函数类型代表该函数的返回值类型,函数名称是函数的形象名称,参数列表为调用该函数时需要传递的值。
函数体中则是具体的实现代码。
c语言程序框架
c语言程序框架C语言程序框架C语言是一种高效、快速、可移植的编程语言,广泛应用于操作系统、编译器、数据库、网络等领域。
在编写C语言程序时,程序框架是非常重要的,它可以帮助程序员更好地组织代码,提高代码的可读性和可维护性。
C语言程序框架通常包括以下几个部分:1.头文件头文件是C语言程序中的重要组成部分,它包含了程序所需的各种函数、变量和宏定义等信息。
在编写程序时,我们需要根据实际需要选择合适的头文件,并在程序开头使用#include指令将其包含进来。
2.全局变量全局变量是指在程序中定义的可以被多个函数共享的变量。
在程序框架中,我们通常会将全局变量定义在头文件中,以便在程序的各个部分都可以使用。
3.函数声明函数声明是指在程序中声明函数的名称、参数类型和返回值类型等信息。
在程序框架中,我们通常会将函数声明放在头文件中,以便在程序的各个部分都可以使用。
4.主函数主函数是C语言程序的入口点,它是程序的起点和终点。
在程序框架中,我们通常会将主函数放在程序的最后面,以便在程序的各个部分都可以使用。
5.其他函数除了主函数以外,程序框架中还可能包含其他的函数。
这些函数通常会被主函数或其他函数调用,用于实现程序的各种功能。
在编写C语言程序时,程序框架的设计非常重要。
一个好的程序框架可以帮助程序员更好地组织代码,提高代码的可读性和可维护性。
同时,程序框架还可以帮助程序员更好地理解程序的结构和逻辑,从而更好地进行调试和优化。
C语言程序框架是C语言程序设计中的重要组成部分,它可以帮助程序员更好地组织代码,提高代码的可读性和可维护性。
在编写C 语言程序时,我们应该根据实际需要设计合适的程序框架,并不断优化和改进,以提高程序的质量和效率。
concurrent 实现线程安全的原理
concurrent 实现线程安全的原理concurrent 是Java中用于实现多线程编程的一个工具类。
在多线程环境下,由于多个线程同时访问共享资源,可能会导致数据不一致或者线程安全问题。
而concurrent 提供了一些线程安全的类和方法,可以帮助我们解决这些问题。
concurrent 的线程安全实现的原理主要包括以下几个方面:1. 原子性(Atomicity):concurrent 提供了一些原子操作类,例如AtomicInteger、AtomicLong等,这些类的操作都是原子的,保证了多线程环境下的数据一致性。
原子操作类内部使用了CAS (Compare And Swap)算法来实现原子性,CAS是一种非阻塞算法,可以避免线程的阻塞和唤醒,提高了并发性能。
2. 可见性(Visibility):concurrent 提供了volatile关键字,用于保证被修饰的变量对所有线程的可见性。
在多线程环境下,如果一个线程对一个变量进行了修改,其他线程可能无法立即看到这个修改,使用volatile关键字可以解决这个问题。
volatile关键字会禁止指令重排序和缓存优化,保证了变量的修改对其他线程的可见性。
3. 有序性(Ordering):concurrent 提供了一些同步器,例如CountDownLatch、CyclicBarrier等,这些同步器可以控制线程的执行顺序,保证线程按照指定的顺序执行。
同步器内部使用了锁和条件变量来实现线程的等待和唤醒,保证了线程的有序性。
4. 并发容器(Concurrent Collections):concurrent 提供了一些线程安全的容器类,例如ConcurrentHashMap、ConcurrentLinkedQueue等,这些容器类在多线程环境下可以安全地进行读写操作,避免了数据不一致的问题。
这些容器类内部使用了锁和CAS算法来实现线程安全。
除了上述几个方面,concurrent 还提供了线程池、并发队列、并发锁等工具,可以帮助我们更方便地实现线程安全。
.net框架基本结构
.NET Framework 是由Microsoft 公司开发的一个面向Windows 操作系统的软件框架,用于构建和运行应用程序。
以下是.NET Framework的基本结构:mon Language Runtime (CLR):•CLR 是.NET Framework 的核心组件,它负责管理和执行.NET应用程序。
CLR 提供了内存管理、安全性、异常处理、线程管理等服务,并负责将源代码编译为中间语言(Intermediate Language,IL)并在运行时进行即时编译。
2.Class Library:•.NET Framework 包含大量的类库,这些类库提供了各种功能,如文件I/O、网络通信、数据库访问、用户界面开发等。
这些类库组成了.NET的基础类库(Base Class Library,BCL)。
mon Type System (CTS):•CTS 定义了.NET Framework中所有的数据类型,并确保不同语言编写的代码可以相互操作。
CTS 提供了一种通用的类型系统,以便在不同语言之间进行交互。
mon Language Specification (CLS):•CLS 是一组规范,确保在.NET Framework中编写的不同语言的代码可以相互调用。
它定义了一组最小的要求,以确保语言之间的互操作性。
5.Assemblies:•程序集是.NET应用程序的基本部署单元。
它可以是一个可执行文件(包含应用程序的可执行代码)或一个动态链接库(包含可供其他程序集调用的代码和数据)。
程序集还包括元数据,其中包含有关类型、成员、版本等的信息。
nguage Interoperability:•.NET Framework 支持多种编程语言,包括C#、、F#等。
这种多语言的支持是通过CLR、CTS 和CLS 的设计来实现的,使得这些语言可以在同一个应用程序中协同工作。
7.Windows Forms 和:•Windows Forms 用于创建Windows 应用程序的图形用户界面,而 用于构建Web 应用程序。
计算机英语编程算法常用术语中英对照
计算机英语编程算法常用术语中英对照编程算法是计算机科学中的一个重要领域,涉及到许多术语。
以下是一些常用术语的中英对照:1. Algorithm 算法2. Data structure 数据结构3. Variable 变量4. Constant 常量5. Loop 循环6. Control structure 控制结构7. Condition 条件8. Statement 语句9. Function 函数10. Parameter 参数11. Argument 参数12. Recursion 递归13. Iteration 迭代14. Array 数组15. List 列表16. Stack 栈17. Queue 队列18. Linked list 链表19. Tree 树20. Graph 图21. Sorting 排序22. Searching23. Bubble sort 冒泡排序24. Selection sort 选择排序25. Insertion sort 插入排序26. Merge sort 归并排序27. Quick sort 快速排序28. Binary search 二分29. Linear search 线性30. Big O notation 大O表示法34. Algorithmic efficiency 算法效率35. Hash table 哈希表36. Linked list 链表37. Binary tree 二叉树38. AVL tree 平衡二叉树39. Red-black tree 红黑树40. Depth-first search 深度优先41. Breadth-first search 广度优先42. Dijkstra's algorithm Dijkstra算法43. Dynamic programming 动态规划44. Greedy algorithm 贪心算法45. Divide and conquer 分治法46. Backtracking 回溯法47. Memoization 记忆化48. Heuristic algorithm 启发式算法50. Pseudo code 伪代码这些术语是算法中常见的基本概念和技术,熟悉它们对于理解和实现算法非常重要。
conncurrentdictionary原理
ConcurrentDictionary原理1. 什么是ConcurrentDictionary?ConcurrentDictionary是.NET Framework中的一种线程安全的字典类型,它提供了一种高效、并发安全的方式来存储键值对数据。
在多线程环境中,通常需要考虑数据的并发访问和修改,而ConcurrentDictionary正是为了解决这一问题而设计的。
2. ConcurrentDictionary的线程安全性原理ConcurrentDictionary的线程安全性原理主要基于两个重要概念:分段锁和CAS(Compare-And-Swap)操作。
2.1 分段锁ConcurrentDictionary内部采用了分段锁的机制,它将整个字典分成若干个片段(segment),每个片段都有自己的锁。
这样,当多个线程同时访问不同的片段时,它们之间不会互相阻塞,从而提高了并发访问的效率。
在对字典进行插入、删除、更新等操作时,只需要锁住对应的片段,而不是整个字典,从而减小了锁的粒度,提高了并发性能。
2.2 CAS操作除了分段锁之外,ConcurrentDictionary还使用了CAS操作来保证线程安全。
CAS是一种乐观锁的实现方式,它通过原子性的比较和更新来确保数据的一致性。
在ConcurrentDictionary中,当需要插入或更新一个键值对时,会先通过CAS操作来尝试执行,如果成功则直接完成操作,如果失败则尝试重新执行,直到成功为止。
这种乐观锁的机制减少了对锁的依赖,同时提高了并发性能。
3. ConcurrentDictionary的性能优势由于采用了分段锁和CAS操作,ConcurrentDictionary在并发访问情况下具有明显的性能优势。
相比于传统的Dictionary类型,在高并发场景下能够更好地保证数据的一致性和并发访问的效率。
这使得ConcurrentDictionary成为处理大规模并发数据的首选方案。
concurrentqueue 编译
一、介绍concurrentqueueconcurrentqueue是一个开源的C++库,旨在提供高性能的多线程并发队列实现。
它采用无锁并发队列的设计,能够在多线程环境下快速、高效地进行操作。
concurrentqueue的设计灵感来自于Michael及Herlihy在1991年提出的无锁队列算法,整体架构基于现代C++标准,同时充分利用了硬件并行性。
二、应用场景1. 多线程数据交换concurrentqueue适用于多线程数据交换的场景,比如生产者-用户模型。
在生产者-用户模型中,生产者负责往队列中添加数据,而用户负责从队列中取出数据进行处理。
由于生产者和用户可能在不同的线程中执行,因此需要一个线程安全的队列来协调各个线程之间的数据交换,而concurrentqueue正是为此而设计的。
2. 任务调度在一些多线程任务调度的场景中,需要将任务按照不同的优先级或者其他条件进行排队,并由多个线程并发地从队列中取出任务并执行。
concurrentqueue提供了高效的无锁实现,非常适合于这种任务调度的场景。
三、使用方法1. 包含头文件要在项目中使用concurrentqueue,首先需要将其头文件包含到源代码中,通常的做法是使用#include指令将concurrentqueue的头文件包含到源文件中。
```cpp#include "concurrentqueue.h"```2. 创建队列对象在使用concurrentqueue之前,需要先创建一个队列对象。
可以选择使用默认构造函数创建一个空的队列,也可以指定初始容量创建一个带有初始容量的队列。
```cppmoodycamel::ConcurrentQueue<int> queue; moodycamel::ConcurrentQueue<int> queueWithCapacity(100); ```3. 入队和出队使用enqueue方法可以将元素添加到队列中,使用try_dequeue方法可以从队列中取出元素。
framework语法
framework语法Framework语法在软件开发领域中,Framework是一种高层次抽象的结构,它提供了一组通用工具和功能,方便开发者快速构建各种应用程序。
