太阳与行星间的引力
第六章 第2、3节 太阳与行星间的引力 万有引力定律
对万有引力定律的理解
1.对万有引力定律表达式F=Gmr1m2 2的说明 (1)引力常量G:G=6.67×10-11N·m2/kg2;其物理意义为:引 力常量在数值上等于两个质量都是1 kg的质点相距1 m时的相互吸 引力。 (2)距离r:公式中的r是两个质点间的距离,对于质量均匀分 布的球体,就是两球心间的距离。
1 602
g相等,这说明地面物体受地球的引
力、月__球__受地球的引力,以及太阳、行星间的引力,遵从相同的规律。
2.万有引力定律 (1)内容:自然界中任何两个物体都相互_吸__引__,引力的方向在它 们的_连__线__上,引力的大小与物体的质量 m1 和 m2 的_乘__积__成正比、 与它们之间距离 r 的_二__次__方__成反比。 (2)公式:F=_G__m_r1_m2_2_。 (3)引力常量:上式中 G 叫_引__力_常__量__,大小为 6.67×10-11 N·m2/kg2 ,它是由英国科学家_卡__文__迪__许_在实验室里首先测出的,该 实验同时也验证了万有引力定律。
二、万有引力定律
1.月—地检验
(1)目的:验证月球绕地球运动的力与使得苹果下落的力是同一种
力,从而将太阳与行星间的引力规律推广到宇宙中的一切物体之间。
(2)原理:计算月球绕地球运动的向心加速度an,将an与物体在地球 附近下落的加速度——自由落体加速度g比较,看是否满足an=6102g。
(3)结论:数据表明,an与
1 4
,下列办法不可采用
的是
()
A.使物体的质量各减小一半,距离不变
B.使其中一个物体的质量减小到原来的14,距离不变
C.使两物体间的距离增为原来的2倍,质量不变
解D.析使:两选物D体根间据的F距=离G和m质r1m2量2 都可减知为,原A、来B的、14C三种情况中万有
6-2第2节 太阳与行星间的引力
课标定位 ①知道行星绕太阳运动的原因,知道太阳与行星间存在着引力作 用.②知道行星绕太阳做匀速圆周运动的向心力来源.③知道太 阳与行星间引力的方向和表达式,知道牛顿定律在推导太阳与行 星间引力时的作用.④领会将不易测量的物理量转化为易测量物 理量的方法.
填一填 · 知识清单 ———————————————— 一、太阳对行星的引力 太阳对不同行星的引力与行星的 1 __________成正比,与行星和 太阳间的距离的 2 ____________成反比. 二、行星对太阳的引力 在太阳对行星的引力中,行星是 3 __________物体,其引力与 4 ________的质量成正比;由牛顿第三定律可知行星对太阳也必然有吸 M 引力 F′,太阳是 5 ________物体,则必有 F′∝ 2 .引的物体为行星且 r2
质量为 m,行星对太阳的引力和太阳对行星的引力是同种性质的力,其 表达式与太阳对行星引力的表达式应有相同的表达形式,被吸引的物 M 体是太阳且质量为 M,行星对太阳引力的表达式应为F∝ 2 ,这一论证 r 答案:C 过程是类比论证过程,选项 C正确.
m 成正比,也就是 F∝ 2 . r 这表明:太阳对不同行星的引力与行星的质量成正比,与行星和
太阳间距离的二次方成反比.
二、行星对太阳的引力 就太阳对行星的引力来说,行星是受力星体,因而可以说,上述 引力是与受力星体的质量成正比的. 根据牛顿第三定律,既然太阳吸引行星,行星也必然吸引太阳, 就行星对太阳的引力 F′来说,太阳是受力星体.因此, F′的大小应 该与太阳质量 M成正比,与行星、太阳距离的二次方成反比,也就是 M F′∝ 2 . r
(2)太阳与行星间引力的方向沿着二者的连线; Mm (3)引力规律 “ F= G 2 ”也适用于地球和某卫星之间. r
太阳与行星间的引力万有引力定律讲课文档
地面对物体的支持力 FN 的作用,其合力充当__向__心___力___,FN 的大小等于物体的重力的大小.
(3)其他位置物体的重力随纬度的增加而___增__大____.
第二十六页,共41页。
学习互动
2.重力和高度的关系 Mm
若物体距地面的高度为h,在忽略地球自转的条件下有:mgh=___G__(__R__+_,h)可2得:gh= GM
第八页,共41页。
新课导入
师:开普勒在1609和1619年发表了行星运动的三个定律,解决了描述行星运动的问 题,但好奇的人们,面向天穹,深情地叩问:是什么力量支配着行星绕着太阳做如此 和谐而有规律的运动呢?这节课我们就来认识这些问题.
第九页,共41页。
知识必备
知识点一 太阳与行星间的引力 1.太阳对行星的引力 太阳对行星的引力,与行星的质量m成__正__比____,与行星和太阳间距离的二次方成
Mm 反比,即F=___G___r_2____.表达式中的G是比例系数,其大小与太阳和行星都无关.引力
的方向沿二者的连线.
第十一页,共41页。
知识必备
知识点二 万有引力定律 1.月—地检验 由于月球轨道半径约为地球半径的60倍,所以月球轨道上物体受到的引力是地球上的
1 _6__0_2____.根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速
1
A.5
B.5
1 C.25
D.25
第二十八页,共41页。
学习互动
[答案] C [解析] 设海王星绕太阳运行的轨道半径为 R1,周期为 T1,地球绕太阳公转的轨道半径
m __反__比____,即F∝____r__2__.
2.行星对太阳的引力 行星对太阳的引力,与太阳的质量M成______正__比,与行星和太阳间距离的二次方成
物理太阳与行星间的引力
物理太阳与行星间的引力[要点导学]1.天体引力的假设:牛顿认为物体运动状态发生改变的原因是受到力的作用,如果没有力的作用物体将保持静止或匀速直线运动状态。
行星围绕太阳运动,一定受到了力的作用。
这个力是太阳对行星的引力。
2.太阳与行星间的引力推导思路(将椭圆轨道近似看作圆轨道来推导):(1)行星运动需要的向心力:,根据开普勒第三定律:得到:太阳对行星的引力(其中m为行星质量,r 为行星与太阳的距离)(2)太阳和行星在相互作用中的地位是相同的,只要作相应的代换,就可以得到结果。
行星对太阳的引力(其中M为太阳的质量,r为太阳到行星的距离)(3)因为这两个力是作用力与反作用力,大小相等,所以概括起来,得到,写成等式,比例系数用G表示,有。
(4)虽然在中学阶段只能将椭圆轨道近似看作圆轨道来推导,但仍要明确:牛顿是在椭圆轨道下进行推导的。
牛顿是在前人的基础上做出了伟大发现,牛顿的发现还在于他有正确的科学思想和超凡的数学能力。
[范例精析]例题:证明开普勒第三定律中,各行星绕太阳公转周期的平方与公转轨道半径的三次方的比值k是与太阳质量有关的恒量。
解析:行星绕太阳运动的原因是受到太阳的引力,引力的大小与行星质量、太阳质量及行星到太阳的距离(行星公转轨道半径)有关。
这个引力使行星产生向心加速度,而向心加速度与行星公转的周期和轨道半径有关,这样就能建立太阳质量与行星公转周期和轨道半径之间的联系。
设太阳质量为M,某行星质量为m,行星绕太阳公转周期为T,半径为R。
将行星轨道近似看作圆,万有引力提供行星公转的向心力,有得到,其中G是行星与太阳间引力公式中的比例系数,与太阳、行星都没有关系。
可见星绕太阳公转周期的平方与公转轨道半径的三次方的比值k是与太阳质量有关的恒量。
拓展:在解决有关行星运动问题时,常常用到这样的思路:将行星的运动近似看作匀速圆周运动,而匀速圆周运动的向心力则由太阳对行星的引力提供。
研究其它天体运动也同样可以用这个思路,只是天体运动的向心力由处在圆心处的天体对它的引力提供。
太阳与行星间的引力(刘玉兵)
众多科学家为此展开研究…… 众多科学家为此展开研究
行星为什么这样运动? 行星为什么这样运动?
开普勒
德国天文学家, 德国天文学家,人们称颂他 天空法律创制者” 是“天空法律创制者”、“天体 力学奠基人” 力学奠基人” 。
受到了来自太阳的 类似于磁力的作用。 类似于磁力的作用。
行星为什么这样运动? 行星为什么这样运动?
伽利略
意大利物理学家、 意大利物理学家、天文学家和 哲学家,近代实验科学的先驱。 哲学家,近代实验科学的先驱。
一切物体都有合并 的趋势, 的趋势,这种趋势导致 物体做圆周运动。 物体做圆周运动。
行星为什么这样运动? 行星为什么这样运动?
笛卡儿
法国伟大的哲学家、物理学家、 法国伟大的哲学家、物理学家、数 学家、生理学家。解析几何的创始人。 学家、生理学家。解析几何的创始人。
练习2 两个行星的质量分别为m 练习2、两个行星的质量分别为m1和m2,绕太阳 运行的轨道半径分别是r 运行的轨道半径分别是r1和r2,若它们只受太阳引 力的作用, 力的作用,那么这两个行星的向心加速度之比为 A .1
m1r1 B. m2 r2
m1r2 C. m2 r1
r22 D. 2 r1
练习3 练习3、下面关于行星绕太阳旋转的说法中 正确的是 A.离太阳越近的行星周期越大 A.离太阳越近的行星周期越大 B.离太阳越远的行星周期越大 B.离太阳越远的行星周期越大 C.离太阳越近的行星的向心加速度越大 C.离太阳越近的行星的向心加速度越大 D.离太阳越近的行星受到太阳的引力越大 D.离太阳越近的行星受到太阳的引力越大
2
练习1 练习1、下列关于行星对太阳的引力的说法中 正确的是 A.行星对太阳的引力与太阳对行星的引力是同 A.行星对太阳的引力与太阳对行星的引力是同 一性质的力 B.行星对太阳的引力与太阳的质量成正比 行星对太阳的引力与太阳的质量成正比, B.行星对太阳的引力与太阳的质量成正比,与 行星的质量无关 C.太阳对行星的引力大于行星对太阳的引力 C.太阳对行星的引力大于行星对太阳的引力 D.行星对太阳的引力大小与太阳的质量成正比 行星对太阳的引力大小与太阳的质量成正比, D.行星对太阳的引力大小与太阳的质量成正比, 与行星距太阳的距离成反比
6-2太阳与行星间的引力(咸宁高中朱必胜)
科学方法: 科学方法:放大法 实验的意义: 实验的意义:
(1) 证明了万有引力的存 在,使万有引力定律进入了 真正实用的时代; 真正实用的时代; (2) 开创了微小量测量的 先河, 先河,使科学放大思想得到 了推广。 了推广。
通常情况 G=6.67×10-11 N·m2/kg2 ×
思考与分析
思考1.我们人与人之间也一样存在万有引力, 思考 .我们人与人之间也一样存在万有引力 , 可是为什么我们感受不到呢? 可是为什么我们感受不到呢?
