人教A版数学必修二教案——简单组合体的结构特征

合集下载

人教A版高中数学必修2教学案1.1.2简单组合体的结构特征

人教A版高中数学必修2教学案1.1.2简单组合体的结构特征

1.1.2简单组合体的结构特征【教学目标】1、认识简单组合体的结构特征2、能根据对简单组合体的结构特征的描述,说出几何体的名称3、学会观察、分析图形,提高空间想象能力和几何直观能力.【教学重难点】描述简单组合体的结构特征.【教学过程】1、情景导入在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师出示课题:简单几何体的结构特征.2、展示目标、检查预让学生说出本节课的学习目标及简单组合体的概念3、合作探究、交流展示(1)提出问题①请指出下列组合体是由哪些简单几何体组合而成的.图1②观察图1,结合生活实际经验,说出简单组合体有几种组合形式?③请总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?(2)活动:让学生仔细观察图1,教师适时提示.①略.②图1中的三个组合体分别代表了不同形式.③学生可以分组讨论,教师可以制作有关模型展示.(3)讨论结果:①图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.4、典型例题例1 请描述如图2所示的组合体的结构特征.图2解析:将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.点评:本题主要考查简单组合体的结构特征和空间想象能力.变式训练1:(1) 如图3说出下列物体可以近似地看作由哪几种几何体组成?图3(2)如图4(1)、(2)所示的两个组合体有什么区别?图4答案:(1) 图3(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.(2)图4(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.例2 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图5解析:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征解:如图所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.点评:本题主要考查空间想象能力以及旋转体、简单组合体.变式训练2(1)如图所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.图6(2)如图所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,说出它形成的几何体的结构特征图7答案:(1)如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.(2)一个大球内部挖去一个同球心且半径较小的球.5、课堂检测:课本P8,习题1.1 A组第3题,B组第1、2题。

新课标人教A版高中数学必修二课程目标细化

新课标人教A版高中数学必修二课程目标细化

高中数学必修二课程纲要(细化)一、课程目标(一)空间几何体1、认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.2、能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二侧法画出它们的直观图.3、会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.4、会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).5、了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).(二)点、直线、平面之间的位置关系1、理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理 2:过不在同一条直线上的三点,有且只有一个平面.◆公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理 4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.2、以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定. 理解以下判定定理.◆如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.◆如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直. 理解以下性质定理,并能够证明.◆如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.3、能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(三)直线与方程1、在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。

人教版高中数学必修二教案

人教版高中数学必修二教案

人教版高中数学必修二教案篇一:人教版高中数学必修2教案讲义1:空间几何体一、教学要求:通过实物模型,观察大量的空间图形,认识柱体、锥体、台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.二、教学重点:让学生感受大量空间实物及模型,概括出柱体、锥体、台体、球体的结构特征.三、教学难点:柱、锥、台、球的结构特征的概括.四、教学过程:(一)、新课导入:1. 导入:进入高中,在必修②的第一、二章中,将继续深入研究一些空间几何图形,即学习立体几何,注意学习方法:直观感知、操作确认、思维辩证、度量计算.(二)、讲授新课:1. 教学棱柱、棱锥的结构特征:①、讨论:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②、定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫棱柱. → 列举生活中的棱柱实例(三棱镜、方砖、六角螺帽).结合图形认识:底面、侧面、侧棱、顶点、高、对角面、对角线.③、分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等.表示:棱柱ABCDE-A’B’C’D’E’④、讨论:埃及金字塔具有什么几何特征?⑤、定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形认识:底面、侧面、侧棱、顶点、高. → 讨论:棱锥如何分类及表示?⑥、讨论:棱柱、棱锥分别具有一些什么几何性质?有什么共同的性质?★棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形★棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方.2. 教学圆柱、圆锥的结构特征:① 讨论:圆柱、圆锥如何形成?② 定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥.→结合图形认识:底面、轴、侧面、母线、高. → 表示方法③ 讨论:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.④ 观察书P2若干图形,找出相应几何体;三、巩固练习:1. 已知圆锥的轴截面等腰三角形的腰长为 5cm,,面积为12cm,求圆锥的底面半径.2.已知圆柱的底面半径为3cm,,轴截面面积为24cm,求圆柱的母线长.3.正四棱锥的底面积为46cm,侧面等腰三角形面积为6cm,求正四棱锥侧棱.(四)、教学棱台与圆台的结构特征:① 讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?② 定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.结合图形认识:上下底面、侧面、侧棱(母线)、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③ 讨论:棱台、圆台分别具有一些什么几何性质? 22★ 棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.★ 圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等.④ 讨论:棱、圆与柱、锥、台的组合得到6个几何体. 棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?(以台体的上底面变化为线索)2.教学球体的结构特征:① 定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.结合图形认识:球心、半径、直径.→ 球的表示.② 讨论:球有一些什么几何性质?③ 讨论:球与圆柱、圆锥、圆台有何关系?(旋转体)棱台与棱柱、棱锥有什么共性?(多面体)3. 教学简单组合体的结构特征:① 讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?② 定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.4. 练习:圆锥底面半径为1cmcm,其中有一个内接正方体,求这个内接正方体的棱长. (补充平行线分线段成比例定理)(五)、巩固练习:1. 已知长方体的长、宽、高之比为4∶3∶12,对角线长为26cm, 则长、宽、高分别为多少?2. 棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高3. 若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.★例题:用一个平行于圆锥底面的平面去截这个圆锥,截得的圆台的上、下底面的半径的比是1:4,截去的圆锥的母线长为3厘米,求此圆台的母线之长。

人教A版高中数学必修二 《基本立体图形》立体几何初步(第二课时旋转体及简单组合体的结构特征)

人教A版高中数学必修二 《基本立体图形》立体几何初步(第二课时旋转体及简单组合体的结构特征)

[解析] ①以直角三角形的一条直角边为轴旋转一周才可以得到圆锥,故错误;②以 直角梯形垂直于底边的一腰为轴旋转一周可得到圆台,故错误;③它们的底面为圆 面,故正确;④正确;作球的一个截面,在截面的圆周上任意取四点,则这四点就 在球面上,故⑤错误;球面上任意三点一定不共线,故⑥错误.
[答案] ③④
课前 • 自主探究 课堂 • 互动探究 课后 • 素养培优 课时 • 跟踪训练
[教材提炼] 知识点一 圆柱的结构特征 预习教材,思考问题 圆柱是由几个平面围成的吗?若不是,它又是怎么构成的呢?
[提示] 圆柱的面不都是平的,如侧面就是曲的.它是以矩形的一条边为旋转轴, 其余三条边旋转一周形成的面围成的旋转体.
2.已知 AB 是直角梯形 ABCD 中与底边垂直的一腰,如图.分别 以 AB、BC、CD、DA 为轴旋转,试说明所得几何体的结构特征.
解析:(1)以 AB 为轴旋转所得旋转体是圆台.如图①所示. (2)以 BC 边为轴旋转所得的旋转体是一组合体:下部为圆柱,上部为圆锥.如图② 所示. (3)以 CD 边为轴旋转所得的旋转体为一组合体:上部为圆锥,下部为圆台,再挖去 一个小圆锥.如图③所示.
若本例中蚂蚁围绕圆柱转两圈,如图,则它爬行的最短距离是多少?
解析:可把圆柱展开两次,如图,则 AB′即为所求. ∵AB=2,BB′=2×2π×1=4π, ∴AB′= AB2+BB′2= 4+16π2=2 1+4π2. 故蚂蚁爬行的最短距离为 2 1+4π2.
一般地,沿多面体或旋转体的表面最短距离(路程)问题,用侧面展开解决.
答案:C
3.如图所示的组合体,其结构特征是 ( ) A.两个圆锥 B.两个圆柱 C.一个棱锥和一个棱柱 D.一个圆锥和一个圆柱
解析:题图所示的几何体是由一个圆锥和一个圆柱构成的组合体.

