Ecotoxicology and Environmental Safety

合集下载

朱慧贤,男,1966年1月出生,云南易门县人,教授,理学学

朱慧贤,男,1966年1月出生,云南易门县人,教授,理学学
主持或参与省级、校级科研课题10项
先后担任原化学与环境科学系班主任、生物教研室主任、实验室副主任、副系主任
先后获得云南省级优秀教学成果奖、玉溪市科技进步奖、学校优秀教学成果奖、学校课程方案设计一等奖、教学竞赛二等奖、优秀教育工作者、师德标兵、优秀教师、优秀共产党员、优秀班主任等奖励
1.Wu,Xian-Hua;Zhu,Hui-Xian;Zhang,Xin;Hu,Qiu-Fen;Yang,Guang-Yu.Determination of the resveratrol in wine by rapid column high performance liquid chromatography. Guangpu Shiyanshi(2005), 22(3), 593-594.
薛智勇
浙江省农业科学院环境资源与土壤肥料所研究员
浙江省"151"人才工程第二层次
长期一直从事生物肥料和农业废弃物处理利用技术开发研究工作
曾主持参加"浙江省主要农产品产地环境质量评价与控制关键技术研究"、"设施栽培植株残体处理研究及基质新材料开发"、"环太湖养殖排泄物环境污染风险评价及综合利用关键技术研究"、 农业部公益性行业科研专项"有机(类)肥料产业发展的技术研究"和948项目"固体有机废弃物高附加值资源化技术引进、创新研究与产业化开发"、"新型多功能生物肥料创制关键技术研究与产品开发"、"次生盐渍化土壤生物活性调理剂的研制与开发"、"新型饲用微生态制剂的研制与产业化"、"环保型工厂化养猪业关键技术研究与示范"、"畜禽规模养殖及专业小区环境工程技术开发与示范"等10多项与本项目相关国家省部级课题

环境类英文期刊列表

环境类英文期刊列表

环境类英文期刊列表:AActa Oecologica《生态学,国际生态学报》法国ISSN:1146-609X,1980年创刊,全年6期,Elsevier Science出版社出版,SCI收录期刊,SCI 2003年影响因子1.143。

刊载有关理论与实验生态学方面的研究论文。

内容涉及自然环境和实验条件下的群体研究。

Advances in Environmental Research《环境研究进展》美国ISSN:1093-0191,1997年创刊,全年4期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2003年影响因子0.626,2003年EI收录87篇。

刊载研究环境科学方面的研究论文与述评。

Advances in Water Resources《水资源进展》英国ISSN:0309-1708,1977年创刊,全年12期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2003年影响因子1.806,2003年EI收录98篇。

刊载水资源研究论文与评论,侧重基础开发、模拟技术与实际应用。

涉及数值模拟、系统分析与数学程序、地表水、水文学、水质、水电系统和废水循环等方面。

Atmospheric Environment《大气环境》英国ISSN:1352-2310,1967年创刊,全年40期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2002年影响因子2.352,2003年EI收录543篇。

刊载研究人与大气环境的相互影响,包括空气污染、微气候学和污染控制对策等方面的论文和简讯。

Atmospheric Environment. Part B. Urban Atmosphere《大气环境,B部分:城市大气》英国ISSN:0957-1272,1989年创刊,全年4期,Elsevier Science出版社出版,刊载城市气候、能与湿度平衡、气象、水文、卫生、建筑、城市规划、大气污染及污染控制等方面的考察研究、数据分析和数学模拟等方面的论文和报告。

二氧化钛在水环境中的迁移转化及其毒性影响因素

二氧化钛在水环境中的迁移转化及其毒性影响因素

①基金项目:深圳市科技计划基础研究项目(项目编号:JCYJ20170817112836144);广东省普通高校青年创新人 才(项目编号:2019GKQNCX119);广东省普通高校特色创新类(项目编号:2019GKTSCX092)。

作者简介:吕笑笑(1986—),女,博士,讲师,研究方向为环境化学。

孔丝纺(1981—),女,博士,高级工程师,研究方向为环境化学。

DOI:10.16661/ki.1672-3791.2102-5042-3128二氧化钛在水环境中的迁移转化及其毒性影响因素①吕笑笑 孔丝纺(深圳信息职业技术学院交通与环境学院 广东深圳 518172)摘 要:在过去的几十年里,二氧化钛纳米颗粒(n-TiO 2)已广泛应用于若干工业产品和新型消费产品的制造。

虽然已经制定了严格的规定,限制它们向水生环境中释放,但研究者发现这些纳米颗粒在环境中含量水平仍然较高,可能对暴露的生物体产生有毒影响,并可能对公共卫生产生影响。

该文综述了n-TiO 2在水生环境中的吸收、积累和最终归宿,以及其与重金属、有机物等污染物之间可能的相互作用。

这些数据将为n-TiO 2的生态毒性研究及风险控制提供丰富的理论支持。

关键词:纳米二氧化钛 生物毒性 迁移转化 影响因素中图分类号:X52文献标识码:A文章编号:1672-3791(2021)02(c)-0090-04Migration and Transformation of Titanium Dioxide in WaterEnvironment and Its Toxic FactorsLV Xiaoxiao KONG Sifang(School of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen,Guangdong Province, 518172 China)Abstract: In the past few decades, titanium dioxide nano particles (n-TiO 2) have been widely used in the manufacture of some industrial products and new consumer products. Although strict regulations have been formulated to limit their release into the aquatic environment, the researchers found that these nano particles still have high levels in the environment, which may have toxic effects on exposed organisms and may have an impact on public health. In this paper, the absorption, accumulation and final fate of n-TiO 2 in aquatic environment, as well as the possible interaction between n-TiO 2 and heavy metals, organic compounds and other pollutants are reviewed. These data will provide rich theoretical support for the ecotoxicity research and risk control of n-TiO 2.Key Words: Nano titanium dioxide; Biological toxicity; Migration and transformation; Inf luencing factors随着纳米技术的发展,纳米颗粒被广泛地应用在生产和生活中。

环境污染方向SCI投稿推荐期刊

环境污染方向SCI投稿推荐期刊

一: Science of the Total Environment2013年影响因子:3.163, 近几年一直在3.2左右徘徊。

期刊关注环境科学类文章,与这篇文章类的文章有较多,平均审稿速度2个月左右,半月刊。

这个期刊网上评价挺好,但是关注的人不多。

二:Plos One:2013年影响因子:3.534, 最近几年IF从之前4+逐渐降到3.5,感觉还会再降。

查了一下近几年的文章,主要以医学类为主,但是有个别几篇与我们这篇文章主题类似,但是很少。

例如:1. Ge, J., Woodward, L. A., Li, Q. X., & Wang, J. (2013). Distribution, sources and risk assessment of polychlorinated biphenyls in soils from the Midway Atoll, North Pacific Ocean. PloS one, 8(8), e71521.2. Wang, Y., Zhang, D., Shen, Z., Feng, C., & Chen, J. (2013). Revealing Sources and Distribution Changes of Dissolved Organic Matter (DOM) in Pore Water of Sediment from the Yangtze Estuary. PloS one, 8(10), e76633.网上对这个杂志的褒贬不一,主要论点是年发布三万多篇,稿费一万多。

最近一两年门槛在提高,审稿速度在减缓,平均审稿周期3个月左右。

三:Environmental Pollution:2013年影响因子: 3.902. 最近今年IF在上涨。

这个期刊据说对文章质量要求很高,EP在环境类期刊的名声也挺好。

这个期刊是月刊,审稿周期大于一个月,但是相比较而言较快。

环境类英文期刊列表

环境类英文期刊列表

环境类英文期刊列表:AActa Oecologica《生态学,国际生态学报》法国ISSN:1146-609X,1980年创刊,全年6期,Elsevier Science出版社出版,SCI收录期刊,SCI 2003年影响因子。

刊载有关理论与实验生态学方面的研究论文。

内容涉及自然环境和实验条件下的群体研究。

Advances in Environmental Research《环境研究进展》美国ISSN:1093-0191,1997年创刊,全年4期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2003年影响因子,2003年EI收录87篇。

刊载研究环境科学方面的研究论文与述评。

Advances in Water Resources《水资源进展》英国ISSN:0309-1708,1977年创刊,全年12期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2003年影响因子,2003年EI收录98篇。

刊载水资源研究论文与评论,侧重基础开发、模拟技术与实际应用。

涉及数值模拟、系统分析与数学程序、地表水、水文学、水质、水电系统和废水循环等方面。

Atmospheric Environment《大气环境》英国ISSN:1352-2310,1967年创刊,全年40期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2002年影响因子,2003年EI收录543篇。

刊载研究人与大气环境的相互影响,包括空气污染、微气候学和污染控制对策等方面的论文和简讯。

Atmospheric Environment. Part B. Urban Atmosphere《大气环境,B部分:城市大气》英国ISSN:0957-1272,1989年创刊,全年4期,Elsevier Science出版社出版,刊载城市气候、能与湿度平衡、气象、水文、卫生、建筑、城市规划、大气污染及污染控制等方面的考察研究、数据分析和数学模拟等方面的论文和报告。

自然科学、生物化学类期刊影响因子IF

自然科学、生物化学类期刊影响因子IF

自然科学、生物化学类期刊影响因子IFArchives of Biochemistry and Biophysics IF=3.5Biochimica et Biophysica Acta,IF=3.79Chemico-Biological Interactions,IF=3.4Journal of Plant Physiology,IF=2.8Chemosphere,IF=5.1Science of the Total Environment,IF=5.58Plant Physiology and Biochemistry,IF=3.4Ecotoxicology and Environmental Safety,IF=4.5Plant Science=3.78Journal of Plant Physiology=2.82Environmental Pollution IF=5.7Journal of Hazardous Materials IF=4.8Free Radical Biology & Medicine,IF=5.7Journal of Photochemistry & Photobiology, B: Biology,IF=4 Pharmacological Research,IF=5.57Nitric Oxide,IF=3.5Molecular Plant,IF=10.8Biochemical Journal,IF=4.3Biochemical Society,IF=3.4Protoplasma,IF=2.8Plant Physiology,PP,IF=6.3BMC Plant Biology,IF=3.67The Plant Cell,IF=9.25Environmental Science & Technology,IF=7.14Journal of Agricultural and Food Chemistry,IF=3.5 ANTIOXIDANTS & REDOX SIGNALING,IF=5.8BioMed Research International,IF=2.19Journal of Experimental Botany,IF=5.5Frontiers in Plant Science,IF=4.1Planta,IF=3.0Journal of Genetics,IF=0.8Plant Molecular Biology,IF=3.9-4.2INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,IF=4.1 IUBMB Life,IF=3.0THE JOURNAL OF BIOLOGICAL CHEMISTRY,IF=4.1The Plant Journal ,PJ,IF=5.7Plant, Cell and Environment,IF=5.6Plant Biology,IF=2.39Plant Biotechnology Journal,IF=6.8Appl Biochem Biotechnol,IF=0.82Journal of Integrative Plant Biology,IF=3.8Journal of Integrative Plant Biolog,IF=3.5Biometals,IF=2.45PNAS,IF=9.6Plant Signaling & Behavior,IF=1.6Plant Cell Rep,IF=3.4International Journal of Phytoremediation,IF=1.73 Biochimie,IF=3.36Annals of Botany,IF=3.4Molecules,IF=3New Phytologist,IF=7.2Plant Cell Physiol,IF=4.9PLOS ONE,IF2.8PLOS Genetics,IF=7.5Plants-Basel,IF=2.63Plant Biology,IF=2.39Physiologia Plantarum,IF=3FEBS Letters,IF=3.1Scientific Reports,IF=4Tree Physiology,IF=3.65Journal of Biotechnology,IF=3.1 Pharmacological Research,IF=5.57Journal of Proteomics,IF=3.5。

水污染处理作业国外期刊简介

水污染处理作业国外期刊简介

近四年影响因子:2015年度3.13 |2014年度2.762 |2013年 度 2.482 | 2012年度2.203
文献题目
Photoelectricatalytic degradation of phenol-containing wasterwater by TiO2/g-C3N4 hybrid heterstructure thin film
3.3、机理图
4、结论
Applied catalysis a-general
研究方向:化学、催化、 环境科学、期 〔月刊 〕 投稿命中率:25% MedSci指数:8.6024 | 5年指数7.7664 中国人发表文章比例: 2015年中国人文章占该期刊总数量15% 出版国家及出版社:荷兰, Elsevier Science出版
XRD:通过对材料进展X射线衍射,分析其衍射图谱,获得材料的 成分、材料内部原子或分子的构造等信息的研究手段。
UV–visible DRS:紫外可见漫反射光谱,可以对物质的组成、含量 和构造进展分析、测定、推断。通过分光光度计测量。
3、结果与讨论
3.2、降解数据分析
附:数据处理
降解率: Et=〔A0-At 〕/A0=1-At / A0 矿化率: Yt=〔T0-Tt 〕/T0=1-Tt / T0
2.4、光电催化装置
2.5、表征
TEM:观察纳米粒子的形貌、分散情况及测量和评估纳米粒子的粒 径。
HRTEM:高分辨电子显微镜。将晶面间距通过明暗条纹形象的表 示出来,这样很方便的标定出晶面取向,或者材料的生长方向。
FESEM:主要是利用二次电子信号成像来观察样品的外表形貌, 具有超高的分辨率。
国外期刊简介及文献讨论
姓名:徐俊 专业:环境工程