当年牛顿在前人研究的基础上, 当年牛顿在前人研究的基础上,也经过类似这样 的思考,并凭借其超凡的数学能力和坚定的信念, 的思考,并凭借其超凡的数学能力和坚定的信念, 深入研究,最终发现了万有引力定律 万有引力定律。 深入研究,最终发现了万有引力定律。
牛顿在1676年给友人的信中写道: 年给友人的信中写道: 牛顿在 年给友人的信中写道
估算两个质量 50 kg 的同学相距 0.5 m 时之间的万有 引力约有多大? 6.67×10-7 N
是一粒芝麻重的几千分之一,这么小的力人 根本无法察觉到。
思考与分析
思考2.太阳与地球之间的万有引力又是多大 思考2 呢?太阳对人的引力又有多大
已知:太阳的质量为M = 2.0×1030 kg 地球质量为m = 5.98×1024 kg 太阳与地之间的距离为R = 1.5×1011 m 人的质量m’=50 kg × F = GMm/R2 =3.5×1022(N)
Mm F=G 2 r
2π 2 F = m( ) r T
4π r M= 2 GT
2 3
显然要想知道地球质量,必 显然要想知道地球质量, 须知道引力常量G 须知道引力常量G的取值
第一个称出地球质量的人
万有引力定律-PPT课件
R2
【典例示范1】 如图所示,P、Q为质量相同的两质点, 分别置于地球表面的不同纬度上,如果把地球看成一个 均匀球体,P、Q两质点随地球自转做匀速圆周运动,则 下列说法正确的是 ( )
A.P、Q做圆周运动的向心力大小相等 B.P、Q所受地球引力大小相等 C.P、Q做圆周运动的线速度大小相等 D.P所受地球引力大于Q所受地球引力
【解析】选B。P、Q两点的角速度相同,做圆周运动的
半径不同,根据F向=mrω 2可知向心力大小不相等,A错
误;P、Q两质点距离地心的距离相等,根据F=
知,
两Q两质质点点受角到速的度地大球小引相力等大,小做相圆等周,运故动B的正半确径、不DG错同MR误m2,;根P据、
v=rω 可知线速度大小不同,故C错误。
(3)两个质量分布均匀的球体间的引力大小可用万有引 力定律公式求解,公式中的r为两球心之间的距离。 (4)一个质量分布均匀的球体与球外一质点之间的引力 大小也可用万有引力定律公式求解,公式中的r为质点 到球心之间的距离。
【思考·讨论】
李出华:r认→为0时两,个F→人∞距离。非李常华近同时学,的根想据法公正式确F=吗G?m为r1m2什2 么得? (科学思维)
1.内容:自然界中任何两个物体都_相__互__吸__引__,引力的方 向的在乘积_它_成_们___的____连____线,_与_上_它_,们引之力间的的大距小离与r物的体二的次质方量成m_1和__m_2_。
正比 2四.、公引式力:F常=_G量__m_r1m_2 _2 _。
反比
1.测量者:_________。
提示:不正确,因为两个人距离非常近时,不能视为质点 ,此公式不成立。
【典例示范】
要使两物体间的万有引力减小到原来的 1 ,下列办
3 万有引力定律
行星m
F
F′
太阳M
二、行星对太阳的引力
行星对太阳的引力
类比
M ' F 2 r
跟太阳的质量成正比,
与行星到太阳的距离 的二次方成反比。
三、太阳与行星间的引力
方向:沿着太阳与行
星间的连线。
m F 2 r
类 牛 比 三
G为比例系数,与
太阳、行星无关。
牛三
F 和F ′是一对作用力和 反作用力,那么可以得出F大
故它们之间的引力很小,且小于它们与地面间的摩擦力, 故两人没吸引到一起。
三、引力常量的测定
1.1687年牛顿发现万有引力定律后,曾经设想过几种测定
引力常量的方法,却没有成功。 2.其间又有科学家进行引力常量的测量也没有成功。 3.直到1798年,英国物理学家卡文迪许巧妙地利用了扭秤 装置,第一次在实验室里对两个物体间的引力大小做了精 确的测量和计算,比较准确地测出了引力常量。
重力就是地球对物体的万有引力。
例2. 要使两物体间的万有引力减小到原来的1/4,下列 办法可采用的是( ABC ) A. 使两个物体质量各减小一半,距离不变
B. 使其中一个物体的质量减小到原来的1/4,距离不变
C. 使两物体的距离增为原来的2倍,质量不变 D. 两物体的距离和两物体质量都减小为原来的1/4
F g 2.7 103 m / s 2 向心加速度为:a m 3600 根据当时实验观测数据T=27.3天,r=3.8×108m,
M 地 m果
检验表明,地面物体所受地球的引力,月球所受地球的
FG 引力,以及太阳与行星间的引力,遵循规律: Mm r2
4 2 求得的月球的向心加速度为:a 2 r 2.7 103 m / s 2 T
万有引力定律
(1)猜想:太阳对行星的引力F应该与 行星到太阳的距离r有关,许多经验使 人很容易想到这一点。那么F与r的定量 关系是什么? (2)简化模型:行星轨道按照“圆”来 处理;
7
(3)计算
将行星运动近似为圆轨道上的匀速圆 周运动:太阳和行星间的距离为r,行星 运动的周期为T,行星的质量为m。请你 学着牛顿的方法,证明太阳对行星的引 力F与r的二次方成反比。
28
例题: 已知地球表面的重力加速度为 g , 地球半径为R,万有引力恒量为G,用 以上各量表示,地球质量M为多少?
Mm 解:由于 G 2 mg R
R g 所以,地球质量: M G
29
2
问题2 月球绕地球的公转周期27.3 5 天,轨道半径3.84×10 km,地球表面 的物体受到地球的引力可近似认为等 于物体的重力,物体的重力加速度为 9.8m/s2. 地球的半径为月球绕地球运 转半径的 1 .
量有关吗?
(4)对称:根据牛顿第三定律,行星与太阳间的 吸引力是相互作用的,是大小相等、性质相同 的力(一对作用力、反作用力).
• 牛顿认为,行星对太阳的引力大小也存在与上 述关系对称的结果,即和太阳的质量成正比. 若用M表示太阳的质量,则有:
M F 2 r
10
(5)推导:根据(3)和(4),得 到太阳与行星间的引力大小:
1.1686年牛顿发现万有引力定律后,曾经设想过 几种测定引力常量的方法,却没有成功. 2.其间又有科学家进行引力常量的测量也没有成 功. 3.直到1789年,英国物理学家卡文迪许巧妙地利 用了扭秤装置,第一次在实验室里对两个物体间 的引力大小作了精确的测量和计算,比较准确地 测出了引力常量.
21
G值的测量:卡文迪许扭秤实验
万有引力定律和行星运动的规律
万有引力定律和行星运动的规律人类对于宇宙的探索可以追溯到远古时代,但直到牛顿发表了他的《自然哲学的数学原理》(即《数学原理》),才揭示了万有引力定律,为后来研究行星运动的规律奠定了基础。
而这一发现也使得人们对于宇宙的认识有了质的飞跃。
万有引力定律是伟大的物理学家牛顿在1687年提出的,根据这个定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
具体来说,如果一个物体的质量是m1,另一个物体的质量是m2,它们之间的距离是r,那么它们之间的引力等于G×m1×m2/r²。
其中,G是一个数值,称为万有引力常数,它的值约为6.67×10^-11 N·(m/kg)^2。
有了万有引力定律,我们可以解释宇宙中庞大的行星运动了。
行星运动是宇宙中最常见也是最引人注目的现象之一,如何解释它已经困扰了人类数千年。
而牛顿的万有引力定律却能够很好地解释行星运动的轨迹和速度。
首先,我们来考虑围绕太阳运行的行星。
根据万有引力定律,太阳和行星之间的引力将导致行星做椭圆轨道运动。
这个轨道的形状可以用一个参数来描述,即离心率。
离心率是一个介于0和1之间的数值,决定了椭圆的形状,一个离心率为0的椭圆是一个完美的圆,而离心率接近1的椭圆就会变得扁平,轨道上的行星运动速度也将变得更快。
这就解释了为什么不同的行星有不同的轨道形状和运动速度。
其次,万有引力定律还能解释为什么行星有固定的周期运动。
根据牛顿的定律,太阳对于行星的引力会使得行星的运动速度发生变化。
当行星离太阳比较远时,引力较小,行星运动较慢;而当行星离太阳比较近时,引力较大,行星运动速度较快。
根据数学计算,这个变化的速度和角度正好能使得行星围绕太阳做周期运动。
因此,行星的周期运动实际上是受到太阳引力和行星速度之间的平衡状态所决定的。
这个平衡状态下,行星的运动速度和距离太阳的距离所决定的引力大小正好可以使得行星与太阳之间的引力平衡。
高中物理必修二---太阳与行星间的引力 第3节 万有引力定律
第2节 太阳与行星间的引力 第3节 万有引力定律 1.知道行星绕太阳做匀速圆周运动的向心力来源. 2.知道太阳与行星间引力的方向和表达式,知道牛顿运动定律在推导太阳与行星间引力时的作用,知道万有引力定律的适用范围.(难点) 3.理解万有引力定律,会用万有引力定律解决简单的引力计算问题,并且了解引力常量G 的测定在科学历史上的重大意义.(重点)一、太阳与行星间的引力1.太阳对行星的引力:设行星质量为m ,行星到太阳中心的距离为r ,则太阳对行星的引力:F ∝m r2. 2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同(设太阳质量为M ),即F ′∝M r2. 3.太阳与行星间的引力:根据牛顿第三定律F =F ′,又由于F ∝m r 2、F ′∝M r 2,则有F ∝Mm r2,写成等式F =G Mm r2,式中G 为比例系数,与太阳、行星都没有关系. 二、月—地检验1.猜想:维持月球绕地球运动的力与使物体下落的力是同一种力,遵从“平方反比”的规律.2.推理:物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602. 3.结论:计算结果与预期符合得很好.这表明:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比.2.表达式:F =G m 1m 2r2. 3.引力常量G :由英国物理学家卡文迪许测量得出,常取G =6.67×10-11N ·m 2/kg 2.判一判 (1)地球表面的物体的重力必然等于地球对它的万有引力.( )(2)若只知道某行星的自转周期和行星绕太阳做圆周运动的半径,则可以求出太阳的质量.( )(3)已知地球绕太阳转动的周期和轨道半径,可以求出地球的质量.( )(4)海王星是依据万有引力定律计算的轨道而发现的.( )(5)在地面上发射人造卫星的最小速度是7.9 km/s.( )(6)在地面上发射火星探测器的速度应为11.2 km/s<v <16.7 km/s.( )提示:(1)× (2)× (3)× (4)√ (5)√ (6)√做一做 在牛顿的月-地检验中有以下两点:(1)由天文观测数据可知,月球绕地球运行周期为27.32天,月球与地球间相距3.84×108 m ,由此可计算出加速度a =0.002 7 m/s 2;(2)地球表面的重力加速度为9.8 m/s 2,月球的向心加速度与地球表面重力加速度之比为1∶3 630,而地球半径(6.4×106 m)和月球与地球间距离的比值为1∶60.这个比值的平方1∶3 600与上面的加速度比值非常接近.以上结果说明( )A .地面物体所受地球的引力与月球所受地球的引力是同一种性质的力B .地面物体所受地球的引力与月球所受地球的引力不是同一种性质的力C .地面物体所受地球的引力只与物体质量有关,即G =mgD .月球所受地球的引力除与月球质量有关外,还与地球质量有关提示:选A .通过完全独立的途径得出相同的结果,证明了地球表面上的物体所受地球的引力和月球所受地球的引力是同一种性质的力,故选项A 正确.想一想 如何通过天文观测计算月球绕地球转动时的向心加速度呢?提示:通过天文观测我们可以获得月球与地球之间的距离以及月球的公转周期,所以我们可以利用a n =4π2T2r 计算月球绕地球运动时的向心加速度.对天体间引力的理解1.太阳与行星间的引力是相互的,沿两个星体连线方向,指向施力星体.2.公式中G 为比例系数,与行星和太阳均没有关系.3.太阳与行星间的引力规律也适用于行星和卫星间.4.该引力规律普遍适用于任何有质量的物体之间.与行星绕太阳运动一样,地球卫星之所以能绕地球运动也同样是因为它受到地球的引力,假设有一颗人造地球卫星,质量为m ,绕地球运动的周期为T ,轨道半径为r ,则应有F =4π2mr T2.由此有人得出结论:地球对卫星的引力F 应与r 成正比,你认为该结论是否正确?若不正确错在何处?[解析]不正确.F与r成正比,是建立在周期T不变的前提下的,由开普勒第三定律,人造地球卫星的轨道半径r发生变化时,周期T也在变化,所以不能说F与r成正比.[答案]见解析求解天体间或实际物体间的引力问题时,限于具体条件,有些物理量不便直接测量或直接求解,此时可利用等效的方法间接求解,或通过舍去次要因素、抓住主要因素的方法建立简化模型,或通过相关公式的类比应用消去某些未知量.(多选)下列说法正确的是( )A.在探究太阳对行星的引力规律时,我们引用了F=mv2r,这个关系式实际上是牛顿第二定律的公式,是可以在实验室中得到验证的B.在探究太阳对行星的引力规律时,我们引用了v=2πrT,这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得到的C.在探究太阳对行星的引力规律时,我们引用了r3T2=k,这个关系式实际上是开普勒第三定律,是可以在实验室中得到验证的D.在探究太阳对行星的引力规律时,使用的三个公式都是可以在实验室中得到验证的解析:选AB.物理公式或规律,都是在满足一定条件下建立的.有些是通过实验获得,并能在实验室进行验证的,如本题中选项A、B.但有些则无法在实验室证明,如开普勒的三大定律,是根据行星运动的观察结果而总结归纳出来的规律,每一条都是经验定律,都是从观察行星运动所取得的资料中总结出来的,故开普勒的三大定律都是在实验室无法验证的定律.公式F=GMmr2来源于开普勒定律,无法得到验证.故本题正确选项是A、B.