高等数学A课程论文

合集下载

高等数学A课程论文

高等数学A课程论文

《高等数学A》课程总结姓名:学号:班级:成绩:高等数学A课程总结高等数学是比较难又比较重要的一门基本课程。

学习高数锻炼了我的思维能力,从而让我更好的去学习其它课程。

由于高数和高中时候的数学有很大的差别,所以就要有一种好的学习方法才能够学好这一门课程,它锻炼了我的自主学习能力,让我更有活力去学习其它课程。

下面是课程总结的主要内容。

一、课程机构体系存在准则可去型两个重要极限跳跃型运算法则间断点无穷型无穷小极限振荡型极限连续性四则运算定义法运算(开、闭区间)初等函数无穷小代换复合函数极限计算洛必达法则函数连续性泰勒公式幂指函数微分作图法(方法)运算法则对数函数高阶函数罗尔导数微分微分中值定理拉格朗日柯西隐函数类型参数方程泰勒公式定积分(概念、性质)微积分基本公式(牛—莱公式)概念、性质函数积分学基本公式换元积分法(凑微分、倒代换)方法分部积分法不定积分有理函数积分反常积分(计算方法)几何应用(面积、体积、长度)可分离变量的微分方程概念、性质齐次方程一阶线性微分一阶线性微分方程齐次、非齐次方程解(通解、特解)二阶齐次线性微分方程解(通解、特解)常微分方程二阶非齐次线性微分方程解(通解、特解)二阶线性微分方程二阶常系数齐次线性微分方程解的结构(通解、特解)二阶常系数非齐次线性微分方程解结构(通解、特解)特殊高阶微分方程解:几种微分方程解及解法二、学习心得体会有人戏称高数是一棵高树,很多人就挂在了上面。

但是,我相信只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

很多人害怕高数,高数学习起来确实是不太轻松。

其实,只要有心,高数并不像想象中的那么难。

学习了半年的高数,我的感受也颇多。

虽然我学习的并不好,但在这里我也谈谈自己关于高数学习的一些小小体会吧。

首先,不能有畏难情绪。

一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。

让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。

大学数学论文(5篇)

大学数学论文(5篇)

大学数学论文(5篇)高校数学论文(5篇)高校数学论文范文第1篇参与全国高校生数学竞赛除了上述的必要条件之外,还需具备四个充分条件:如何稳固参与预赛的人数、制定合理有效的培训内容、师资队伍的建设以及经费来源等。

首先,如何有效地组织高校生参与竞赛,可谓是四个条件中最重要的一项,也是下一节笔者所讨论的重点;另外,作为数学竞赛的主要内容:《高等数学》是工科类同学必修的基础理论课,《数学分析》、《高等代数》、《解析几何》等课程是数学专业的专业基础课。

这些是数学竞赛得以顺当开展的基础。

第三,调动部分高校专任的数学老师组成竞赛培训团队也是一项重要的环节,笔者将会在第三节做具体的讨论。

最终是竞赛活动经费,笔者认为可以从以下三个方面获得:第一方面,每所高校都会有专项的创新活经费,可以从今项经费中申请一部分;其次方面,各赛区的主办方会拔给每个学校一些经费;第三方面,适当地向参与培训的同学收取(或变相地收取)一部分。

这些经费主要用于:参与竞赛的同学报名费、培训老师的课时费和同学竞赛时的考试相关费用等。

基于上述分析,在一般高校开展数学竞赛培训以及组织同学参与全国高校生数学竞赛是完全可行的并具有实际意义的。

2一般高校同学现状分析为了吸引、鼓舞更多的同学参加数学竞赛活动,必需先了解现在一般高校本科生的生源现状及其学习状态。

不得不承认,全国高校自扩招以来,一般高校高校生的质量普遍下降。

主要缘由有两个:一是高校的教育已由精英式转为大众式;二是随着扩招的进行,大多数优质生源进入了985或211这样的重点高校,这样就导致一般高校中的优质生源比例相对削减。

限于优质生源比例小的问题,再加上数学理论繁杂与浅显,学习起来困难重重,多数同学在学习数学时会产生犯难心情从而心生畏惧。

还有小部分的同学在进校时数学基础就比较差,(或由此产生的)学习数学的乐观性很低。

还有一部分同学认为数学无实际用途,从主观上学习数学的爱好消极。

基于以上几点缘由加上一些来自一般高校教学条件的限制,许多高校生的实际数学水平较低,所引发的直接结果就是学习成果下降、考试分数偏低、补考人数增多,更有甚者一些同学由于数学不及格而无法毕业。

高等数学教学论文范文3篇

高等数学教学论文范文3篇

高等数学教学论文范文3篇高等数学教学论文一、在看到多媒体优点的同时,必须直面它的不足1.流速快,内容繁。

课件教学以其容量大、速度快、易操作而自豪。

然而图文并茂的多媒体教学虽然形象直观,也会导致学生不愿思考,抽象思维能力下降。

新颖的动画、声音媒体取代了枯燥的课本和板书,但学生的注意力开始分散,不注重内涵的理解,而更关注形式的欣赏。

因此,我们在用多媒体上课的时候,就会发现这样一种怪现象:时不时会有学生用平板电脑或者手机对着多媒体一阵拍照。

这种现象,一方面是因为多媒体的流速快、内容繁,大家的思维速度已经跟不上不停转动的画面,另一方面,是因为学生学习的积极性因为多媒体的存在变得不高了。

既然上课的内容可以在电脑或手机上再一次展现在自己面前,那又何苦在课上学得那么辛苦。

因此,就导致了课件教学就像放电影一样,整部电影精彩绝伦,但其中的细节却很少有人去慢慢体会了。

2.内容固定,缺少灵活。

多媒体课件都是教师事先根据教学内容设计的教学软件,其执行的过程是不变的。

即使在授课过程中,学生的想法偏离老师所讲的内容,也会因为这些“事先设计”,为了课件的正常播放,教师不得不将其拉回”正轨”。

这种刻板的做法不利于鼓励学生发现、探讨问题,同时也极大地影响了课堂教学的灵活性。

3.影响思维能力培养。

在教学的过程中,运用多媒体增强了教学的形象性和直观性,使很多难以理解的现象变得直观、明了。

但是这样做,实际上是扼杀了培养学生逻辑思维能力和创造能力的机会。

我们往往只强调学生去“看”而弱化了让学生去“想”和“做”,从而忽视了对学生思维能力的训练。

课件仅仅是师生双边活动中的一种辅助或补充,要充分考虑到对学生智力和能力的培养,尤其是创新能力的培养;激发学生学习的主动性和创造性。

4.环境影响教学效果。

现在的多媒体设备一般都安装在普通教室里。

这些教室一般既没有安装空调,也没有安装专门的排风设备,而投影机的使用需要窗帘遮光。

学生在这样不太通风的教室里上课,其效果肯定是比较差的。

大学高等数学论文范文

大学高等数学论文范文

大学高等数学论文范文推荐文章浅谈高等数学论文范文格式模板热度:高等数学相关论文范文热度:有关大学教育论文范文热度:高等教育学论文相关范文热度:高等院校会计专业论文热度:大学高等数学教育是促进学生发展全面性的一门基础性学科,其在学生思维、思辨能力的培养过程中扮演着十分重要的角色。