十二烷基硫酸钠对水生生物的急性毒性影响

十二烷基硫酸钠对水生生物的急性毒性影响

溶解物≤6%, 石油醚溶解物≤2.5%, 用双蒸水配制成 个体在 96 h 时已开始产幼蚤, 所以在正式试验中将
1 000 mg·L-1 的储备液, 试验时再用海水按需稀释。
持续时间定为 72 h。
1.2 试验方法 试验时用 30‰的海水将储备液稀释成试验所需
浓度。根据预备试验结果设置 5 个浓度组和一个对照 组, 每个浓度设 3 个平行试验, 每个小烧杯中放 10 个
试验用卤虫为尕海盐湖卤虫, 卤虫卵引自中国海 比与概率单位对照表得经验概率单位, 以经验概率单
洋大学水产学院。毒性试验前 24 h 孵化卤虫卵, 孵化 方法参照文献[13], 孵化的水温为 25 ℃±1 ℃, 盐度为 30‰, 光强为 1 000 lx。选取 24 h 之内孵化的卤虫幼
位和浓度对数值作图, 根据回归方程计算 LC50[8]。
30‰作为试验用水。
72 h 内的毒性影响曲线见图 2。由表 1 和表 2 可看出
1.1.4 十二烷基硫酸钠
蒙古裸腹蚤对 SDS 的敏感性要高于本次试验中的卤
十二烷基硫酸钠, 分子式为 CH3(CH2)11OSO3Na, 分子量为 288.38, 日本进口分装, 活性物>92%, 醇 不
虫。水蚤的毒性试验持续时间通常都采用 24 h 或 48 h, 也可采用 72 h 或 96 h[8]。预备试验中观察发现有的
2 结果与讨论
体用于毒性试验。
2.1 SDS 卤虫急性毒性影响
1.1.2 蒙古裸腹蚤 蒙古裸腹蚤为实验室连续培养 3 代以上的单克
96 h 内 的 LC50( 95%置 信 限 ) 及 卤 虫 死 亡 机 率 单 位(y)与 SDS 浓度对数(x)的回归方程见表 1, SDS 对卤

环境相关英文期刊杂志列表

环境相关英文期刊杂志列表

环境类英文期刊列表:环境类英文期刊列表:AActa Oecologica《生态学,国际生态学报》法国ISSN:1146-609X,1980年创刊,全年6期,Elsevier Science出版社出版,SCI收录期刊,SCI 2003年影响因子1.143。

刊载有关理论与实验生态学方面的研究论文。

内容涉及自然环境和实验条件下的群体研究。

Advances in Environmental Research《环境研究进展》美国ISSN:1093-0191,1997年创刊,全年4期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2003年影响因子0.626,2003年EI收录87篇。

刊载研究环境科学方面的研究论文与述评。

Advances in Water Resources《水资源进展》英国ISSN:0309-1708,1977年创刊,全年12期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2003年影响因子1.806,2003年EI收录98篇。

刊载水资源研究论文与评论,侧重基础开发、模拟技术与实际应用。

涉及数值模拟、系统分析与数学程序、地表水、水文学、水质、水电系统和废水循环等方面。

Atmospheric Environment《大气环境》英国ISSN:1352-2310,1967年创刊,全年40期,Elsevier Science出版社出版,SCI、EI收录期刊,SCI 2002年影响因子2.352,2003年EI收录543篇。

刊载研究人与大气环境的相互影响,包括空气污染、微气候学和污染控制对策等方面的论文和简讯。

Atmospheric Environment. Part B. Urban Atmosphere《大气环境,B部分:城市大气》英国ISSN:0957-1272,1989年创刊,全年4期,Elsevier Science出版社出版,刊载城市气候、能与湿度平衡、气象、水文、卫生、建筑、城市规划、大气污染及污染控制等方面的考察研究、数据分析和数学模拟等方面的论文和报告。

ecotoxicology and environmental safety接受后的流程

ecotoxicology and environmental safety接受后的流程

ecotoxicology and environmental safety接受后的流程接受后的流程:一旦期刊 "Ecotoxicology and Environmental Safety" 接受了某篇研究论文,以下是可能的流程:1. 编辑通知:期刊编辑会发送一封通知给作者,确认他们的论文已被接受。