其中一个重要的组成部分就是Framework语法。
Framework语法以其清晰简洁的特点,大大提高了开发者的效率,同时也降低了出错的可能性。
它是根据特定的设计原则,遵循特定的语法规则来实现的。
下面我们针对主要的Framework语法进行简单分类说明。
1、命名规则在Framework开发过程中,一个良好的命名规则会让代码更加易读,并且减少产生歧义的可能性。
在这里,我们主要讲解以下几个命名规则:PascalCase命名规则:首字母大写,并且融合在一起。
如:“MyFrameworkName”;camelCase命名规则:首字母小写,并且融合在一起。
如:“myFrameworkName”;snake_case命名规则:单词之间采用下划线(_)连接。
如:“my_framework_name”;2、方法和函数在Framework语法中,方法和函数是开发者最常使用的语法之一。
以下是方法和函数的语法规则:方法和函数的命名采用PascalCase命名规则;方法和函数的参数采用camelCase命名规则;方法和函数的返回值应该尽可能地简短明了,同时遵循具体的语言规范。
3、类和接口类和接口是一种重要的面向对象编程(OOP)的概念,也是Framework开发中最常用的语法之一。
以下是类和接口的语法规则:类和接口的命名采用PascalCase命名规则;类和接口采用大括号({})来描述,其中包含了它们的属性和方法的定义;类和接口的属性采用camelCase命名规则;4、命名空间命名空间是一种用来避免代码命名冲突的机制。
以下是命名空间的语法规则:命名空间采用PascalCase命名规则;命名空间的具体内容采用一定的缩进和层级关系,以便更好地组织代码。
总结:Framework语法中包含了很多规则和机制,它们都是为了提高开发者的效率和代码的可读性。
c语言的整体框架结构
c语言的整体框架结构C语言是一种通用的高级程序设计语言,其框架结构主要包括输入输出、基本数据类型、控制结构、函数和库五个方面。
下面将详细介绍C语言的整体框架结构。
1. 输入输出(Input/Output):C语言提供了一组标准库函数来实现输入和输出操作,使得程序可以与用户进行交互。
常用的输入函数有scanf()和fgets(),用于从键盘读取用户输入的数据;常用的输出函数有printf()和puts(),用于将结果输出到屏幕。
通过这些输入输出函数,程序可以接收用户的输入,并将结果展示给用户,实现与用户的交互。
2. 基本数据类型(Basic Data Types):C语言提供了一些基本的数据类型,包括整型、浮点型、字符型等。
整型包括int、short、long和long long等,用于表示整数;浮点型包括float和double,用于表示实数;字符型用于表示单个字符。
这些数据类型可以根据需要进行组合和扩展,以满足程序对不同类型数据的需求。
3. 控制结构(Control Structures):C语言提供了一些控制结构来进行程序的流程控制,包括顺序结构、选择结构和循环结构。
顺序结构指的是程序从上到下顺序执行;选择结构包括if语句和switch语句,用于根据条件选择不同的执行路径;循环结构包括for循环、while循环和do-while循环,用于重复执行一段代码。
通过这些控制结构,可以实现对程序流程的灵活控制,使程序可以根据不同的条件做出不同的处理。
4. 函数(Functions):C语言支持函数的定义和调用,通过函数可以将一段代码封装成一个独立的模块,以达到代码复用和模块化的目的。
函数可以接受参数,并返回一个值。
参数用于传递数据给函数,函数内部对参数进行处理,可以改变参数的值或返回结果;返回值用于将计算结果返回给函数的调用者。
函数可以使程序结构更加清晰,简化程序设计过程,并提高代码的可读性和可维护性。
c语言程序框架
c语言程序框架
1.头文件和宏定义:包括预处理指令、头文件和宏定义等。
头文件包含了程序所需的库函数和类型定义,便于程序进行编译、链接和调试。
宏定义可以方便地定义常量、函数和表达式等。
2. 全局变量和常量:定义程序中需要使用的全局变量和常量,使得它们可以在不同的函数中被访问和修改。
3. 函数声明:声明程序所需的函数,包括其返回值类型、参数个数和类型等。
函数声明可以方便地调用函数,并在程序中引用外部函数。
4. 主函数:程序的入口函数,包括程序初始化、数据输入、处理和输出等操作。
主函数可以调用其他函数或模块,完成相应的任务。
5. 子函数或模块:程序中的具体实现细节,包括对数据结构的操作、算法的实现和各种功能模块的实现等。
子函数或模块可以被主函数和其他函数调用,完成相应的功能。
6. 结束语句:程序执行完毕后,需要使用特定的结束语句来结束程序的执行,以确保程序正常退出。
常用的结束语句包括return 语句和exit函数等。
以上是C语言程序的基本框架和组成部分。
在实际编程过程中,需要根据具体的需求和程序功能进行相应的调整和改进,以便实现更加高效、可靠和易于维护的程序。
- 1 -。
.net concurrentqueue 原理
concurrentqueue 原理.NET 中的 ConcurrentQueue 是一种线程安全的队列数据结构,它允许多个线程同时访问和操作队列,而不需要额外的同步措施(如锁)。
它是通过利用 .NET Framework 中的 System.Threading 命名空间下的并发编程工具和数据结构来实现线程安全性的。
ConcurrentQueue 的原理主要包括以下几个关键点:1. 底层数据结构:ConcurrentQueue 的底层数据结构通常是基于链表(linked list)的,它由节点(Node)组成,每个节点包含一个元素和一个指向下一个节点的引用。
这种数据结构支持高效的队列操作,如入队(Enqueue)和出队(Dequeue)。
2. 无锁算法:ConcurrentQueue 使用无锁(lock-free)算法,这意味着多个线程可以同时对队列进行操作,而不会发生竞争条件或死锁。
它使用原子操作来确保线程安全性,如CAS(Compare-And-Swap)。
3. CAS 操作:ConcurrentQueue 中的入队和出队操作使用CAS 操作来保证线程安全。
CAS 是一种原子操作,它允许在不使用锁的情况下修改内存中的值。
这意味着如果一个线程正在执行入队或出队操作,其他线程可以同时进行其他操作,而不会阻塞。
4. 多生产者和多消费者:ConcurrentQueue 支持多个生产者和多个消费者同时访问队列。
这使得它适用于并行编程场景,其中多个线程需要安全地访问共享队列。
5. 高性能:ConcurrentQueue 在多线程环境中表现出色,因为它避免了锁的争用,允许更多的并发操作。
总之,ConcurrentQueue 的原理基于无锁算法和原子操作,它提供了高性能和线程安全的队列实现,适用于多线程和并行编程中需要处理队列的场景。
通过使用 ConcurrentQueue,开发人员可以避免手动管理锁和同步问题,从而更容易编写高效的多线程代码。
c语言程序框架
c语言程序框架
C语言程序框架是指一个基本的程序结构,它由头文件、宏定义、全局变量、函数声明、函数定义、主函数等组成。
程序框架可以帮助我们规范程序编写,提高代码质量,减少出错机率,方便程序维护和升级。
程序框架的头文件部分主要包括系统头文件、自定义头文件和函数声明等。
其中,系统头文件是C语言标准库提供的函数库,包括stdio.h、stdlib.h、string.h等,自定义头文件是我们自己编写的头文件,其中包含了一些自定义的函数声明。
函数声明部分包括了所有出现在程序中的函数原型声明,这样可以提高代码可读性和可维护性。
宏定义部分是程序中的一些常量和预定义符号,它们通过宏定义被替换成实际的值,例如#define PI 3.14就可以替换程序中的PI
为3.14。
全局变量是指在程序中定义的可以被所有函数调用的变量,它们必须在程序的开头定义,并且应当尽量少用,以免影响程序的可读性和可维护性。
函数定义部分是程序的核心,它们实现了程序的具体功能。
在编写函数时,需要注意参数的类型、参数的数量和返回值的类型。
最后,程序框架的主函数是程序的入口,它负责调用其他函数,将程序的流程控制起来。
在主函数中,需要初始化程序所需的变量和数据结构,并负责程序的输入输出。
综上所述,C语言程序框架是程序编写的基础,规范程序的结构和流程,有助于提高程序的可读性和可维护性。
C++程序的基本框架
C++程序的基本框架C++程序的基本框架学习C++,既要会利用C++进行面向过程的结构化程序设计,也要会利用C++进行面向对象的程序设计,更要会利用模板进行泛型编程。
下面是店铺整理的关于C++程序的基本框架,希望大家认真阅读!一、引言应用程序也像一个建筑物,有它的架构,建筑物是有层次,模块,和基本元素,如砖块,或模版组成的。
程序也非常相似,类就是C++程序架构的基本元素。
程序是运行在计算机上的,而计算机必须有一个操作系统,我们把操作系统看作是一个平台,程序就是运行在这个平台上,就像建筑物总是起在一定的基础上一样。
操作系统提供了许多程序编程接口,API 。
应用程序通过API 调用操作系统许多内置的功能。
二、C++程序架构的基本元素 - 类C++程序是由一个一个类组成的,每一个类它可能是基类或者派生类,每一个类都封装了程序接口或者应用程序的概念等等,都有相应的功能和作用。
通过类的继承,可以使用基类的特性,或者派生出其他的特性。
使用虚拟函数和消息机制提供丰富的编程接口和控制。
一个程序的入口点是其主函数,主函数的主要任务是完成一些初始化的工作和维护一个消息循环。
通过主函数进入程序入口(如果编写的是基于Windows系统的程序,程序中将WinMain()函数作为应用程序的入口),根据主函数要求初始化窗口,发送消息调用其他的.类,而类里封装着小程序或者低级的系统应用程序,然后完成类里的程序运行,这个过程也是对消息循环的维护。
当按照发送消息的要求完成每一个类的调用,也就完成了一个程序。
C++程序启动和初始化过程是创建对象、建立各种对象之间的关系、把窗口显示在屏幕上的过程。
而退出程序是关闭窗体销毁对象的过程。
如果程序是MFC的Windows应用程序,程序使用WinMain()函数作为入口,这个函数已经通过封装隐藏与应用程序框架中。
除WinMain()外,类似于CWinApp类成员函数Run()也是隐含执行的,Run()函数负责把消息放进应用程序窗口消息循环中,由WinMain()函数完成对Run的调用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Transactional Boosting:A Methodology for Highly-Concurrent Transactional ObjectsMaurice Herlihy Eric KoskinenComputer Science Department,Brown University{mph,ejk}@AbstractWe describe a methodology for transforming a large class of highly-concurrent linearizable objects into highly-concurrent trans-actional objects.As long as the linearizable implementation satis-fies certain regularity properties(informally,that every method has an inverse),we define a simple wrapper for the linearizable im-plementation that guarantees that concurrent transactions without inherent conflicts can synchronize at the same granularity as the original linearizable implementation.Categories and Subject Descriptors D.1.3[Programming Tech-niques]:Concurrent Programming–Parallel Programming; D.3.3 [Programming Languages]:Language