下面是店铺为大家整理的大学高等数学论文范,供大家参考。

大学高等数学论文范范文一:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。

著名数学家陈省身说:“了解历史的变化是了解这门科学的一个步骤。

将数学发展的历史真实地展现给学生,是数学这一学科应该毫不犹豫地担起的职责。

”高职院校高等数学教师提高自身数学素养,将数学史内容融入到高等数学教学教学中,势在必行。

高职院校学生相对于本科学生基础弱,底子薄,在高等数学的学习中会遇到许多问题,自然影响学生的学习效果。

在课堂教学过程中融入数学史的内容,从数学家们发现、发明解决问题的思路出发,引导学生思考解决问题,可以帮助学生更好地理解高等数学中的公理、公式,解决数学学习中出现的各种困难,树立学习信心,改变高等数学枯燥乏味、一味证明的课堂教学模式。

(二)将数学史蕴涵的思想、方法融入到高等数学教学中弗赖登塔尔在《作为教学任务的数学》中指出,数学概念、公理及数学语言符号等,包括数学问题解决,不应机械地灌输给学生,或仅是由结果出发,推导出其他数学知识的方式,这种颠倒的教学法掩盖了创造性思维过程,即学生的数学学习不应该重复人类的学习过程,而应该进行“再创造”。

数学史烙印着数学家处理数学问题的痕迹,其中蕴藏着数学家处理相关问题的思想和方法,比如归纳推理、概况分析、类比猜想等逻辑思维方法及跳跃性的直觉思维方法,这些恰是数学教学中学生所必须具备的。

高等数学课程教学方法论文(共3篇)

高等数学课程教学方法论文(共3篇)

高等数学课程教学方法论文(共3篇)第1篇:高等数学课程教学方法论文给你一篇高等数学课程教学方法论文的写作范例,你可以参考它的格式与写法,进行适当修改。

【摘要】本文数学论文从多个方面论述了在大学数学教学中应注意的问题,提出了一些切实可行的教学方法,对于不断提高高等数学的教学质量,提高学生的综合素质,具有一定的指导意义。

【关键词】高等数学,教学方法,教学模式高等数学是高等院校理工科专业的一门重要基础课程,它既是学生学习后续课程的基础,也是培养学生学习方法和解决问题能力的重要途径,兼具了工具实用性和逻辑思辨性两个特点。

随着高等教育的大众化,生源情况发生了巨大的变化,高等数学教学面临着巨大的困难与挑战,教学的压力逐渐加大,在后续专业课对高等数学的要求不断提高、对学生能力的培养更加重视的情况下,如何利用较少的授课时间来获得较高的教学质量,是我们广大高等数学教师应思考的问题。

一、提高学生对高等数学的重视程度首先,让学生明确学习高等数学的目的、认识学习的意义、了解课程的主要内容与地位,介绍高等数学的学习方法,以帮助学生端正学习动机。

其次,必须让学生明确高等数学的重要性以及它在各个领域的广泛应用,高等数学不但深入到物理化学生物等传统领域,而且深入到信息经济金融等各领域中,对于大多数人而言,并不希望成为一个数学专业人员,而是希望将数学作为研究其他学科的工具,随着科学技术和经济的飞速发展,学习高等数学的过程可以使学生具备独立获取知识、分析问题、解决问题的能力及具有创造性的科学精神,符合21世纪对人才培养的要求。

再次,将数学文化作为一种教育理念,使学生受到重视。

张奠宙教授指出:数学文化必须走进课堂,在实际数学教学中使得学生在学习数学的过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位和世俗的人情味。

二、引导学生主动学习,提高学生学习效率在高等数学教学中,要不断激发学生的学习兴趣,让学生主动去学习。

例如,在教学过程中,可改变过去的僵化的教学模式,从以教师为中心转移到以学生为中心,彻底改变过去的“单一讲授——被动接受”的填鸭式教学方法,打破传统的老师讲学生听,只有老师可向学生提问,学生不能向老师质疑的教学模式。

高等数学论文范文

高等数学论文范文

高等数学论文范文随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。

下面是店铺为大家整理的高等数学论文,供大家参考。

高等数学论文范文一:高等数学在高职教育中的对策分析一、高等数学在地方高等职业教育中遇到的问题及解决办法(一)数学师资力量短缺,教师学历偏低地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。

由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。

要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。

2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高目前,在高职院校学生中普遍存在着“专业至上”的观念。

他们片面地认为只要专业课学好了,其他的文化课无足轻重。

所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。

针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。

在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。

他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。

这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。

兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。

这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

高数学习方法总结论文【精选4篇】

高数学习方法总结论文【精选4篇】

高数学习方法总结论文【精选4篇】高数学习方法总结论文【精选4篇】在日常学习、工作或生活中,需要学习的内容越来越多,想要高效的学习,就一定要掌握正确的学习方法!那么,大家知道要怎样正确高效的学习吗?以下是小编为大家整理的高数学习方法总结论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

高数学习方法总结论文1大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。

高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。

首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。

极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。

(一)做题的方法和技巧学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。

高等数学教学论文(5篇)

高等数学教学论文(5篇)

高等数学教学论文(5篇)高等数学教学论文(5篇)高等数学教学论文范文第1篇爱好是最好的老师,数学又是美的,但是数学学习往往是枯燥的,同学很难体会到这种奇妙。

如何提高同学对高等数学的爱好是授课老师需要思索的问题。

我在教学中为了让教学更加生动加入了一些生活中的数学应用。

比如,为什么人们能精确猜测几十年后的日食,却没法精确猜测明天的天气;为什么人们可以通过https平安地扫瞄网页而不会被监听;为什么全球变暖的速度超过一个界限就变得不行逆了;为什么把文本文件压缩成zip体积会削减许多,而mp3文件压缩成zip大小却几乎不变;民生统计指标究竟应当采纳平均数还是中位数;当人们说两种乐器声音的音高相同而音色不同的时候究竟是什么意思在这些例子中数学是好玩的,体现了基础、重要、深刻、美的数学。