通常,这封信会提供接受信函的正式标题和日期。

2. 审稿征询:编辑有可能在这封通知中征询作者关于潜在审稿人的建议。

这些审稿人应该具有相关领域的专业知识,并且不与作者存在任何利益冲突。

作者可以提供一些可能的候选人的姓名和联系信息。

3. 定稿:作者收到接受通知后,应及时将论文的最终版本提交给期刊编辑。

这将包括根据审稿人的建议进行修订,确保论文的准确性和完整性。

4. 出版准备:一旦编辑收到最终稿件,他们将准备论文的出版事宜。

这包括对论文进行一次最终的语法、格式和排版的审查。

编辑可能会与作者合作,以确保论文符合期刊的出版要求。

5. 付款事宜:某些期刊可能会要求作者支付出版费用或处理费。

作者需要与期刊编辑沟通并确保支付费用的安排,以便论文能够顺利出版。

6. 出版:一旦所有准备工作完成,期刊将发布论文。

它可以在线或印刷方式发布,取决于期刊的具体出版模式。

7. 宣传和传播:期刊可能会在其官方网站、社交媒体和学术平台上宣传和传播论文的信息。

这有助于将论文推广给目标读者群体,并增加其可见度和引用率。

请注意,以上是一般的流程描述,并且可能因期刊的特殊要求和作者的合作程度而有所不同。

重要的是与期刊编辑保持有效的沟通,并遵守他们的要求和时间表,以确保论文成功完成出版过程。

鼠李糖脂对赤潮藻类的防治作用

鼠李糖脂对赤潮藻类的防治作用

中国环境科学 2010,30(Suppl.):24~28 China Environmental Science 鼠李糖脂对赤潮藻类的防治作用李玉瑛*,李冰(五邑大学化学与环境工程学院,广东江门 529020)摘要:研究了由铜绿假单胞菌产生的鼠李糖脂对5种赤潮藻类(塔玛亚历山大藻,赤潮异弯藻,双突角毛藻,柔弱角毛藻和新月菱形藻)生长的影响.结果表明,当鼠李糖脂添加浓度从0.5mg/L增加到12.0mg/L时,对5种藻类的生长表现出不同程度的影响,脂肪酸组成的差异是造成鼠李糖脂对不同藻类生长抑制作用不同的原因.不同藻类的各种多不饱和脂肪酸的含量越低,相对应的96h-EC50值越低,鼠李糖脂对其生长抑制作用越强.有效防治5种藻类的鼠李糖脂所需的浓度为8.5~15mg/L,当浓度为15mg/L时,对不同藻细胞均可造成不可逆的破坏作用.关键词:鼠李糖脂;防治;塔玛亚历山大藻;赤潮异弯藻;硅藻中图分类号:X172 文献标识码:A 文章编号:1000-6923(2010)S0-0024-05The effect of rhamnolipid on the mitigation of red tide algae. LI Yu-ying*, LI Bing (School of Chemical and Environmental Engineering, Wuyi University, Jiangmen 529020, China). China Environmental Science, 2010, 30(Suppl.):24~28Abstract:The effects of rhamnolipid biosurfactant produced by Pseudomonas aeruginosa on the growth of 5 kinds of red tide algae (Alexandrium tamarense, Heterosigma akashiwo, Chaetoceros Didymus, Chaertoceros debilis and Nitzschia closterium) were investigated. When the concentration of rhamnolipid was increased gradually from 0.5mg/L to 12.0mg/L, it displayed different degrees of inhibitory action on the growth of the 5 kinds of algae. The reason for the different susceptibilities of the algae to the rhamnolipid concentration was because of the different fatty acid compositions of these algae. This different characteristic was interpreted by the different fatty acid composition of the algae biomembrane; the lower the content of polyunsaturated fatty acids, the lower the corresponding 96h-EC50 value, and vice versa. The optimal concentrations of rhamnolipid required for the effective mitigation of the 5 algal species ranged from 8.5mg/L to 15mg/L. Moreover the algal cells were irreversibly damaged by rhamnolipid concentrations of 15mg/L.Key words:rhamnolipid;mitigation;Alexandrim tamarense;Heterosigma akashiwo;diatom据统计,2000年以来,中国沿海发生的赤潮急剧增加,对海洋生态平衡、海洋渔业及水资源均造成破坏.一些学者研究了赤潮的形成机理及防治对策[1-2],提出许多控制赤潮的方法,但由于成本高、易造成二次污染等原因,有效可行的方法并不多[3].有些研究侧重于寻找可以抑制或降解海洋或淡水中有害藻类的微生物[4-6];有些研究探讨了微生物抑制有害藻类的各种优化条件[7-8];也有一些学者开展了生物表面活性剂槐糖脂[9-10]和鼠李糖脂[11]抑制有害赤潮的研究.本试验利用由铜绿假单胞菌产生的鼠李糖脂,对5种赤潮藻类(塔玛亚历山大藻、赤潮异弯藻、双突角毛藻、柔弱角毛藻和新月菱形藻)生长的抑制效应及防治作用进行探讨. 1材料与方法1.1材料鼠李糖脂是铜绿假单胞菌产生的生物表面活性剂,提取方法见文献[12].塔玛亚历山大藻(A. tamarense)、赤潮异弯藻(H. akashiwo)、双突角毛藻(C. didymus)、柔弱角毛藻(C. debilis)和新月菱形藻(N. closterium)均由中国科学院水生生物研究所淡水生态和生物技术国家重点实验室提供.在(20±1)℃下、5000~6000lx光照12h和12h 光暗循环条件下,于f/2培养液中培养.收稿日期:2009-10-30基金项目:广东省自然科学基金资助项目(07300048);国家自然科学基金资助项目(40782150)* 责任作者, 副教授, liliyuying@增刊李玉瑛等:鼠李糖脂对赤潮藻类的防治作用 251.2鼠李糖脂对藻类生长的抑制试验分别将各藻液装至已灭菌处理的三角瓶(500mL)中,按0,0.5,2.0,4.0,6.0,8.0,10.0和12.0mg/L 的浓度梯度添加鼠李糖脂,摇匀后置于光照培养架上培养.定时取样,测定各瓶中藻细胞密度,评价鼠李糖脂对不同藻生长的影响.采用GC6890-MS5973N气质联用仪(美国Agilent 公司)分析不同藻类的脂肪酸的种类及数量并求得藻类的 96h 生长半抑制浓度(96h- EC50)[13].1.3鼠李糖脂对藻类运动的抑制试验在试管里,不同的藻类分别与不同浓度(0, 5.0,8.5,11.5,15.0mg/L)的鼠李糖脂溶液振摇混合.定时采用细胞计数盘对不游动的藻细胞进行计数.总藻细胞数采用鲁哥氏液固定并测定.运动抑制指数即所测得的不运动藻细胞数与空白试验中总藻细胞数的比值.1.4鼠李糖脂对藻细胞膜破坏的试验在各藻液中分别添加浓度为0,8.5,15.0,30, 45,60mg/L的鼠李糖脂,定期取样并去除藻细胞体后,采用分光光度法在波长260nm处测定其光密度值(A260),以A260/A0值,评价核苷酸释放的水平.2结果与讨论2.1鼠李糖脂对藻类生长的影响鼠李糖脂对5种藻类生长的影响见图1.当鼠李糖脂浓度从0.5mg/L增加到12.0mg/L时,由图1可以看出,鼠李糖脂对塔玛亚历山大藻和赤潮异弯藻生长的抑制程度远远大于其他 3 种硅藻.鼠李糖脂浓度仅为 2.0mg/L时就对塔玛亚历山大藻和赤潮异弯藻的生长形成抑制(图 1a,图1b).在双突角毛藻,柔弱角毛藻和新月菱形藻中,双突角毛藻比其他2种硅藻对鼠李糖脂较敏感.浓度为4.0mg/L的鼠李糖脂对双突角毛藻的生长造成抑制,而该浓度对柔弱角毛藻和新月菱形藻的生长影响很小.鼠李糖脂对柔弱角毛藻和新月菱形藻生长的抑制浓度分别为8.0mg/L和10.0mg/L.不同藻类的脂肪酸组成和含量(表1)是不同的,这是造成对鼠李糖脂敏感性不同的原因[14].经分析发现各藻类的各种多不饱和脂肪酸的含量越低,相对应的96h-EC50值越低,鼠李糖脂对其生长抑制作用越强.藻类的多不饱和脂肪酸浓度与其96h-EC50之间具有良好的正相关性,并且所含多不饱和脂肪酸浓度与对藻类造成抑制作用的浓度之间也有很好的正相关性.表1各种藻类的脂肪酸和96h-EC50值Table 1 The 96h-EC50 (mg/L) values and the fatty acidcomposition of the algae脂肪酸塔玛亚历山大藻赤潮异弯藻双突角毛藻柔弱角毛藻新月菱形藻C12:0 15.3 n.d. 0.39 0.16 n.d. C14:0 n.d. 1.97 7.08 15.94 6.86 C15:0 n.d. n.d. 0.71 0.41 n.d. C16:0 12.8 48.85 41.36 25.99 24.39 C16:1 n.d. n.d. 2.33 21.92 29.52 C16:2 n.d. n.d. n.d. 3.03 4.49 C16:3 n.d. n.d. 0.29 5.89 n.d. C17:0 n.d. n.d. n.d. n.d. n.d. C18:0 3.4 23.96 28.09 11.23 1.36 C18:1 n.d. 6.81 n.d. 1.98 1.69 C18:2 12.2 2.51 4.5 0.34 3.36 C18:3 n.d. 8.53 4.01 0.2 0.38 C20:0 n.d. 1.25 n.d. n.d. n.d. C20:4 n.d. n.d. n.d. 0.78 n.d. C20:5 3.8 0.98 11.17 14.62 27.21 C22:0 7.3 0.61 n.d. 0.19 n.d. C22:6 1.5 4.33 n.d. n.d. n.d. PUFAs17.5 16.35 19.97 23.88 35.44 96h-EC50 2.3 1.8 4.2 7.9 10.7 注:n.d.为未检出; PUFAs为多不饱和脂肪酸2.2鼠李糖脂对藻类运动的抑制鼠李糖脂对藻类运动的试验结果见图 2.由图2可以看出,加入的鼠李糖脂浓度从5.0mg/L增加到15.0mg/L,抑制率有不同程度的提高.在试验最初的20min,对藻类抑制作用均有较大提高,之后没有明显的提高,这说明加入鼠李糖脂后的20min内就产生了有效的抑制作用.对塔玛亚历山大藻、赤潮异弯藻、双突角毛藻、柔弱角毛藻和新月菱形藻的运动形成良好抑制作用的鼠李糖脂浓度分别为8.5,8.5,11.5,15.0, 15.0mg/L.26中 国 环 境 科 学 30卷10120 2 4 68时间(d) 藻细胞密度(×104个/m L )时间(d) 藻细胞密度(×104个/m L )0 2 4 68时间(d)藻细胞密度(×104个/m L )时间(d)藻细胞密度(×104个/m L )0mg/L 0.5mg/L 2.0mg/L 4.0mg/L 6.0mg/L 8.0mg/L 10.0mg/L 12.0mg/L时间(d)藻细胞密度(×104个/m L )图1 鼠李糖脂对5种藻生长的影响Fig.1 Effect of rhamnolipid on the growth of 5 kinds of algae2.3 鼠李糖脂对藻细胞膜的破坏测定了5种藻类细胞在鼠李糖脂的作用下所释放的核苷酸(以光密度值表示),结果见图 3.由图3可见,当向塔玛亚历山大藻、双突角毛藻、柔弱角毛藻和新月菱形藻液中添加的鼠李糖脂浓度不断升高时,其光密度值也逐渐增加.赤潮异弯藻不同于上述4种藻类,在鼠李糖脂浓度从0增加到15mg/L 时,其光密度值快速增加至1.43;核当鼠李糖脂浓度浓度继续增加时,其光密度值只有少许增加.这是由于赤潮异弯藻没有细胞壁的保护,因此在添加少量的鼠李糖脂时,就会使其细胞内的核苷酸快速的释放出来.培养液中藻细胞释放的核苷酸浓度可表征藻细胞膜的完整性[15].试验中当鼠李糖脂浓度为 15mg/L 时,塔玛亚历山大藻、赤潮异弯藻、双突角毛藻、柔弱角毛藻和新月菱形藻释放核苷酸的百分率分别比空白值增加了25%,43%,22%,19%和18%,均大于15%.15mg/L 的鼠李糖脂对这5种藻细胞造成了不可逆的破坏作用.增刊李玉瑛等:鼠李糖脂对赤潮藻类的防治作用 27时间(min)抑制率(%)时间(min) 抑制率(%) 1012时间(min)抑制率(%)时间(min) 抑制率(%)15.0mg/L时间(min)抑制率(%)图2 鼠李糖脂对5种藻运动的抑制率Fig.2 Inhibition effect of rhamnolipid on the mobility of 5kinds of algae塔玛亚历山大藻赤潮异弯藻双突角毛藻柔弱角毛藻新月菱形藻藻类A图3 鼠李糖脂对核苷酸释放的影响Fig.3 Effect of rhamnolipid on the release of nucleotides0mg/L 8.5mg/L28 中国环境科学 30卷3结论3.1鼠李糖脂对塔玛亚历山大藻、赤潮异弯藻、双突角毛藻、柔弱角毛藻和新月菱形藻生长的抑制浓度分别为2.0,2.0,4.0,8.0,10.0mg/L,并且藻类所包含的各种多不饱和脂肪酸的含量越低,鼠李糖脂对其生长抑制作用越强.3.2对塔玛亚历山大藻、赤潮异弯藻、双突角毛藻、柔弱角毛藻和新月菱形藻的运动造成抑制作用的鼠李糖脂浓度值分别为8.5,8.5,11.5,15.0, 15.0mg/L.3.3当15mg/L的鼠李糖脂加入到不同藻液中时,会使这5种藻细胞均遭到不可逆的破坏.参考文献:[1] Herath G. Freshwater aigal blooms and their control: comparisonof the European and Australian management [J]. Journal of Environment Management, 1997,51:217-227.[2] Xie P, Liu J. Practical success of biomanipulation using filterfeeding fish to control cyanobacteria blooms [J]. The Scientific World, 2001,1:337-356.[3] Anderson D M. Turing back the harmful red tide [J]. Nature,1997,38:513-514.[4] Doucette G J, Mcgovem E R, Babinchak J A. Algicidal bacteriaactive against Gymnodiniwn breve (Dinophyceae). I. Bacterial isolation and characterization of killing activity [J]. Journal of Phycology, 1999,35(6):1447-1454.[5] Imai I, Sunahara T, Nishikawa T. Fluctuations of the red tideflagellates Chatonella spp. R (aphidophyceae) and thealgicidal bacterium Cytophagasp in the Seto inland sea, Japan [J]. Marine Biology, 2001,138(5):1043-1049.[6] Manage P M, Kawabata Z, Nakano S. Dynamics of cyanophage-like particles an algicidal bacteria causing Microcystis aeruginosa mortality [J]. Limnology, 2001,2(2):73-78.[7] Hayashida S, Tanaka S, Teramoto T, et al. Isolation of anti-algalPseudomonas stutzeri strains and their lethal activity for Chattonella antique [J]. Agricultural Biology and Chemistry, 1991,55:787-790.[8] Ismura N, Motoike I, Noda N, et al. A novel anti-cyanobacterialcompound produced by an algae-lysing bacterium [J]. Journal of Antibiotics, 2000,53(11):1317-1319.[9] Baek S H, Sun X X, Lee Y J, et al. Mitigation of harmful algalblooms by sophorolipid [J]. Journal of Microbiology Biotechnology, 2003,13:651-659.[10] Kim C S, Lee S G, Kim Y B, et al. Characteristics of sophorolipidas an antimicrobial agent [J]. Journal of Microbiology Biote- chnology, 2002,12:235-241.[11] Wang X L, Gong L Y, Liang S K. Algicidal activity ofrhamnolipid biosurfactants produced by Pseudomonas aeruginosa[J]. Harmful Algae, 2005,4(2):433-443.[12] Li Y Y, Zheng X L, Li B. Influence of biosurfactant on the dieseloil remediation in soil-water system [J]. Journal of Environmental Science, 2006,18(3):587-590.[13] Van E P H, Hoekstra J A. Calculation of the EC50 and itsconfidence interval when subtoxic stimulus is present [J].Ecotoxicology and Environmental Safety, 1993,25(1):25-32. [14] Grau A, Femandez J C G, Peypoux F, et al. A study on theinteractions of surfactin with phospholipid vesicles [J].Biochemica et Biophysica Acta, 1999,1418(2):307-319.[15] Chen C Z, Cooper S L. Interactions between dendrimer biocidesand bacterial membranes [J]. Biomaterials, 2002,23(16):3359- 3368.作者简介:李玉瑛(1971-),女,副教授,博士,研究方向为污染物环境行为及其控制研究.发表论文20余篇.联合国环境规划署理事会第十一次特别会议召开联合国环境规划署理事会第十一次特别会议暨全球部长级环境论坛在印度尼西亚巴厘岛开幕.印度尼西亚总统苏西洛、联合国环境规划署执行主任施泰纳出席了开幕式并致辞.会议宣读了联合国秘书长潘基文发来的书面致辞.由环境保护部和外交部组成的中国政府代表团及130多个其他国家和国际组织的代表团出席了会议.本次会议为期3天,旨在就国际环境治理与可持续发展、绿色经济、生态系统和生物多样性等议题进行充分讨论并形成相关决议.摘自《中国环境报》2010-2-26 环保信息。

ecotoxicology and environmental safety格式要求

ecotoxicology and environmental safety格式要求

ecotoxicology and environmental safety格式要求ecotoxicology and environmental safety格式要求是指关于生态毒理学(ecotoxicology)和环境安全(environmental safety)这两个学科领域的论文、报告或研究资料的撰写格式或规范。

生态毒理学是研究化学物质对生态系统的毒性影响的学科,而环境安全则关注的是人类活动对环境的负面影响以及如何采取措施确保环境安全。

以下是对这些格式要求的分条阐述:1.引言(Introduction):在引言部分,应简要介绍研究背景、目的和研究意义。

2.文献综述(Literature Review):总结和回顾相关领域的研究现状,指出当前研究的不足之处,为后续的研究提供依据。

3.方法(Methods):详细描述实验设计、样本采集、实验操作和数据分析方法。

4.结果与讨论(Results and Discussion):呈现实验结果,并对结果进行解释和讨论。

5.结论(Conclusion):总结研究的主要发现,指出研究的局限性和未来研究方向。

6.参考文献(References):引用相关文献时,应遵循规定的格式要求,如APA、MLA等。

7.表格与图表(Tables and Figures):确保表格和图表的清晰度、准确性和一致性。

在文中应标明图表的位置。

8.语言与风格(Language and Style):使用准确、简洁、专业的语言,避免语法和拼写错误。

9.格式规范(Formatting Guidelines):遵循学术期刊或出版机构的格式要求,如字体、字号、行间距、页边距等。

10.伦理与法律问题(Ethical and Legal Issues):确保研究符合伦理标准,不侵犯他人隐私或知识产权。

总结来说,遵循ecotoxicology and environmental safety格式要求有助于确保研究资料的可读性和专业性,提高研究成果的被接受度和影响力。