高中数学人教A版必修二1.1.2【教学设计】《 简单组合体的结构特征》

高中数学人教A版必修二1.1.2【教学设计】《 简单组合体的结构特征》

《简单组合体的结构特征》立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素。

本节教材主要是为了让学生在学习了空间几何体的分类以及棱柱、棱锥、棱台的基础上,进一步学习圆柱、圆锥、圆台、球这几个旋转体,并运用它们的结构特征来描述简单组合体的结构特征。

【知识与能力目标】(1)会用语言概述圆柱、圆锥、圆台、球的结构特征。

(1)理解由柱、锥、台、球组成的简单组合体的结构特征。

(2)能运用简单组合体的结构特征描述现实生活中的实际模型。

【过程与方法目标】(1)让学生通过直观感受空间物体,从实物中概括出圆柱、圆锥、圆台、球的几何结构特征。

(2) 让学生通过观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式。

【情感态度价值观目标】培养学生的空间想象能力,培养学习教学应用意识。

【教学重点】圆柱、圆锥、圆台的结构特征.,以及简单几何体的结构特征。

【教学难点】归纳棱柱、棱锥、棱台的结构特征.,以及简单几何体的结构特征。

多媒体课件观察课件第二页的图片, 这些图片中的物体具有怎样的形状?我们如何描述它们的形状?二、课堂探究:1、圆柱的结构特征:提出问题1.图片中(课件第四页)物体具有什么样的共同特征?2.请给出圆柱的定义。

3.其他旋转体相比,图片中(课件第六页)的物体具有什么样的共同特征?4.请给出圆锥的定义。

5.类比圆锥和圆柱的定义方法,请给出圆台的定义。

6.用同样的方法给出球的定义。

2、讨论结果:1.静态的观点:有两个平行的平面,其他的面是曲面;动态的观点:矩形绕其一边旋转形成的面围成的旋转体,像这样的旋转体称为圆柱。

2.定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的旋转体叫做圆柱旋转轴叫做圆柱的轴;垂直于旋转轴的边旋转而成的圆面叫做圆柱的底面;平行于轴的边旋转而成的曲面叫做圆柱的侧面,圆柱的侧面又称为圆柱面,无论转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

人教A版数学必修二.2简单组合体的结构特征课件

人教A版数学必修二.2简单组合体的结构特征课件
圆柱
圆台
圆柱
二、课堂设问,任务驱动
2.课堂设问: 通过本节课的学习你能归纳出简单 组合体的结构特征吗?
三、新知建构,交流展示
现实世界中的物体表示的几 何体,除柱体、锥体、台体和球 体等简单几何体外,还有大量的 几何体是由简单几何体组合而成 的,这些几何体叫做简单组合体.
探索新知 思路1:
例1 指出左下图中的柜子(只看外形) 是由哪些简单几何体构成的?
的结构特征
人教A版数学必修二.2简单组合体的结 构特征 课件
人教A版数学必修二.2简单组合体的结 构特征 课件
三、新知建构,交流展示
1.新知建构 一.简单组合体概念 二.简单组合体的结构特征 三.简单组合体的类型
人教A版数学必修二.2简单组合体的结 构特征 课件
人教A版数学必修二.2简单组合体的结 构特征 课件
人教A版数学必修二.2简单组合体的结 构特征 课件
人教A版数学必修二.2简单组合体的结 构特征 课件
课堂练习 4.下面这个几何体是由哪些简单几何体构成的?
由一个四棱锥、一 个四棱柱拼接,又在四 棱柱中挖去了一个圆柱 而成.
人教A版数学必修二.2简单组合体的结 构特征 课件
人教A版数学必修二.2简单组合体的结 构特征 课件
1.1.2简单组合体的结构特征
一、导学提示,自主学习 二、课堂设问,任务驱动 三、新知建构,交流展示 四、当堂训练,针对点评 五、课堂总结,布置作业
人教A版数学必修二.2简单组合体的结 构特征 课件
人教A版数学必修二.2简单组合体的结 构特征 课件
一、导学提示,自主学习
1.本节学习目标 (1)了解组合体概念; (2)会用柱、锥、台、球的结构特
思考总结

湖南省双峰县第一中学集体备课教案高一数学人教版必修二 1.1.3 简单组合体的结构特征

湖南省双峰县第一中学集体备课教案高一数学人教版必修二 1.1.3 简单组合体的结构特征

双峰一中高一数学必修二教案科目:数学课题§1.1.3 简单组合体的结构特征课型新课教学目标(1)理解由柱、锥、台、球组成的简单组合体的结构特征.(2)能运用简单组合体的结构特征描述现实生活中的实际模型.(3)让学生通过下观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.教学过程教学内容备注一、自主学习1.在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

二、质疑提问思考1:棱柱、棱锥、棱台都是多面体,但它们有本质的区别.如果棱台上底面的大小发生变化,它与棱柱、棱锥有什么关系?思考2:现实世界中几何体的形状各种各样,除了柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由这些简单几何体组合而成的,这些几何体叫做简单组合体.你能说出周围物体所示的几何体是由哪些简单几何体组合而成的吗?思考3:试说明下列几何体分别是怎样组成的?思考4:一般地,简单组合体的构成有那几种基本形式?拼接,截割思考5:试说明如图所示的几何体的结构特征.三、问题探究例1 :指出左下图中的柜子(只看外形)是由哪些简单几何体构成的?例2 :下面这个瓶子是由哪些简单几何体构成的?思考总结:例1和例2都是由几种简单几何体拼接而成的由此我们总结出:简单组合体的构成,第一种基本形式是由几种简单几何体拼接而成.例3 :下面这个几何体是由哪些简单几何体构成的?例4:下面这个几何体是由哪些简单几何体构成的?思考总结:例3和例4都是由简单几何体挖去一部分而成,由此我们总结出:简单组合体的构成,第二种基本形式是由简单几何体挖去一部分而成.至此,我们发现,简单组合体的构成有两种基本形式:1.由简单几何体拼接而成;2.简单几何体挖去一部分而成.四、课堂检测下面这个几何体是由哪些简单几何体构成的?下面这个几何体是由哪些简单几何体构成的?下面这个几何体是由哪些简单几何体构成的?五、小结评价◇简单组合体的构成有两种基本形式:1.由简单几何体拼接而成;2.简单几何体挖去一部分而成.◇简单组合体包括三类:1.旋转体与旋转体的组合体;2.多面体与多面体的组合体;3.多面体与旋转体的组合体。