二、培育同学自我学习力量授人以鱼不如授人以渔,单纯教会同学某一道题目的计算不如使同学把握解题的方法。

因此讲解题目时可以结合方法论:开头解一道题的时候我会告知同学这就和解决任何一个实际问题一样,首先从要观看事物开头,把数学题目观看清晰;接下来就需要分析事物,搞清晰题目的特点、有什么样的函数性质、证明的条件和结论会有什么样的联系,依据计算状况预备相应的定理和公式;最终就是解决问题,结合把握的计算和推理技巧完成题目的求解。

通过这样的讲解,和必要的练习,同学完成的不再是一道道独立的数学题目,实现的是方法论的应用,也是更清楚的规律思维的训练,有助于提高同学的自我学习力量。

“教是为了不教”,把握解题方法,有自学力量,以后工作遇到实际问题也能迎刃而解。

三、重视规律思维的训练不管是工作还是生活中人们都会遇到数学问题,假如没有规律思维只是表面理解就有可能陷入“数学陷阱”。

在教学中我经常举这样一个例子:有个婴儿吃了某款奶粉后突发急病死亡,而奶粉厂却高调坚称奶粉没有问题,是否有股对这个黑心奶粉厂口诛笔伐并将之搞垮的冲动呢?且慢,不妨先做道算术题:假设该奶粉对婴儿有万分之一的致死率,同时有100万婴儿使用这款奶粉,那就应当有约100名孩子中招,但事实上称使用该奶粉后死亡的说法却远远没有100个。

大一上高数论文

大一上高数论文

大一上高数论文高数是大一上学期的一门重要课程,它是数学的基础和核心内容之一。

通过研究高数,我们可以掌握数学分析和推理的基本原理,培养逻辑思维和解决问题的能力。

因此,深入研究高数的理论与应用是非常有意义的。

本论文的目的是介绍高数的重要性和研究目标。

在引言部分,我将概述将要讨论的主题和论文的结构。

我将首先阐述高数在现实生活中的应用和意义,以及它在其他学科中的作用。

接着,我将介绍论文的主题,包括高数的基本概念和方法。

最后,我将简要介绍论文的章节安排和内容大纲。

通过本论文的研究,我们可以更好地理解高数的重要性和应用场景,提高研究兴趣和学业成绩。

同时,这也为进一步深入研究高等数学奠定了基础,为未来学术研究和职业发展打下坚实的数学基础。

本篇论文旨在解释高数的基本概念和术语,介绍基本的数学符号和公式,并讨论高数的重要性和应用领域。

高数的基本概念和术语高数,即高等数学,是研究计量、计算、结构和变化的一门数学学科。

它关注数、数量、结构和空间等概念的定量描述和分析。

在高数中,有一些基本的概念和术语需要理解和掌握:数:高数研究的基本对象,可以是实数、复数、向量等。

数量:数的具体表达和度量。

结构:指数间的关系和组织方式,如数的运算规则和性质。

空间:高数中研究的对象所存在的背景和场所。

基本的数学符号和公式在高数中,使用一些符号和公式来表达和计算数学问题。

下面是一些常见的符号和公式:π:表示圆周率,约等于3..表示求和符号,用于将一系列数相加。

表示括号,用于改变运算次序。

x,y,z:表示未知数或变量。

高数中还有许多复杂的数学符号和公式,它们用于描述和计算更复杂的数学问题。

掌握这些符号和公式可以帮助我们更深入地理解和解决数学难题。

高数的重要性和应用领域高数作为一门基础学科,具有广泛的应用领域。

它的重要性体现在以下几个方面:科学研究:高数为各个科学领域提供了必要的数学工具和方法,如物理学、化学、生物学等。

工程技术:高数在工程设计、计算机科学、电子技术等领域的应用非常广泛,为实际问题的分析和解决提供了数学支持。

大一高等数学论文

大一高等数学论文

大一高等数学论文第一篇:大一高等数学论文高等数学论文高等数学作为一门基础课程,他在各个领域的重要性就不言而喻了,但现如今在大学普遍的教学方式:“定义→性质→例题”。

这种模式显然不够,并且在大学一个课堂的内容很多,各种各样新的概念更是层出不穷,让学生应接不暇,而我们学习大多是在课后自己去学的,这样就会产生一种自我满足心理,对于学过的内容去看资料做习题时就会认为自己会做了差不多能懂了,便认为自己学会了;还有就是对如何学、学到什么程度,在别的课程影响下,学习高等数学的深度也是不同的,学习太深会感到越难,从而影响到学习兴趣,这样的人大有人在。

但在现今学习的潮流下,我们总不能说不学了,学习还是要学的,关键就在于怎么学、如何去学。

你想要老师改变教学方式是不可能的,因为老师不是为你一个人而讲的,要考虑到大多数同学,在几十人甚至一百多人的课堂上,固定的教学模式也成了普遍的事,我们可以做的就是跟老师交流,建议老师做出细微的调整,那么我们学习便主要靠自己了,改变自己才是最好的方法,虽说每个人都知道学习的方式很多,但大都会感到力不从心,无从下手。

我在这就谈谈我自己的看法吧。

如今进入大学,首先第一点需要做的就是改变自己的思想观念。

记得刚来时,学习高等数学还像以前那样总是等着老师,很少预习,老师讲到哪,书就看到。

结果才几堂课就发现自己跟不上了。

例如对于学习函数的极限用“ξ~δ”语言表示时,老师讲的很快,感觉定义一下子就弹出来了,感到有点突兀,接下来讲的例题就有点跟不上了,学习也有了影响。

后来作了深刻的思考,明白大学跟高中是完全不同的,高中老师是带着你督促你学,而大学老师是引导你学,给你一个方向,剩下的路要你自己一步步去寻找,同时老师也在课堂上多次强调这种观念,让我们先从思想上作出调整。