对万有引力定律的理解内容自然界中任何两个物体都互相吸引,引力的方向在它们的连线上,引力的大小与物体的质量m1和m2的乘积成正比,与它们之间距离r的二次方成反比公式F=Gm1m2r2,其中G=6.67×10-11N·m2/kg2,称为引力常量,m1、m2分别为两个物体的质量,r为它们之间的距离适用条件(1)严格地说,万有引力定律只适用于质点间的相互作用(2)万有引力定律也适用于计算两个质量分布均匀的球体间的相互作用,其中r是两个球体球心间的距离(3)计算一个均匀球体与球外一个质点间的万有引力也适用,其中r为球心与质点间的距离(4)两个物体间的距离远远大于物体本身的大小时,公式也近似适用,其中r为两物体质心间的距离特性 普遍性万有引力不仅存在于太阳与行星、地球与月球之间,宇宙间任何两个有质量的物体之间都存在着这种相互吸引的力 相互性两个有质量的物体之间的万有引力是一对作用力和反作用力,符合牛顿第三定律 宏观性 在地面上的一般物体之间,由于质量比较小,物体间的万有引力比较小,与其他力比较可忽略不计,但在质量巨大的天体之间,或天体与其附近的物体之间,万有引力起着决定性作用特殊性 两个物体之间的万有引力只与它们本身的质量和它们间的距离有关,与所在空间的性质无关,与周围是否存在其他物体无关命题视角1 对万有引力定律的理解对于质量为m 1和质量为m 2的两个物体间的万有引力的表达式F =G m 1m 2r2,下列说法中正确的是( )A .两物体所受引力总是大小相等,方向相反,是一对平衡力B .当两物体间的距离r 趋于0时,万有引力无穷大C .当有第三个物体放入这两个物体之间时,这两个物体间的万有引力将不变D .两个物体所受的引力性质可能相同,也可能不同[解析] 物体间的万有引力是一对相互作用力,始终等大反向,故选项A 错误.当物体间距离趋于0时,物体就不能看成质点,因此万有引力定律不再适用,物体间的万有引力不会变得无穷大,选项B 错误.物体间万有引力的大小只与两物体的质量m 1、m 2和物体间的距离r 有关,与是否存在其他物体无关,故选项C 正确.物体间的万有引力是一对同种性质的力,选项D 错误.[答案] C命题视角2 引力常量的测定正是由于卡文迪许测定了引力常量G ,才使得万有引力定律在天文学的发展上起了重要的作用.此实验不仅证明了万有引力的存在,更使得万有引力定律有了真正的实用价值.例如,可以用测定地球表面物体重力加速度的方法测定地球的质量,也正是由于这一应用,使卡文迪许被人们称为是“能称出地球质量的人”.若重力加速度g 取9.8 m/s 2,则还需要知道哪些物理量就能运用所学知识得出地球的质量,并具体估算一下地球质量大约为多少?[解析] 由地球表面物体重力近似等于万有引力得mg =G mM R 2,即M =gR 2G,因此,要求出地球质量,还要知道引力常量G ,地球半径R .将G =6.67×10-11 N ·m 2/kg 2,R =6.40×106m 代入可得M ≈6.02×1024 kg.[答案] 引力常量G ,地球半径R 6.02×1024 kg引力常量测定的意义(1)卡文迪许利用扭秤装置通过改变小球的质量和距离,证实了万有引力的存在及万有引力定律的正确性.(2)引力常量的确定使万有引力定律能够进行定量的计算,显示出真正的实用价值.(3)卡文迪许扭秤实验是物理学上非常著名和重要的实验,扭秤实验巧妙地利用等效法合理地将微小量进行放大,开创了测量弱力的新时代.【通关练习】1.(2020·江西上饶期中)下面有关万有引力的说法不正确的是( )A .F =G m 1m 2r2中的G 是比例常数,其值是牛顿通过扭秤实验测得的 B .地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力C .苹果落到地面上,说明地球对苹果有引力,苹果对地球也有引力D .万有引力定律是牛顿在总结前人研究的基础上发现的解析:选A.G 是比例常数,其值是卡文迪许通过扭秤实验测得的,A 错误;由万有引力定律可知,地面附近自由下落的苹果和天空中运行的月亮,受到的都是地球引力,B 正确;地球吸引苹果的力与苹果吸引地球的力是相互作用力,因此地球对苹果有引力,苹果对地球也有引力,C 正确;万有引力定律是牛顿在总结前人研究的基础上发现的,D 正确.2.(多选)关于引力常量,下列说法正确的是( )A .引力常量是两个质量为1 kg 的质点相距1 m 时的相互吸引力B .牛顿发现了万有引力定律,测出了引力常量的值C .引力常量的测定,证明了万有引力的存在D .引力常量的测定,使人们可以测出天体的质量解析:选CD.引力常量的大小等于两个质量为1 kg 的质点相距1 m 时的万有引力的数值,而引力常量不能说是两质点间的吸引力,选项A 错误;牛顿发现了万有引力,但他并未测出引力常量,引力常量是卡文迪许巧妙地利用扭秤装置在实验室中第一次比较精确地测出的,所以选项B 错误;引力常量的测出,不仅证明了万有引力的存在,而且也使人们可以测出天体的质量,这也是测出引力常量的意义所在,选项C 、D 正确.万有引力定律的应用1.重力与万有引力的关系在地球表面上的物体所受的万有引力F 可以分解成重力mg 和随地球转动做圆周运动所需要的向心力F ′,如图所示.其中F =G Mm R2,而F ′=mω2r .从图中可以看出: (1)当物体在赤道上时,F 、mg 、F ′三力同向,此时F ′为最大值F ′max =mω2R ,重力为最小值,G min =F -F ′=G Mm R2-mω2R . (2)当物体在两极时,F ′=0,F =mg ,此时重力等于万有引力,重力为最大值,G max =G Mm R 2. 当物体由赤道向两极移动的过程中,向心力逐渐减小,重力逐渐增大,只有物体在两极时物体所受的万有引力才等于重力.(3)在高空中(如绕地球转动的卫星),重力等于万有引力,即mg ′=G Mm (R +h )2.由此可知,离地面的高度h 越高,所在处的重力加速度g ′就越小.(4)在地球表面,重力加速度随地理纬度的增加而增大;在地球上空,重力加速度随距地面高度的增大而减小.总之,除在两极外,都不能说重力等于地球对物体的万有引力,但由于分力F ′远小于引力F ,所以在忽略地球自转的问题中,通常认为重力等于万有引力,即mg =GMm R2. 2.对重力加速度的“再认识”(1)天体表面的重力加速度在天体表面处,万有引力等于或近似等于重力,则G Mm R 2=mg ,所以g =GM R2(R 为星球半径,M 为星球质量).由此推得,两个不同天体表面重力加速度的关系为g 1g 2=R 22R 21·M 1M 2. (2)某高度处的重力加速度若设离天体表面高h 处的重力加速度为g h ,则G Mm (R +h )2=mg h ,所以g h =GM (R +h )2.可见,随高度的增加重力加速度逐渐减小.由以上分析可推得,天体表面和某高度处的重力加速度的关系为g h g =R 2(R +h )2. 命题视角1 万有引力的大小计算两艘轮船,质量都是1.0×104 t ,相距10 km ,它们之间的万有引力是多大?这个力与轮船所受重力的比值是多少?(g 取10 m/s 2)[解析] 轮船之间的万有引力F =G m 1m 2r 2=6.67×10-11×1.0×107×1.0×107(10×103)2N =6.67×10-5 N.轮船的重力G =mg =1.0×107×10 N =1.0×108 N. 两轮船间的万有引力与轮船所受重力的比值为 F G = 6.67×10-13. [答案] 6.67×10-5 N 6.67×10-13命题视角2 “填补法”在引力求解中的应用有一质量为M 、半径为R 的密度均匀球体,在距离球心O为2R 的地方有一质量为m 的质点,现在从M 中挖去一半径为R 2的球体,如图所示,求剩下部分对m 的万有引力F 为多大?[思路点拨] 挖去一球体后,剩余部分不再是质量分布均匀的球体,不能直接利用万有引力定律公式求解.可先将挖去部分补上来求引力,求出完整球体对质点的引力F 1,再求出被挖去部分对质点的引力F 2,则剩余部分对质点的引力为F =F 1-F 2.[解析] 完整球质量M =ρ×43πR 3 挖去的小球质量M ′=ρ×43π⎝⎛⎭⎫R 23=18ρ×43πR 3=M 8由万有引力定律得F 1=G Mm (2R )2=G Mm 4R 2 F 2=G M ′m r ′2=G M 8m ⎝⎛⎭⎫3R 22=G Mm 18R 2 故F =F 1-F 2=G Mm 4R 2-G Mm 18R 2=7GMm 36R 2. [答案] 7GMm 36R 2命题视角3 天体重力加速度的相关问题火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg 的宇航员.(1)在火星表面上受到的重力是多少?(2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高?(在地球表面的重力加速度g 取10 m/s 2)[思路点拨] 本题涉及星球表面重力加速度的求法,应先求火星表面的重力加速度,再求宇航员在火星表面所受的重力;然后再利用竖直上抛运动规律求上升的高度.[解析] (1)在地球表面有mg =G Mm R 2,得g =G M R2同理可知,在火星表面上有g ′=G M ′R ′2 即g ′=G ⎝⎛⎭⎫19M ⎝⎛⎭⎫12R 2=4GM 9R 2=49g =409 m/s 2 宇航员在火星表面上受到的重力G ′=mg ′=50×409N =222.2 N. (2)在地球表面宇航员跳起的高度H =v 202g在火星表面宇航员跳起的高度h =v 202g ′综上可知,h =g g ′H =10409×1.5 m =3.375 m. [答案] (1)222.2 N (2)3.375 m1.涉及重力与引力关系时应注意的问题(1)由物体所受的重力近似等于地球对物体的引力可知,地球表面的重力加速度g =GM R2,即GM =gR 2,这是一个常用的“黄金代换式”.(2)重力是万有引力的一个分力,故受力分析时不能重复分析,即分析万有引力时就不必再分析重力.(3)对相对于地面的运动,通常只分析重力;对随地球的自转运动或卫星问题只分析万有引力.(4)除非专门研究随地球自转问题,计算时都可认为重力与万有引力相等.2.运用万有引力定律分析求解相关综合问题时,首先必须明确问题涉及哪些知识内容,需要运用哪些物理规律,并注意把握以下几点:(1)无论问题是涉及运动学规律,还是动力学规律,联系的桥梁都是重力加速度g ,要注意重力加速度的变化,特别是明确星球表面上g 0=G M R 2,高度h 处g =G M (R +h )2,即g 随h 增加而减小.(2)在地球上运用的运动学规律和动力学规律,在其他星球上仍然适用,只是重力加速度g 不同.3.应用挖补法时应注意的两个问题(1)找到原来物体所受的万有引力、挖去部分所受的万有引力与剩余部分所受的万有引力之间的联系.(2)所挖去的部分为规则球体,剩余部分不再为球体时适合应用挖补法.若所挖去部分不是规则球体,则不适合应用挖补法. 【通关练习】 1.宇航员王亚平在“天宫1号”飞船内进行了我国首次太空授课,演示了一些完全失重状态下的物理现象.若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( )A .0B .GM (R +h )2C .GMm (R +h )2D .GM h2 解析:选B.由G Mm (R +h )2=mg 得,g =GM (R +h )2,故B 项正确. 2.假设地球是一半径为R 、质量分布均匀的球体.一矿井深度为d .已知质量分布均匀的球壳对壳内物体的引力为零.矿井底部和地面处的重力加速度大小之比为( )A .1-d RB .1+d RC .⎝⎛⎭⎫R -d R 2D .⎝⎛⎭⎫R R -d 2解析:选A.如图所示,根据“质量分布均匀的球壳对壳内物体的引力为零”可知,地面处的球壳对地面与矿井底部之间的环形部分的引力为零.设地面处的重力加速度为g ,地球质量为M ,由地球表面的物体m 1受到的重力近似等于万有引力,可得m 1g =G Mm 1R 2,即g =GM R2;再将矿井底部所在的球壳包围的球体取出来进行研究,设矿井底部处的重力加速度为g ′,取出的球体的质量为M ′,半径r =R -d ,同理可得矿井底部处的物体m 2受到的重力m 2g ′=G M ′m 2r 2,即g ′=GM ′r2,又M =ρV =ρ·43πR 3,M ′=ρV ′=ρ·43π(R -d )3,联立解得g ′g =1-d R,选项A 正确.[随堂检测]1.万有引力定律首次揭示了自然界中物体间一种基本相互作用的规律.以下说法正确的是( )A .物体的重力不是地球对物体的万有引力引起的B .人造地球卫星离地球越远,受到地球的万有引力越大C .人造地球卫星绕地球运动的向心力由地球对它的万有引力提供D .宇宙飞船内的宇航员处于失重状态是由于没有受到万有引力的作用解析:选C.物体的重力是由地球的万有引力产生的,万有引力的大小与质量的乘积成正比,与距离的二次方成反比,选项A 、B 错误;人造地球卫星绕地球运动的向心力是由万有引力提供的,选项C 正确;宇宙飞船内的宇航员处于失重状态,是因为宇航员受到的万有引力全部提供了宇航员做圆周运动所需的向心力,选项D 错误.2.一名宇航员来到一个星球上,如果该星球的质量是地球质量的一半,它的直径也是地球直径的一半,那么这名宇航员在该星球上所受的万有引力大小是他在地球上所受万有引力大小的( )A .0.25B .0.5C .2倍D .4倍解析:选C.根据万有引力定律得:宇航员在地球上所受的万有引力F 1=GM 地m R 2地,在星球上所受的万有引力F 2=GM 星m R 2星,所以F 2F 1=M 星R 2地M 地R 2星=12×22=2,故C 正确. 3.某行星可看成一个均匀的球体,密度为ρ,若在其赤道上随行星一起转动的物体对行星表面的压力恰好为零,则该行星的自转周期为(引力常量为G )( )A .4πG 3B .3πG 4C . 3πρGD . πρG解析:选C.根据G Mm r2=m ⎝⎛⎭⎫2πT 2r ,可得T =2πr 3GM ,将M =43πr 3ρ代入,可得T =3πρG ,故选项C 正确. 4.如图所示,一个质量为M 的匀质实心球,半径为R .如果从球的正中心挖去一个直径为R 的球,放在相距为d 的地方.求两球之间的引力是多大.解析:根据匀质球的质量与其半径的关系M =ρ×43πR 3∝R 3,两部分的质量分别为m =M 8,M ′=7M 8根据万有引力定律,这时两球之间的引力为F =G M ′m d 2=7GM 264d 2. 答案:7GM 264d 25.宇航员在地球表面以一定初速度竖直上抛一小球,经过时间t ,小球落回原处;若他在某星球表面以相同的初速度竖直上抛同一小球,需经过时间5t 小球落回原处.