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

最新人教版高中数学必修二第一章空间几何体第一节第2课时 圆柱、圆锥、圆台、球、简单组合体的结构特征

第2课时圆柱、圆锥、圆台、球、简单组合体的结构特征1.圆柱的结构特征(1)在圆柱中,圆柱的任意两条母线是什么关系?过两条母线的截面是怎样的图形?提示:圆柱的任意两条母线平行,过两条母线的截面是矩形.(2)在圆柱中,过轴的截面是轴截面,圆柱的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆柱的轴截面是矩形,轴截面中含有圆柱的底面圆的直径与圆柱的母线.2.圆锥的结构特征在圆锥中,过轴的截面是轴截面,圆锥的轴截面是什么图形?轴截面含有哪些重要的量?提示:圆锥的轴截面是等腰三角形,轴截面中含有圆锥的底面圆的直径与圆锥的母线.3.圆台的结构特征经过圆台的任意两条母线作截面,截面是什么图形?提示:因为圆台的任意两条母线长度均相等,且延长后相交,故经过任意两条母线的截面是以这两条母线为腰的等腰梯形.4.球的结构特征球体与球面的区别和联系是什么?提示:区别联系球面球的表面是球面,球面是旋转形成的曲面球面是球体的表面球体球体是几何体,包括球面及其所围成的空间部分5.简单组合体定义由简单几何体组合而成的几何体构成的基本形式由简单几何体拼接而成由简单几何体截去或挖去一部分而成1.辨析记忆(对的打“√”,错的打“×”)(1)圆柱上底面圆周上任一点与下底面圆周上任一点的连线是圆柱的母线.( ×)提示:圆柱的母线与轴是平行的.(2)圆台有无数条母线,它们相等,延长后相交于一点. ( √)提示:用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分是圆台,由此可知此说法正确.(3) 用一个平面去截圆锥,得到一个圆锥和一个圆台.( ×)提示:用与底面平行的平面去截圆锥,才能得到一个圆锥和一个圆台.(4) 用任意一个平面去截球,得到的是一个圆面.( √)提示:因为球是一个几何体,包括表面及其内部,所以用一个平面去截球,得到的是一个圆面.2.如图所示的图形中有( )A.圆柱、圆锥、圆台和球B.圆柱、球和圆锥C.球、圆柱和圆台D.棱柱、棱锥、圆锥和球【解析】选B.根据题中图形可知,(1)是球,(2)是圆柱,(3)是圆锥,(4)不是圆台.3.(教材习题改编)若一个圆锥的轴截面是等边三角形,其面积为 3 ,则这个圆锥的母线长为________.【解析】如图所示,设等边三角形ABC为圆锥的轴截面,由题意知圆锥的母线长即为△ABC的边长,且S△ABC =34AB2,所以 3 =34AB2,所以AB=2.答案:2类型一圆柱、圆锥、圆台、球的结构特征(直观想象)1.下列说法中错误的是( )A.以直角三角形的一条边所在直线为轴,其余两边旋转形成的曲面围成的几何体是圆锥B.以等腰三角形底边上的中线所在直线为轴,将三角形旋转形成的曲面围成的几何体是圆锥C.经过圆锥任意两条侧面的母线的截面是等腰三角形D.圆锥侧面的母线长有可能大于圆锥底面圆的直径2.下列说法中正确的是( )①用不过球心的截面截球,球心和截面圆心的连线垂直于截面;②球面上任意三点可能在一条直线上;③球的半径是连接球面上任意一点和球心的线段.A.①B.①②C.①③D.②③3.下列几种说法:①圆锥的顶点、底面圆的圆心与圆锥底面圆周上任意一点这三点的连线都可以构成直角三角形;②圆锥的顶点与底面圆周上任意一点的连线是圆锥侧面的母线;③圆柱的轴截面是过侧面的母线的截面中最大的一个;④夹在圆柱的两个截面间的几何体还是一个旋转体.其中说法正确的是________.【解析】1.选A.A错误.如图(1)所示旋转轴是直角三角形的斜边所在直线时,得到的旋转体不是圆锥;B正确.由圆锥的定义可知此说法正确;C正确.如图(2),由圆锥侧面的母线相等可知,所得截面是等腰三角形;D正确.圆锥侧面的母线和底面圆的直径构成等腰三角形,当圆锥侧面母线和底面的直径所成的夹角大于60°时,圆锥侧面的母线长大于圆锥底面圆的直径.2.选C.由球的结构特征可知①③正确.3.由圆锥的定义及母线的性质知①②正确,圆柱的轴截面过上下底的直径,所以是过母线的截面中最大的一个.④不正确,夹在圆柱的两个平行于底面的截面间的几何体才是旋转体.答案:①②③1.判断旋转体形状的步骤(1)明确旋转轴l.(2)确定平面图形中各边(通常是线段)与l的位置关系.(3)依据圆柱、圆锥、圆台、球的定义和一些结论来确定形状.2.与简单旋转体的截面有关的结论(1)圆柱、圆锥、圆台平行于底面的截面都是圆面.(2) 圆柱、圆锥、圆台的轴截面(即过旋转轴的截面)分别是矩形、等腰三角形、等腰梯形.【补偿训练】下列说法正确的是________.(填序号)①一直角梯形绕下底所在直线旋转一周,所形成的曲面围成的几何体是圆台;②圆锥、圆台中过轴的截面是轴截面,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形;③到定点的距离等于定长的点的集合是球.【解析】①错.直角梯形绕下底所在直线旋转一周所形成的几何体是由一个圆柱与一个圆锥组成的简单组合体,如图所示.②正确.③错,应为球面.答案:②类型二简单组合体的结构特征(直观想象)【典例】如图(1)、(2)所示的图形绕虚线旋转一周后形成的几何体分别是由哪些简单几何体组成的?【思路导引】依据简单旋转体的结构特征从上到下逐一分析.【解析】旋转后的图形如图所示.其中图(1)是由一个圆柱O1O2和两个圆台O2O3,O3O4组成的;图(2)是由一个圆锥O5O4,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O2O1组成的.由旋转体组成的简单几何体的确定(1)判断旋转体形状的关键是轴的确定,看是由平面图形绕哪条直线旋转所得,同一个平面图形绕不同的轴旋转,所得的旋转体一般是不同的.(2)在旋转过程中观察平面图形的各边所形成的轨迹,应利用空间想象能力,或亲自动手做出平面图形的模型来分析旋转体的形状.正方形ABCD绕对角线AC所在直线旋转一周所得组合体的结构特征是_______.【解析】由圆锥的定义知是两个同底的圆锥形成的组合体.类型三旋转体中的计算问题(直观想象、数学运算)角度1 有关圆柱、圆锥、圆台和球的计算问题【典例】(2021·新高考I卷)已知圆锥的底面半径为 2 ,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2 B.2 2 C.4 D.4 2【解析】选B.设母线长为l,则底面周长为2 2 π,其侧面展开图半周长为πl,故πl=2 2 π,所以l=2 2 .角度2 旋转体表面的两点间的距离最大(小)值【典例】如图,圆台侧面的母线AB的长为20 cm,上、下底面的半径分别为5 cm,10 cm,从母线AB的中点M处拉一条绳子绕圆台侧面转到B点,求这条绳子长度的最小值.【思路导引】转化为在圆台的侧面展开图中,求两个点距离最小值的问题.【解析】作出圆台的侧面展开图,如图所示,由Rt△OPA与Rt△OQB相似,得OAOA+AB=PAQB,即OAOA+20=510,解得OA =20,所以OB =40.设∠BOB ′=α,由弧BB ′的长与底面圆Q 的周长相等, 得2×10×π=π·OB ·α180°, 解得α=90°.所以在Rt △B ′OM 中, B ′M 2=OB ′2+OM 2=402+302=502,所以B ′M =50.即所求绳长的最小值为50 cm.1.简单旋转体的轴截面及其应用(1)简单旋转体的轴截面中有底面半径、母线、高等体现简单旋转体结构特征的关键量. (2)在轴截面中解决简单旋转体问题体现了化空间图形为平面图形的转化思想. 2.与圆锥有关的截面问题的解决策略 (1)画出圆锥的轴截面.(2)在轴截面中借助直角三角形或三角形的相似关系建立高、母线长、底面圆的半径长的等量关系,求解便可.1.上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为( ) A .4 B .3 2 C .2 3 D .2 6【解析】选D.圆台的母线长l 、高h 和上、下两底面圆的半径r ,R 满足关系式l 2=h 2+(R -r)2,求得h =2 6 ,即两底面之间的距离为2 6 .2.已知OA 为球O 的半径,过OA 的中点M 且垂直于OA 的平面截球面得到圆M. (1)若OA =1,求圆M 的面积;(2)若圆M 的面积为3π,求OA. 【解析】(1)若OA =1,则OM =12 ,故圆M 的半径r =OA 2-OM 2 =12-⎝ ⎛⎭⎪⎫122=32 ,所以圆M 的面积S =πr 2=34π.(2)因为圆M 的面积为3π,所以圆M 的半径r = 3 , 则OA 2=⎝ ⎛⎭⎪⎫OA 2 2+3,所以34 OA 2=3,所以OA 2=4,所以OA =2.。