还记得后来花了很长时间才弄清弄熟,这就要我们预习了,提前作了解、思考,也能更深入了解定义了,走在老师的前面是有必要的。

虽说明白了这反面,但实际上做起来就不是那么快改过来的,这需要一个调整期的,不要心急,想学习好就得坚持。

高等数学数学论文4600字_高等数学数学毕业论文范文模板

高等数学数学论文4600字_高等数学数学毕业论文范文模板

高等数学数学论文4600字_高等数学数学毕业论文范文模板高等数学数学论文4600字(一):数学建模竞赛与高等数学课堂教学论文摘要:现阶段,随着社会的发展,我国的教育水平的发展也有了改善。

高等教育法第五条规定:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才,发展科学技术文化,促进社会主义现代化建设。

”因此,培养创新型人才是高等教育的根本目标。

教育特别是高等教育承担着为国家培养创新型人才的神圣使命,世界各国的经济和综合国力的竞争,归根到底就是人才创新能力的竞争。

培养创新型人才的核心是创新意识和创新思维能力的培养。

高等数学是高等院校中的基础学科,它在培养大学生抽象逻辑思维能力、创新精神以及创新能力都具有独特而重要的作用。

我校除了文科专业外均开设了高等数学课程,与学校坚持“建设高水平理工大学,培养应用型创新人才”的办学方向相一致。

关键词:数学建模竞赛;高等数学课堂;教学引言:数学建模旨在用数学知识和和方法来解决实际问题,在数学建模的过程中,首先通过分析问题,把实际问题转化为数学语言,从而描述成大家较熟悉的数学问题。

然后借助数学理论、计算机理论等工具对这些数学问题进行求解,最终获得相对应实际问题的解决方案或者对相应实际问题有更深入和更详细的了解。

随着科学技术的发展日益迅猛,数学建模已经被广泛应用在生物、化学、医学、工程技术、航天科技等众多领域。

因此数学建模也越来越受到社会的普遍重视,并成为现代科学技术工作者必备的重要能力之一。

很多高等院校也把每年的全国大学生数学建模成绩作为衡量教学水平的一个重要指标。

一、将数学建模思想融入高等数学混合式教学中数学建模是一种数学的思维方式,是利用数学思想和方法,通过预设、简化和概括建立的与实际问题比较接近并基本能处理实际问题的一种模型或方法,并在工程、经济、生态乃至于社会科学等领域的问题都可以融入数学建模的方法。

因此,数学和数学思想越来越广泛地得到了应用。

混合式教学简单的说就是把线下(传统)学习和线上(网络)学习的优势结合在一起,换句话说,既要发挥教师教学设计、教学指导、教学启发以及教学评价的主导作用,又要体现学生主动学习和自觉学习的主体地位。

大学高数论文范文

大学高数论文范文

众所周知,高等数学是大学数学的重要组成部分,是学习理工科系课程必须掌握的一门基础课程。

其中,高等数学中的论文写作是学生综合能力的重要考察,也是大学生学术能力提升的重要途径。

如何写好一篇高等数学论文呢?本文将从选题、研究、写作等方面来给大家分享一些经验和技巧。

选题
选题是一篇高等数学论文的开端,是决定论文质量的关键要素。

如何选好题目呢?
要充分理解论文题目的含义和意义,掌握所研究的问题的基础背景和理论知识;要选择实用性强、研究空间大、具有实际应用价值的课题,这样能够有助于培养学生的研究能力,提高学术素养。

研究
研究才是论文写作的核心。

在高等数学的论文写作中,也是如此。

如何进行研究呢?
要充分了解所研究课题的基础知识和相关论文,掌握研究的切入点,并且根据自己的实际情况,选择适合自己的研究方法和研究手段。

要开展实地调查和问题分析,寻找问题原因、提出解决方案等方面进行深入探讨,在理论基础上分析实践、总结经验、得出结论。

写作
当研究工作完成后,剩下的就是书写论文了。

如何把自己的研究整理好呈现给他人,是需要关注的一个方面。

要注意论文风格的规范化,包括格式、用词、语法等方面的正确使用;要注重论文的逻辑结构和组织,使内容更加条理清晰;要注意用丰富的图表和数据来展示研究成果,增强论文的说服力和实用性。

高等数学论文的写作是一个非常重要的过程,需要学生在选题、研究、写作等方面进行多方面的提高和实践。

只有在实践中不断磨练,才能够写出一篇质量过硬的高等数学论文。

高等数学论文毕业范文.doc

高等数学论文毕业范文.doc

高等数学论文毕业范文高等数学课程不仅是学生掌握一些实用的数学工具的主渠道,它更是培养学生的数学思维、数学素质、创新能力的重要载体,所以,高等数学教学对大学生有着重要的意义。

下面是我为大家整理的高等数学论文,供大家参考。

高等数学论文范文一:独立学院高等数学分层教学摘要:独立学院学生的学习基础差别比较大,并且高等数学内容繁多,学生学习起来有一定的难度,所以有必要对独立学院的学生进行分层次教学。

文章对独立学院高等数学分层教学进行研究。

关键词:独立学院;高等数学;分层教学一、前言近年来随着高校招生规模的扩大独立学院应运而生,独立学院所招的学生高考分数一般在公办普通高校本科和专科之间,由于在这一区间内的分值范围比较大,所以独立学院所招的学生学习能力和学习基础差别较大。

因此,不能照搬公立本科院校的教学模式对独立学院的学生进行教学。

二、独立院校高等数学分层教学的必要性和重要性高等数学是高校理工类学生必修的公共课程,首先这门课程具有内容繁多,公式复杂,推理证明过程对学生的逻辑性思维要求较高的特点,学生学习起来有一定的难度。

其次,大学同初中和高中不同。

由于现在的学生长期接受初中、高中教师耳提面命式的管教,刚进入大学校门会有种突然解放的感觉,他们会不自觉的放松自己。

因为高等数学是一门非常重要的基础课程,学习高等数学可以为以后的理工科课程的学习打下基础,所以一般大学都将高等数学教学放在大一进行。

加之独立学院招收学生的学习基础相差比较大,如果实行大班不加区分的统一授课的话基础较差的学生学习起来会比较吃力,进而打击到学生学习高等数学的积极性,这对于刚刚进入大学校门还没有来得及适应大学生活和学习规律的大一新生来说无疑是致命的。