Constructs and Features –Frameworks;Concurrent programming structures; E.1[Data Structures]:Distributed data structures; F.3.1[Logics and Mean-ings of Programs]:Specifying and Verifying and Reasoning about ProgramsGeneral Terms Algorithms,Languages,TheoryKeywords Transactional Boosting,non-blocking algorithms,ab-stract locks,transactional memory,commutativity1.IntroductionSoftware Transactional Memory(STM)has emerged as an alterna-tive to traditional mutual exclusion primitives such as monitors and locks,which scale poorly and do not compose cleanly.In an STM system,programmers organize activities as transactions,which are executed atomically:steps of two different transactions do not ap-pear to be interleaved.A transaction may commit,making its effects appear to take place atomically,or it may abort,making its effects appear not to have taken place at all.To our knowledge,all transactional memory systems,both hard-ware and software,synchronize on the basis of read/write conflicts. As a transaction executes,it records the locations(or objects)it read in a read set,and the memory locations(or objects)it wrote in a write set.Two transactions conflict if one transaction’s read or write set intersects the other’s write set.Conflicting transactions cannot both commit.Conflict detection can be eager(detected be-fore it occurs)or lazy(detected afterwards).Conflict resolution(de-ciding which transactions to abort)can be implemented in a variety of ways.Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on thefirst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.PPoPP’08,February20–23,2008,Salt Lake City,Utah,USA.Copyright c 2008ACM978-1-59593-960-9/08/0002...$5.00Synchronizing via read/write conflicts has one substantial ad-vantage:it can be done automatically without programmer partici-pation.It also has a substantial disadvantage:it can severely and un-necessarily restrict concurrency for certain shared objects.If these objects are subject to high levels of contention(that is,they are “hot-spots”),then the performance of the system as a whole may suffer.Here is a simple example.Consider a mutable set of integers that provides add(x),remove(x)and contains(x)methods with the obvious meanings.Suppose we implement the set as a sorted linked list in the usual way.Each list node has twofields,an integer value and a node reference next.List nodes are sorted by value, and values are not duplicated.Integer x is in the set if and only if a list node has valuefield x.The add(x)method reads along the list until it encounters the largest value less than x.Assuming x is absent,it creates a node to hold x,and links that node into the list.Consider a set whose state is{1,3,5}.Transaction A is about to add2to the set and transaction B is about to add4.Since neither transaction’s pending method call depends on the other’s,there is no inherent reason why they cannot run concurrently.Nevertheless, calls to add(2)and add(4)do have read/write conflicts in the list implementation,because no matter how A and B’s steps are interleaved,one must write to a node read by the other.Unlike conflicts between short-term locks,where the delay is typically bounded by a statically-defined critical section,if transaction A is blocked by B,then A is blocked while B completes an arbitrarily long sequence of steps.By contrast,a high level of concurrency can be realized in a lock-based list implementation such as lock coupling[2].All critical sections are short-lived,and multiple threads can traverse the list concurrently.Moreover,there also exist well-known lock-free list implementations[20]that provide even morefine-grained concurrency,relying only on individual compareAndSet()calls for synchronization.Several“escape”mechanisms have been proposed to address the limitations of STM concurrency control based on read/write conflicts.For example,open nested transactions[22](discussed in more detail later)permit a transaction to commit the effects of cer-tain nested transactions while the parent transaction is still running. Unfortunately,lock-coupling’s critical sections do not correspond naturally to properly-nested sub-transactions.Lock coupling can be emulated using an early release mechanism that allows a transac-tion to drop designated locations from its read set[13],but it is difficult to specify precisely when early release can be used safely, and the technique seems to have limited applicability.We are not aware of any prior escape mechanism that approaches the level of concurrency provided by common lock-free data structures.We are left in the uncomfortable position that well-known and efficient data structures can easily be made concurrent in standard non-transactional models,but appear to be inherently sequential inall known STM models.If transactional synchronization is to gain wide acceptance,however,it must support roughly the the same level of concurrency as state-of-the-art lock-based and lock-free algorithms,among transactions without real data dependencies. This challenge has two levels:transaction-level and thread-level. At the coarse-grained,transactional level,a transaction adding2to the set should not have to wait until a transaction adding4to the same set completes.Equally important,at thefine-grained thread level,the concurrent calls should be able to execute at the same degree of interleaving as the