2021新教材高中数学第八章8.1第2课时旋转体和简单组合体教学用书教案新人教A版必修第二册

2021新教材高中数学第八章8.1第2课时旋转体和简单组合体教学用书教案新人教A版必修第二册

第2课时旋转体和简单组合体素养目标·定方向素养目标学法指导1.认识圆柱、圆锥、圆台、球的结构特征.(直观想象)2.认识柱、锥、台、球及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(直观想象)1.利用柱、锥、台之间的联系来加强记忆,如棱柱、棱锥、棱台为一类,圆柱、圆锥、圆台为一类;或分成柱体、锥体、台体三类来分别认识.只有对比才能把握实质与区别.2.与平面几何的有关概念、图形和性质进行适当类比,逐步学会用类比的思想分析问题和解决问题.必备知识·探新知知识点1圆柱的结构特征定义以__矩形__的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱有关概念旋转轴叫做圆柱的__轴__;垂直于轴的边旋转而成的圆面叫做圆柱的__底面__;平行于轴的边旋转而成的曲面叫做圆柱的__侧面__;无论旋转到什么位置,__不垂直__于轴的边都叫做圆柱侧面的母线图形表示法用表示它的轴的字母,即表示两底面__圆心__的字母表示,上图中的圆柱可记作圆柱__O′O__规定__圆柱__和__棱柱__统称为柱体(1)圆柱有无数条母线,它们互相平行且相等.(2)平行于底面的截面是与底面大小相同的圆,如图①所示.(3)过轴的截面(轴截面)都是全等的矩形,如图②所示.(4)过任意两条母线的截面是矩形,如图③所示.知识点2圆锥的结构特征定义以__直角__三角形的一条__直角边__所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥图形有关概念如上图所示,轴为__SO__,底面为__⊙O__,SA为母线.另外,S叫做圆锥的__顶点__,OA(或OB)叫做底面⊙O的__半径__表示法圆锥用表示它的__轴__的字母表示,上图中的圆锥可记作圆锥__SO__ 规定__棱锥__与__圆锥__统称为锥体[知识解读]圆锥的简单性质:(1)圆锥有无数条母线,它们有公共点即圆锥的顶点,且长度相等.(2)平行于底面的截面都是圆,如图①所示.(3)过轴的截面(轴截面)是全等的等腰三角形,如图②所示.(4)过任意两条母线的截面是等腰三角形,如图③所示.知识点3圆台的结构特征定义用平行于__圆锥__底面的平面去截圆锥,__底面__与__截面__之间的部分叫做圆台图形有关概念原圆锥的底面和截面分别叫做圆台的__下__底面和__上__底面.与圆柱和圆锥一样,圆台也有轴、__侧面__、母线,如上图所示,轴为__OO′__,AA′为母线表示法用表示轴的__字母__表示,上图中的圆台可记作圆台__OO′__规定__圆台__与__棱台__统称为台体[知识解读]圆台的简单性质:(1)圆台有无数条母线,且它们相等,延长后相交于一点.(2)平行于底面的截面是圆,如图①所示.(3)过轴的截面是全等的等腰梯形,如图②所示.(4)过任意两条母线的截面是等腰梯形,如图③所示.知识点4球定义以半圆的__直径__所在直线为旋转轴,半圆面旋转__一周__形成的旋转体叫做球体,简称球有关概念半圆的__圆心__叫做球的球心;半圆的__半径__叫做球的半径;半圆的__直径__叫做球的直径图形表示法球常用表示__球心__的字母表示,如上图中的球记作球__O__关键能力·攻重难题型探究题型一旋转体的结构特征典例1下列结论正确的是__④⑥⑧__.①以直角三角形的一边为轴旋转一周所得的旋转体是圆锥;②以直角梯形的一腰为轴旋转一周所得的旋转体是圆台;③圆柱、圆锥、圆台的底面都是圆;④以等腰三角形的底边上的高所在的直线为旋转轴,其余各边旋转一周形成的曲面围成的几何体是圆锥;⑤球面上四个不同的点一定不在同一平面内;⑥球的半径是球面上任意一点和球心的连线段;⑦球面上任意三点可能在一条直线上;⑧用一个平面去截球,得到的截面是一个圆面.[分析]准确理解旋转体的定义,在此基础上掌握各旋转体的性质,才能更好地把握它们的结构特征,以作出准确的判断.[解析]①以直角三角形的一条直角边为轴旋转一周才可以得到圆锥;②以直角梯形垂直于底边的一腰为轴旋转一周可得到圆台;③它们的底面为圆面;④正确;作球的一个截面,在截面的圆周上任意取四点,则这四点就在球面上,故⑤错误;根据球的半径定义可知⑥正确;球面上任意三点一定不共线,故⑦错误;用一个平面去截球,一定截得一个圆面,故⑧正确.[归纳提升]圆柱、圆锥、圆台、球都是常见的旋转体,熟练掌握它们结构特征,弄清旋转体的性质是准确作图解题的前提.【对点练习】❶下列结论:①任意平面截圆柱,截面都是圆面;②圆锥的顶点与底面圆周上任意一点的连线是圆锥的母线;③在圆台上、下两底面的圆周上各取一点,则这两点的连线是圆台的母线.其中正确的是(B)A.①B.②C.①②D.②③[解析]过两母线的截面为矩形,有时斜的截面为椭圆,故①错;根据母线的定义和特点,③错误;②正确,故选B.题型二简单组合体的结构特征典例2如图,绕虚线旋转一周后形成的旋转体是由哪些简单几何体组成的?[解析]如图所示,由一个圆锥O4O5,一个圆柱O3O4及一个圆台O1O3中挖去圆锥O1O2组成的.[归纳提升]平面图形绕某条直线旋转时,要过有关顶点向轴作垂线,然后分析旋转体的结构和组成.【对点练习】❷ 已知AB 是直角梯形ABCD 中与底边垂直的一腰,如右图.分别以AB 、BC 、CD 、DA 为轴旋转,试说明所得几何体的结构特征.[解析] (1)以AB 为轴旋转所得旋转体是圆台.如下图①所示.(2)以BC 边为轴旋转所得的旋转体是一组合体:下部为圆柱,上部为圆锥.如图②所示.(3)以CD 边为轴旋转所得的旋转体为一组合体:上部为圆锥,下部为圆台,再挖去一个小圆锥.如图③所示.(4)以AD 边为轴旋转所得的组合体:一个圆柱上部挖去一个圆锥.如图④所示.题型三 旋转体的侧面展开问题典例3 一圆柱的底面半径为3π,母线长为4,轴截面为ABCD ,从点A 拉一绳子沿圆柱侧面到相对顶点C ,求最短绳长.[分析] 绳子沿圆柱侧面由A 到C 且最短,故侧面展开后为A 、C 两点间的线段长. [解析] 沿BC 剪开,将圆柱体的侧面的一半展开得到矩形BADC .则AD =4,AB =3π·π=3.∴AC =32+42=5,即最短绳长为5.[归纳提升] 求多面体表面上两点间的最短距离的思路将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.立体图形上两点之间的最短距离问题常通过把立体图形转化为平面图形,利用轴对称、平移或旋转等几何图形的变换,运用“两点之间,线段最短”来解决.具体步骤如下:(1)将几何体沿着某棱剪开后展开,画出其侧面展开图; (2)将所求问题转化为平面上的线段问题;(3)结合已知条件求得结果.【对点练习】❸如图所示,有一圆锥形粮堆,母线与底面圆的直径构成边长为6 m的正三角形ABC,粮堆母线AC的中点P处有一只老鼠正在偷吃粮食.此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,求小猫所经过的最短路程.(结果不取近似值)[解析]设底面圆的周长为l.∵△ABC为正三角形,∴BC=6,∴l=2π×3=6π,根据底面圆的周长等于展开后扇形的弧长,得:nπ×6180°=6π,故n=180°,则∠B′AC=90°,∴B′P=36+9=35(m),∴小猫所经过的最短路程是3 5 m.易错警示旋转体的概念不清致误典例4如图所示,它们是不是棱锥、棱台、圆柱、圆锥等几何体?[错解]图①是圆柱;图②是圆锥.[错因分析]不能只依据概念的某一结论去判断.判断几何体的形状时,要考虑周全,要满足几何体的所有特征.[正解]图①不是圆柱,因为上下两面不平行(或不是由一个矩形旋转而成);图②不是由一个直角三角形旋转而成,故不是圆锥.【对点练习】❹下列几何体中(A)A.旋转体3个,台体(棱台和圆台)2个B.旋转体3个,柱体(棱柱和圆柱)5个C.柱体3个,锥体(棱锥或圆锥)4个D.旋转体3个,多面体4个[解析](6)(7)(8)为旋转体,(5)(7)为台体.。