(取地球表面重力加速度g =10 m/s 2,空气阻力不计)(1)求该星球表面附近的重力加速度g ′的大小;(2)已知该星球的半径与地球半径之比为R 星∶R 地=1∶4,求该星球的质量与地球质量之比M 星∶M 地.解析:(1)设竖直上抛小球初速度为v 0,则 v 0=12gt =12g ′×5t ,所以g ′=15g =2 m/s 2.(2)设小球的质量为m , 则mg =G M 地m R 2地,mg ′=G M 星m R 2星所以M 星∶M 地=g ′R 2星gR 2地=15×116=180.答案:(1)2 m/s 2 (2)1∶80[课时作业] 【A 组 基础过关】1.地球可近似看成球形,由于地球表面上物体都随地球自转,所以有( ) A .物体在赤道处受的地球引力等于两极处,而重力小于两极处 B .赤道处的角速度比南纬30°大C .地球上物体的向心加速度都指向地心,且赤道上物体的向心加速度比两极处大D .地面上的物体随地球自转时提供向心力的是重力解析:选A.由F =G MmR 2可知,若将地球看成球形,则物体在地球表面任何位置受到地球的引力都相等,此引力的两个分力一个是物体的重力,另一个是物体随地球自转的向心力.在赤道上,向心力最大,重力最小,A 对;地表各处的角速度均等于地球自转的角速度,B 错;地球上只有赤道上的物体向心加速度指向地心,其他位置的向心加速度均不指向地心,C 错;地面上物体随地球自转的向心力是万有引力与地面支持力的合力,D 错.2.如图所示,两球的半径小于R ,两球质量均匀分布,质量分别为m 1、m 2,则两球间的万有引力大小为( )A .G m 1m 2R 21B .G m 1m 2R 22C .G m 1m 2(R 1+R 2)2D .G m 1m 2(R 1+R 2+R )2解析:选D.由万有引力定律公式中“r ”的含义知:r 应为两球心之间的距离,故D 正确. 3.(多选)甲、乙为两颗地球卫星,其中甲为地球同步卫星,乙的运行高度低于甲的运行高度,两卫星轨道均可视为圆轨道.以下判断正确的是( )A .甲的运行周期大于乙的运行周期B .乙的速度大于第一宇宙速度C .甲的加速度小于乙的加速度D .甲在运行时能经过北极的正上方 答案:AC4.(多选)质量为m 的探月航天器在接近月球表面的轨道上飞行,其运动视为匀速圆周运动.已知月球质量为M ,月球半径为R ,月球表面重力加速度为g ,引力常量为G ,不考虑月球自转的影响,则航天器的( )A .线速度v =GMRB .角速度ω=gRC .运行周期T =2πRgD .向心加速度a =GmR2解析:选AC.根据万有引力提供卫星做圆周运动的向心力和万有引力等于重力得出:G MmR 2=m v 2R ,得v =GMR,故A 正确;根据mg =mω2R ,得ω=gR,故B 错误;根据mg =m 4π2T 2R ,得T =2πR g ,故C 正确;根据万有引力提供向心力得G Mm R 2=ma ,a =GM R2,故D 错误.5.两颗行星的质量分别为m 1和m 2,它们绕太阳运行的轨道半径分别是r 1和r 2,若它们只受太阳引力的作用,那么这两颗行星的向心加速度之比为( )A .1B .m 2r 1m 1r 2C .m 1r 2m 2r 1D .r 22r 21解析:选D.设行星m 1、m 2的向心力分别为F 1、F 2,由太阳与行星之间的作用规律可得:F 1∝m 1r 21,F 2∝m 2r 22,而a 1=F 1m 1,a 2=F 2m 2,故a 1a 2=r 22r 21,D 正确.6.两个质量均为m 的星体,其连线的垂直平分线为MN ,O 为两星体连线的中点,如图所示,一个质量也为m 的物体从O 沿OM 方向运动,则它受到的万有引力大小变化情况是( )A .一直增大B .一直减小C .先减小,后增大D .先增大,后减小解析:选D.m 在O 点时,所受万有引力的合力为0,运动到无限远时,万有引力为0,在距O 点不远的任一点,万有引力都不为0,因此D 正确.7.设地球表面重力加速度为g 0,物体在距离地心4R (R 是地球的半径)处,由于地球对物体的万有引力的作用而产生的加速度为g ,则gg 0为( )A .1B .19C .14D .116解析:选D.地球表面处的重力加速度和在离地心高4R 处的加速度均由地球对物体的万有引力产生,所以有地面上:G MmR2=mg 0①离地心4R 处:G Mm(4R )2=mg ②由①②两式得g g 0=⎝⎛⎭⎫R 4R 2=116.【B 组 素养提升】8.2019年1月,我国嫦娥四号探测器成功在月球背面软着陆.在探测器“奔向”月球的过程中,用h 表示探测器与地球表面的距离,F 表示它所受的地球引力,能够描述F 随h 变化关系的图象是( )解析:选D.在嫦娥四号探测器“奔向”月球的过程中,根据万有引力定律,可知随着h 的增大,探测器所受的地球引力逐渐减小但并不是均匀减小的,故能够描述F 随h 变化关系的图象是D.9.某星球的质量约为地球质量的9倍,半径约为地球半径的一半,若从地球表面高h 处平抛一物体,射程为60 m ,则在该星球上,从同样高度以同样的初速度平抛同一物体,射程应为( )A .10 mB .15 mC .90 mD .360 m解析:选A.由平抛运动公式可知,射程x =v 0t =v 02h g ,即v 0、h 相同的条件下x ∝1g.。
高一物理必修二第六章 2 3 太阳与行星间的引力 万有引力定律---教师版
2 太阳与行星间的引力3 万有引力定律[学习目标] 1.知道太阳与行星间存在引力.2.能利用开普勒定律和牛顿运动定律推导出太阳与行星之间的引力表达式.3.理解万有引力定律的内容、含义及适用条件.4.认识万有引力定律的普遍性,能应用万有引力定律解决实际问题.一、太阳与行星间的引力1.太阳对行星的引力:太阳对不同行星的引力,与行星的质量成正比,与行星和太阳间距离的二次方成反比,即F ∝mr2.2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝Mr2.3.太阳与行星间的引力:根据牛顿第三定律F =F ′,所以有F ∝Mm r 2,写成等式就是F =G Mmr 2.二、月—地检验1.猜想:维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”的规律.2.推理:根据牛顿第二定律,物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602.3.结论:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同(填“相同”或“不同”)的规律. 三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的连线上,引力的大小与物体的质量m 1和m 2的乘积成正比、与它们之间距离r 的二次方成反比.2.表达式:F =G m 1m 2r2.3.引力常量G :由英国物理学家卡文迪许测量得出,常取G =6.67×10-11N·m 2/kg 2.1.判断下列说法的正误.(1)万有引力不仅存在于天体之间,也存在于普通物体之间.(√)(2)质量一定的两个物体,若距离无限小,它们间的万有引力趋于无限大.(×)(3)把物体放在地球中心处,物体受到的引力无穷大.(×)(4)由于太阳质量大,太阳对行星的引力大于行星对太阳的引力.(×)(5)牛顿发现了万有引力定律,并测出了引力常量.(×)2.两个质量都是1 kg的物体(可看成质点),相距1 m时,两物体间的万有引力F=________ N,一个物体的重力F′=________ N,万有引力F与重力F′的比值为________.(已知引力常量G=6.67×10-11 N·m2/kg2,取重力加速度g=10 m/s2)答案 6.67×10-1110 6.67×10-12一、对太阳与行星间引力的理解1.是什么原因使行星绕太阳运动?答案太阳对行星的引力使行星绕太阳运动.2.在推导太阳与行星的引力时,我们对行星的运动怎么简化处理的?用了哪些知识?答案将行星绕太阳的椭圆运动看成匀速圆周运动.在推导过程中,用到了向心力公式、开普勒第三定律及牛顿运动定律.太阳与行星间引力关系的得出过程例1 (多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F ∝m r 2,行星对太阳的引力F ′∝Mr 2,其中M 、m 、r 分别为太阳质量、行星质量和太阳与行星间的距离,下列说法正确的是( ) A.由F ′∝M r 2和F ∝mr 2,得F ∶F ′=m ∶MB.F 和F ′大小相等,是作用力与反作用力C.F 和F ′大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力 答案 BD解析 F ′和F 大小相等、方向相反,是作用力和反作用力,太阳对行星的引力提供行星绕太阳做圆周运动的向心力,故正确答案为B 、D. 二、万有引力定律(1)通过月—地检验结果表明,地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.一切物体之间都存在这样的引力,那么,为什么通常两个人(如图1)间的万有引力我们却感受不到?图1(2)地球对人的万有引力与人对地球的万有引力大小相等吗?答案 (1)任意两个物体间都存在着万有引力.但由于地球上物体的质量一般很小(与天体质量相比),地球上两个物体间的万有引力远小于地面对物体的摩擦力,通常感受不到,但天体质量很大,天体间的引力很大,对天体的运动起决定作用. (2)相等.它们是一对相互作用力.1.万有引力定律表达式F =G m 1m 2r 2,G =6.67×10-11 N·m 2/kg 2.2.万有引力定律公式适用的条件(1)万有引力定律适用于两个质点间的相互作用.(2)一个均匀球体与球外一个质点,r 为球心到质点的距离. (3)两个质量均匀的球体,r 为两球心间的距离.例2 关于万有引力和万有引力定律的理解正确的是( ) A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F =Gm 1m 2r2计算C.由F =Gm 1m 2r 2知,两物体间距离r 减小时(没有无限靠近),它们之间的引力增大D.引力常量的大小是牛顿首先测出来的,且约等于6.67×10-11N·m 2/kg 2答案 C解析 任何物体间都存在相互作用的引力,故称万有引力,A 错;两个质量分布均匀的球体间的万有引力也能用F =Gm 1m 2r 2来计算,B 错;物体间的万有引力与它们间距离r 的二次方成反比,故r 减小,它们间的引力增大,C 对;引力常量G 是由卡文迪许首先精确测出的,D 错.例3 如图2所示,两球间的距离为r 0,两球的质量分布均匀,质量分别为m 1、m 2,半径分别为r 1、r 2,则两球间的万有引力大小为( )图2A.Gm 1m 2r 02B.Gm 1m 2r 12C.Gm 1m 2(r 1+r 2)2D.Gm 1m 2(r 1+r 2+r 0)2答案 D解析 两个匀质球体间的万有引力F =Gm 1m 2r2,r 是两球心间的距离,选D.例4 (2019·江川二中高一期末)一个质量均匀分布的球体,半径为2r ,在其内部挖去一个半径为r 的球形空穴,其表面与球面相切,如图3所示.已知挖去小球的质量为m ,在球心和空穴中心连线上,距球心d =6r 处有一质量为m ′的质点,求:图3(1)被挖去的小球挖去前对m ′的万有引力为多大? (2)剩余部分对m ′的万有引力为多大? 答案 (1)G mm ′25r 2 (2)G 41mm ′225r 2解析 (1)被挖去的小球挖去前对m ′的万有引力为 F 2=G mm ′(5r )2=G mm ′25r 2 (2)将挖去的小球填入空穴中,由V =43πr 3可知,大球的质量为8m ,大球对m ′的万有引力为F 1=G 8m ·m ′(6r )2=G 2mm ′9r 2m ′所受剩余部分的万有引力为F =F 1-F 2=G 41mm ′225r 2.三、重力和万有引力的关系1.物体在地球表面上所受引力与重力的关系图4除两极以外,地面上其他点的物体,都围绕地轴做圆周运动,这就需要一个垂直于地轴的向心力.由地球对物体引力的一个分力F ′提供向心力,另一个分力为重力G ,如图4所示. (1)当物体在两极时:G =F 引,重力达到最大值G max =G MmR 2.(2)当物体在赤道上时:F ′=mω2R 最大,此时重力最小G min =GMmR 2-mω2R (3)从赤道到两极:随着纬度增加,向心力F ′=mω2R ′减小,F ′与F 引夹角增大,所以重力G 在增大,重力加速度增大.因为F ′、F 引、G 不在一条直线上,重力G 与万有引力F 引方向有偏差,重力大小mg <G MmR 2.2.重力与高度的关系若距离地面的高度为h ,则mg ′=G Mm(R +h )2(R 为地球半径,g ′为离地面h 高度处的重力加速度).在同一纬度,距地面越高,重力加速度越小. 3.特别说明(1)重力是物体由于地球吸引产生的,但重力并不是地球对物体的引力.(2)只有在两极,mg =G Mm R 2,其他地方mg <G MmR 2,但相差不大,在忽略地球自转的情况下,认为mg =G MmR2.(3)在两极、赤道,两个力的方向相同,其他地方二者方向不同,略有偏差.引力的方向指向地心,重力的方向竖直向下.例5 (多选)万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来.用弹簧测力计称量一个相对于地球静止的质量为m 的小物体的重力,随称量位置的变化可能会有不同的结果.已知地球质量为M ,引力常量为G .将地球视为半径为R 、质量均匀分布的球体.下列说法正确的是( )A.在北极地面称量时,弹簧测力计读数为F 0=G Mm R 2B.在赤道地面称量时,弹簧测力计读数为F 1=G MmR2C.在北极上空高出地面h 处称量时,弹簧测力计读数为F 2=G Mm(R +h )2D.在赤道上空高出地面h 处称量时,弹簧测力计读数为F 3=G Mm(R +h )2答案 AC解析 物体在两极时,万有引力等于重力,则有F 0=G MmR 2,故A 正确;在赤道地面称量时,万有引力等于重力加上随地球一起自转所需要的向心力,则有F 1<G MmR2,故B 错误;在北极上空高出地面h 处称量时,万有引力等于重力,则有F 2=G Mm(R +h )2,故C 正确;在赤道上空高出地面h 处称量时,万有引力大于重力,则有F 3<G Mm(R +h )2,故D 错误.