土壤污染物的生态毒理效应和风险评估研究进展

土壤污染物的生态毒理效应和风险评估研究进展

㊀第36卷㊀第6期2020年12月中㊀国㊀环㊀境㊀监㊀测Environmental Monitoring in ChinaVol.36㊀No.6Dec.2020㊀土壤污染物的生态毒理效应和风险评估研究进展张霖琳,金小伟,王业耀中国环境监测总站,国家环境保护环境监测质量控制重点实验室,北京100012摘㊀要:环境生态风险评估(ERA )流程已经被纳入全球环境政策中,既用于规范新化学物质的授权和营销(前瞻性环境生态风险评估),也用于评估潜在的污染场地(回顾性环境生态风险评估)㊂将土壤生态毒理学应用于风险评估,能阐明有毒物质对土壤生态系统中生命有机体的危害程度与范围㊂笔者主要介绍了应用评估因子法和物种敏感度分布法对基于效应数据进行的外推与估算,并综述了欧美等主要国家和地区的土壤生态风险评估框架㊁相关法律法规及其实施情况等,为中国开展土壤污染物生态毒理效应和风险评估等相关研究提供参考㊂关键词:土壤;评估因子;物种敏感度分布;前瞻性ERA ;回顾性ERA中图分类号:X825㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1002-6002(2020)06-0005-09DOI :10.19316/j.issn.1002-6002.2020.06.02Research Progress on Ecotoxicological Effects and Risk Assessment of Soil PollutantsZHANG Linlin,JIN Xiaowei,WANG YeyaoState Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring,China National EnvironmentalMonitoring Center,Beijing 100012,ChinaAbstract :The environmental ecological risk assessment (ERA)process has gained relevance in decision-making processes,beingprogressively integrated in environmental policies worldwide,both for regulating the authorization and marketing of new chemical substances (prospective ERA )and for evaluating potentially contaminated sites (retrospective ERA ).Application of soil ecotoxicology in risk assessment could explain the extent and scope of the harm of toxic substances to living organisms in soilecosystems.Assessment factor method and species sensitivity distribution method were introduced to extrapolate and estimatepredicted no effect concentrations and other effect-based data.The frameworks,legal support,and implementation of ERA inEurope and the United States were reviewed,which could provide reference for relevant research on ecological toxicological effects and risk assessment of soil pollutants in China.Keywords :soil;assessment factor;species sensitivity distribution;prospective ERA;retrospective ERA收稿日期:2020-06-18;修订日期:2020-08-24基金项目:中国工程院咨询研究项目(2020-XY-21)第一作者简介:张霖琳(1980-),女,辽宁沈阳人,博士,正高级工程师㊂通讯作者:王业耀㊀㊀土壤是陆地物种与生态系统多样性㊁人类生存与可持续发展的重要战略资源,是生态文明建设的重要物质基础,土壤容易汇集环境中的各类污染物,通过大气和水体进行迁移传递㊂中国土壤污染物的数量和种类不断增加,加之土壤显著的异质性,其交互作用及形式日益多样化㊂单纯地依靠化学方法对土壤污染物和污染情况进行监测,与规定的标准值进行比较,无法对大量污染物同时并存的 综合毒性效应 做出科学评估,不能全面㊁科学地表征土壤环境质量,风险评价常会存在高估或低估的情况㊂土壤生态毒理学研究的核心是阐明进入土壤环境中的有毒物质的生态毒理效应,即研究有毒物质对土壤生态系统中生命有机体的危害程度与范围[1],以便客观㊁直接地反映出综合危害效应,弥补化学分析方法的局限性㊂20世纪90年代早期,国外学者提出了 环境生态风险评估 (ERA)这一概念,旨在评估因暴露于应激源(如化学物质㊁外来物种㊁物理变化㊁火灾等)中对生态系统造成损害的可能性过程[2-3]㊂ERA 流程在决策过程中具有相关性,已经被逐步纳入全球环境政策中,既用于规范新化学物质的授权和营销(前瞻性环境生态风险评估),也用于评估潜在的污染场地(回顾性环境生㊀6㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀态风险评估)㊂对土壤中不同化学污染物进行阈值或安全暴露水平的估算,是ERA所面临的主要问题㊂针对整个生态系统的保护,根据预测无影响浓度(PNEC)而得到阈值,这些阈值依赖于单一物种的毒性试验数据,而早期依赖于无观察效应浓度(NOEC)[3]㊂根据生态毒理学数据,主要有3种方法用于估算PNEC:①概率方法,将统计分布调整为数据,以获得物种敏感度分布(SSD), PNEC是特定的百分数(如第5个)或分界点,在这种情况下评估因子为1~5;②基于安全因子在10~1000之间变化的确定性方法,适用于现有的最低NOEC值;③平衡分配方法,适用于生态毒理学数据为水生物种的情况,或将数据转换为陆生物种[4-5]㊂根据具体情况,可以将估算的PNEC值设定为土壤环境质量标准值㊁特定场地筛选评估的基准值或土壤中化学污染物管控的风险值㊂笔者综述了土壤生态毒理学应用于风险评估的研究进展,欧洲和美国等国家和地区生态风险评估框架㊁相关法律法规及其实施情况等,旨在为中国开展土壤污染物的生态毒理效应和风险评估等相关研究提供参考㊂1㊀风险评估中的土壤生态毒理学1.1㊀评估因子评估因子是将选出的最低毒性值除以一个不确定因子或安全系数来求解污染物的生态筛选值的方法,适用于敏感的物种,评估因子的大小根据数据的类型和数量而变化,建议在ERA中,首先筛选出风险可忽略不计的化学物质㊂由于缺乏大多数现有化合物的毒性数据,用评估因子估算PNEC值具有一定的不确定性,表1为推导出的土壤PNEC的评估因子㊂考虑到从个体水平效应(通常在单一物种测试中测量)到种群水平效应的推断,FORBES等[6]建议使用种群模型对种群增长率估算中的存活效应㊁增长效应和繁殖效应进行整合㊂CHAPMAN等[7]提出了在应用评估因子值时应考虑的一系列原则:①当相关数据可用时,不使用评估因子;②外推法具有不确定性,在使用评估因子值时应提供一个范围而不是绝对值;③使用评估因子值时,应考虑到化学物质在效应严重程度方面的差异㊁可逆性或不影响性等;④不需要考虑过度保护㊂表1㊀推导PNEC soil的评估因子[8]Table1㊀Assessment factors for the derivation of PNECsoil信息评估因子LC50短期毒性试验(如植物㊁蚯蚓或微生物)1000长期毒性试验(如植物)的NOEC1002种营养级别的额外长期毒性试验的NOEC503种营养级别的3种物种额外长期毒性试验的NOEC10SSD5~1,根据具体情况充分证明其合理性生态系统模型的现场数据具体分析㊀㊀评估因子法简单㊁易操作,通常认为利用最低的毒性值除以评估因子后就能达到对最敏感的物种和土壤功能进行保护的目的,但实际上其有效性很难得到验证㊂1.2㊀物种敏感度分布SSD[9-10]是研究和制定环境质量标准最推荐和最常用的方法之一,可以为所选的分界值提供统计化可信度证据㊂如在欧洲用HC550%(即危害浓度影响5%的物种,置信度为50%)表示PNEC 值[11-12]㊂SSD依赖于 毒性数据可用的物种代表了受保护的生态系统中的整体敏感性 这一假设㊂此类毒性数据通常来自单一物种的标准毒性测试,在从不同研究和实验室中获得相同终点的数据时,应计算几何均值并构建SSD,同时考虑公认的变异性[13]㊂美国环保署已采用这种方法构建土壤筛选值,以保护土壤生态环境系统免受金属和持久性有机污染物等常见土壤污染物的侵害㊂POSTHUMA等[14]提出了SSD所需的相关方法,特别是在缺乏数据(尤其是土壤数据,包括微生物作用过程数据㊁植物和无脊椎动物数据)的情况下,以便保护整个土壤的生物多样性和土壤作用过程㊂土壤性质对其生物利用度的影响,使得土壤生物群化学品风险评估的不确定性进一步复杂化[15]㊂若为确定土壤质量标准(如预测的无㊀张霖琳等:土壤污染物的生态毒理效应和风险评估研究进展7㊀㊀影响浓度值),指标的选择仅限于可显示生态毒理数据的最敏感指标;若为进行特定场地评估,则应根据相关预期,选择易受影响的指标,通过现场监测㊁调查以及在实验室中进行污染土壤的生物检定,对这些指标进行评估㊂尽管文献中确定并讨论了所有限制因素,若将物种敏感度分布用于各种目标,则SIGNORE等[16]概括出以下相关结论:①可将按照标准物种生态毒理数据确定的SSD用于濒危物种保护,但无法得到这一数据;②可将按照标准物种(主要来源于温带地区)确定的SSD用于其他地理区域的物种保护;③很难使用某个环境区域的5%物种危害浓度(HC5)保护不同的环境区域㊂在无其他选择的情况下,某些研究假设土壤㊁沉淀物和水生生物的敏感性相同[17]㊂目前,若能从目标化合物中获得少量或无法获得陆生物种的生态毒理数据,广泛采用的方法是平衡分配法(EqP),以此推断出土壤的预测无影响浓度值:PNEC soil=K soil-water/RHO soilˑPNEC waterˑ1000式中:PNEC water为水中的预测无影响浓度,mg/L; RHO soil为湿土的体积密度,kg/m3;K soil-water为土壤-水分配系数,m3/m3;PNEC soil为土壤的预测无影响浓度,mg/kg㊂该方法被一些国家和机构广泛应用于土壤基准值的确定[4],但前提条件是满足以下3个方面的假设:①水生和陆生物种具有同等敏感性;②土壤孔隙水中出现的主要陆生物种对化学物质的暴露和吸收;③土壤固体物质和土壤孔隙水吸收的化学物质量平衡[18]㊂由此可见,方法未将某些土壤生物通过有机物质和土壤吸收等的暴露考虑在内,吸收的固相化学物质和土壤孔隙水中吸收的化学物质数量很难得知,未将化学物质在土壤中生物利用率方面的风化㊁老化以及微生物群落在降解中的作用考虑在内㊂2㊀生态风险评估的框架㊁法规及实施2.1㊀欧洲2.1.1㊀欧洲前瞻性生态风险评估欧盟为土壤预期风险评估确定了4种主要监管框架:欧盟法规‘化学品的注册㊁评估㊁授权和限制“(REACH),欧盟生物杀灭剂产品法规(BPR),植物保护产品(PPP)以及药用产品法规㊂所有法规中采用的生态风险评估框架包括危害评估㊁暴露评估以及风险表征㊂REACH法规(第1907/2006号)于2007年6月1日生效[19],规定所有在欧盟市场上销售的商品均需注册,并要求贸易商承担风险管理的全部责任㊂REACH提出的陆地毒理学评估方案旨在确定土壤生物(微生物㊁无脊椎动物㊁植物)的营养水平,评估其对生态系统结构和功能的潜在影响㊂进行危害评估需要收集有关该物质内在特性的所有相关信息:水溶性㊁蒸汽压㊁辛醇/水分配(如log K OW)㊁土壤吸附潜力(如log K OC)㊁生物和非生物降解以及土壤暴露的可能性等信息㊂根据毒性试验终点(最低LC50或NOEC)得出土壤的PNEC,再进行持久性㊁生物体内累积和毒性评估㊂根据危害评估结论,可能还需要进行接触评估㊂接触评估包括接触场景或相关用途的开发㊁接触类别和接触估计,应考虑不同的接触途径,计算预测环境浓度(PEC)㊂还应通过独立食物链(土壤蚯蚓)评估捕食者的二次中毒风险㊂最后,通过计算地方和区域风险的适当风险商值(PEC/ PNEC)来进行风险表征㊂BPR法规(第528/2018号)于2013年9月1日起生效,规定了关于在市场上提供和使用生物杀灭剂的相关内容㊂与REACH法规遵循相同的方法,执行危害评估的信息要求包括一个核心数据集(强制性)和附加数据集(根据物质的内在特性㊁可预见使用和接触途径㊁改进初始风险评估的需要,可能需要附加数据集)㊂开展生态毒性研究的时间长短,取决于预期出现的排放是连续性还是间歇性㊂在接触评估中,对于间接排放,除了估算PEC外,还应计算相关产品使用肥料或污水后的预测土壤初始浓度;对于直接释放,通常要考虑不同的时间尺度(是否包括降解㊁挥发或浸出过程等)㊂必须对每种使用类型进行接触评估,并考虑浓度高于10%时可能出现的所有代谢物和降解产物㊂PPPs对土壤生物的风险评估是根据理事会指令91/414/EEC[20]制定的SANCO/10329/2002陆地指导文件进行的㊂该指令于2009年被欧盟法规1107/2009废除,欧盟第283/2013号和第284/2013号法规分别规定了活性物质和PPPs的新数据要求㊂关于危害评估,应得出毒性终点(如LC50和NOEC),指明在不同层级进行的生态毒性测试㊂暴露评估(预测影响浓度估算)是基㊀8㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀于对土壤中活性物质和相关转化产物的归宿和行为的评估㊂对于蚯蚓和其他土壤生物,建议计算慢性毒性暴露比率㊂然后,将TERs与欧盟委员会法规第546/2011号中定义的临界值(安全系数)进行比较,以确定风险高低水平㊂欧洲药品管理局制定了人体医疗产品框架,于2006年通过了关于ERA的指导性文件[21]㊂ERA主要侧重于估计水生环境对药物的暴露,仅在第二阶段获取和评估有关环境(水生和陆地)和影响的信息㊂该法规研究土壤中生物降解㊁对土壤无脊椎动物的毒性以及陆地植物和微生物急性效应㊂2.1.2㊀欧洲回顾性生态风险评估回顾性生态风险评估在欧洲没有统一的规定,一些国家已经设计出自己的框架(如最早进行框架设计的荷兰);英国㊁德国㊁丹麦和西班牙也已开始设计实施自己的框架㊂除个别定义或术语方面存在一些区别外,欧盟国家的做法已经相对统一㊂土壤污染主要采用风险评估原则,包括来源-途径-受体模式,决策以风险为导向而不是以危害为导向[22-24]㊂这些框架基于分阶段或分层方法,用连续步骤产生数据,同时提高复杂度,降低不确定性㊂在每一个阶段或每一层末尾,对风险进行计算,并建议仅在结果不符合要求时再移至下一个阶段或层级㊂这种方法能够以成本效益最高㊁最有效的方式获得所需要的数据㊂具体包括以下步骤:初步现场调查㊁详细现场调查㊁补充调查或可行性调查㊂初步现场调查关注的是危害鉴定,目的是评估过去是否发生过污染情况,并调查是否存在可疑的土壤污染,其中可能涉及对污染的确认,一般包括方案设计㊁现场监测,部分情况下还包括有限的探索性调查㊂第二阶段是详细调查,目的是确定污染的范围和程度,并对与已识别危害和受体相关的风险进行评估㊂在该阶段,许多国家(如英国㊁荷兰和西班牙)[8,25,23]使用一般性方法,即将实测浓度与基于风险的指导值(如土壤质量标准㊁基准值㊁最大允许浓度㊁可忽略浓度㊁目标值和干预值等)进行比较,以便对受污染地点进行快速一致的风险评估㊂根据此风险表征,评估是否需要进行进一步风险评估㊂如果高于指导值,可能需要进行更加详细的调查,以改善风险或行动,从而降低污染程度或风险水平㊂第三阶段涉及补充调查或可行性调查,目的是更好地确定补救行动或需监控的程度和类型,需要对土壤的理化性质进行更加详细的实验室分析和鉴定㊂为更好地了解污染物的性质㊁程度和特性,可能需要进行补充调查㊂2.1.3㊀指导值的确定和实施目前,大部分基于风险的阈值是为了保护人类健康,但是许多欧盟成员国已经制定或正在制定基于生态的土壤浓度阈值(如德国㊁芬兰㊁荷兰和西班牙已经批准了关于评估污染土壤生态风险的指导值,用于不同目的的监管)㊂一些指导值可能具有法律效力,也可能仅作为建议或备选方案㊂一般情况下,根据潜在风险和需要采取的措施[26],可将指导值分为3个不同的等级,即筛分值或背景值㊁警戒值或触发值㊁干预值或截止值㊂筛分值或背景值指低于该浓度后,风险可忽略不计,即使是在最敏感土地使用情况下也可以避免不利影响[22]㊂如高于警戒值或触发值,则意味着存在潜在风险,此时一般建议进一步调查㊂干预值或截止值一般用于对严重污染场地进行分类,在此情况下风险为不可接受风险,必须采取补救措施㊂荷兰指导值有2个:背景值和干预值㊂浓度高于干预值的土壤被视为严重污染,而且原则上需要对此类土壤进行修复㊂德国确定了3个参考水平:预防水平(超过该值将意味着未来有可能出现土壤污染问题,而且为避免产生危害需要解决所述问题),临界水平(需进行进一步评估,以确定场地是否被污染)和触发行动水平(需要进行修复,需要体现污染物的生物利用度)㊂芬兰的阈值为触发值,如果超过这一数值,将需要进行现场特异性风险评估㊂芬兰根据土壤生态系统的重大风险制定了一个更高指导值和一个更低指导值,并分别适用于住宅区和工业区㊂西班牙通过立法制定了关于需要进行现场特异性风险评估的初步触发值(低风险阈值水平),如果未超过一般参考水平但检查到了毒性(但不直接分类为污染),则需要实施现场特异性ERA㊂一般情况下,土壤生态系统保护的触发值基于背景浓度或来源于生态毒理数据(如PNEC 值)㊂使用生态毒理数据时,一般依据与评估因子结合的最敏感类别的数据或来自SSD曲线的数据(一般为HC5)㊂芬兰的阈值基于背景浓度的上估值(如潜在有毒元素,PAHs),或考虑人类健康和生态风险的风险限值(如PCBs)㊂西班牙㊀张霖琳等:土壤污染物的生态毒理效应和风险评估研究进展9㊀㊀的一般参考水平基于欧盟技术指南(回顾法)建议的风险表征率(RCR=PEC/PNEC),并用于对不同环境功能区划的土壤浓度进行评估㊂如果是金属,建议将现场特异性参考水平作为平均值,再加上相关区域背景水平标准偏差的2倍值㊂干预值或截止值一般基于几个物种的生态毒理数据的几何平均值或基于物种敏感度分布,如荷兰一般考虑HC50(50%的生态系统将受到影响)㊂在芬兰,低指导值来源于SSD(考虑HC50),而高指导值依据SSD中值的置信度上限(95%)㊂但是,如果无SSD数据,低指导值可依据生态毒理端点的几何平均数(如NOEC)并结合评估因子,在此情况下,高指导值设定为中值的2倍㊂2.2㊀美国2.2.1㊀美国前瞻性生态风险评估1976年美国通过了‘有毒物质控制法“(TSCA),用于评估新化学品并确定其对人类健康或环境可能产生的不利影响,但当时任何已经用于商业的化学品均不受新法律规定的约束㊂2016年,美国国会通过了对‘有毒物质控制法“的修订,即‘弗兰克劳滕伯格21世纪化学物质安全法案“,对该法案进行了根本性修改,以解决1976年立法中的缺陷㊂法案要求环保署在所有新化学品进入市场之前对其做出准确的分类,即①存在不合理风险;②可用信息不足以进行评估;③可能存在不合理风险;④不太可能存在不合理风险㊂此外,风险评估应以安全标准为基础,不考虑成本或非风险因素㊂风险评估最长可能需要3年时间,但是,每种化学品的初次分类应在申请后90d内进行㊂法案还要求环保署根据时间表评估名录上的现有化学品:环保署基于现有信息根据化学品的感知风险对高优先级和低优先级的化学品进行分类,代理机构根据特定时间表系统地评估已分组的化学品㊂2.2.2㊀美国回顾性生态风险评估‘综合环境反应㊁赔偿和责任法案“和 超级基金 法案是美国土壤污染管理评估最重要的联邦法律,为评估有害物质释放到环境可能对人类健康和环境产生不利影响奠定了基础㊂美国环保署也已经制定了人类健康风险评估[27]和生态风险评估[28-29]指南㊂ERA通常解决现场潜在风险㊁是否需要进行现场修复等问题,采用分层方法来评估潜在污染风险和对人类及生态受体的潜在不利影响㊂风险评估目标是明确环境污染的性质和程度㊁对生态受体的现有或潜在影响以及现场风险或影响可能随时间产生的变化㊂评估分3个阶段进行:①问题描述;②暴露和影响分析;③风险特征描述㊂ERA应用于现场调查中,通常包括项目范围㊁环境介质采样㊁样品的分析以及方案评估㊂在 超级基金 中被称为补救调查或可行性研究㊂补救性调查主要侧重收集和分析现场特征,制定基线风险评估方案,以支持补救措施目标选择;可行性研究涉及评估用于实现这些目标的可能补救方案㊂2.3㊀巴西20世纪90年代末,巴西环保署(IBAMA)和巴西圣保罗州环境与卫生技术中心(CETESB)建议开展急性测试,特别是对蚯蚓进行此类测试,进行农药登记㊂其中,为了解决土壤生态毒理学标准毒性试验过程中如何模仿天然热带土壤的问题,巴西开发了一种人工土壤(TAS或热带人工土壤)[30]㊂TAS的制备是基于人工土壤应用于温带物种的标准生态毒理学试验㊂只有农药和木材防腐产品登记才需要对土壤生物进行生态毒理学研究,主要依据化学物质的农药品法律(1989年7月11日第7.802号法律)予以管辖[31]㊂1996年10月15日,IBAMA出版了第84号规范性条例,规定了评估农药及其组分对环境危害的程序㊂这些程序包括对蚯蚓的急性毒性试验,涉及碳和氮循环的土壤微生物毒性试验,以及农药产品在土壤中持久存留的研究和对非目标植物的植物毒性㊂就回顾性风险评估而言,巴西国家环境委员会(CONAMA)于2009年发布的第420号决议中首次提及了ERA概念㊂该法律文件针对污染场地提出了土壤质量限值和土壤管理标准㊂限值㊁预防值和干预值分别对应于荷兰目标值和干预值㊂预防值表示土壤中物质的限值,旨在保护土壤功能(如动植物和人类栖息地的功能㊁水资源保护和养分循环㊁食物的生产和物质的降解)㊂干预值表示物质的浓度,高于该浓度值可能会对人类健康以及土壤质量和功能造成风险㊂该决议认为,场地污染可能对环境产生重大影响,因此需要进行生态风险评估,从而为风险管理提供支持㊂2.4㊀中国中国生态风险评估始于水生态风险评价和区域生态风险评价,尚未发布土壤污染生态风险评㊀10㊀中㊀国㊀环㊀境㊀监㊀测第36卷㊀第6期㊀2020年12月㊀估的标准规范或技术指导文件㊂2014年发布的‘污染场地风险评估技术导则“(HJ25.3 2014)和2018年发布的‘土壤环境质量建设用地土壤污染风险管控标准(试行)“是从保护人体健康出发,基于健康风险评估的方法提出土壤风险控制值以及监测㊁实施和监督要求㊂农用地污染更侧重评估生态风险,2018年发布的‘土壤环境质量农用地土壤污染风险管控标准(试行)“(GB 15618 2018),以保护农产品质量安全为主要目标,分别推导了农产品质量安全㊁农作物生长和土壤微生物的土壤污染物阈值,规定了耕地㊁园地和草地的土壤污染筛选值和管制值㊂近年来的研究也逐步转向土壤污染生态风险评价指标和方法研究㊁土壤污染的生物可利用性研究,以实际暴露量为基础,计算污染物生态风险值㊂但是,这类评估未能涵盖土壤中更多生物,较难适用于精准性强和尺度大的风险评估㊂3㊀讨论与展望土壤是地球上最复杂的生态系统,1g森林土壤中约有40000种细菌㊁7000种真菌和成千上万的无脊椎动物㊂尽管生物多样性和功能纷繁复杂,但土壤生态系统已被组建成与常规营养结构高度整合的食物网[32]㊂从生态毒理学的角度来看,评估特定化学品对特定物种的毒性是相对简单的㊂然而,评估该物种的流失对食物网的整体结构或重要土壤过程的作用的影响并不是一项简单工作㊂不同空间和时间尺度层面复杂土壤生物群落的机制尚需研究,要整合到综合框架中还必须包括土壤的结构和化学复杂度[33],这些将决定化学品的应用范围和生物利用度㊂土壤食物网的主要作用之一是处理影响土壤生物发展和后续土壤理化性质的植物源性碳化合物,支持营养物质的转化和循环,最终有助于维持生态系统㊂因此,有毒化学物质不仅会影响单个生物体或生物群及其相互作用,还会随着时间的推移改变重要的生态系统特征㊂土壤生物及其相互作用会影响土壤性质,从而影响土壤中化学物质的结合和运动,使评估工作进一步复杂化㊂必须努力完成土壤质量指标集(如化学㊁物理和生物)的筛选,以适应每种土壤使用目的和管理预期㊂将这些土壤质量指标单独整合或作为ERA程序中综合土壤质量指标的一部分进行整合,有助于实现土壤功能和管理的最高保护水平[34]㊂目前,生物体在营养结构中所发挥的作用尚待明确,预测人造化学物质对土壤生态系统影响的前瞻性分析尤其具有挑战性[35]㊂使用模型系统研究的结果表明[36],即使营养结构保持不变,从已建立的系统中提取特定物种也会导致某些土壤功能发生变化㊂其他研究表明[37],部分生物体对生态系统生产力产生了巨大影响㊂人类对土壤生态系统循环过程了解较少,因此难以预测哪些土壤过程将受到化学毒性引起的物种损失或物种组成变化的影响㊂为了提高预测风险评估的可靠性,最重要的是利用来自不同地区的物种,对潜在有害物质进行测试,以保护最敏感和关键物种,进而实现特定生态系统的结构多样性和功能㊂这与土壤区域性有关,特别是热带地区㊂地下生物多样性的空间格局并非由相同的地上生物多样性机制所决定,因此显示出不同纬度的高土壤生物多样性[33]㊂有研究证明热带和温带物种之间的敏感性存在差异,且适用于部分化学物质[38-39]㊂尽管此类差异可能源于对PNEC进行测定时所作的假设,或缺乏热带物种的相关数据,但也可能是物种代谢中与温度相关的差异(不同的吸收和脱毒率可反映此差异)所造成[38]㊂ERA必须处理与大量现场物种(如橡树㊁知更鸟和蚯蚓)㊁多层次生态组织(如种群㊁群落和生态系统层次)以及给定场所多种潜在化学效应信息来源(如土壤化学㊁毒性生物测定㊁种群调查)相关的选择不确定性㊂必须要明确描述:①使用特定毒理学参数值或范围的理由;②接受的主要假设(如哪些受体在生态相关性和对相关污染物的敏感性方面最具风险代表性);③与假设相关的不确定性以及预计这种不确定性如何影响风险评估的描述㊂在评估PNEC变化原因以及不同评估人员确定的数值中,来自欧盟㊁美国㊁加拿大㊁日本和澳大利亚等国家和地区的科学家利用相同数据集对5种不同化学品(乙二醇㊁三氯乙烯㊁壬基苯酚㊁六氯苯和铜)进行独立危险评估[40]㊂在所有化学品中发现多达3个数量级的PNEC变化,这些差异与选择用于推导PNEC的方法㊁所应用的AF大小㊁生态毒理学分析急性慢性特征分类和选择数据方面等都有很大关系㊂虽。