新课标人教A版高中数学必修2教案完整版

新课标人教A版高中数学必修2教案完整版

2015年人教版数学必修二教案姓名:金鹏学号:134080303院、系:数学学院专业: 数学与应用数学2015年1月22日第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。

教师对学生的活动及时给予评价。

2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。

根据某种标准对这些空间物体进行分类吗?这是我们所要学习的容。

(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

简单组合体的结构特征

简单组合体的结构特征

1、1、2 简单组合体的结构特征一、【学习目标】1、掌握简单组合体的概念,学会观察、分析图形,提高空间想象能力和几何直观能力;2、能够描述现实生活中简单物体的结构,学会通过建立几何模型来研究空间图形,培养学生的数学建模思想;二、【自学内容和要求及自学过程】阅读材料,学习新知材料一:立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本节教材主要是在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.材料二:观察下面几个图形,谈谈你对这些图形的认识,你能找出这些图形都是由哪些简单集合体组成的吗?常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体.三、【练习与巩固】结合今天所学的知识,完成该下列练习练习一:教材第7页练习1、2题;思考:<1>已知如图1所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.(图2)<2>如图3所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD 绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.(图4)四、【作业】1、必做题:教材第9页习题1.1A组第3、4题;2、选做题:一直角梯形ABCD如图所示,分别以边AB、BC、CD、DA为旋转轴,画出所得几何体的大致形状.。

新人教A版高中数学必修2课件:8.1 第二课时 圆柱、圆锥、圆台、球与简单组合体的结构特征

新人教A版高中数学必修2课件:8.1 第二课时 圆柱、圆锥、圆台、球与简单组合体的结构特征

矩形的一边 所在直线
以直角三角形 的一条直角边 所在直线
以直角梯形的直角 腰所在直线
以半圆的直 径所在直线
[典例 1] 下列说法正确的是
()
A.圆锥的底面是圆面,侧面是曲面
B.用一张扇形的纸片可以卷成一个圆锥
C.一个物体上、下两个面是相等的圆面,那么它一定是一个圆柱
D.球面上四个不同的点一定不在同一平面内
解:因为△ABC 为等边三角形, 所以 BC=6,所以 l=2π×3=6π. 根据底面圆的周长等于展开后扇形的弧长,得:6α=6π. 故 α=π,则 ∠B′AC=π2, 所以 B′P= 36+9=3 5(m), 所以小猫所经过的最短路程是 3 5 m.
∴dd11+ -dd22= =13, 此方程组无解.
分析以上解题过程是否正确,若不正确,你能找出错因吗?
提示:平行截面有两种情况:在球心的两侧或同侧,以上解答漏掉一种情况. 正解如下: (1)平行截面在球心的同侧时,如图. 由(d1-d2)(d1+d2)=3.又 d1-d2=1, ∴d1+d2=3.∴dd11+ -dd22= =31, , 解得dd12= =21, . ∴R= r21+d21= 5+4=3,即球的半径等于 3. (2)同错解.故所求球的半径等于 3.
【对点练清】 1.若将本例选项 B 中的平面图形旋转一周,试说出它形成的几何体的结构特征.
解:①是直角三角形,旋转后形成圆锥;②是直角梯形,旋转 后形成圆台;③是矩形,旋转后形成圆柱,所以旋转后形成的 几何体如图所示.通过观察可知,该几何体是由一个圆锥、一 个圆台和一个圆柱自上而下拼接而成的.
2.描述下列几何体的结构特征.
2.如图所示,有一个底面半径为 1,高为 2 的圆柱体,在 A 点 处有一只蚂蚁,现在这只蚂蚁要围绕圆柱表面由 A 点爬到 B 点,问蚂蚁爬行的最短距离是多少? 解:把圆柱的侧面沿 AB 剪开,然后展开成为平面图 形——矩形,如图所示,连接 AB′,则 AB′即为 蚂蚁爬行的最短距离. ∵AA′为底面圆的周长,∴AA′=2π×1=2π. 又 AB=A′B′=2, ∴AB′= A′B′2+AA′2= 4+2π2=2 1+π2, 即蚂蚁爬行的最短距离为 2 1+π2.