例6 火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg的宇航员(地球表面的重力加速度g 取10 m/s 2) (1)在火星表面上受到的重力是多少?(2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高? 答案 (1)222.2 N (2)3.375 m 解析 (1)在地球表面有mg =G MmR 2在火星表面上有mg ′=G M ′mR ′2联立解得g ′=409 m/s 2宇航员在火星表面上受到的重力 G ′=mg ′=50×409 N ≈222.2 N.(2)在地球表面宇航员跳起的高度H =v 022g在火星表面宇航员跳起的高度h =v 022g ′综上可知,h =g g ′H =10409×1.5 m =3.375 m.1.(对万有引力定律的理解)(2019·武威第十八中学高一期末)对于万有引力定律的表达式F =G m 1m 2r2,下列说法正确的是( ) A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大C.对于m 1与m 2间的万有引力,质量大的受到的引力大D.m 1与m 2受到的引力是一对平衡力 答案 A解析 万有引力定律的表达式F =G m 1m 2r2,公式中G 为引力常量,它是由实验测得的,而不是人为规定的,选项A 正确;当r 趋近于零时,万有引力定律不再适用,选项B 错误;m 1与m 2间的万有引力是相互作用力,两物体受到的万有引力是等大反向的,与质量大小无关,选项C 错误;m 1与m 2受到的引力是一对相互作用力,因作用在两个物体上,故不是平衡力,选项D 错误.2.(月—地检验)(2018·北京卷)若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( ) A.地球吸引月球的力约为地球吸引苹果的力的1602B.月球公转的加速度约为苹果落向地面加速度的1602C.自由落体在月球表面的加速度约为地球表面的16D.苹果在月球表面受到的引力约为在地球表面的160答案 B解析 若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律——万有引力定律,则应满足G Mmr2=ma ,因此加速度a 与距离r 的二次方成反比.3.(万有引力定律的简单应用)两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F .若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两个大铁球之间的万有引力为( ) A.2F B.4F C.8F D.16F 答案 D解析 两个小铁球之间的万有引力为F =G mm (2r )2=G m 24r 2.实心小铁球的质量为m =ρV =ρ·43πr 3,大铁球的半径是小铁球的2倍,则大铁球的质量m ′与小铁球的质量m 之比为m ′m =r ′3r 3=8,故两个大铁球间的万有引力为F ′=G m ′m ′4r ′2=16F .故选D.4.(重力加速度的计算)据报道,在太阳系外发现了首颗“宜居”行星,设其质量为地球质量的k 倍,其半径为地球半径的p 倍,由此可推知该行星表面的重力加速度与地球表面重力加速度之比为( )A.k pB.k p 2C.k 2pD.k 2p 2 答案 B解析 由mg =G MmR 2可知:g 地=G M 地 R 地2,g 星=G M 星R 星2,g 星g 地=M 星M 地·R 地2R 星2=k p2,所以选项B 正确.[基础对点练]考点一 万有引力定律的理解1.(2019·肥东高级中学高一下期末)下列关于行星对太阳的引力的说法中正确的是( ) A.行星对太阳的引力与太阳对行星的引力是同一种性质的力 B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关 C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力与太阳的质量成正比,与行星距太阳的距离成反比 答案 A解析 行星对太阳的引力和太阳对行星的引力都是万有引力,性质相同,故A 正确;根据万有引力定律分析可知:行星对太阳的引力与行星和太阳的质量的乘积成正比,与两者的质量都有关,故B 错误;由牛顿第三定律分析得知,太阳对行星的引力等于行星对太阳的引力,故C 错误;根据万有引力定律分析可知:行星对太阳的引力与行星和太阳的质量的乘积成正比,与行星距太阳的距离的平方成反比,故D 错误. 2.(多选)关于引力常量G ,下列说法中正确的是( ) A.在国际单位制中引力常量G 的单位是N·m 2/kg 2B.引力常量G 的大小与两物体质量的乘积成反比,与两物体间距离的平方成正比C.引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力D.引力常量G 是不变的,其数值大小由卡文迪许测出,与单位制的选择无关 答案 AC解析 由F =G m 1m 2r 2得G =F ·r 2m 1m 2,所以在国际单位制中单位为N·m 2/kg 2,选项A 正确;引力常量是一个常数,其大小与质量以及两物体间的距离无关,选项B 错误;根据万有引力定律可知,引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力,选项C 正确;引力常量是定值,其数值大小由卡文迪许测出,但其大小与单位制的选择有关,选项D 错误.3.(2019·北京牛栏山一中期中)图1(a)是用来“显示桌(或支持)面的微小形变”的演示实验;图(b)是用来“测量万有引力常量”的实验.由图可知,两个实验共同的物理思想方法是( )图1A.极限的思想方法B.放大的思想方法C.控制变量的方法D.猜想的思想方法答案 B考点二 万有引力定律的简单应用4.(2019·永春县第一中学高一期末)要使两物体间的万有引力减小到原来的14,下列办法不正确的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增大到原来的2倍,质量不变D.使两物体的质量和距离都减小到原来的14答案 D解析 万有引力定律的表达式为F =G Mmr 2,根据该公式可知,使两物体的质量各减小一半,距离不变,则万有引力变为原来的14,A 正确;使其中一个物体的质量减小到原来的14,距离不变,则万有引力变为原来的14,B 正确;使两物体间的距离增大到原来的2倍,质量不变,则万有引力变为原来的14,C 正确;使两物体的质量和距离都减小到原来的14,则万有引力大小不变,D 错误.5.某物体在地面上受到地球对它的万有引力为F .若此物体受到的引力减小到F4,则此物体距离地面的高度应为(R 为地球半径)( ) A.2R B.4R C.R D.8R 答案 C解析 根据万有引力定律有F =G Mm R 2,14F =G Mm(R +h )2,解得h =R ,选项C 正确.6.地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g2,则该处距地球表面的高度为( )A.(2-1)RB.RC.2RD.2R 答案 A解析 万有引力近似等于重力,设地球的质量为M ,物体质量为m ,物体距地面的高度为h ,则有GMm R 2=mg ,G Mm (R +h )2=m g 2,联立得2R 2=(R +h )2,解得h =(2-1)R ,选项A 正确. 7.(多选)如图2所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R ,下列说法正确的是( )图2A.地球对一颗卫星的引力大小为GMm (r -R )2B.一颗卫星对地球的引力大小为GMmr 2C.两颗卫星之间的引力大小为Gm 23r2D.三颗卫星对地球引力的合力大小为3GMmr 2答案 BC解析 地球与一颗卫星间的引力大小为GMmr 2,A 错误,B 正确.由几何关系可知两卫星之间的距离为3r ,两卫星之间的引力为Gmm (3r )2=Gm 23r 2,C 正确.三颗卫星对地球引力的合力大小为零,D 错误.8.地球质量大约是月球质量的81倍,一飞行器位于地球与月球之间,当地球对它的引力和月球对它的引力大小相等时,飞行器距月球球心的距离与月球球心距地球球心的距离之比为( )A.1∶9B.9∶1C.1∶10D.10∶1 答案 C解析 设月球质量为m ,则地球质量为81m ,月球球心距地球球心的距离为r ,飞行器质量为m 0,当飞行器距月球球心的距离为r ′时,地球对它的引力等于月球对它的引力,则G mm 0r ′2=G 81mm 0(r -r ′)2,所以r -r ′r ′=9,r =10r ′,r ′∶r =1∶10,故选项C 正确.[能力综合练]9.如图3所示,一个质量均匀分布的半径为R 的球体对球外质点P (图中未画出)的万有引力为F .如果在球体中央挖去半径为r 的一部分球体,且r =R2,则原球体剩余部分对质点P 的万有引力变为( )图3A.F 2B.F 8C.7F 8D.F 4 答案 C解析 利用填补法来分析此题.原来物体间的万有引力为F ,挖去的半径为R2的球体的质量为原来球体质量的18,其他条件不变,故剩余部分对质点P 的万有引力为F -F 8=78F .10.(多选)宇宙中存在着由四颗星组成的孤立星系.如图4所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F .则( )图4A.每颗小星受到的万有引力为(32+9)F B.每颗小星受到的万有引力为(3+9)F C.母星的质量是每颗小星质量的3倍 D.母星的质量是每颗小星质量的33倍 答案 BC解析 假设每颗小星的质量为m ,母星的质量为M ,正三角形的边长为a ,则小星绕母星运动的轨道半径为r =33a . 根据万有引力定律,两颗小星间的万有引力为F =G mma 2,母星与任意一颗小星间的万有引力为9F =G Mmr 2,联立解得M =3m ,故C 正确,D 错误.任意一颗小星受到的万有引力F ′=9F+2F ·cos 30°=(3+9)F ,故A 错误,B 正确.11.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为[在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力]( ) A.R -d R +hB.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 2答案 C解析 设地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等,有:g =G MR 2.由于地球的质量为:M =ρ·43πR 3,所以重力加速度的表达式可写成:g =GM R 2=ρG 43πR 3R 2=43πGρR .根据题意有,质量分布均匀的球壳对壳内物体的引力为零,故在深度为d 的地球内部,受到地球的万有引力即为半径等于(R -d )的球体在其表面产生的万有引力,故“蛟龙”号的重力加速度g ′=43πGρ(R -d ),所以有g ′g =R -d R .根据万有引力提供向心力G Mm(R +h )2=ma ,“天宫一号”所在处的重力加速度为a =GM (R +h )2,所以a g =R 2(R +h )2,g ′a =(R -d )(R +h )2R 3,故C 正确,A 、B 、D 错误.12.某地区的地下发现了天然气资源,如图5所示,在水平地面P 点的正下方有一球形空腔区域内储藏有天然气.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )图5A.kgd GρB.kgd 2GρC.(1-k )gd GρD.(1-k )gd 2Gρ答案 D解析 如果将近地表的球形空腔填满密度为ρ的岩石,则该地区重力加速度便回到正常值,因此,如果将空腔填满密度为ρ的岩石,地面质量为m 的物体的重力为mg ,没有填满时重力是kmg ,故空腔填满的岩石所引起的引力为(1-k )mg ,根据万有引力定律有(1-k )mg =G ρVmd 2,解得V =(1-k )gd 2Gρ,故选D. 13.已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如图6所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的引力F 2的大小之比为多少?图6答案 m 1a 2m 2(a +b )2解析 由太阳与行星间的引力公式F =G Mmr2得太阳对地球的引力F 1=G Mm 1(a +b )2太阳对月球的引力F 2=G Mm 2a2联立可得F 1F 2=m 1a 2m 2(a +b )2.14.某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以a =12g 的加速度随火箭向上加速升空的过程中,当物体与卫星中支持物的相互挤压的力为90 N 时,卫星距地球表面有多远?(地球半径R 地=6.4×103 km ,g 表示地面处重力加速度,g 取10 m/s 2) 答案 1.92×104 km解析 卫星的升空过程可以认为是竖直向上的匀加速直线运动,设卫星离地面的距离为h ,这时受到地球的万有引力为F =G Mm (R 地+h )2. 在地球表面G MmR 地2=mg在上升至离地面h 时,F N -F =ma . 联立解得(R 地+h )2R 地2=mgF N -ma ,则h =(mgF N -ma-1)R 地.代入数值解得h =1.92×104 km.[拓展提升练]15.(2019·安徽师大附中高一下学期期中)地球可视为质量均匀分布的球体.某物体在地球北极点静止时对水平地面的压力为F N0,物体在地球赤道上静止时对水平地面的压力为F N ;地球自转周期为T ,万有引力常量为G ,地球密度的表达式为( ) A.3πF N0GT 2(F N0-F N ) B.3π(F N0-F N )GT 2F N0C.3πF N0GT 2D.3πF N0GT 2F N答案 A解析 地球自转周期为T ,物体在北极水平地面上静止时所受到的支持力:F N0=GMmR2;同一物体在赤道上静止时所受到的支持力:F N =GMm R 2-m (2πT )2R ;地球的质量:M =43πR 3·ρ,联立解得:ρ=3πF N0GT 2(F N0-F N ),故A 正确,B 、C 、D 错误.。