best existing lock-based or lock-free algorithms.This paper introduces transactional boosting,a methodology for transforming a large class of highly-concurrent linearizable ob-jects into highly-concurrent transactional objects.We describe how to transform a highly-concurrent linearizable base object,imple-mented without any notion of transactions,into an equally concur-rent transactional object.Transactional boosting treats each base object as a black box.It requires only that the object provide a specification characterizing its abstract state(for example,it is a set of integers),and how its methods affect the state(for example,add(x)ensures that x is in the set).Transactional boosting also requires certain regularity conditions(basically,that methods have inverses)which we will discuss later.Transactional boosting complements,but does not completely replace conventional read/write synchronization and recovery.We envision using boosting to implement libraries of highly-concurrent transactional objects that might be synchronization hot-spots,while ad-hoc user code can be protected by conventional means.This paper makes the following contributions:•To the best of our knowledge,transactional boosting is thefirst STM technique that relies on object semantics to determine conflict and recovery.•Because linearizable base objects are treated as black boxes, transactional boosting allows STMs to exploit the consider-able work and ingenuity that has gone into libraries such as java.util.concurrent.•Because we provide a precise characterization of how to use the technique correctly,transactional boosting avoids the dead-lock and information leakage pitfalls that arise in open nested transactions[22].•We identify and formally characterize an important class of dis-posable method calls whose properties can be exploited to pro-vide novel transactional approaches to semaphores,reference counts,free-storage management,explicit privatization,and re-lated problems.•Preliminary experimental evidence suggests that transactional boosting performs well on simple benchmarks,primarily be-cause it performs both conflict detection and logging at the granularity of entire method calls,not individual memory ac-cesses.Moreover,the number of aborted transactions(and wasted work)is substantially lower.It must be emphasized that all of the mechanisms we deploy orig-inate,in one form or another,in the database literature from the 70s and80s.Our contribution is to adapt these techniques to soft-ware transactional memory,providing more effective solutions to important STM problems than prior proposals.2.Software Transactional MemoryWe assume an STM where transactions can be serialized in the order they commit,a property called dynamic atomicity[30].For brevity,we assume for now that transactions are not nested.We re-quire the ability to register user-defined handlers called when trans-actions commit or abort(as provided by DSTM2[12]and SXM [1]).We now describe our methodology in more detail,postponing formal definitions to Section5.Any transactional object must solve two tasks:synchronization and recovery.Synchronization requires detecting when transac-tions conflict,and recovery requires discarding speculative changes when a transaction aborts.The specification for a linearizable base object defines an ab-stract state(such as a set of integers),and a concrete state(such as a linked list).Each method is usually specified by a precondition(de-scribing the object’s abstract state before invoking the method)and a postcondition,describing the object’s abstract state afterwards,as well as the method’s return value.Informally,two method invocations commute if applying them in either order leaves the object in the same state and returns the same response.In a Set,for example,add(x)commutes with add(y)if x and y are distinct.This commutativity property is the basis of how transactional boosting performs conflict detection.We define an abstract lock[22]associated with each invoca-tion of a boosted object.Two abstract locks conflict if their invoca-tions do not commute.Abstract locks ensure that non-commutative method calls never occur concurrently.Before a transaction calls a method,it must acquire that method’s abstract lock.The caller is delayed while any other transaction holds a conflicting lock(time-outs avoid deadlock).Once it acquires the lock,the transaction makes the call,relying on the base linearizable object implementa-tion to take care of thread-level synchronization.In the integer set example,the abstract locks for add(x)and add(y)do not conflict when x and y are distinct,so these calls can proceed in parallel.A method call m has inverse m′if applying m′immediately after m undoes the effects of m.For example,a method call that adds x to a set not containing x has as inverse the method call that removes x from the set.A method call that adds x to a set already containing x has a trivial inverse,since the set’s state is unchanged.When inverses are known,recovery can be done at the granular-ity of method calls.As a transaction executes,it logs an inverse for each method call in a thread-local log.If the transaction commits, the log is discarded,and the transaction’s locks are released.How-ever,if the transaction aborts,the transaction revisits the log entries in reverse order executing each inverse.