所以,独立院校高等数学分层教学是很有必要的。

独立院校的高等数学教师应当在开课之前对新生的学习情况有所了解,根据学生学习能力和基础的好坏进行分层备课和教学。

这种分层次教学的理念在一些地方的初中、高中有所实行,但是大学中很少使用。

大学高数论文范文

大学高数论文范文

大学高数论文范文高等数学教育是现代大学教学中的一项基础的课程,并在大学教学体系中占有十分重要的地位。

下面是店铺为大家整理的大学高数论文,供大家参考。

大学高数论文范文一:高等数学课程学习网站设计应用1设计拟达到的目标使用网络媒体,高等数学教学资源可以多种方式组合,以适应A 级、B级、C级不同学习者的需要。

高等数学的教学从单纯课堂教学延伸到了网络上的协同辅导、学习和工作。

网络提供的各种学习资源还可以被不同高校共享,并在每个学习者需要的时间和地点被使用,使高等数学的教学突破了时间和空间的限制。

本设计利用云南省昆明市西南林业大学已经建设完成的遍布各教室、各学生宿舍的校园网络,以高等数学课程教学内容为核心,以高等数学教学资源库、网络课程、模拟测试题库等为资源支撑,建设高等数学课程教学网站,为教师所需集成各自教学内容、为学生自主学习和个性化培养提供全面的支持和服务。

2课程学习网站功能模块结构2.1数学新闻数学新闻信息显示,由课程负责人在后台添加新闻信息,包括标题、添加时间、简要描述、详细描述等内容,前端以列表形式进行展示,学生点击新闻标题,进入相应的新闻详细信息页浏览新闻内容。

对新技术、新知识的分享,让学生能从课堂之余学习新知识。

2.2教学团队办学质量的好坏,取决于学校管理的各个方面,而最关键乃教学管理。

该项主要展示学校数学的教育师资力量。

3.3数学史话数学科学具有悠久历史,与自然科学相比,数学更是积累性学科,其概念和方法更具有延续性。

从古至今,从国内到国外的著名数学大师趣事收集于此,不仅能让学生更多的了解数学发展历程,还能提高学习兴趣,从各素材中汲取养分,为今后学习奠定基石。

2.4课程安排学生进入高等数学课程网站后,从导航菜单中进入课程安排选项,浏览每位教师制定的教学安排计划,了解各个学习阶段应要学习或掌握的知识,并能根据教师的课程安排计划合理调整自身的学习计划,以不断增强自身知识结构,复习和预习课程内容。

高中数学课堂论文(5篇)

高中数学课堂论文(5篇)

高中数学课堂论文(5篇)论文一:数列与等差数列摘要本篇论文将重点介绍数列和等差数列的基本概念、性质以及相关公式。

通过数列的探索与研究,帮助同学们更好地理解和应用数学知识。

关键词数列、等差数列、基本概念、性质、公式引言数列是数学中常见的概念之一,而等差数列作为数列的一种特殊形式,具有一定的规律和性质。

本文将介绍数列和等差数列的定义、性质以及常见的应用。

主体内容1. 数列的定义:数列是按一定顺序排列的数的集合,数列中的每一个数称为项。

2. 等差数列的定义:等差数列是指数列中的相邻两项之差都相同的数列。

3. 等差数列的性质:等差数列具有公差、通项公式等性质,这些性质对于研究和应用等差数列都非常重要。

4. 等差数列的应用:等差数列在数学、物理、经济等领域都有广泛的应用,如求和公式、等差数列的图像等。

结论通过研究数列和等差数列的基本概念、性质以及应用,同学们可以更好地理解数学知识,并在实际问题中应用所学知识解决实际问题。

论文二:三角函数及其应用摘要本篇论文将介绍三角函数的基本概念和性质,以及三角函数在几何和物理问题中的应用。

通过对三角函数的研究和应用,帮助同学们掌握三角函数的基本知识。

关键词三角函数、基本概念、性质、应用引言三角函数是高中数学中的重要内容,它不仅在几何学中有广泛的应用,还在物理学等领域中发挥着重要的作用。

本文将介绍三角函数的定义、性质以及应用。

主体内容1. 三角函数的定义:三角函数是描述角度与其对应的三角比例关系的函数,包括正弦函数、余弦函数、正切函数等。

2. 三角函数的性质:三角函数具有周期性、奇偶性、单调性等性质,这些性质对于解决几何和物理问题非常重要。

3. 三角函数的应用:三角函数在几何学和物理学中有广泛的应用,如求解三角形边长、求解角度、描述振动等。

结论通过研究三角函数的基本概念、性质以及应用,同学们可以更好地理解和应用三角函数知识,提高数学和物理问题的解决能力。

论文三:函数与导数摘要本篇论文将重点介绍函数和导数的基本概念、性质以及相关公式。

高等数学毕业论文.doc

高等数学毕业论文.doc

高等数学毕业论文我们的时代需要具有终身学习能力和身心健康的一代新人,这就更加要求我们的高等数学教学要以培养学生的学习能力,尤其是终身学习能力和终身数学意识为重,而自主学习能力的提高是实现此目标的重要前提。