水体中氮素污染危害及其治理的研究综述

水体中氮素污染危害及其治理的研究综述

广东化工2021年第5期· 92 · 第48卷总第439期水体中氮素污染危害及其治理的研究综述王夏童1,2,房平1,赵学敏2,马千里2,梁荣昌2,苟婷2* (1.西安工程大学城市规划与市政工程学院,陕西西安710000;2.生态环境部华南环境科学研究所,广东广州510535) [摘要]氮素是水体中重要的污染物之一,本文针对目前严重的水体氮素污染问题,综述了水体氮素污染对水环境,水生生物和人体健康的危害,为更深刻的认识到氮素污染的严重性提供了参考依据,并提出一些污染治理技术。

[关键词]氮;水体;危害[中图分类号]X5 [文献标识码]A [文章编号]1007-1865(2021)05-0092-02Review on the Hazards and Treatment of Nitrogen Pollution in RiversWang Xiatong1,2, Fang Ping1, Zhao Xuemin2, Ma Qianli2, Liang Rongchang2, Gou Ting2*(1. College of Urban Planning and Municipal Engineering, Xi’an Polytechnic University, Xi’an 710000;2. South China Institute of Environmental Sciences, Ministry of Ecological Environment, Guangzhou 510535, China)Abstract: One of the most important pollutants in surface water was nitrogen. In this paper, the seriousness of nitrogen pollution in surface water of China were reviewed. The hazards of nitrogen pollution to aquatic environment, organisms and human health were summarized, which provides a reference basis for a deeper understanding of the seriousness of nitrogen pollution, and the treatment technologies for nitrogen pollution were expounded.Keywords: nitrogen;river;harm氮是生物地球化学循环的物质基础之一[1]。

年刊过千!这本杂志从3分涨到近5分!最快1个月即可接受!