(A transaction that added x to the set would call remove(x).)When every inverse has been executed,the transaction releases its locks.Sometimes it is convenient to delay certain method calls un-til after a transaction commits or aborts.For example,consider an object that generates unique IDs for transactions.The object’s ab-stract state is the pool of unused IDs.It provides an assignID() method that returns an ID not currently in use,removing it from the pool,and a releaseID(x)method that returns ID x to the pool. Any two assignID()calls that return distinct IDs commute,and a releaseID(x)call commutes with every call except an assignID() call that returns x.As a result,if a transaction that obtains x aborts, we can postpone returning x to the pool for arbitrarily long,per-haps forever.For example,if the ID generator is implemented as a counter,then it is sensible never to return x to the pool.We call these disposable method calls.There are other examples of disposable methods.One can im-plement a transactional semaphore that decrements a counter im-mediately,blocking while the counter value is zero,but postpones incrementing the counter until the calling transaction commits.Ref-erence counts would follow a dual strategy:the reference count is incremented immediately,but decremented lazily after the transac-tion commits.(When an object’s reference count is zero,its space can be freed.)Reference counter decrements can also be postponed, allowing deallocation to be done in batches.Similar disposabilitytradeoffs apply to transactional malloc()and free(),and counters used to manage“privatization”of objects shared by transactional and non-transactional threads.A boosted object can also be accessed outside of a transaction, as long as the thread acquires the appropriate abstract locks.Ac-cessing a boosted object outside of a transaction does not prevent other transactions from accessing the same object.However,ab-stract locks ensure that all transactional operations which do not commute with the non-transactional operations are delayed until the non-transactional thread releases the abstract lock.By contrast, external access is difficult in traditional STM implementations be-cause non-transactional threads modify memory without acquiring locks,and their effects cannot be aborted.This is precisely the pri-vatization problem discussed in[28].Transactional boosting is not a panacea.It is limited to objects (1)whose abstract semantics are known,(2)where commutative method calls can be identified,and(3)for which reasonably effi-cient inverses either exist or can be composed from existing meth-ods.This methodology seems particularly well suited to collection classes,because it is usually easy to identify inverses(for exam-ple,the inverse of removing x is to put it back),and many method calls commute(for example,adding or removing x commutes with adding or removing y,for x=y).Further,transactional boosting supports a clean separation be-tween low-level thread synchronization,which is the responsibil-ity of the underlying linearizable object implementation,and high-level transactional synchronization,which is handled by the ab-stract locks and undo log.Non-conflicting concurrent transactions synchronize at the level of the linearizable base object,implying for example,that if the base object is non-blocking for concur-rent threads,then it is non-blocking for concurrent non-conflicting transactions.No prior STM technique can achieve this kind offine-grained thread-level parallelism.3.ExamplesWe now consider some examples illustrating how highly-concurrent linearizable data structures can be adapted to provide the samefine-grained thread-level concurrency in transactional systems.Our pre-sentation is informal,postponing more precise definitions to Sec-tion5.For each example we provide a specification,such as that of the Set in Figure1.We use the notation method(v)/r to indicate the invocation of method with argument v and response r.In some cases the response is inconsequential to commutativity and is denotedMethod Inverseadd(x)/false noop()add(x)/true remove(x)/trueremove(x)/false noop()remove(x)/true add(x)/truecontains(x)/⇔insert(y)/⇔remove(y)/⇔remove(y)/Figure2.The SkipListKey classundoing the aborted transaction’s changes to the Set’s abstract state.Figure1summarizes Set methods’inverses and commutativity. Indeed any call to add(x),remove(y),or contains(z)commutes with the others so long as they have distinct arguments.Skip List Implementation A skip list[23]is linked list in which each node has a set of short-cut references to later nodes in the list.A skip list is an attractive way to implement a Set because it provides logarithmic-time add(),remove(),and contains()meth-ods.To illustrate our claim that we can treat base linearizable ob-jects as black boxes,we describe how to transactionally-boost the ConcurrentSkipListSet class from the java.util.concurrent li-brary.This class is a very efficient,but complicated,lock-free skip list.We will show how to transform this highly-concurrent lineariz-able library class into an equally concurrent transactional library class without the need to understand how the linearizable object is implemented.Figure2shows part of the SkipListKey class,a transac-tional Set implementation that is constructed by boosting the ConcurrentSkipListSet object using a LockKey for synchroniza-tion.For brevity,we focus on implementing a set of integers, called keys.Before we describe the implementation of the boosted ConcurrentSkipListSet class,we consider some utility classes.The LockKey class,as shown in Figure3,associates an abstract lock with each key.Key-based locking may block commutative calls(for example,two calls to add(x)when x is in the set),but it provides enough concurrency for practical purposes.