第六章 太阳与行星间的引力 万有引力定律2 3(学生版)
2 太阳与行星间的引力3 万有引力定律知识梳理一、太阳与行星间的引力1.太阳对行星的引力:太阳对不同行星的引力,与行星的质量成 ,与行星和太阳间距离的二次方成 ,即F ∝mr 2.2.行星对太阳的引力:太阳与行星的地位相同,因此行星对太阳的引力和太阳对行星的引力规律相同,即F ′∝Mr 2.3.太阳与行星间的引力:根据牛顿第三定律F =F ′,所以有F ∝Mm r 2,写成等式就是F =G Mmr 2.二、月—地检验1.猜想:维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“ ”的规律.2.推理:根据牛顿第二定律,物体在月球轨道上运动时的加速度大约是它在地面附近下落时的加速度的1602. 3.结论:地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从 (填“相同”或“不同”)的规律.三、万有引力定律1.内容:自然界中任何两个物体都相互吸引,引力的方向在它们的 ,引力的大小与物体的 成正比、与它们之间 成反比.2.表达式:F =G m 1m 2r2.3.引力常量G :由英国物理学家卡文迪许测量得出,常取G = N·m 2/kg 2.即学即用1.判断下列说法的正误.(1)万有引力不仅存在于天体之间,也存在于普通物体之间.( )(2)质量一定的两个物体,若距离无限小,它们间的万有引力趋于无限大.( ) (3)把物体放在地球中心处,物体受到的引力无穷大.( )(4)由于太阳质量大,太阳对行星的引力大于行星对太阳的引力.( ) (5)牛顿发现了万有引力定律,并测出了引力常量.( )2.两个质量都是1 kg 的物体(可看成质点),相距1 m 时,两物体间的万有引力F =_____ N ,一个物体的重力F ′=____ N ,万有引力F 与重力F ′的比值为_____.(已知引力常量G =6.67×10-11N·m 2/kg 2,取重力加速度g =10 m/s 2)重点探究一、对太阳与行星间引力的理解 导学探究1.是什么原因使行星绕太阳运动? 答案: .2.在推导太阳与行星的引力时,我们对行星的运动怎么简化处理的?用了哪些知识? 答案: .知识深化太阳与行星间引力关系的得出过程例1 (多选)根据开普勒关于行星运动的规律和圆周运动的知识知:太阳对行星的引力F ∝mr 2,行星对太阳的引力F ′∝Mr 2,其中M 、m 、r 分别为太阳质量、行星质量和太阳与行星间的距离,下列说法正确的是( )A.由F ′∝M r 2和F ∝mr2,得F ∶F ′=m ∶M B.F 和F ′大小相等,是作用力与反作用力C.F 和F ′大小相等,是同一个力D.太阳对行星的引力提供行星绕太阳做圆周运动的向心力 二、万有引力定律导学探究(1)通过月—地检验结果表明,地面物体所受地球的引力、月球所受地球的引力,与太阳、行星间的引力遵从相同的规律.一切物体之间都存在这样的引力,那么,为什么通常两个人(如下图)间的万有引力我们却感受不到?(2)地球对人的万有引力与人对地球的万有引力大小相等吗?答案 (1) . (2) .知识深化1.万有引力定律表达式F =G m 1m 2r 2,G =6.67×10-11 N·m 2/kg 2.2.万有引力定律公式适用的条件(1)万有引力定律适用于两个质点间的相互作用.(2)一个均匀球体与球外一个质点,r 为球心到质点的距离. (3)两个质量均匀的球体,r 为两球心间的距离. 例2 关于万有引力和万有引力定律的理解正确的是( ) A.不能看做质点的两物体间不存在相互作用的引力 B.只有能看做质点的两物体间的引力才能用F =Gm 1m 2r2计算C.由F =Gm 1m 2r 2知,两物体间距离r 减小时(没有无限靠近),它们之间的引力增大D.引力常量的大小是牛顿首先测出来的,且约等于6.67×10-11N·m 2/kg 2例3 如下图所示,两球间的距离为r 0,两球的质量分布均匀,质量分别为m 1、m 2,半径分别为r 1、r 2,则两球间的万有引力大小为( )A.Gm 1m 2r 02B.Gm 1m 2r 12C.Gm 1m 2(r 1+r 2)2D.Gm 1m 2(r 1+r 2+r 0)2例4一个质量均匀分布的球体,半径为2r ,在其内部挖去一个半径为r 的球形空穴,其表面与球面相切,如下图所示.已知挖去小球的质量为m ,在球心和空穴中心连线上,距球心d =6r 处有一质量为m ′的质点,求:(1)被挖去的小球挖去前对m ′的万有引力为多大? (2)剩余部分对m ′的万有引力为多大? 三、重力和万有引力的关系1.物体在地球表面上所受引力与重力的关系除两极以外,地面上其他点的物体,都围绕地轴做圆周运动,这就需要一个垂直于地轴的向心力.由地球对物体引力的一个分力F ′提供向心力,另一个分力为重力G ,如上图所示.(1)当物体在两极时:G =F 引,重力达到最大值G max =G MmR 2.(2)当物体在赤道上时:F ′=mω2R 最大,此时重力最小 G min =GMmR 2-mω2R (3)从赤道到两极:随着纬度增加,向心力F ′=mω2R ′减小,F ′与F 引夹角增大,所以重力G 在增大,重力加速度增大. 因为F ′、F 引、G 不在一条直线上,重力G 与万有引力F 引方向有偏差,重力大小mg <G MmR 2.2.重力与高度的关系若距离地面的高度为h ,则mg ′=G Mm(R +h )2(R 为地球半径,g ′为离地面h 高度处的重力加速度).在同一纬度,距地面越高,重力加速度越小. 3.特别说明(1)重力是物体由于地球吸引产生的,但重力并不是地球对物体的引力.(2)只有在两极,mg =G Mm R 2,其他地方mg <G Mm R 2,但相差不大,在忽略地球自转的情况下,认为mg =G MmR 2.(3)在两极、赤道,两个力的方向相同,其他地方二者方向不同,略有偏差.引力的方向指向地心,重力的方向竖直向下.例5 (多选)万有引力定律能够很好地将天体运行规律与地球上物体运动规律具有的内在一致性统一起来.用弹簧测力计称量一个相对于地球静止的质量为m 的小物体的重力,随称量位置的变化可能会有不同的结果.已知地球质量为M ,引力常量为G .将地球视为半径为R 、质量均匀分布的球体.下列说法正确的是( )A.在北极地面称量时,弹簧测力计读数为F 0=G Mm R 2B.在赤道地面称量时,弹簧测力计读数为F 1=G MmR 2C.在北极上空高出地面h 处称量时,弹簧测力计读数为F 2=G Mm(R +h )2D.在赤道上空高出地面h 处称量时,弹簧测力计读数为F 3=G Mm(R +h )2例6 火星半径是地球半径的12,火星质量大约是地球质量的19,那么地球表面上质量为50 kg 的宇航员(地球表面的重力加速度g 取10 m/s 2)(1)在火星表面上受到的重力是多少? (2)若宇航员在地球表面能跳1.5 m 高,那他在火星表面能跳多高?随堂演练1.(对万有引力定律的理解)对于万有引力定律的表达式F =G m 1m 2r2,下列说法正确的是( )A.公式中G 为引力常量,它是由实验测得的,而不是人为规定的B.当r 趋近于零时,万有引力趋于无穷大C.对于m 1与m 2间的万有引力,质量大的受到的引力大D.m 1与m 2受到的引力是一对平衡力2.(月—地检验)(2018·北京卷)若想检验“使月球绕地球运动的力”与“使苹果落地的力”遵循同样的规律,在已知月地距离约为地球半径60倍的情况下,需要验证( ) A.地球吸引月球的力约为地球吸引苹果的力的1602 B.月球公转的加速度约为苹果落向地面加速度的1602C.自由落体在月球表面的加速度约为地球表面的16D.苹果在月球表面受到的引力约为在地球表面的1603.(万有引力定律的简单应用)两个完全相同的实心均质小铁球紧靠在一起,它们之间的万有引力为F .若将两个用同种材料制成的半径是小铁球2倍的实心大铁球紧靠在一起,则两个大铁球之间的万有引力为( ) A.2F B.4F C.8F D.16F4.(重力加速度的计算)据报道,在太阳系外发现了首颗“宜居”行星,设其质量为地球质量的k 倍,其半径为地球半径的p 倍,由此可推知该行星表面的重力加速度与地球表面重力加速度之比为( ) A.k p B.k p 2 C.k 2p D.k 2p2 课时对点练考点一 万有引力定律的理解1.(2019·肥东高级中学高一下期末)下列关于行星对太阳的引力的说法中正确的是( ) A.行星对太阳的引力与太阳对行星的引力是同一种性质的力B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关C.太阳对行星的引力大于行星对太阳的引力D.行星对太阳的引力与太阳的质量成正比,与行星距太阳的距离成反比 2.(多选)关于引力常量G ,下列说法中正确的是( ) A.在国际单位制中引力常量G 的单位是N·m 2/kg 2B.引力常量G 的大小与两物体质量的乘积成反比,与两物体间距离的平方成正比C.引力常量G 在数值上等于两个质量都是1 kg 的可视为质点的物体相距1 m 时的相互吸引力D.引力常量G 是不变的,其数值大小由卡文迪许测出,与单位制的选择无关3.(2019·北京牛栏山一中期中)下图(a)是用来“显示桌(或支持)面的微小形变”的演示实验;图(b)是用来“测量万有引力常量”的实验.由图可知,两个实验共同的物理思想方法是( )A.极限的思想方法B.放大的思想方法C.控制变量的方法D.猜想的思想方法考点二 万有引力定律的简单应用4.(2019·永春县第一中学高一期末)要使两物体间的万有引力减小到原来的14,下列办法不正确的是( )A.使两物体的质量各减小一半,距离不变B.使其中一个物体的质量减小到原来的14,距离不变C.使两物体间的距离增大到原来的2倍,质量不变D.使两物体的质量和距离都减小到原来的145.某物体在地面上受到地球对它的万有引力为F .若此物体受到的引力减小到F4,则此物体距离地面的高度应为(R 为地球半径)( ) A.2R B.4R C.R D.8R6.地球半径为R ,地球表面的重力加速度为g ,若高空中某处的重力加速度为g2,则该处距地球表面的高度为( )A.(2-1)RB.RC.2RD.2R7.(多选)如下图所示,三颗质量均为m 的地球同步卫星等间隔分布在半径为r 的圆轨道上,设地球质量为M ,半径为R ,下列说法正确的是( )A.地球对一颗卫星的引力大小为GMm(r -R )2B.一颗卫星对地球的引力大小为GMmr 2C.两颗卫星之间的引力大小为Gm 23r2D.三颗卫星对地球引力的合力大小为3GMmr28.(2020·全国卷Ⅰ)火星的质量约为地球质量的110,半径约为地球半径的12,则同一物体在火星表面与在地球表面受到的引力的比值约为( )A .0.2B .0.4C .2.0D .2.5能力综合练9.如下图所示,一个质量均匀分布的半径为R 的球体对球外质点P (图中未画出)的万有引力为F .如果在球体中央挖去半径为r 的一部分球体,且r =R2,则原球体剩余部分对质点P 的万有引力变为( )A.F 2B.F 8C.7F 8D.F 410.(多选)宇宙中存在着由四颗星组成的孤立星系.如下图所示,一颗母星处在正三角形的中心,三角形的顶点各有一颗质量相等的小星围绕母星做圆周运动.如果两颗小星间的万有引力为F ,母星与任意一颗小星间的万有引力为9F .则( )A.每颗小星受到的万有引力为(32+9)F B.每颗小星受到的万有引力为(3+9)FC.母星的质量是每颗小星质量的3倍D.母星的质量是每颗小星质量的33倍11.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”号下潜深度为d ,“天宫一号”轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的重力加速度之比为[在匀质球体内部距离球心r 处的质点(m )受到的万有引力等于球体内半径为r 的同心球体(M ′)对它的万有引力]()A.R -d R +hB.(R -d )2(R +h )2C.(R -d )(R +h )2R 3D.(R -d )(R +h )R 212.某地区的地下发现了天然气资源,如下图所示,在水平地面P 点的正下方有一球形空腔区域内储藏有天然气.假设该地区岩石均匀分布且密度为ρ,天然气的密度远小于ρ,可忽略不计.如果没有该空腔,地球表面正常的重力加速度大小为g ;由于空腔的存在,现测得P 点处的重力加速度大小为kg (k <1).已知引力常量为G ,球形空腔的球心深度为d ,则此球形空腔的体积是( )A.kgd GρB.kgd 2Gρ C.(1-k )gd Gρ D.(1-k )gd 2Gρ13.已知太阳的质量为M ,地球的质量为m 1,月球的质量为m 2,当发生日全食时,太阳、月球、地球几乎在同一直线上,且月球位于太阳与地球之间,如下图所示.设月球到太阳的距离为a ,地球到月球的距离为b ,则太阳对地球的引力F 1和对月球的引力F 2的大小之比为多少?14.某物体在地面上受到的重力为160 N ,将它放置在卫星中,在卫星以a =12g 的加速度随火箭向上加速升空的过程中,当物体与卫星中支持物的相互挤压的力为90 N 时,卫星距地球表面有多远?(地球半径R 地=6.4×103 km ,g 表示地面处重力加速度,g 取10 m/s 2) 拓展提升15.地球可视为质量均匀分布的球体.某物体在地球北极点静止时对水平地面的压力为F N0,物体在地球赤道上静止时对水平地面的压力为F N ;地球自转周期为T ,万有引力常量为G ,地球密度的表达式为( ) A.3πF N0GT 2(F N0-F N )B.3π(F N0-F N )GT 2F N0C.3πF N0GT 2D.3πF N0GT 2F N。
太阳与行星间的引力
M F` 2 r
Mm F G 2 r
(1) G是比例系数,与行星、太阳均无关 (2)引力的方向沿太阳和行星的连线
行星绕太阳运动遵守这个规律, 那么在其他地方是否适用这个规律 呢?