下面是我为大家整理的,供大家参考。

范文一:高职院校高等数学教学改革研究0前言高职院校的《高等数学》课程是理工类专业学生的必修课程之一,作为工具学科对这些专业的学生来说,高等数学学习直接影响到其后续专业课程的学习.但数学学科的特点及学生对数学课程的学习态度导致了很大一部分学生缺乏学习数学的兴趣.本文将针对高等数学教学的现状,重点剖析在数学教学中引入数学史的意义,旨在改善当下数学教学面临的问题. 1HPM的含义将数学史融入到数学教育是由HPM最早提出的,该研究组作为一个独立的研究机构早在1972年于英国埃克赛特举办的第二届国际数学教育大会上成立,是InternationalStudyGroupontheRelationsbetweenHistoryandPedagogyo fMathematics的缩写,旨在通过将数学史融入数学教育来提高数学教育水平[1].HPM所关注的主要内容是:数学史与历史发生原理、数学与其他学科的关系、数学文化对于学生的作用、数学史与学生的认知发展、数学史与学生学习的困难、数学历史资料对于数学教学中的应用等.世界各国数学家在不同时期都相继认可了在数学教学中引入数学史对学生学习数学的作用.在19世纪末的美国,便有人将数学史作为教学工具引用到数学教学中.而且美国著名数学史家,也是历史上的第一位数学史教授卡约黎在他的著作《数学史》中曾强调了数学史对于数学教育的重大作用:"如果学习微积分的学生能够知道一些牛顿、莱布尼兹、拉格朗日等在创造这门学科中所起的作用,那么学生一定会对他们倾慕不已".2高职院校高等数学教学的现状2.1学生现状伴随我国产业结构调整,对技术型人才的需求越来越广泛,从一定程度上促进了高职教育的快速发展.随之带来的便是高职院校的扩大招生,进而导致生源情况参差不齐.而且绝大部分高职院校的学生数学基础大都相对薄弱,在这种情况下进行高等数学的教学可想而知难度有多大.2.2学习动机高职院校的学生都是以学习某门技术为学习目的的,作为专业基础课程的高等数学几乎不被重视,学生更愿意在专业课程方面多花时间和精力,对于抽象性与逻辑性非常强的高等数学基本都是敬而远之.而且学生在刚入学时便学习高等数学,尽管任课教师会强调数学课程的重要,对其专业课程的学习起到怎样的作用,但学生更愿意相信如果数学有用,到需要时再学也是来得及的,没必要浪费时间.2.3教学现状尽管高职院校对于高等数学课程的要求是"以应用为目的,以必须够用为度",突出"淡化理论,注重应用,联系实际,深化概念,重视创新和提高素质".但现行的教学中绝大部分学校仍然按照传统的教学方式,采取以教师为主的填鸭式的教学方法,这本身就无法调动学生的学习积极性.另外高等数学课程本身逻辑性强,前后内容承上启下,例如微分部分内容的掌握程度决定了后续的积分、多元函数、级数等内容的学习情况.所以一旦在初学时产生厌学、怕学情绪,那将使学生完全放弃学习,从而影响其后续专业课程的学习.3HPM视角下的高等数学教学改革的意义3.1促进教师掌握完整的数学体系,提高教学质量基于HPM视角下高等数学的教学改革要求任课教师须掌握课程所涉及到的数学史内容,且注意内容的准确性和完整性.从教师角度而言,这势必增加一定的工作量,但是也促进了教师对数学史的再学习,一旦教师对数学史内容准确掌握,不但提高了教师本身的数学素养,更利于增加教师对高等数学不同知识点的内涵和背景的全面了解,以便教师能够在课堂上适时引入相应数学史的内容,提高教学质量.3.2利于激发学生的学习兴趣,改善学习态度数学教学中引入相应数学史内容,对于学生来说,这种形式的教学非常新颖,而且作为知识的扩充,不要求学生对数学史的内容完全记住,也减轻了学生的学习压力.在学生感兴趣的情况下导入教学内容,激发学生的学习兴趣,学生由被动的接受转变为主动学习,久而久之,既丰富了学生的数学知识量,又较好地完成了教学目的,更增加了学生学习的自信心和主动性.作为学生,能把自己认为较抽象的数学学好,归纳出自己的学习方法,必然会使内心受到极大鼓舞,从而彻底转变学习态度.4具体改革措施4.1课堂上营造人文氛围高等数学作为公共基础课,在课堂上教师不仅要讲授数学知识,也要有的放矢地融入人文思想.关键在于选择恰当的切入点,这点须根据具体的教学内容和相应的教学情境来决定.在课堂上教师若能对于某一数学概念提供给学生准确完整的历史材料,包括这一概念的起因、论据及最终产生的过程,这无疑将拉近学生与数学之间的距离,增强真实感,更体现出数学教学中的人文精神.教师在教学的过程中,不断渗透数学的思想、数学的文化、数学的方法,久而久之使学生愿意去学习,愿意与老师交流,主动去思考问题,那么课堂教学将会更好地的开展.4.2教师应扩充数学史知识现在高职院校的数学教师一部分是师范院校数学专业的毕业生,这部分教师在大学期间是学过数学史这门课程的,也有一部分教师是其他学校的数学专业毕业生,这部分教师可能对数学史的内容没有作为一门课程学习过.但无论是哪种情况,都没有完整系统的学习或研究过数学史.因此,任课教师非常有必要对数学史的内容加以学习、研究,这样才能在恰当的时机准确地将数学史的相关内容引入数学教学中,将其还原在当今数学教学真实的数学情境中.使得学生能够真正感受到最本真、最原始的数学发展历程,体会知识本身在发展形成过程中所面对的困难,并能总结教训,吸收经验,利于学生真正了解数学的本质.如伊夫斯的《数学史通论》、李文林的《数学史概论》、《数学发展大事记》等书都很完整地梳理了数学发展的过程.4.3依据教学内容设计教学这是基于HPM视角下的高等数学教学最为关键的一步,也是难度较大的一步.这需要任课教师在课前做好大量的准备工作,针对不同的教学内容,合理准确地融入其历史发展过程,增加关于相应数学家和数学史的介绍,让学生知道每个数学概念、性质、定理、公式的产生过程,了解数学家在发现、总结出结论的艰辛,从而激发学生学习兴趣.例如在介绍数列极限的定义时,众所周知极限的-N()定义抽象,学生在初学高等数学时很难理解.这时教师可以介绍庄子的"一尺之棰,日取其半,万世不竭"的极限思想,还可加入刘徽的"割圆术",可使学生直观地感受到极限的内在含义,这样不仅可以突破教学难点,还可增加学生的数学知识,提高学生的数学素养].4.4作业中融入数学史在布置作业时,教师除了布置本节课的习题外也要布置关于数学史方面的作业,例如在讲微分中值定理时,课堂上教师已对拉格朗日、柯西等数学家进行介绍,可以布置学生在课后通过查阅材料、网络,了解他们还有哪些成就,或者了解费马和罗尔相关介绍.5结语基于HPM视角下的高等数学教学不仅改善了学生对数学的学习态度,更为学生的后续专业课程的学习夯实了基础,无论教师还是学生都在改革中有所收获.但教师在教学过程中一定要注意,融入数学史教学是为了以此吸引学生的注意力,突破学习难点,切不可以讲授数学史为主,本末倒置地将高等数学的内容删减.范文二:数学史教育高等数学论文一、在高等数学的教学中融入数学史的必要性(一)在教学过程中插入数学史教育在教学过程中,涉及一些数学相关知识的人物、历史时,可以利用课堂上的3~5分钟向学生介绍一下,提高学生学习高等数学的兴趣,将高等数学中繁杂的数学符号、计算公式和有趣的数学历史相融合,鼓励学生积极、主动参与到高等数学学习中。