基本立体图形 课时2 圆柱、圆锥 简单组合体的结构特征 高一数学(人教A版2019必修第二册)

基本立体图形  课时2  圆柱、圆锥 简单组合体的结构特征 高一数学(人教A版2019必修第二册)
(1)圆台的高;
(2)将圆台还原为圆锥后,圆锥的母线长.
[解析] (1)圆台的轴截面是等腰梯形 (如图所示).
由已知可得 , , ,所以高 (2)如图所示,延长 , , ,交于点 .设截得此圆台的圆锥的母线长为 ,
则由 ,可得 ,即 ,解得 .即截得此圆台的圆锥的母线长为 .
D
[解析] 台体包括棱台和圆台两种.A不符合是因为四条侧棱没有交于一点,B不符合是因为截面与圆锥底面不平行.C是棱锥,结合棱台和圆台的定义可知D正确.
4.在社会主义新农村建设中,某村统一进行旧村改造,其每户的住宅房的效果图如图所示,其主要的结构特征是________________________________________.
探究1 圆柱、圆锥、圆台的结构特征
小明说,他利用右图旋转一周就能得到圆锥、圆柱、圆台.
问题1:小明说的正确吗?
[答案] 不正确,他得到的是一个组合体,这个组合体是由圆锥、圆柱、圆台组成.
情境设置
合作探究·提素养
问题2:圆柱是由几个平面围成的吗?若不是,它又是怎么构成的呢?
[答案] 圆柱的面不都是平面,如侧面就是曲面.它是以矩形的一条边所在直线为旋转轴,其余三条边旋转一周形成的面所围成的旋转体.
A.①②③ B.②③④ C.②③⑤ D.①④⑤
C
巩固训练
[解析] 当球面上任意两点与球心在一条直线上时,可作无数个圆,故①错误;②正确;③正确;球面上任意三点一定不共线,故④错误;根据球的半径的定义可知⑤正确.故选C.
二、旋转体中的有关计算
例2 一个圆台的母线长为 ,两底面面积分别为 和 ,求:
随堂检测·精评价
1.圆柱的轴截面有________个,它们______(填“全等”或“相似”),圆柱的母线有________条,它们与圆柱的高______.

新教材高中数学圆柱圆锥圆台球的结构特征简单组合体的结构特征课件新人教A版必修第二册ppt

新教材高中数学圆柱圆锥圆台球的结构特征简单组合体的结构特征课件新人教A版必修第二册ppt

A.1条
பைடு நூலகம்
B.2条
C.3条
答案:D
2.下面没有体对角线的一种几何体是( )
A.三棱柱 B.四棱柱
C.五棱柱
答案:A
D.无数条 D.六棱柱
3.下列叙述中正确的个数是( )
①以直角三角形的一边所在直线为轴旋转所得的旋转体是圆
锥;
②以直角梯形的一腰所在直线为轴旋转所得的旋转体是圆台;
③圆柱、圆锥、圆台的底面都是圆面;
解:如图所示,旋转所得的几何体是两个圆锥和一 个圆柱拼接成的组合体.
判断组合旋转体结构特征的方法: (1)明确由哪些基本平面图形旋转而成; (2)明确旋转轴是哪条直线.
【变式训练3】 观察下列几何体的结构特点,完成以下问题:
(1)图①所示几何体是由哪些简单几何体构成的?试画出一个 几何图形,可旋转该图形180°后得到几何体①; (2)图②所示几何体的结构特点是什么?试画出一个几何图形, 可旋转该图形360°得到几何体②; (3)图③所示几何体是由哪些简单几何体构成的?并说明该几 何体的面数、棱数、顶点数.
提示:圆台、圆柱.
2.填空:(1)由简单几何体组合而成的几何体称作简单组合体. (2)简单组合体的构成有两种基本形式:一种是由简单几何体 拼接而成;另一种是由简单几何体截去或挖去一部分而成.
3.做一做:下列组合体是由哪些几何体组成的?
解:(1)由两个几何体组合而成,分别为球、圆柱. (2)由三个几何体组合而成,分别为圆柱、圆台、圆柱. (3)由三个几何体组合而成,分别为圆锥、圆柱、圆台.
5.从长方体的一个顶点出发的三条棱上各取一点E,F,G,过此
三点作长方体的截面,那么截去的几何体是
.
解析:截去的几何体是由这个顶点和E,F,G四个点为顶点构成