月地检验
1.根据圆周运动知识及实验测量数据 可求得月亮加速度为:
2π 2 2 3.14 a月 ( ) r月=( )2 60 R地= 2.72 10 3 T 27.3 24 3600
100多年后,英国人卡文迪许利用扭秤才 巧妙地测出了这个恒量
万有引力常量:
-11 G=6.67×10 N 2 2 m /kg
应用与所有的物体之间。
追寻牛顿的足迹
3、根据开普勒第三定律
即
r k 2 T
3
r T k
2
3
代入得
2 2 4 F m( ) r m 2 r T T
2
所以
m F 4 k 2 r
3
3 1 2 1
3
k值与中心天体有关, 而与环绕天体无关
什么力来维持行星绕太阳的 运动呢?
科学的足迹
1、伽利略:一切物体都有合并的趋势,这种趋势 导致物体做圆周运动。 2、开普勒:受到了来自太阳的类似与磁力的作用。
3、笛卡儿:在行星的周围有旋转的物质(以太)作 用在行星上,使得行星绕太阳运动。
4、胡克、哈雷等:受到了太阳对它的引力,证明了 如果行星的轨道是圆形的,其所受的引力大小跟 行星到太阳的距离的二次方成反比,但没法证明 在椭圆轨道规律也成立。
在文化发展史上的重大意义:使人们 了有能力理解天地间的各种事物的信心,解 放了人们的思想,在科学文化的发展史上起 了积极的推动作用。
1. 万有引力恒量的测定
必修2 6.2 太阳与行星间的引力 课件
二、太阳与行星间的引力
引力 太阳对 行 星的引 力 行星对 太 阳的引 力 规律 太阳对不同行星的引力 , 与行星的质量成正比 , 与行星
m 和太阳间距离的二次方成反比, 即 F∝ 2 r M 阳间距离的二次方成反比 , 即 F' ∝ 2 r
.
行星对太阳的引力与太阳的质量成正比, 与行星和太 .
引 力 太 阳 与 行 星 间 的 引 力
规律
太阳与行星间引力的大小与太阳的质量、行星的质量成正 比, 与两者距离的二次方成反比 , 即 F =G
Mm , G 为比例系 2 r
数, 其大小与太阳和行星的质量无关 , 引力的方向沿两者的 连线.
探究感悟 1: 做圆周运动的物体必定有力提供向心 力, 行星的运动是由什么力提供向心力的? 答案: 太阳对行星的引力提供向心力. 探究感悟 2: 太阳与行星间的引力公式 F =G 中各符号的含义是什么? 答案: G 为比例系数, 与太阳和行星无关; M 和 m 分别 为太阳的质量和行星的质量; r为太阳与行星间的 距离.
22
在本题中, 所求量不能直接用公式进行求解, 必须利用等 效的方法间接求解, 即把椭圆运动等效成圆周运动, 建立 一个合理的物理模型( 匀速圆周运动模型) , 利用相应的规 律( 引力与圆周运动的规律) , 寻找解题的途径.
针对训练: 一颗小行星绕太阳做匀速圆周运动的轨道半径是地 球公转半径的 4 倍, 则这颗小行星运行速率是地球运行速率的 ( ) B. 2倍 D. 16倍
1 2
1 = , 故正确选项为 C. 2
答案: C.
点击进入课时训练
Mm r2
的得出, 概括起来导出过程如图所示:
简化处理: 椭圆轨道按“圆”轨道处理 → 引力提供向心力 F = m
人教版高中物理必修二第六章第二节《太阳与行星间的引力》说课稿+教学设计
《太阳与行星间的引力》说课稿我课题选自人教版全日制普通高级中学教科书,必修二第六章第二节《太阳与行星间的引力》。
我将从教材分析,学情分析,教法与学法,教学设计,板书设计,五个方面展开我的说课,首先让我们开始说课第一部分教材分析。
教材的地位和作用,从行星运动规律到万有引力定律的建立过程,是本章的重要内容,是极好的科学探究过程教育素材。
在行星运动规律与万有引力定律两节内容间安排本节内容,是为了更突出发现万有引力定律的这个科学内容。
从问题的提出、猜想与假设、演绎与推理、结论的得出、检验论证等,是一次很好的探究性学习过程。
通过探究太阳与行星间的引力,即巩固了开普勒运动定律,又为今后万有引力定律的得出打下基础,因此在知识结构上有承上启下的作用,在本章知识体系中占据着重要的地位。
鉴于此,我设计了以下三维教学目标。
知识与技能目标:1、知道行星绕太阳运动的原因是到太阳引力的作用。
2、知道行星绕太阳做匀速圆周运动的向心力来源。
3、知道太阳与行星间引力的方向和表达式,知道牛顿定律在推导太阳与行星间的引力时的作用。
4、领会应用易测量的量去求引力。
过程与方法目标:1、了解太阳与行星间的引力公式的建立和发展过程。
2、体会推导过程中的数量关系。
情感态度与价值观1、了解关于行星绕太阳运动的不同观点和引力思想形成的历程。
2、了解太阳和行星间的引力关系,体会大自然的奥秘。
针对教学重难点我是这样理解的,结合新课标,我将把重点放在太阳与行星间的引力公式的理解上,而将难点放在太阳与行星间的引力公式的推导过程上。
通过对学生和教材的深入研究后,我将进行以下学情分析:在知识层面上学生已经知道了做匀速圆周运动需要向心力,及开普勒三大定律等,在能力层面上已经具备了观察分析能力,解决问题的能力。
在对新事物有着强烈好奇心的作用下,完全有能力通过探究性学习来完成本节课的内容。
那么有了以上的基础又该如何教如何学呢!让我们一起进入教法与学法,针对教学重难点,我将采取以下教法:思维引导法,一步步的引导学生对太阳与行星间的引力的科学探究过程。
行星相互吸引的原因-概述说明以及解释
行星相互吸引的原因-概述说明以及解释1.引言1.1 概述行星相互吸引是宇宙中普遍存在的一种现象。
行星通过引力相互吸引,使它们绕着太阳轨道运动。
在本文中,我们将探讨行星相互吸引的原因及其重要性。
在太阳系中,每颗行星都围绕着太阳运动。
行星之间的相互吸引是由它们之间存在的引力所导致的。
根据质量和距离的差异,行星之间的引力也会产生不同的效应。
根据万有引力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
换句话说,质量越大,距离越近,引力就越强。
太阳的质量远远大于其他行星,因此它对行星的引力也是最强的。
行星受到太阳的引力作用,被吸引到太阳的方向上运动,并围绕太阳旋转。
同时,行星之间也会受到彼此的引力作用。
这种相互吸引的力量会对行星的运动轨道产生影响。
在太阳系中,行星间的相互吸引导致了一些重要的现象。
首先,这种吸引力决定了行星的轨道形状和运动速度。
行星在椭圆轨道上运动,而不是简单地围绕太阳做直线运动。
其次,行星相互吸引还会导致轨道的变化和扰动。
这种扰动会对行星的位置和运动产生微小的改变,进而影响太阳系的稳定性和演化。
了解行星相互吸引的原因对于理解太阳系的形成和演化过程至关重要。
通过研究行星之间的相互作用,科学家可以更好地解释行星形成的机制,并预测未来的演化趋势。
总之,行星的相互吸引是由它们之间的引力作用所导致的。
这种引力不仅使行星围绕太阳旋转,也会对行星的轨道和运动产生影响。
对于研究太阳系的形成和演化以及探索宇宙法则,了解行星相互吸引的原因至关重要。
1.2 文章结构文章结构主要包括引言、正文和结论三个部分。
引言部分是文章的开头,用来引起读者的兴趣并介绍文章的背景和目的。
在本文中,引言部分包括概述、文章结构和目的三个要点。
概述部分旨在简要介绍行星相互吸引的原因。
行星相互吸引是指行星或其他天体之间由于引力而产生的力,这是宇宙中普遍存在的一种现象。
理解行星相互吸引的原因对于解释行星运动、天体轨道和宇宙演化等方面都具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
太阳与行星间的引力第2节太阳与行星间的引力 {课前感知}1.牛顿在前人对惯性认识的基础上,通过进一步的研究后认为:力是改变物体速度(包括改变速度的方向)的.也就是说,行星之所以绕太阳运转,而没有沿直线做匀速运动离开太阳,就是因为太阳对行星有,这个力使行星产生了. 2.为了简化,我们把行星的运动看成是匀速圆周运动.假定有一颗行星,它的质量为m,公转周期为T,轨道半径(行星到太阳的距离)为r,那么,太阳对行星的引力F就行星绕太阳运动的向心力,即F= 。
3.太阳与行星间的引力跟太阳的质量、行星的质量成,跟它们之间的距离的二次方成。
写成公式就是F= 。
4.由公式和可以得到F= ,这个式子表明太阳对不同行星的引力,与成正比,与成反比。
5.在对太阳与行星间的引力的探究过程中我们运用的定律和规律是{即讲即练} 【典题例释】【我行我秀】【例1】陨石落向地球是因为() A.陨石对地球的吸引力远小于地球对陨石的吸引力,所以陨石才落上地球 B.陨石对地球的引力和地球对陨石的引力大小相等,但陨石的质量小,加速度大,所以改变运动方向落向地球 C.太阳不再吸引陨石,所以陨石落上地球 D.陨石是在受到其他星球斥力作用落向地球的【思路分析】两个物体间的引力是一对作用力与反作用力,它们的大小相等,它们的大小与质量和距离有关。
【答案】B 【类题总结】与太阳等其他天体也存在引力的作用,但由于距离太大,所以起主要作用的是地球对其施加的引力作用。
【例2】一位同学根据向心力F=m 说,如果人造卫星质量不变,当轨道半径增大到2倍时,人造卫星需要的向心力减为原来的1/2;另一位同学根据引力公式F∝m 推断,当轨道半径增大到2倍时,人造卫星受到的向心力减小为原来的1/4。
这两个同学中谁说的对?为什么? 【思路分析】要找到两个变量之间的关系,必须是在其他量一定的条件下才能确定。
卫星做圆周运动需要的向心力的变化情况由公式F=m 来判断,而卫星运动受到的向心力的变化情况则由公式F∝ 来判断。
【答案】第二位同学说的对,因为根据向心力公式F= m ,只有当运动速率v一定时,需要的向心力F与轨道半径r成反比。
由于星体的质量为定值,由行星与太阳间的引力公式可知,卫星受到的引力F将与卫星轨道半径的平方r2成反比。
【类题总结】本题考查了学生对圆周运动的向心力、天体间的引力公式的理解。
解题时注意,由于速度变化而需要的力和由于质量存在而产生的引力是不同的。
【例3】试说明在推导太阳与行星间的引力的过程中,所用公式F=m 、v= 、=k的物理意义和公式中各量的物意义。