(Naturally, transactional boosting does not require the programmer to exploit all commutative methods.)This class’s commit and abort handlers release the locks(on abort,after replaying the log).The lock’s17public class LockKey{18ConcurrentHashMap<Integer,Lock>map;19public LockKey(){20map=new ConcurrentHashMap<Integer,Lock>(); 21}22public void lock(int key){23Lock lock=map.get(key);24if(lock==null){25Lock newLock=new ReentrantLock();26Lock oldLock=map.putIfAbsent(key,newLock); 27lock=(oldLock==null)?newLock:oldLock; 28}29if(LockSet.add(lock)){30if(!lock.tryLock(LOCKFigure3.The LockKey classmapfield is a ConcurrentHashMap(Line18)that maps integers to locks.1The lock(k)methodfirst checks whether there exists a lock for this key,and if not,creates one(Lines23-28).Each transaction has a thread-local LockSet tracking the locks it has acquired that must be released when the transaction commits or aborts.The transaction must register commit and abort handlers instructing the STM to release all locks(after replaying the log,if necessary).The transaction tests whether it already has that lock (Line29).If so,nothing more needs to be done.Otherwise,it tries to acquire the lock(Line31).If the lock attempt times out,it aborts the transaction(Lines31-35).In the boosted skip list shown in Figure2,an add(v)callfirst acquires the lock for v(Line6),and then calls the linearizable base object’s add(v)method(Line7).If the return value indicates that the base object’s state has changed,then the caller registers an abort handler to call the inverse method(Line8).All acquired abstract locks are automatically released when the transaction commits or aborts.3.2Priority QueuesA priority queue(PQueue)is a collection of keys,where the domain of keys has a natural total order.Unlike Set s,PQueue s may include duplicate keys.A priority queue provides an add(x) method that adds x to the collection,a removeMin()method that returns and removes the least key in the collection,and a min() method that returns but does not remove the least key.Priority queue methods and their inverses are listed in Figure4. The inverse for a removeMin()call that returns x is just add(x).In most linearizable heap implementations,removing x and adding it again may cause the internal structure of the heap to be restructured, but such changes do not cause synchronization conflicts because the PQueue’s abstract set is unchanged.The min()method does not change the queue’s state,and needs no inverse.Most priority queue classes do not provide an inverse to add(x). Nevertheless,it is relatively easy to synthesize one.We create a simple Holder class containing the key and a Boolean deletedMethod InverseremoveMin()/x add(x)/addInverse(x)/⇔add(y)/,x≤ymin()/x⇔min()/xFigure5.The HeapRW classfield,initially false.Holder s are ordered by their key values.Instead of adding the key to the PQueue,we add its holder.To undo the effects of an add()call,the transaction sets that Holder’s deleted field to true,leaving the Holder in the queue.We change the transactional removeMin()method to discard any deleted records returned by the linearizable base object’s removeMin().(We will show an example later.)All add()calls commute.Additionally,removeMin()/x com-mutes with add(y)if x≤y.Here too,commutativity depends on both method call arguments and results.Heap Implementation Priority queues are often imple-mented as heaps,which are binary trees where each item in the tree is less than its descendants.We implemented the lineariz-able concurrent heap implementation due to Hunt et al.[16].The removeMin()method removes the root and re-balances the tree, while add(x)places the new value at a leaf,and then“percolates”the value up the tree.This implementation usesfine-grained locks. (Because locks are not nested,this algorithm is not a good candi-date for open nested transactions.)Figure5shows part of the boosted heap implementation.The heapfield(Line41)is the base linearizable heap,and the lock field(Line42)is a two-phase readers-writers lock.The readLock() method acquires the lock in shared mode,and writeLock()in ex-clusive mode.All such locks are released when the transaction commits or aborts.Each add()call acquires a shared-mode lock (Line44),relying on the base object’s thread-level synchroniza-tion to coordinate concurrent add()calls.As described earlier,theadd()method does not add the key directly to the base heap,but instead creates a Holder containing the key and a Boolean deleted flag(Line45).For recovery,it logs a call to mark that key’s Holder as deleted(Line46).63public class BlockingQueue<T>{64BlockingDeque<T>queue;65TSemaphore full;//block if full66TSemaphore empty;//block if empty67public BlockingQueue(int capacity){68queue=new LinkedBlockingDeque<T>(capacity);69full=new TSemaphore(capacity);70empty=new TSemaphore(0);71}72public void offer(final T value){73full.acquire();74queue.offerLast(value);75empty.release();76Thread.onAbort(new