[2020高中数学]新课标人教A版高中数学必修2教案完整版

[2020高中数学]新课标人教A版高中数学必修2教案完整版

第一章:空间几何体1.1.1柱、锥、台、球的结构特征一、教学目标1.知识与技能(1)通过实物操作,增强学生的直观感知.(2)能根据几何结构特征对空间物体进行分类.(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征.(4)会表示有关于几何体以及柱、锥、台的分类.2.过程与方法(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征. (2)让学生观察、讨论、归纳、概括所学的知识.3.情感态度与价值观(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力.(2)培养学生的空间想象能力和抽象括能力.二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征.难点:柱、锥、台、球的结构特征的概括.三、教学用具(1)学法:观察、思考、交流、讨论、概括.(2)实物模型、投影仪四、教学思路(一)创设情景,揭示课题1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流.教师对学生的活动及时给予评价.2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察.根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容.(二)、研探新知1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥.2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果.在此基础上得出棱柱的主要结构特征.(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行.概括出棱柱的概念.4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示.5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示.7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示.8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括.9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体.10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?(三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考.1.有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明,如图)2.棱柱的何两个平面都可以作为棱柱的底面吗?3.课本P8,习题1.1 A组第1题.4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?四、巩固深化练习:课本P7 练习1、2(1)(2)课本P8 习题1.1 第2、3、4题五、归纳整理由学生整理学习了哪些内容六、布置作业课本P8 练习题1.1 B组第1题课外练习课本P8 习题1.1 B组第2题1.2.1 空间几何体的三视图(1课时)一、教学目标1.知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2.过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用.3.情感态度与价值观(1)提高学生空间想象力(2)体会三视图的作用二、教学重点、难点重点:画出简单组合体的三视图难点:识别三视图所表示的空间几何体三、学法与教学用具1.学法:观察、动手实践、讨论、类比2.教学用具:实物模型、三角板四、教学思路(一)创设情景,揭开课题“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图.在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?(二)实践动手作图1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;2.教师引导学生用类比方法画出简单组合体的三视图(1)画出球放在长方体上的三视图(2)画出矿泉水瓶(实物放在桌面上)的三视图学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得.作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图.3.三视图与几何体之间的相互转化.(1)投影出示图片(课本P10,图1.2-3)请同学们思考图中的三视图表示的几何体是什么?(2)你能画出圆台的三视图吗?(3)三视图对于认识空间几何体有何作用?你有何体会?教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法.4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流.(三)巩固练习课本P12 练习1、2 P18习题1.2 A组1(四)归纳整理请学生回顾发表如何作好空间几何体的三视图(五)课外练习1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图.2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图.1.2.2 空间几何体的直观图(1课时)一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图.(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点.2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图.3.情感态度与价值观(1)提高空间想象力与直观感受.(2)体会对比在学习中的作用.(3)感受几何作图在生产活动中的应用.二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图.三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程.2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画.2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容.(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评.画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法.强调斜二测画法的步骤.练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查.2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点.教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法.3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图.教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事.(2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图.教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系.4.平行投影与中心投影投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点.5.巩固练习,课本P16练习1(1),2,3,4三、归纳整理学生回顾斜二测画法的关键与步骤四、作业1.书画作业,课本P17 练习第5题2.课外思考课本P16,探究(1)(2)1.3.1柱体、锥体、台体的表面积与体积一、教学目标1、知识与技能(1)通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和体积的求法.(2)能运用公式求解,柱体、锥体和台全的全积,并且熟悉台体与术体和锥体之间的转换关系.(3)培养学生空间想象能力和思维能力. 2、过程与方法(1)让学生经历几何全的侧面展一过程,感知几何体的形状.(2)让学生通对照比较,理顺柱体、锥体、台体三间的面积和体积的关系. 3、情感与价值通过学习,使学生感受到几何体面积和体积的求解过程,对自己空间思维能力影响.从而增强学习的积极性. 二、教学重点、难点重点:柱体、锥体、台体的表面积和体积计算 难点:台体体积公式的推导 三、学法与教学用具1、学法:学生通过阅读教材,自主学习、思考、交流、讨论和概括,通过剖析实物几何体感受几何体的特征,从而更好地完成本节课的教学目标.2、教学用具:实物几何体,投影仪 四、教学设想1、创设情境(1)教师提出问题:在过去的学习中,我们已经接触过一些几何体的面积和体积的求法及公式,哪些几何体可以求出表面积和体积?引导学生回忆,互相交流,教师归类.(2)教师设疑:几何体的表面积等于它的展开圈的面积,那么,柱体,锥体,台体的侧面展开图是怎样的?你能否计算?引入本节内容.2、探究新知(1)利用多媒体设备向学生投放正棱柱、正三棱锥和正三棱台的侧面展开图(2)组织学生分组讨论:这三个图形的表面由哪些平面图形构成?表面积如何求? (3)教师对学生讨论归纳的结果进行点评. 3、质疑答辩、排难解惑、发展思维(1)教师引导学生探究圆柱、圆锥、圆台的侧面展开图的结构,并归纳出其表面积的计算公式:)''22rl l r r r S +++=(圆台表面积πr 1为上底半径 r 为下底半径 l 为母线长(2)组织学生思考圆台的表面积公式与圆柱及圆锥表面积公式之间的变化关系.(3)教师引导学生探究:如何把一个三棱柱分割成三个等体积的棱锥?由此加深学生对等底、等高的锥体与柱体体积之间的关系的了解.如图:(4)教师指导学生思考,比较柱体、锥体,台体的体积公式之间存在的关系.(s ’,s 分别我上下底面面积,h 为台柱高) 4、例题分析讲解(课本)例1、 例2、 例3 5、巩固深化、反馈矫正 教师投影练习1、已知圆锥的表面积为 a ㎡,且它的侧面展开图是一个半圆,则这个圆锥的底面直径为 . (答案:m a ππ332) 2、棱台的两个底面面积分别是245c ㎡和80c㎡,截得这个棱台的棱锥的高为35cm,求这个棱台的体积. (答案:2325cm 3)6、课堂小结本节课学习了柱体、锥体与台体的表面积和体积的结构和求解方法及公式.用联系的关点看待三者之间的关系,更加方便于我们对空间几何体的了解和掌握. 7、评价设计习题1.3 A 组1.3§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能错误!未找到引用源。

人教A版数学必修二《简单组合体的结构特征》课件

人教A版数学必修二《简单组合体的结构特征》课件
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
四、理性认识,深化知识
类型三:截面问题
例4 下列图形是由右图的正方体切割而成. 指出切割方式并画图 说明.
(1)
(2)
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
(1)
解:对于图(1),沿正方体的一条对角线作截面,切 割即可得到图(1).
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
四、理性认识,深化知识
(2)
解: 对于图(2),沿正方体的一条对角线作截面, 切割即可得到图(2).
和对边的中点作三棱锥的截面,所得截面图形是( B )
(导学案当堂检测4)
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
五、当堂检测,巩固基础
5.如图,由等腰梯形、矩形、半圆、圆、倒三角形对 接形成的轴对称平面图形,若将它绕轴l旋转180°后形 成一个组合体,下面说法不正确的是( )(导学案当堂检测 A1).该组合体可以分割成圆台、
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)
该几何体是由 一个长方体挖 去两个长方体 而得到.
人教A版数学必修二1.1.2《简单组合 体的结 构特征 》课件( 共26张 PPT)

1.1.简单组合体的结构特征-人教A版必修二教案

1.1.简单组合体的结构特征-人教A版必修二教案

1.1 简单组合体的结构特征-人教A版必修二教案一、教育目标1.了解简单组合体的概念和构成要素;2.能够分析简单组合体的形状和相互关系;3.熟悉几何体的投影方法,能够绘制简单组合体的主、副投影图。

二、教学内容1.简单组合体的概念和构成要素;2.简单组合体的形状和相互关系;3.简单组合体的主、副投影图。

三、教学重点和难点1.重点:简单组合体的构成要素和相互关系;2.难点:简单组合体的投影方法和主、副投影图。

四、教学过程1. 导入通过展示一些简单组合体的图形,引导学生认识简单组合体,并询问他们对简单组合体的理解和认识。

2. 讲解简单组合体的概念和构成要素简单组合体是由若干个简单几何体组合而成的,其中每个简单几何体是由同种物质构成的,不同简单几何体之间不会相互渗透。

简单组合体的构成要素包括:底面、侧面和顶面。

底面和顶面是平行并且相等的,侧面是连接底面和顶面的相同形状的面。

简单组合体的形状和相互关系简单组合体可以分为以下几种形状:•立方体:六个正方形面;•正方体:六个正方形面;•三棱锥:一个底面为三角形的锥体和三个侧棱面;•三棱柱:一个底面为三角形的柱体和三个侧棱面;•圆锥:一个底面为圆形的锥体和一个侧面;•圆柱:一个底面为圆形的柱体和一个侧面。

简单组合体之间的相互关系包括以下几种:•相离关系:两个简单组合体之间没有任何交点;•并列关系:两个简单组合体之间的底面互相平行,但顶面没有直接连接;•相交关系:两个简单组合体之间有交点,但没有共用侧面;•相切关系:两个简单组合体之间有交点,且有共用侧面。