高等数学论文范文

高等数学论文范文

高等数学论文范文一、引言高等数学是数学学科中最为重要的一门课程,它不仅包含了丰富的数学理论知识,而且与实际应用密切相关。

本文旨在通过对高等数学中一些核心概念和理论的探讨,提高对高等数学的理解和应用能力。

二、极限与连续极限是高等数学中一个非常重要的概念,它描述了函数在某个点附近的变化趋势。

连续则是极限概念的延伸,它要求函数在某一点及其附近都存在极限,并且这个极限值等于函数在该点的函数值。

三、导数与微分导数是高等数学中另一个核心概念,它描述了函数在某一点的变化率。

微分则是导数的延伸,它不仅描述了函数在某一点的变化率,而且描述了函数在该点附近的变化趋势。

四、积分积分是高等数学中最为重要的概念之一,它描述了函数在某个区间上的累积效应。

积分的应用非常广泛,如计算面积、体积、弧长等。

五、级数级数是高等数学中另一个重要的概念,它描述了一系列数的和。

级数的应用也非常广泛,如计算某些函数的值、解决某些微分方程等。

六、结论通过对高等数学中一些核心概念和理论的探讨,我们可以看到高等数学的深度和广度。

高等数学不仅包含了丰富的数学理论知识,而且与实际应用密切相关。

因此,学习和掌握高等数学,对于提高我们的数学素养和应用能力,具有重要意义。

[1] 同济大学数学系. 高等数学[M]. 北京: 高等教育出版社, 2010.[2] 胡适. 高等数学[M]. 北京: 科学出版社, 2012.[3] . 高等数学学习指南[M]. 上海: 上海教育出版社, 2015.高等数学论文范文一、引言高等数学作为数学学科的核心课程,不仅具有深厚的理论背景,而且在实际应用中发挥着重要作用。

本文将深入探讨高等数学中的几个关键概念和理论,旨在提高对高等数学的理解和应用能力。

二、微积分基本定理微积分基本定理是高等数学中的一项重要定理,它揭示了微分与积分之间的深刻联系。

定理指出,一个函数的不定积分的导数等于原函数,反之亦然。

这一原理不仅为解决实际问题提供了有力工具,而且为理论研究奠定了基础。

大一下学期高数论文(1)

大一下学期高数论文(1)

高数论文2013014402 郭云桥在还没有进入大学的时候,我就听很多的学长和学姐说,在大学时期,一定要学好高数这门课,因为基本上每一个专业都有高数这门课,这也足以说明了高数的重要性。

那么,怎样才能学好高等数学呢?我想就自己这将近一学年的学习经验与体会,谈几点肤浅的看法。

一、摒弃中学的学习方法从中学升入大学学习以后,在学习方法上将会遇到一个比较大的转折。

首先是对大学的教学方式和方法感到很不适应,这在高等数学课程的教学中反应特别明显,因为它是一门对大一新生首当其冲的理论性比较强的基础理论课程,而学生正是习惯于模仿性和单一性的学习方法,这是在从小学到中学的教育中长期养成的,一时还难以改变。

中学的教学方式和方法与大学有质的差别。

突出表现在:中学的学习,学生是在教师的直接指导下进行模仿和单一性的学习,大学则要求学生在教师的指导下进行创造性的学习。

例如:中学的数学课的教学是完全按照教材进行的,在课堂上只要求教师讲、学生听,不要求作笔记,教师教授慢、讲得细、计算方法举例也多,课后只要求学生能模仿课堂上教师讲的内容作些习题就可以了,根本没有必要去钻研教材和其他参考书(为了高考增强考生的解题能力而选择一些其他参考书仅是训练解题能力的需要),而大学的高等数学课程则恰好不一样,教材仅是作为一种主要的参考书。

要求学生以课堂上老师所讲的重点和难点为线索,通过大量地阅读教材和同类的参考书,以充分消化和掌握课堂上所讲授内容,然后做课后习题巩固所掌握知识,这就是进行反复地创造性的学习。

这是一种艰苦的脑力劳动,它不仅要求学生主动地、自觉地进行学习,同时还要在松散地环境下能约束自己,并且要掌握较好的学习方法,才能把所要学习的知识学得扎实,为专业课程的学习打下良好基础。

二、把握三个环节,提高学习效率什么是学习高等数学的最好方法呢?这根据每个人的学习时的习惯和理解问题的能力不同而异,但就一般说来,均应抓好以下三个环节。

其一是课前预习。

高数论文(五篇)

高数论文(五篇)

高数论文(五篇)第一篇:高数论文高数论文短短一个学期的高数的学习就结束了,感觉过的好快有好慢,总得来说收获还是很大,收获了不仅是知识、还有学习知识的方法、研究问题的方法,还有学习的态度。

相比较上个学期,这个学期高数的学习我个人认为难度加大了不少。

在这个学期我们主要学习的是高等数学下册的知识,这本书的基础就是上学期学习的微积分。

学习了向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分,无穷级数。

在向量代数与空间解析几何这一章,我们学习了向量代数的基本知识,空间曲线,曲面及方程,空间平面与直线等,总得来说这一章需要一定的空间想象能力。

在多元函数微分学这一章,我觉得有些地方掌握的不好,隐函数的求导显得很生疏,对于多元函数的隐函数的求导感觉掌握不是很好。

另外,全微分,多元函数微分学也是这一章的重点。

在重积分这一章,不管是几重积分,这都是建立在一元函数的积分的基础之上的,在这一章,化归的思想体现的很是淋漓尽致,这一思想不仅在数学上体现的很明显,在很多领域都有体现。

在积分这一块都采用分割,近似,求和,取极限四个步骤。

此外三重积分的计算,主要从直角坐标系,柱面坐标系,球面坐标系三种坐标系下计算。

另外重积分也应用于物理方面,如运用重积分求物体的质心,转动惯量及引力。

在曲线积分与曲面积分这一章当中,化归的思想继续在体现。

这一章的逻辑性很强,在这一章我们学习了4种积分,对弧长的曲线积分,对坐标的曲线积分,对面积的曲面积分,对坐标的曲面积分。

学完这一章,加上之前学习的一元函数的积分,二重积分,三重积分,我们就学习了七种积分。

在这一章还有一个重要的结论,那就是在对曲面的积分时,偶倍奇零不再是什么时候都是用了,在这里用偶倍奇零需要认真考虑,因为有时是偶零奇倍。

最后一章的无穷级数,很大程度上和数列有很多类似的地方,而且这一章的定理很多,很多东西容易混淆,很多结论都有自己的前提,这是这一章的重点之处,定理成为这一章很重要的解题根据。

高等数学课程小论文

高等数学课程小论文

高等数学课程小论文高等数学课程小论文指相对于初等数学而言,数学的对象及方法较为繁杂的一部分。

广义地说,初等数学之外的数学都是高等数学,也有将中学较深入的代数、几何以及简单的集合论初步、逻辑初步称为中等数学的,将其作为中小学阶段的初等数学与大学阶段的高等数学的过渡。