Runnable(){77public void run(){queue.takeLast();}78};79}80public T take(){81empty.acquire();82T result=queue.takeFirst();83full.release();84Thread.onAbort(new Runnable(){85public void run(){queue.offerFirst(result);} 86};87return result;88}89}Method Inverse Post-AbortassignID()/x noop()releaseID(x)/Figure7.Specification of a Unique ID Generator Pipeline Implementation To detect when BlockingQueue methods within a pipeline can proceed in parallel,we introduce a transactional semaphore class(TSemaphore)to mirror the queue’s committed state.Figure6shows the BlockingQueue implemen-tation.It uses two transactional semaphores:the full semaphore blocks the caller when the queue is full by counting the num-ber of empty slots.It is initially set to the queue capacity(Line 69).The empty semaphore blocks the caller while the queue is empty by counting the number of items in the queue.It is ini-tially set to zero(Line70).As noted above,the acquire()method, which decrements the semaphore,takes effect immediately,block-ing the caller while the semaphore’s committed state is zero.The release()method is disposable:it takes effect only when the trans-action commits.We discuss another example of disposable meth-ods in the next subsection.Note also that transactional semaphores cannot be implemented by conventional read/write synchroniza-tion:they require boosting to avoid deadlock.The offer()method decrements the full semaphore before calling the base queue’s offerLast()method(Line73).When the decrement returns,there is room.After placing the item in the base queue,offer()increments the empty semaphore(Line 75),ensuring that the item will become available after the transac-tion commits.The take()method increments and decrements the semaphores in the opposite order.3.4Unique IdentifiersGenerating unique IDs is a well-known problem for STMs based on read/write conflicts.The obvious approach,incrementing a shared counter,introduces false read/write conflicts.Under trans-actional boosting,we would define an ID generator class that pro-vides an assignID()method that returns an ID distinct from any other ID currently in use.Note that assignID()/x commutes with assignID()/y for x=y.If a thread aborts after obtaining ID x from assignID()then, strictly speaking,we should put x back by calling releaseID(x), which returns x to the pool of unused IDs.Nevertheless,release is disposable:we can postpone putting x back(perhaps forever). As long as x is assigned,no transaction can observe(by calling assignID())whether x is in use.Figure7shows the commutativity specification for a unique ID generator.Transactional boosting not only permits a transactional unique ID generator to be implemented as a getAndAdd()counter,it provides a precise explanation as to why this implementation is correct.4.EvaluationWe now describe some experiments testing the performance of transactional boosting.Stanford STAMP Benchmarks We modified two of the Stanford STAMP benchmarks[5](written in C)to use boosting. The vacation benchmark simulates a travel reservation system in which client threads interact with a database consisting of a col-lection of red-black trees.In our transactionally-boosted red-black tree implementation,methods synchronize by short-term mutual exclusion locks,and each key is assigned its own two-phase trans-123vacation-lo vacation-hi kmeans-lo kmeans-hi2Weused the following switches,which STAMP recommends for low and high contention contention,respectively.See [5]for the semantics of each switch.Low switches:−n4−q90−u80−r65536−t4194304High switches:−n8−q10−u80−r65536−t41943043Low switches:−m40−n40−t0.05−i inputs/random100012500000100000015000002000000250000030000003500000400000012481632Figure 10.Throughput for boosted heap implementations using an exclusive lock (left)and a shared/exclusive lock (right).lock,and removeMin ()calls the exclusive writer’s lock.This ex-periment suggests that using a read/write lock to discriminate be-tween add ()and removeMin ()calls is worthwhile.5.Formal ModelWe now summarize the formal model.A full discussion,complete with examples,can be found in the Technical Report [11].This model is adapted from Weihl [30]and from Herlihy and Wing [15].5.1HistoriesA computation is modeled as a history ,that is,a sequence of in-stantaneous events .Events associated with changes in the status of a transaction T include T init , T commit , T abort indicat-ing that T starts rolling back its effects,and T aborted indicating that T finishes rolling back its effects.Additionally,the event T ,x .m (v ) indicates that T invokes method m of object x with argu-ment v,and the event T,v indicates the corresponding return value v.For example,here is a history in which transaction A adds 3to a skip list:A init · A,list.add(3) · A,true · A commitA single transaction run in isolation defines a sequential history.A sequential specification for an object defines a set of legal sequen-tial histories for that object.A concurrent history is one in which events of different transactions are interleaved.A subhistory denoted h|T is a subsequence of the events of h, restricted to a transaction T.Two histories h and h′are equiva-lent if for every transaction A,h|A=h′|A.If h is a history, committed(h)is the subsequence of h consisting of all events of committed transactions.Definition5.1.A history h is strictly serializable