年刊过千!这本杂志从3分涨到近5分!最快1个月即可接受!

年刊过千!这本杂志从3分涨到近5分!最快1个月即可接受!一.杂志分类•中科院分区:①大类:环境科学与生态学2区;②小类:环境科学 2区、毒理学 2区•JCR分区:环境科学 1区、毒理学 1区•发布国家:荷兰•ISSN: 0147-6513 eISSN: 1090-2414•去年国人占比:778/1332 (58%)•官网地址:/ecotoxicology-and-environmental-safety二.编委介绍•ELSEVIER 出版•共同主编:普利茅斯大学-RichardHandy,广州大学-闫兵教授三.发表内容Aims & Scope:•Ecotoxicology and EnvironmentalSafety着重于了解环境污染对包括人类健康在内的生物暴露及影响。

•该杂志的范围涵盖了三个主题:生态毒理学环境化学环境安全四.近期发表•水中铜暴露通过GRP78和PGC1α的甲基化上调草鱼的脂质沉积Received: 28 May 2020 Accepted: 27 July 2020 Online: 15August 2020从投稿到接受2个月•小麦水甘油通道蛋白 TaNIP2;1的异位表达改变拟南芥中砷的积累和耐性Received: 20 February 2020 Accepted:2 August 2020 Online: 19 August 2020从投稿到接受1个月•转录组,蛋白质组学和代谢组学分析揭示了磷酸三苯酯(TPP)诱导的肝毒性途径的机制Received: 1 April 2020 Accepted: 3 August 2020 Online: 18 August 2020从投稿到接受5个月•基于单细胞分析的ZIF-8的大小和剂量依赖性细胞毒性Received: 15 May 2020 Accepted:30 July 2020 Online: 15August 2020从投稿到接受2.5个月•鲫鱼中双氯芬酸和卡马西平的生物摄取,净化和生化作用Received: 15 February 2020 Accepted: 28 July 2020 Online: 17August 2020从投稿到接受5.5个月•通过厌氧消化评估聚苯乙烯微和纳米塑料对甲烷生成的影响Received: 8 June 2020 Accepted: 21 July 2020 Online: 19 August 2020从投稿到接受1.4个月小结:从上述6篇文章来看,大部分文章在2-5个月接受,接受时间差异较大,有的仅用1个月就接受,有的需5个多月才接受。

1,4-二氯苯对四尾栅藻生长和光合色素的毒性效应

1,4-二氯苯对四尾栅藻生长和光合色素的毒性效应

1,4-二氯苯对四尾栅藻生长和光合色素的毒性效应张锦华;冯佳;吕俊平;刘琪;谢树莲【摘要】1,4-二氯苯(1,4-DCB)是水体中一种常见的有机污染物,为了解其对水生植物的毒性效应,研究了四尾栅藻(Scenedesmus quadricauda)暴露于不同质量浓度的1,4-二氯苯后,其生长和光合作用的响应.结果表明,低质量浓度的1,4-DCB(≤5 mg/L)暴露下,藻细胞密度、叶绿素a含量、叶绿素b含量、叶绿素总量及类胡萝卜素含量均与对照变化一致,且无显著差异;而当1,4-DCB质量浓度≥10mg/L时,各指标均显著下降.高质量浓度的1,4-DCB对四尾栅藻的生长和光合作用会产生严重的毒性影响,而且表现出明显的时间-浓度效应.【期刊名称】《山西农业科学》【年(卷),期】2016(044)003【总页数】4页(P333-336)【关键词】1,4-二氯苯;四尾栅藻;生长;光合作用;毒性影响【作者】张锦华;冯佳;吕俊平;刘琪;谢树莲【作者单位】山西大学生命科学学院,山西太原030006;山西大学生命科学学院,山西太原030006;山西大学生命科学学院,山西太原030006;山西大学生命科学学院,山西太原030006;山西大学生命科学学院,山西太原030006【正文语种】中文【中图分类】X171.51,4-二氯苯(1,4-DCB)是一种氯代芳香烃类化合物,一直被广泛应用于医药、染料、农药、塑料等各领域,是重要的生产原料和化学中间体,同时也是优良的防蛀剂、消毒剂及脱臭剂[1-2],但它也是被优先监测的有机污染物之一[3]。

有研究表明,高浓度的1,4-DCB对中枢神经系统及内脏器官肝和肾有严重的毒害作用[4]。

目前,随着人类生活和生产的发展,1,4-DCB的应用日益广泛,其在环境中的残留量也逐年升高,加之其具有生物难降解性,已对生态环境及人类健康构成了日益严重的威胁。

藻类是水生生态系统中重要的初级生产者,关系到水体生产力和水体生态平衡[5]。

环境领域几份期刊发表

环境领域几份期刊发表

环境领域几份期刊发表环境问题一直是全球关注的焦点,各种环境领域的期刊也在不断涌现。

本文将介绍几份在环境领域具有一定影响力的期刊,以供广大环境研究者参考。

首先要介绍的是《Environmental Science & Technology》(环境科学与技术),这是由美国化学学会出版的环境领域权威期刊之一。

该期刊涵盖了环境科学与工程技术的方方面面,包括环境污染控制、环境化学、环境工程、环境毒理学等多个领域。

该期刊的论文严谨、权威,被广大环境科研工作者广泛引用。

其次是《Environmental Pollution》(环境污染),这是一份专注于环境污染及其治理的期刊。

该期刊涵盖了大气、水、土壤等多个环境介质的污染与净化问题,以及环境污染对生态系统和人类健康的影响。

在这个期刊上发表的论文,往往能够为环境保护工作提供重要的科学依据。

另外,《Environmental Health Perspectives》(环境健康展望)也是一份备受关注的环境期刊。

该期刊聚焦于环境因素对人类健康的影响,包括环境污染、化学品暴露、环境公正等问题。

该期刊的研究成果对于促进环境健康政策的制定具有重要意义。

除了上述期刊外,还有许多其他值得关注的环境领域期刊,如《Environmental Research Letters》(环境研究快报)、《Environmental Monitoring and Assessment》(环境监测与评估)等。