【思路分析】公式F=mv2/2表示表示物以线速度v做匀速圆周运动,其向心力的大小为F,圆周运动的半径为r,做圆周运动的物体质量为m。
公式v= 表示物体做匀速圆周运动的线速度等于圆周轨道的周长C=2πr与运动周期T的比值。
其中表示圆周运动的半径。
公式 =k是开普勒第三定律的数学表达式,其中R表示椭圆轨道的半长轴的大小,T表示行星绕太阳公转的周期,k是一个太阳系中的与行星无关的常量。
【类题总结】本题主要考查万有引力定律的推导过程中用到的公式。
理解各公式的适用条件,明确各量的含义,根据相应的规律分析。
【例4】设地球E(质量为M)是沿圆轨道绕太阳S运动的,当地球运动到位置P时,有一艘宇宙飞船(质量为m)在太阳和地球连线上的A处,从静止出发,在恒定的推进力F的作用下,沿AP方向做匀加速运动,如图7―2―2所示,两年后在P处(飞船之间的引力不计),根据以上条件,求地球与太阳之间的引力.【思路分析】设半年时间为t,地球绕太阳运行的半径为R,则飞船由A到P点的时间为4t,到Q点的时间为5t,P、Q两点的距离为2R,由此可据牛顿第二定律和运动学公式,进行计算。
【答案】地球绕太阳运行的周期为一年,即T=2t,其向心力由地球与太阳间的引力来提供,所以引= 向= 引= . 【类题总结】太阳与行星之间的引力提供行星圆周运动的向心力是解决天体运动问题的一个重要思路。
1.某物体在地面所受引力是该物体在距地面高R/2处所受引力的倍。
(R为地球半径)2(1)如图7―2―1所示为一个人造地球卫星沿椭圆轨道绕地球运动的轨迹,在卫星由近地点运动到远地点的过程中:()A.地球引力对卫星不做功B.卫星运行的速率不变C.卫星的重力势能增加 D.卫星的机械能减少2(2)一群小行星在同一圆形轨道上绕太阳旋转,这些小行星具有()A.相同的速率B.相同的加速度C.相同的运转周期D.相同的角速度3.下面关于行星对太阳的引力的说法中正确的是() A.行星对太阳的引力与太阳对行星的引力是同一性质的力 B.行星对太阳的引力与太阳的质量成正比,与行星的质量无关 C.太阳对行星的引力大于行星对太阳的引力 D.行星对太阳的引力大小与太阳的质量成正比,与行星距太阳距离成反比4(1).两个行星的质量分别为m1、m2,绕太阳的轨道半径是r1和r2,若它们只受太阳引力作用,那么它们与太阳之间引力之比为,它们的公转周期之比为。
4(2).两个行星的质量分别为m1和m2,绕太阳运动的轨道半径分别是r1和r2,若它们只受太阳引力的作用,那么这两个行星的向心加速度之比为() A.1 B. C. D.{超越课堂}〖基础巩固〗 1.太阳对行星的引力F与行星对太阳的引力F′大小相等,其依据是() A.牛顿第一定律 B.牛顿第二定律 C.牛顿第三定律 D.开普勒第三定律 2.下面关于太阳对行星的引力说法中正确的是() A.太阳对行星的引力等于行星做匀速圆周运动的向心力B.太阳对行星的引力大小与行星的质量成正比,与行星和太阳间的距离成反比 C.太阳对行星的引力是由实验得出的 D.太阳对行星的引力规律是由开普勒定律和行星绕太阳做匀速圆周运动的规律推导出来的 3.行星之所以绕太阳运行,是因为() A.行星运动时的惯性作用 B.太阳是宇宙的控制中心,所有星体都绕太阳旋转 C.太阳对行星有约束运动的引力作用 D.行星对太阳有排斥力作用,所以不会落向太阳 4.关于地球和太阳,下列说法中正确的是() A.地球对太阳的引力比太阳对地球的引力小得多 B.地球围绕太阳运转的向心力来源于太阳对地球的万有引力 C.太阳对地球的作用力有引力和向心力 D.在地球对太阳的引力作用下,太阳绕地球运动 5.下列说法正确的是() A.在探究太阳对行星的引力规律时,我们引用了公式这个关系式实际上是牛顿第二定律,是可以在实验室中得到验证的 B.在探究太阳对行星的引力规律时,我们引用了公式这个关系式实际上是匀速圆周运动的一个公式,它是由速度的定义式得来的 C.在探究太阳对行星的引力规律时,我们引用了公式,这个关系式是开普勒第三定律,是可以在实验室中得到证明的 D.在探究太阳对行星的引力规律时,使用的三个公式,都是可以在实验室中得到证明的 6.把行星运动近似看作匀速圆周运动以后,开普勒第三定律可写为,则可推得() A.行星受太阳的引力为 B.行星受太阳的引力都相同 C.行星受太阳的引力 D.质量越大的行星受太阳的引力一定越大 7.太阳与行星间的引力大小为,其中G为比例系数,由此关系式可知G 的单位是()A.N•m2/kg2 B.N•kg2/m2 C.m3/kg•s2 D.kg•m/s2 8.把太阳系各行星的运动近似看作匀速圆周运动,则离太阳越远的行星() A.周期越小 B.线速度越小 C.角速度越小 D.加速度越小 9.一行星沿椭圆轨道绕太阳运动,在由近日点运动到远日点的过程中,以下说法中正确的是() A.行星的加速度逐渐减小 B.行星的动能逐渐减小 C.行星与太阳间的引力势能逐渐减小 D.行星与太阳间的引力势能跟动能的和保持不变 10.对太阳系的行星,由公式,可以得到F= ,这个式子表明太阳对不同行星的引力,与成正比,与成反比。
11.两个行星的质量分别为m1和m2,绕太阳运动行的轨道半径分别为r1和r2,则它们与太阳间的引力之比为。
12.已知地球质量为5.89×1024kg,太阳的质量为2.0×1030kg,地球绕太阳公转的轨道半径是1.5×1011m,则太阳对地球的吸引力为 N,地球绕太阳运转的向心加速度为 m/s2.(已知G=6.67×10-11N•m2/kg2)〖能力提升〗 13〖易错题〗地球的质量是月球质量的81倍,若地球吸引月球的力的大小为,则月球吸引地球的力的大小为() A. /81 B.C.9D.81F 14.〖概念理解题〗行星绕恒星的运动轨道是圆形,它的运行周期T的平方与轨道半径r的立方之比为常数,即此常数k的大小() A.只与恒星的质量有关 B.只与行星的质量有关 C.与行星和恒星的质量都有关 D.与行星和恒星的质量都无关 15.〖应用题〗要使太阳对某行星的引力减小到原来的l/4,下列办法不可采用的是() A.使两物体的质量各减小一半,距离不变 B.使其中一个物体的质量减小到原来的1/4,距离不变 C使两物体间的距离增为原来的2倍,质量不变 D.使两者的距离和质量都减小为原来的1/4 16. 〖概念理解题〗太阳对地球有相当大的引力,而且地球对太阳也有引力作用,为什么它们不靠在一起?其原因是() A.太阳对地球的引力与地球对太阳的引力,这两个力大小相等、方向相反,互相平衡 B.太阳对地球的引力还不够大 C.不仅太阳对地球有引力作用,而且太阳系里其他星球对地球也有引力,这些力的合力为零 D.太阳对地球引力不断改变地球的运动方向,使得地球绕太阳运行 17. 〖信息题〗科学家们推测,太阳系的第十颗行星就在地球的轨道上.从地球上看,它永远在太阳的背面,人类发现它,可以说是“隐居”着的地球的“孪生兄弟”.由以上信息我们可以推知() A.这颗行星需要的向心力与地球等大 B.这颗行星的自转半径与地球相同 C.这颗行星的质量等于地球的质量 D.这颗行星的公转半径与地球相同 18.〖综合题〗下列有关行星运动的说法中,正确的是() A.由可知,行星轨道半径越大,角速度越小 B.由可知,行星轨道半径越大,行星的加速度越大 C.由可知,星轨道半径越大,行星的加速度越小 D.由可知,行星轨道半径越大,线速度越小 19.〖应用题〗若两颗行星的质量分别为M和m,它们绕太阳运行的轨道半径分别为R和r,则它们的公转周期之比() A. B. C. D. 20.〖应用题〗若两颗绕太阳运行的行星的质量分别为m1和m2,它们绕太阳运行的轨道半径分别为r1和r2,则它们的向心加速之比为() A.1:1 B.m2r1:m1r2 C.D. 21.〖应用题〗已知太阳光从太阳射到地球需要500 s,地球绕太阳的公转周期约为3.2×107s,地球的质量约为6×1024kg.求太阳对地球的引力为多大?(答案只需保留一位有效数字)〖思维拓展〗 22.〖信息题〗2005年北京时间7月4日下午1时52分(美国东部时间7月4日凌晨1时52分)探测器成功撞击“坦普尔一号”彗星,投入彗星的怀抱,实现了人类历史上第一次对彗星的“大对撞”,如图7―2―3所示.假设“坦普尔一号”彗星绕太阳运行的轨道是一个椭圆,其运动周期为5.74年.则关于“坦普尔一号”彗星的下列说法中,正确的是() A.绕太阳运动的角速度不变 B.近日点处线速度大于远日点处线速度 C.近日点处加速度大于远日点处加速度 D.其椭圆轨道半长轴的立方与周期的平方之比是一个与太阳质量有关的常数 23.〖探究题〗在用公式时,某同学查表计算出行星绕太阳运转的 /s2 、月球绕地球运转的k2=1.020×1013m3/s2,他从有关资料上查出太阳质量M=1.989×1030kg、地球质量为m=5.976×1024kg,它分别计算出m3/(kg•s2)=(kg•s2)=1.71×10-12m3/(kg• s2),m3/(kg•s2)=1.71×10-12m3/(kg•s2).如果我们把k称为开普勒常量,当行星绕太阳运转时,称太阳为中心星球,月球绕地球运转时,称地球为中心星球,从这个计算结果可以作下面的猜想() A.开普勒常量k是一个与行星无关的常量 B.开普勒常量k是一个与中心星球质量无关的常量 C.开普勒常量k与中心星球质量的一次方成正比 D.开普勒常量是与中心星球质量的一次方成反比 24.〖探究题〗2004年最壮观的天文现象莫过于金星凌日,金星是太阳系里惟一逆向自转的行星,金星上太阳西升东落,人们称金星为太阳的逆子就是这个原因.如图7―2―4金星和地球绕太阳的运动可以近似看作同一平面内的逆时针方向的匀速圆周运动.已知金星和地球公转的半径分别为1.1×108km和1.5×108km.从图中所示的金星与地球相距最近的时刻开始计时,估算金星再次与地球相距最近需多少地球年?(地球公转周期为1年)第二节太阳与行星间的引力【课前感知】 1.原因吸引力加速度 2.等于 3.正比反比 4、【思路分析】由已知得:所以,由此看出,F 与m成正比,与r的二次方成反比。