if committed(h) is equivalent to a legal history in which these transactions execute sequentially in the order they commit.Definition5.2.Histories h and h′define the same state if,for every history g,h·g is legal if and only if h′·g is.Definition5.3.For a history h and any given invocation I and re-sponse R,let I−1and R−1be the inverse invocation and response. That is,the invocation and response such that the state reached af-ter the history h·I·R·I−1·R−1is the same as the state reached after history h.In the Skip List example,if an element is added to a list and then removed,the list is returned to its initial state.For this example, remove()is the inverse of insert()(eliding item values for the moment).If I does not modify the data structure,its inverse I−1is triv-ial;we denote it noop().Note that inverses are defined in terms of method calls(that is,invocation/response pairs),not invoca-tions alone.For example,one cannot define an inverse for the removeMin()method call of a heap without knowing which value it removed.Definition5.4.Two method calls I,R and I′,R′commute if:for all histories h,if h·I·R and h·I′·R′are both legal,then h·I·R·I′·R′and h·I′·R′·I·R are both legal and define the same state.Commutativity identifies method calls that are in some sense or-thogonal and have no dependencies on each other.In the Skip List example,we can take advantage of the commutativity of the insert()method for distinct values.No matter how these method calls are ordered,they leave the object in the samefinal state.For a history h,let G be the set of histories g such that h·g is legal.Definition5.5.A method call denoted I·R is disposable if,∀g∈G,if h·I·R and h·g·I·R are legal,then h·I·R·g and h·g·I·R are legal and both define the same state.In other words,the method call I·R can be postponed arbitrarily without anyone being able to tell that I·R did not occur.When I·R does occur it may alter future computation,but postponing it still results in a legal history.In the above definition we quantify over all possible histories that proceed h and end with I·R.In the Unique ID Generator example,a transaction may delay the release of an identifier until after it commits.Since releaseID() is a disposable method,regardless of how long it is postponed,com-putation yields legal histories;other transactions acquire alternate identifiers.5.2Rules and CorrectnessA transactional boosting system must follow these rules.mutativity Isolation.For any non-commutative methodcalls I1,R1∈T1and I2,R2∈T2,either T1commits or aborts before any additional method calls in T2are invoked,or vice-versa.Informally,commutativity isolation stipulates that methods which are not commutative can be executed,so long as they are not executed concurrently.Note that this rule does not specifya locking discipline,but rather specifies a property of histo-ries resulting from all possible(correct)disciplines.In practice, choosing a locking discipline is an engineering decision.A dis-cipline that is optimal in the sense that no two commutative op-erations are serialized may suffer performance overhead from the computation involved in implementing the locking disci-pline.By contrast,an overly conservative approximation may inhibit all concurrency.In Section4we quantified this trade-off with some examples.pensating Actions.For any history h and transaction T,ifT aborted ∈h,then it must be the case that h|T= T init ·I0·R0···I i·R i· T aborted ·I−1i·R−1i···I−1·R−10· T aborted where i indexes the last successfully completed method call.This rule concerns the behavior of an aborting transaction.At the point when a transaction decides to abort,it must subse-quently invoke the inverse method calls of all method calls completed thus far.The transaction need not acquire locks to undo its effects.This property is important because for alterna-tive techniques,such as nested open transactions,care must be taken to ensure that compensating actions(the analog of inverse methods)do not deadlock.3.Disposable Methods For any history h and transaction T,anymethod call T,x.m(v) · T,r that occurs after T commit or after T abort must be disposable.As a result of this rule,if T generates a method call after it commits,regardless of how far into the future the method call occurs,the history is legal.The timing of these delayed disposable methods is an engineering decision,as discussed in Section3.Theorem5.1.(Main Theorem)For any STM system that obeys the correctness rules,the history of committed transactions is strictly serializable.All proofs are available in[11].6.Related WorkTransactional memory[14]has gained momentum as an alterna-tive to locks in concurrent programming.This approach has been investigated in hardware[14,21],in software[8,9,13,27],and in schemes that mix hardware and software[6,25].Existing STMs synchronized via read/write conflicts,which may cause benign con-flicts(see Harris et al[10]).Here,we describe how to synchronize in a way that exploits object semantics.Open nested transactions[22](ONT)have been proposed as a way to implement highly-concurrent transactional objects.In ONT,a nested transaction can be designated as open.If an open transaction commits,its effects immediately become visible to all other transactions.The programmer can register handlers to be executed when transactions enclosing the open transaction commit or abort.。