这些期刊涵盖了环境领域的前沿研究成果,为环境科研工作者提供了一个交流学术成果的平台。

总的来说,环境领域的期刊种类繁多,每一本期刊都有其独特的定位和特色。

选择合适的期刊发表论文,不仅可以提升论文的影响力,也可以为学术交流和环境保护事业做出贡献。

希望广大环境科研工作者能够根据自身研究方向和需求,选择适合的期刊,为环境领域的发展贡献自己的智慧和力量。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Anaerobic degradation of chlorothalonil in four paddy soilsHuili Wang a ,Chengjun Wang b ,Fan Chen b ,Xuedong Wang a ,na Department of Environmental Science,School of Environmental Science and Public Health,Wenzhou Medical College,Wenzhou 325035,China bCollege of Chemistry and Materials Engineering,Wenzhou University,Wenzhou 325035,Chinaa r t i c l e i n f oArticle history:Received 6January 2008Received in revised form 25October 2010Accepted 18January 2011Available online 21March 2011Keywords:Chlorothalonil (CTN)Anaerobic degradation 4-OH-chlorothalonil (HTI)Paddy soila b s t r a c tDegradation of Chlorothalonil (CTN)was investigated in four different paddy soils under anaerobic conditions.The CTN biodegradation is strongly affected by the properties of the paddy soils.Soils associating with rich total carbon (TC),repeated CTN application,and neutral pH have shown the high capacity to biodegrade CTN.Additionally,anaerobic CTN biodegradation was accompanied by the methane generation and a drop of oxidation–reduction potential (ORP).The initial CTN concentration had a significant effect on CTN removal efficiency,and increase in the initial CTN concentration resulted in the decreasing of CTN removal percentage.However,it is believed that the inhibitory effect on anaerobic biodegradation of CTN is negligible in natural environment due to the much lower concentration of CTN in natural environment (at ng g À1or pg g À1level)than the one (10m g g À1)investigated in this study.The 4-hydroxy-2,5,6-trichloroisophthalonitrile (HTI),one of the major metabolites of CTN degradation,has shown the significant inhibitation to the anaerobic CTN biodegradation when its residual level is over 0.1m g g À1.&2011Elsevier Inc.All rights reserved.1.IntroductionChlorothalonil (2,4,5,6-tetrachloroisophthalonitrile,CTN),one of the most popular fungicides,belongs to the group of halogenated benzonitriles.It is well known that CTN works by contacting and further inhibiting cell respiration enzymes related to glutathion (Arvanites and Boerth,2001).Over the past two decades,the CTN has been widely applied to control many fungal diseases in agricul-ture (Cox,1997).However,residual CTN has been often detected in vegetables,crops,soils,and environmental water (Andersson and Bergh,1991),and the toxicity of CTN and its effect on human health have been extensively studied (Sherrard et al.,2003).Caux et al.(1996)have reported CTN is highly toxic to fish,birds,and aquatic invertebrates in environment.The CTN has been considered as a moderately persistent fungicide in soil,and the half-life of CTN in soil has been reported in the range from 4days to 6months (Singh et al.,2002).The variation of reported CTN half-life data could be due to the different experimental conditions (Gambacorta et al.,2005).In addition,the repeated application times have a significant effect on degradation of CTN (Walker et al.,1988;Van der Pas et al.,1999).Singh et al.(2002)reported that the half-life of CTN for the first dose in soil was 8.6days and this was extended to 21.5days for the third treatments.In the top layer of soil,4-hydroxy-2,5,6-trichloroisophthalonitrile (HTI)is the primary breakdown metaboliteof CTN in the presence of water,and it is more acutely toxic,persistent,and mobile in soil than the CTN itself (Cox,1997).More-over,the HT1may cause inhibition of the CTN degradation due to its inhibitory effect on microorganisms (Motonaga et al.,1996).Mean-while,Other CTN metabolites,including dechlorinated or substituted forms of CTN,such as 2,5,6-trichloro-4-methoxyisophathalonitrile,3-dicarbamo-yl-2,4,5,6-tetrachlorobenzene,2,4,5-tri-chloroisophtha-lonitrile,1,3-dicyanobenzene,etc.have been reported (Gustavo and Damia,1998).The aerobic metabolism has been considered as the most suitable pathway for CTN microbiological degradation (Katayama et al.,1997).However,some of metabolites from the group of halogenated benzonitriles have been reported (Regitano et al.,2001),and those metabolism pathways might be associated with the mechanisms of sulphate-reduction and reductive dechlor-ination that occur in anoxic environments.Wackett and Hershberger (2001)suggested benzenic ring reduction via carboxilation in anae-robic conditions could be one of the general rules of biodegradation,thus it is necessary to gather more information about CTN anaerobic degradation and metabolism.However,a little information has been reported for CTN degradation under anaerobic conditions.To author’s best knowledge,only Carlo-Rojas et al.(2004)have studied the anaerobic degradation of CTN in a banana plantation and their response to simulation by different carbon/nitrogen ratios.In most area of East Asia,CTN is often applied to control rice fungal diseases in paddy fields,where anaerobic-like conditions dominantly occur.Thus,it is important to study the anaerobic degradation of CTN in soil.In this study,we investigated the CTN degradation behaviors in four different paddy soils under laboratory anaerobic conditions,andContents lists available at ScienceDirectjournal homepage:/locate/ecoenvEcotoxicology and Environmental Safety0147-6513/$-see front matter &2011Elsevier Inc.All rights reserved.doi:10.1016/j.ecoenv.2011.01.011nCorresponding author.Fax:8657786689733.E-mail address:zjuwxd@ (X.Wang).Ecotoxicology and Environmental Safety 74(2011)1000–1005evaluated the effects of the soil properties,initial CTN concentrations,and the main intermediate (HTI)on anaerobic degradation of CTN.The information on the anaerobic degradation behaviors of CTN in paddy soils obtained in this study is useful for the assessment of CTN contamination in environment and mechanism study of its bioreme-diation under anaerobic conditions.2.Materials and methods 2.1.ChemicalsChlorothalonil (CTN,purity 99.4%)was purchased from Promochem (Wesel,Germany)and 4-OH-chlorothalonil (HTI,purity 99.5%)was obtained from ISK-Biotech (New York,USA).The structures of CTN and HTI are shown in Fig.1.The solubility of CTN in water is only 0.6mg L À1,while it reaches as many as 2000mg L À1in acetone.The standard stock solutions of CTN and HTI were separately prepared in acetone at a concentration of 50mg L À1.The stock solutions were prepared freshly every two month and stored in amber bottles at À201C until use.Except where noted,all solvents were of HPLC-grade and all reagents were of reagent grade.The distilled water was purified with a Mill-Q-Plus system (Millipore,Molsheim,France)before use.2.2.SoilsTwo of the studied paddy soils (designated as HB1and HB2),without CTN application history,were collected from rice fields of two places in Huaibin County,Henan Province,China.The other two paddy soils (named as QJ1and QJ2),which were applied CTN twice yearly at 375g a.i ha À1each time in the middle of May and August of past three years (2004–2006),were collected from two rice fields in Qianjiang City,Hubei Province,China.In the four paddy soils,CTN was not detected in HB1and HB2soil samples,meanwhile CTN was found at 0.89and 0.71ng g À1d.w.in QJ1and QJ2soil samples,respectively.The major CTN metabolite (HTI)was also detected (0.45ng g À1d.w.)in QJ2soil.All paddy soil samples were collected in October 2006,and their physical–chemical character-istics and contamination status are summarized in Table 1.The collected soil samples were air-dried,ground,sieved (o 2mm mesh),and stored submerged under water at room temperature.Before starting the anaerobic degradation experiment,the soil samples were equilibrated under submerged conditions at 221C for two weeks (Shibata et al.,2007).The experimental constant temperature was guaranteed because the operation was conducted under the thermostatic incubation room.2.3.Anaerobic CTN degradationAll experiments were performed triplicately in 125-mL bottles,in which 10g of soils,30ml of deionized water,and 5m g g À1of CTN were added under a gentle nitrogen flow.The small amount of acetone solvent,which was used for dissolving CTN,in soil sample was proved to be no adverse effect on anaerobic microbial activity by our previous study.All bottles were flushed with pure nitrogen gas (99.999%)for 15min to remove any trace of oxygen in containers,tightly capped with butyl rubber stoppers,sealed with aluminum crimps,and wrapped in aluminum foil to prevent from photolysis.All the sample bottles were incubated for two months at 301C,and the residual CTN concentrations,oxidation–reduction potential (ORP)values,and methane concentrations in samples were measured at intervals (0,5,10,20,40and 60days)of incubation.All experiments were conducted in an anaerobic glove box (Forma Scientific,model 1025S/N,USA).In order to study the contribution of anaerobic microorganisms to CTN degradation,the sterilized (ST)control samples were prepared in four paddy soils.All 125-mL vials containing 10g soil were capped slightly,wrapped in aluminum foil,and autoclaved for 3h (three separate 1h treatments at 1211C).Then,50m g of CTN was added,followed by adding 30ml of the ST deionized water.The vapor-phase in vials was removed by nitrogen gas to produce the anaerobic conditions and the samples were incubated as described above.2.4.Effect of metabolite HTI on CTN degradationHTI standards were spiked into the samples at a series of concentrations (0.1,0.5or 1m g g À1)to test the effects of HTI on anaerobic CTN degradation.The tested concentrations of HTI were referred to the report by Lu et al.(2008).The non-sterile (NST)controls were prepared without addition of HTI and incubated without shaking at 301C in darkness.2.5.Extraction and clean-up of soil samplesBecause the solubility of CTN in water is relative low,we did not measure its water equilibrium concentration.Referring to the report by Kwon and Armbrust (2006),soil suspension samples (10ml)were collected at intervals,adjusted pH to 3by HCl because the acidic conditions contribute to the high recoveries for most of analytes,and followed by adding 30ml of water/dichloromethane (1/3,v/v)solution.After shaking for 30min,the samples were centrifuged for 5min at 4000rpm,and the supernatants were pipetted into a 100-mL vial.The soil samples were extracted twice following the procedure described above,and the combined supernatants were filtered through a polytetrafluoroethylene (PTFE)filter membrane (30mm diameter,0.2m m pore size)to remove any soil particles.And then the dichloromethane layer was collected and evaporated to dryness under a gentle nitrogen flow.The residue was redissolved in 2ml of water/acetonitrile solution (1/1,v/v)before injected into high-performance liquid chromatography (HPLC).2.6.HPLC analysisAn Agilent 1100model HPLC equipped with photodiode array detector was used for all experiments.The analytical column used was a YWG-C 18reversed-phase column (250Â4.6mm ID,5-m m particle size)and column temperature was controlled at 301C.The mobile phase was made up of acetonitrile (ACN)and 0.5%phosphoric acid in water.The gradient elution started with 20%ACN for 3min,linearly increased to 90%ACN within 20min and then remained at 90%ACN for an additional 10min.The injection volume was 20m l and the flow rate was 0.8ml min À1.The detection wavelength was set at 232nm.2.7.Recovery studyA recovery study was performed by spiking four paddy soils with standard CTN stock solution at a series of concentrations (0.1,1,5and 10m g g À1).The residual extraction and analysis were conducted as the method described above.The average recoveries for CTN in anaerobic NST soils were from 81.2%to 94.5%and the relative standard deviations (RSDs)were from 4.6%to 8.9%.In the case of anaerobic ST soils,the average recovery was in the range of 83.7–91.2%and RSDs was from 3.5%to 9.2%.As a result,the adopted method could meet the requirements for residual analyses of pesticides (the required recovery ranged from 80%to 120%).2.8.Determination of ORP (oxidation–reduction potential)and methane production rateORP value of supernatant was measured by Ultrameter II TM6P (Myron L Company,USA)to ensure the anaerobic conditions.The pH value was measured with a pH meter (PHS-3C model,Shanghai Aiyite CO.,Ltd.,Shanghai,China).Fig.1.Structural formulas of chlorothalonil (CTN)and 4-hydroxychlorothalonil (HTI).Table 1Physical–chemical characteristics of the four paddy soils investigated in this study.Kind of sediment HB1HB2QJ1QJ2pH4.75.16.6 6.3Water content (%)22.619.326.917.4TC (%) 1.37 1.53 3.27 4.12TN (%)0.110.050.040.19SO 42À(mg/kg)9.6725.6813.7614.26NO 3À(mg/kg)0.891.412.173.12Soil textureLight clay Silty loam Silty loam Sandy loam Chlorothalonil (ng g À1.d.w)ND ND 0.890.71Metabolite A (ng g À1.d.w)NDNDND0.45ND indicates the abbreviation of ‘‘not detectable’’.TC and TN indicate the abbreviation of ‘‘total carbon’’and ‘‘total nitrogen’’,respectively.H.Wang et al./Ecotoxicology and Environmental Safety 74(2011)1000–10051001Methane in sample vials was collected periodically and determined by using a gas chromatography (Hewlett Packard,HP 6890series GC system)equipped with capillary column (30mm Â0.53mm ID,0.25um film thickness;Agilent Technol-ogies,USA)and a flame ionization detector.High-purity nitrogen gas was used as carrier gas.2.9.Calculation and statistical analysisThe anaerobic degradation of CTN in the investigated soils was found to follow the pseudo-first-order model.Therefore,the half-life value was calculated by the following mathematical model expressed as:C t ¼C 0Âe Àktð1Þwhere C 0is the initial concentration (m g g À1soil)of CTN,C t is the concentration (m g g À1soil)at time t ,t is the incubation time (days)and k is the degradation rate constant (d À1).The half-life was expressed by ln(2/k )and k was determined by using regression of ln(C t /C 0).The kinetic parameters of biodegradation were calculated according to the following steps:(1)The residual concentration of CTN by biodegradation at time t was calculatedby the following equation:C t =BD ¼C 0-C t =ST þC t =NSTð2Þwhere C t /BD is the residual concentration by biodegradation at time t ;C 0is the initial concentration of CTN;C t /ST is the concentration at time t under ST conditions;C t /NST is the concentration at time t under NST conditions.(2)Based on the residual concentrations (C t /BD )by biodegradation at differenttime t ,the biodegradation half-life and rate constant were calculated using the previous pseudo-first-order Eq.(1).(3)The biodegradation rate at 60days after treatment (DAT)was calculated bythe following equation:BDR 60¼½ðC 60=ST -C 60=NST Þ=C 0 100%ð3Þwhere BDR 60is the biodegradation rate at 60DAT;C 60/ST is the concentration at 60DAT under ST conditions;C 60/NST is the concentration at 60DAT under NST conditions;C 0is the initial concentration of CTN.Microsoft Excel 2003and Origin 6.0graphing software were used to fit the data to the model.Analysis of variance (ANOVA)and Duncan’s multiple range tests were used to determine significant difference at p o 0.05among each treatment using statistical analysis software (SAS Version 8).3.Results and discussion3.1.Anaerobic CTN degradation in soilsAs shown in Table 2,at 60DAT,the remaining CTN was in the range from 27.3%to 33.1%in anaerobic ST samples,and no significant difference was observed among four paddy soils.It indicates that around 70%of the original CTN was degraded in ST soils and abiotic processes might play an important role in the depletion of the fungicide.Photolysis can be negligible since all experiments were carried out in the darkness.Therefore,the loss under ST conditions might result from hydrolysis and formation of soil-bound residue,volatilization,uptake,etc.Especially,the soil binding might have contributed to these high abiotic degradation efficiencies (Regitano et al.,2001).Carlo-Rojas et al.(2004)reported that only 64%recovery after spiking a soil sample with CTN and extracting the fungicide with acetone solvents.And the high soil-bound CTN residue forms in the first day of microcosm incubation were found by Regitano et al.