通常认为,高等数学是由微积分学,较深入的代数学、几何学以及它们之间的交叉内容所形成的一门基础学科。

以下是小编为您整理高等数学课程小论文,供您参考,希望对你有所帮助!摘要:数学史是研究数学概念、数学方法和数学思想的起源与发展,及其与社会政治、经济和一般文化的联系的一门科学。

数学的发展决不是一帆风顺的,数学史是数学家们克服困难和战胜危机的斗争的记录,是蕴涵了丰富的数学思想的历史。

无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明等等,无一不是经历了曲折艰难最终探索出来的。

这样的例子在数学史上不胜枚举。

在此奋斗的过程中所蕴涵的深刻的哲理。

也不是通过学习通常的教科书中被“包装”过的定理就能轻而易举得到的。

有一位学者曾收集了九百余条关于数学本质的言论,著成《数学家谈数学本质》一书。

书中的各家众说纷纭,观点各不相同,但数学家们都认为对数学史的了解,包括对一些杰出数学家的生平与事迹的了解会有助于吸收各种不同的数学经验,理解各种不同的数学思想观点,探求数学的本质。

关键词:教学史、高等数学。

数学科学作为一种文化,不仅是整个人类文化的重要组成部分,而且始终是推进人类文化的重要力量。

它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。

从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也是密不可分的,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。

对于每一个希望了解整个人类文明史的人来说,数学史是必读的篇章。

如果将整个数学比作一棵大树,那么初等数学是树根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《高等数学A》课程总结
姓名:
学号:
班级:
成绩:
高等数学A课程总结
高等数学是比较难又比较重要的一门基本课程。

学习高数锻炼了我的思维能力,从而让我更好的去学习其它课程。

由于高数和高中时候的数学有很大的差别,所以就要有一种好的学习方法才能够学好这一门课程,它锻炼了我的自主学习能力,让我更有活力去学习其它课程。

下面是课程总结的主要内容。

一、课程机构体系
存在准则可去型
两个重要极限跳跃型
运算法则间断点无穷型
无穷小极限振荡型
极限连续性
四则运算
定义法运算(开、闭区间)初等函数
无穷小代换复合函数
极限计算洛必达法则
函数连续性
泰勒公式
幂指函数微分作图法(方法)
运算法则对数函数
高阶函数罗尔
导数微分微分中值定理拉格朗日
柯西
隐函数
类型参数方程泰勒公式
定积分(概念、性质)
微积分基本公式(牛—莱公式)
概念、性质
函数积分学基本公式
换元积分法(凑微分、倒代换)
方法分部积分法
不定积分
有理函数积分
反常积分(计算方法)
几何应用(面积、体积、长度)
可分离变量的微分方程
概念、性质
齐次方程
一阶线性微分
一阶线性微分方程
齐次、非齐次方程解(通解、特解)
二阶齐次线性微分方程解(通解、特解)
常微分方程
二阶非齐次线性微分方程解(通解、特解)
二阶线性微分方程
二阶常系数齐次线性微分方程解的结构(通解、特解)
二阶常系数非齐次线性微分方程解结构(通解、特解)特殊高阶微分方程解:几种微分方程解及解法
二、学习心得体会
有人戏称高数是一棵高树,很多人就挂在了上面。

但是,我相信只要努力,就能爬上那棵高树,凭借它的高度,便能看到更远的风景。

很多人害怕高数,高数学习起来确实是不太轻松。

其实,只要有心,高数并不像想象中的那么难。

学习了半年的高数,我的感受也颇多。

虽然我学习的并不好,但在这里我也谈谈自己关于高数学习的一些小小体会吧。

首先,不能有畏难情绪。

一进大学,就听到很多师兄师姐甚至是老师说高数非常难学,有很多人挂科了,这基本上是事实,但是或多或少有些夸张了吧。

让我们知道高数难,虽然会让我们对它更加重视,但是这无疑也增加了大家对它的畏惧感,觉得自己很可能学不好它,从而失去了信心,有些人甚至把难学当做自己不去学好它的借口。

事实上,当我们抛掉那些畏难的情绪,心无旁骛地去学习高数时,它并不是那么难,至少不是那种难到学不下去的。

所以,我觉得要学好高数,一定不能有畏难的情绪。

当我们有信心去学好它时,就走好了第一步。

其次,课前预习很重要。

每个人的学习习惯可能不同,有些人习惯预习,有些人觉得预习不适合自己。

但对我而言,学习高数,预习是必要的。

每次上新课前,把课本上的内容仔细地预习一下,或者说先自学一下,把知识点先过一遍,能理解的先自己理解好,到课堂上时就会觉得有方向感,不会觉得茫然,并且自己预习时没有理解的地方在课堂上听老师讲后就能解决了,比较有针对性。

另外,我一般在预习后会试着做一下课后题,只是试着做一两道简单的题目,找找感觉,虽然可能做不出,但那样会有助于理解。

再者,要把握课堂。

我认为,把握好课堂对高数学习是很关键的。

课堂上老师讲的每一句话都有可能是很有用的,如果错过了就可能会使自己以后做某些题时要走很多弯路,甚至是死路。

老师在上课时会详细地讲解知识点,所以对于我们的理解是很有帮助的,有些知识点,我们课余看一小时,也许还不如听老师讲一分钟理解得快。

并且,老师还会讲到一些要注意的但书上没有的东西,所以课堂上最好尽量集中精神听讲,不要错过了某些有价值的东西。

最后还有最重要的一点,记数学笔记。

课堂上也许同学们都能听懂老师的讲课,不过好记性不如烂笔头,很快就会忘记的。

所以记好数学笔记很重要,是以后复习时重要的资料。

三、对个人的影响
高数是一门最基础的学科,学好高数不只是对这一门课的影响大,它能让我们学会最基本的学习方法,对以后的课程学习产生很重要的影响。

是离散数学、线性代数等的基础。

学不好高数,之后的关于数学的课程都是在茫然的学习。

高数对于网络工程专业非常重要,除了锻炼一个人的思维能力外,还能够提高空间想象能力。

而计算机和网络技术就是需要这样的人才,如果没有很好的思维能力就不能高效率的处理网络硬件所存在的问题,从而不能做一名出色的万络工程师等。

可以看出来,高数的影响之大。

不仅是高数,我相信在之后学习其它数学课程都是如此的重要。

相信以后一定能够更上一层楼。

相关文档
最新文档