(2001).The binding process varies widely due to the diversity of the mineral components,the nature and content of organic matter,the proportion and size of the particles in soil and,particularly,the clay content of the soil (Gamble et al.,2001).Soil aggregates have not only physical–chemical effect but also relate to biological activity since they can provide micro spaces allowing microbial diversity (Van eaden et al.,2000).Under NST conditions,the remaining CTN at 60DAT was in the range from 0.4%to 28.5%in four paddy soils.Under ST conditions,four soils had similar half-lives of CTN in the range of 33.2–39.6days (Table 2)due to the abiotic degradation.However,CTN degradation,involving in combination of abiotic and biotic action under NST conditions,in QJ1and QJ2soils was much faster than that in HB1and HB2soils.It indicates that there was a higher microbial CTN-degrading activity in QJ1and QJ2soils than that in HB1and HB2soils.In QJ2soil,CTN degradation at 60DAT was 66.9%under ST conditions,whereas it was almost completely degraded (99.6%)under NST conditions.In QJ1soil,the CTN degradation increased by 23.4%in NST sample comparing with that in ST sample.The observation of similar degradation trend in both soils suggests that anaerobic microbial action was respon-sible for the additional degradation.In contrast,no significant difference was observed of the remaining CTN in HB1and HB2soils under either condition.It indicated that no biodegrada-tion occurred in those two soils.Briefly,the remaining CTN at 60DAT under NST conditions were in the following order:HB24HB14QJ14QJ2.As a result,CTN showed the much higher degradation rate in QJ2soil than that in other three soils under NST conditions.The degradation of organic chemicals under NST conditions is a result of biological and chemical transformation,while only chemical or abiotic process occurs under ST conditions.Difference of CTN degradation in soils under NST and ST conditions is that the contribution of biological transformation.The rate constant and half-life of anaerobic CTN biodegradation are listed in Table 2.The highest biodegradation rate was observed in QJ2soil (k ¼0.03746d À1),and followed by QJ1soil (k ¼0.02987d À1).The corresponding biodegradation half-lives of CTN were 23.2and 18.5days in QJ2and QJ1soil,respectively (Table 2).It is noteworthy that no CTN biodegradation occurred in HB1and HB2soils throughout the entire incubation period.These results in QJ1and QJ2samples are consistent with the report by Carlo-Rojas et al.(2004),who found that a high CTN degradation (56–95%)was observed in biologically active microorganisms although abiotic loss in a sterile blank was also notable (37%).Table 2Percentage of CTN remaining after 60days of incubation,and the degradation kinetic parameters in four paddy soils.SamplePercentage remaining (%)Rate constant (d À1)/,Correlation coefficient (R 2)Half-life (d)STNST ST BDNST ST BD NST HB127.372.7a 26.771.5a 0.02087(0.7457)–0.02063(0.9231)33.2–33.6HB229.672.1a 28.571.7a 0.01904(0.8933)–0.01963(0.9746)36.4–35.3QJ130.674.8a 7.270.2b 0.01853(0.8517)0.02987(0.7711)0.06188(0.8019)37.423.211.2QJ233.172.4a0.470.01c0.01750(0.7841)0.03746(0.8232)0.09118(0.8248)39.618.57.6All values are means 7SD of triplicate samples;Incubation time is 60days.Different lower cases within a column denote the significant difference at p o 0.05.BD,ST and NST indicate the abbreviation of biodegradation,sterile and non-sterile,respectively.‘‘–’’means no biodegradation was detected.H.Wang et al./Ecotoxicology and Environmental Safety 74(2011)1000–10051002The organic pollutants can be mineralized under anaerobic conditions,and the process of anaerobic mineralization includes two steps(Chang et al.,2005):(1)organic pollutants are decom-posed to organic acid and alcoholate and(2)mineralized to gas forms such as CH4(methane),H2S,CO2and so on in concomitant with the drop of ORP(oxidation–reduction potential).Therefore, methane generation and drop of ORP are commonly employed as indicators of anaerobic biodegradation of organic contaminants (Chen et al.,2004).As shown in Table3,methane only generated in QJ1and QJ2soils under NST conditions,whereas no methane was found in control samples under ST conditions(data not shown).The high-to-low order of methane generation rate under NST conditions was QJ24QJ14HB2or HB1,which was the same as the order of biodegradation rates of CTN.However,the contrary trend was found for the ORP values in the four soils i.e.,HB14HB24QJ14QJ2,suggesting that higher methane pro-duction rate was in concomitant with sharply decreasing of ORP (Table3).These evidences strongly suggest that the difference of CTN degradation in four paddy soils may result from the diversity of anaerobic microbial activity.Similar observations have been reported in organic chlorinated compounds such as biodegrada-tion of chlordane and hexachlorobenzene,nonylphenol poly-ethoxylates,and phthalate esters(Hirano et al.,2007;Lu et al., 2008).3.2.Properties of soils in relation to anaerobic CTN biodegradation o empty4Thefinal biodegraded CTN was80.6%and89.8%in QJ1and QJ2 soils in this study,respectively.Meanwhile,no CTN biodegrada-tion took place in HB1and HB2soils,as shown in Table3.The CTN residues in QJ1and QJ2soils and the major metabolite HTI in QJ2 samples were detected at ng gÀ1d.w level,as presented in Table1.The CTN application at different time may have different inhibitory effects on soil microorganisms.After thefirst application of CTN,the soil bacteria and actinomyces could be significantly reduced and the most marked inhibition on soil microorganisms took place after the second application.However, soil microorganisms gradually adapted to CTN after initial varia-tions and the negative effects became transient and weak after the third and fourth application(Yu et al.,2006).In this research, CTN had been applied many times in QJ1and QJ2soils prior to the soil-collected date.The anaerobes were able to biodegrade CTN since their acclimation period,during which almost no biodegra-dation occurred,was completed.On the contrary,HB1and HB2 samples were collected from the places without contamination of CTN,and the anaerobes required a long time tofinish acclimation period and thus were not able to biodegrade the CTN during the incubation period.As a result,no CTN biodegradation was observed in HB1and HB2soils.The high-to-low order of CTN biodegradation rates was QJ24QJ14HB1(or HB2),which was the same as the order of total carbon(TC)content,methane generation rate,and the drop in ORP,as shown in Table3.Especially,the high-to-low order of TC in four paddy soils was in concomitant with the same order of biodegradation rate,suggesting that the high TC contributed to high biodegradation of CTN.QJ2sample,having original CTN residue for a long time and the highest TC content,had the highest biodegradation rate among the four paddy soils.Mean-while,the HB1and HB2samples had very poor TC and no CTN, and no biodegradation occurred within the60-day of incubation period.Therefore,it is possible that the original TC and CTN residue in the soils contributed the CTN degradation.Hirano et al. (2007)investigated the biodegradation of chlordane and hexa-chlorobenzene in river sediments,and found that high carbon content and contamination by the target chemicals can enrich microorganisms such as sulfate-reducing bacteria,methanogen, and eubacteria,which are responsible for degrading organic pollutants.In addition,the neutral pH of QJ2and QJ1soils might be another important factor to affect their biodegradation capa-cities.As reported by other researchers previously,anaerobic microorganisms can be inhibited at pH values below6or above 9(Widdel,1988).Chang et al.(2002)also concluded that the optimal pH for the anaerobic biodegradation of PAHs by soil culture was pH8.0.The fact that no CTN biodegradation occurred in HB1and HB2soils over a60-day incubation period may be due to the poor organic carbon,absence of the CTN residue,and acidic pH values.These observations suggest that the paddy soils with rich TC, CTN,and neutral pH may have a high CTN biodegradation potential.The TC and CTN can induce the growth of microorgan-isms,which are responsible for biodegradation of these chemicals and the neutral pH can produce suitable conditions for biodegradation.3.3.Effect of the initial concentration on anaerobic degradation of CTN in QJ2soilAs listed in Table4,the different initial concentration had a significant effect on CTN removal efficiency.Obviously,there is a decreasing linear relationship between initial concentration and the removal percentage(y¼À0.8597x+100.54,r2¼0.7649).How-ever,no significant difference between the removal percentages at5and10-m g gÀ1treatments were observed,and the removal percentage was more than90%in both cases,as shown in Table4. The results suggest that there was no inhibitory effect even at initial level of10m g gÀ1.However,a sharp decreasing tendency in removal efficiency occurred when the initial concentration further increased from10to20m g gÀ1.It indicated that the inhibitory effect occurred on anaerobic biodegradation of CTN at the high initial level.Especially,the removal percentage(70.4%)at initial CTN concentration of40m g gÀ1was not significant(at p o0.05)different from that(66.9%)at5m g gÀ1under ST condi-tions,which demonstrated that the microorganisms were wholly inhibited and the CTN removal was due to abiotic contribution.In fact,the concentration of CTN in natural environment usually maintains at a very low level(at ng gÀ1or pg gÀ1level),and is much less than the one(10m g gÀ1)investigated in thisTable3Biodegradation rate of CTN,ORP and TC under NST conditions in four paddy soils.Kind of soil HB1HB2QJ1QJ2TC(%)before treatment 1.37 1.53 3.27 4.12Biodegradation rate(%)at60DAT0080.689.8ORP(mV)at60DATÀ104À109À267À294Methane generation rate(m mol/g d.w./day)under NST conditions00 1.76 2.42TC and ORP indicate total carbon and oxidation–reduction potential,respectively.Table4Effect of initial concentration on anaerobic CTN degradation in NST QJ2paddy soil.Initial concentration (m g gÀ1)Removalpercentage(60d)Half-life(days)Rate constant(dÀ1)R2599.672.4a7.60.091180.82481095.473.5a9.40.073720.71812072.373.9b27.90.024840.82464070.474.9b31.60.021930.9077All values are means7SD of triplicate samples;Incubation time is60days.Different lower cases within a column denote the significant difference at p o0.05.H.Wang et al./Ecotoxicology and Environmental Safety74(2011)1000–10051003experiment.Therefore,it is possible that the inhibitory effect on anaerobic biodegradation of CTN is negligible in most natural environment.3.4.Effect of major metabolite on anaerobic degradationIn soils,plants,and animals,CTN can be metabolized into the 4-hydroxy-2,5,6-trichloro-isophthalonitrile (HTI).HTI is 30times more acutely toxic than CTN itself,and it is more persistent and mobile in soil (Cox,1997).Motonaga et al.(1996)reported that HTI could cause inhibition of CTN degradation in fields due to its toxicity to microorganisms.In this investigation,some metabolic byproduct peaks besides the metabolite HTI were detected.For lack of authentic standards,further identification and discussion of these byproduct peaks were not performed except HTI.Standard HTI was added to the QJ2soil to investigate the effect of typical intermediate on anaerobic CTN degradation.As shown in Fig.2,the degradation of the control (no addition of HTI)at 60DAT had no significant difference from that of the sample spiked by 0.1m g g À1of standard.However,it was sharply decreased from 94.8%to 75.6%when HTI was increased from 0.1to 1.0m g g À1,as presented in Table 5.With the further increase of HTI concentration from 1.0to 5.0m g g À1,the degradation percentage still remained at a stable level ($73%),which was not significant form that in ST QJ2soil.The HTI could significantly inhibit the anaerobic biodegradation of its parent compound when the residual level of this metabolite was over 0.1m g g À1.Motonaga et al.(1998)have suggested that the residual toxicity of HTI might be responsible for the suppression of CTN degradation in soils after repeated applications.Chaves et al.(2007)also reported that HTI accounted for as much as 65%of the totalresidues in soils and could reach concentrations as high as 34.7ng g À1(d.w.).In agreement with the previous reports by other researchers,the results in this study indicated that the significant inhibitory effect on CTN degradation could occur when the concen-tration of HTI residue in soil was more than 0.1m g g À1.4.ConclusionsIn this study,all four paddy soils were capable of degrading CTN under anaerobic conditions without any external acceptors.However,only two of them (QJ1and QJ2)could biodegrade CTN.CTN degradation potential in paddy soils varied with soil proper-ties such as TC,pH value,and application times of the CTN.The QJ2soil had the highest CTN biodegradation rate due to its high content of TC,neutral pH value,and CTN application times.However,the HB1and HB2samples had poor TC and no CTN,thus no CTN biodegradation was observed.Additionally,methane was generated and ORP was dropped during the anaerobic CTN biodegradation.The inhibitory effect on anaerobic biodegradation of CTN is negligible in natural environment due to the much lower concentration of CTN in natural environment (at ng g À1or pg g À1level)than the one (10m g g À1)investigated in this study.HTI,one of the major CTN metabolites,could significantly inhibit the anaerobic CTN biodegradation when the residual HTI level in soil was more than 0.1m g g À1.To author’s best knowledge,this is the first report on anaerobic degradation of CTN in paddy soils.AcknowledgmentsThis work was jointly funded by National Natural Science Foundation of China (No.31071115,21077109),and International Cooperation Project of Wenzhou City (H20100053,H20100054).The authors are also grateful to the anonymous reviewers for their reading of the manuscript,and for their suggestions and critical comments.ReferencesAndersson,A.,Bergh,T.,1991.Pesticide residues in fresh fruit and vegetables onthe Swedish market,January 1985–December 1989.Fres.J.Anal.Chem.339,387–389.Arvanites, A.C.,Boerth, D.,2001.Modeling of the mechanism of nucleophilicaromatic substitution of fungicide chlorothalonil by glutathione.J.Mol.Model.7,245–256.Carlo-Rojas,Z.,Bello-Mendoza,M.,Figueroa,M.S.,Sokolov,M.Y.,2004.Chlorotha-lonil degradation under anaerobic conditions in an agricultural tropical soil.Water Air Soil Poll.151,397–409.Caux,P.Y.,Kent,R.A.,Fan,G.T.,Stephenson,G.L.,1996.Environmental fate andeffects of chlorothalonil:a canadian perspective.Crit.Rev.Environ.Sci.Technol.26,45–93.Chang,B.V.,Shiung,L.C.,Yuan,S.Y.,2002.Anaerobic biodegradation of polycyclicaromatic hydrocarbon in soil.Chemosphere 48,717–724.Chang,B.V.,Liao,C.S.,Yuan,S.Y.,2005.Anaerobic degradation of diethyl phthalate,di-n-butyl phthalate,and di-(2-ethylhexyl)phthalate from river sediment in Taiwan.Chemosphere 58,1601–1607.Chaves, A.,2007.Agrochemical environmental fate and behavior in bananaplantations:a modeling approach,Ph.D.Dissertation,North Carolina State University,Raleigh.Chen,I.M.,Chang,Y.F.,Lin,H.,2004.Microbial dechlorination of hexachloroben-zene by untamed sediment microorganisms in Taiwan.Pract.Period.Hazard.Toxic Radioact.Waste Manage 8,73–78.Cox,C.,1997.Chlorothalonil..J.Pest.Reform 17,14–20.Gamble,D.S.,Lindsay,E.,Bruccoleri,A.G.,Langford,C.H.,2001.Chlorothalonil andits 4-hydroxy derivative in simple quartz sand soils:a comparison of sorption processes.Environ.Sci.Technol.35,2375–2380.Gambacorta,G.,Faccia,M.,Lamdcchia,C.,Luccia,A.D.,Notte,E.L.,2005.Pesticideresidues in tomato grown in open field.Food Control 16,629–632.Gustavo,A.,Damia,B.,1998.Photodegradation and stability of chlorothalonil inwater studied by solid-phase disk extraction,followed by gas chromatography techniques.J.Chromatogr.A 823,81–90.Hirano,T.,Ishida,T.,Kokyo,O.,Sudo,R.,2007.Biodegradation of chlordane andhexchlorobenzenes in river sediment.Chemosphere 67,428–434.Fig. 2.Effect of metabolite HTI on anaerobic degradation of CTN under NST conditions.Table 5Effects of different intermediate (HTI)concentrations on anaerobic CTN degrada-tion in NST QJ2paddy soil.Concentration of HTI (m g g À1)Removalpercentage (%)Half-life (days)Rate constant (d À1)R 20(no addition)99.672.4a 7.60.091180.82480.194.873.2a 7.90.087720.7561175.673.7b 27.80.024930.8129572.774.8b29.60.014260.7996All values are means 7SD of triplicate samples;Incubation time is 60days.Different lower cases within a column denote the significant difference at p o 0.05.H.Wang et al./Ecotoxicology and Environmental Safety 74(2011)1000–10051004。

相关文档
最新文档