简单组合体的主、副投影图简单组合体的主投影图是指,在其中一个截面上,简单组合体在平面上的投影形状。

副投影图是指,在与主投影图垂直的另一个平面上,简单组合体在平面上的投影形状。

绘制主、副投影图有一定的规律性和方法,具体步骤需要结合实际图形进行讲解和演示。

3. 练习让学生根据所掌握的知识,自己设计一些简单组合体的图形,并绘制出主、副投影图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.1.2 简单组合体的结构特征
一、教材分析
立体几何是研究现实世界中物体的形状、大小与位置关系的学科,只有把我们周围的物体形状正确迅速分解开,才能清醒地认识几何学,为后续学习打下坚实的基础.简单几何体(柱体、锥体、台体和球)是构成简单组合体的基本元素.本节教材主要是为了让学生在学习了柱、锥、台、球的基础上,运用它们的结构特征来描述简单组合体的结构特征.
二、教学目标
1.知识与技能
(1)理解由柱、锥、台、球组成的简单组合体的结构特征.
(2)能运用简单组合体的结构特征描述现实生活中的实际模型.
2.过程与方法
让学生通过下观感觉空间物体,认识简单的组合体的结构特征,归纳简单组合体的基本构成形式.
3.情感态度与价值观
培养学生的空间想象能力,培养学习教学应用意识.
三、重点难点
描述简单组合体的结构特征.
四、课时安排
1课时
五、教学设计
(一)导入新课
思路1.在我们的生活中,酒瓶的形状是圆柱吗?我们的教学楼的形状是柱体吗?钢笔、圆珠笔呢?这些物体都不是简单几何体,那么如何描述它们的结构特征呢?教师指出课题:简单几何体的结构特征.
思路2.现实世界中的物体表示的几何体,除柱体、锥体、台体和球体等简单几何体外,还有大量的几何体是由简单几何体组合而成的,这些几何体叫做简单组合体,这节课学习的课题是:简单几何体的结构特征.
(二)推进新课、新知探究、提出问题
①请指出下列几何体是由哪些简单几何体组合而成的.
图1
②观察图1,结合生活实际经验,简单组合体有几种组合形式?
③请你总结长方体与球体能组合成几种不同的组合体.它们之间具有怎样的关系?
活动:让学生仔细观察图1,教师适当时候再提示.
①略.
②图1中的三个组合体分别代表了不同形式.
③学生可以分组讨论,教师可以制作有关模型展示.
讨论结果:①由简单几何体组合而成的几何体叫做简单组合体.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成.图1(1)是一个四棱锥和一个长方体拼接成的,这是多面体与多面体的组合体;图1(2)是一个圆台挖去一个圆锥构成的,这是旋转体与旋转体的组合体;图1(3)是一个球和一个长方体拼接成的,这是旋转体与多面体的组合体.
②常见的组合体有三种:多面体与多面体的组合;多面体与旋转体的组合;旋转体与旋转体的组合.
其基本形式实质上有两种:一种是由简单几何体拼接而成的简单组合体,如图1(1)和(3)所示的组合体;另一种是由简单几何体截去或挖去一部分而成的简单组合体,如图1(2)所示的组合体.
③常见的球与长方体构成的简单组合体及其结构特征:1°长方体的八个顶点在同一个球面上,此时长方体称为球的内接长方体,球是长方体的外接球,并且长方体的对角线是球的直径;2°一球与正方体的所有棱相切,则正方体每个面上的对角线长等于球的直径;3°一球与正方体的所有面相切,则正方体的棱长等于球的直径.
(二)应用示例
思路1
例1 请描述如图2所示的组合体的结构特征.
图2
活动:回顾简单几何体的结构特征,再将各个组合体分解为简单几何体.依据柱、锥、台、球的结构特征依次作出判断.
解:图2(1)是由一个圆锥和一个圆台拼接而成的组合体;
图2(2)是由一个长方体截去一个三棱锥后剩下的部分得到的组合体;
图2(3)是由一个圆柱挖去一个三棱锥剩下的部分得到的组合体.
点评:本题主要考查简单组合体的结构特征和空间想象能力.
变式训练
如图3所示,一个圆环绕着同一个平面内过圆心的直线l旋转180°,想象并说出它形成的几何体的结构特征.
图3
答案:一个大球内部挖去一个同球心且半径较小的球.
例2 连接正方体的相邻各面的中心(所谓中心是指各面所在正方形的两条对角线的交点),所得的一个几何体是几面体?并画图表示该几何体.
活动:先画出正方体,然后取各个面的中心,并依次连成线观察即可.连接相应点后,得出图形如图4(1),再作出判断.
(1) (2)
图4
解:如图4(1),正方体ABCD—A1B1C1D1,O1、O2、O3、O4、O5、O6分别是各表面的中心.由点O1、O2、
O3、O4、O5、O6组成了一个八面体,而且该八面体共有6个顶点,12条棱.该多面体的图形如图4(2)所示.
点评:本题中的八面体,事实上是正八面体——八个面都是全等的正三角形,并且以每个顶点为其一端,都有相同数目的棱.由图还可见,该八面体可看成是由两个全等的四棱锥经重合底面后而得到的,而且中间一个四边形O2O3O4O5还是正方形,当然其他的如O1O2O6O4等也是正方形.为了增强立体效果,正方体应画得“正”些,而八面体的放置应稍许“倾斜”些,并且“后面的”线,即被前面平面所遮住的线,如图中的O1O5、O6O5、O5O2、O5O4应画成虚线.
变式训练
连接上述所得的几何体的相邻各面的中心,试问所得的几何体又是几面体?
答案:六面体(正方体).
思路2
例1 已知如图5所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕BC所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图5 图6
活动:让学生思考AB、AD、DC与旋转轴BC是否垂直,以此确定所得几何体的结构特征.
解:如图6所示,旋转所得的几何体是两个圆锥和一个圆柱拼接成的组合体.
点评:本题主要考查空间想象能力以及旋转体、简单组合体.
变式训练
如图7所示,已知梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成的一个几何体,试描述该几何体的结构特征.
图7 图8
答案:如图8所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分而成的组合体.
例2 如图9(1)、(2)所示的两个组合体有什么区别?
图9
活动:让学生分组讨论和思考,教师及时点拨和评价学生.
解:图9(1)所示的组合体是一个长方体上面又放置了一个圆柱,也就是一个长方体和一个圆柱拼接成的组合体;而图9(2)所示的组合体是一个长方体中挖去了一个圆柱剩余部分构成的组合体.
点评:考查空间想象能力和组合体的概念.
变式训练
如图10,说出下列物体可以近似地看作由哪几种几何体组成?
图10
答案:图10(1)中的几何体可以看作是由一个圆柱和一个圆锥拼接而成;图10(2)中的螺帽可以近似看作是一个正六棱柱中挖掉一个圆柱构成的组合体.
(三)知能训练
1.(2005湖南数学竞赛,9)若干个棱长为2、3、5的长方体,依相同方向拼成棱长为90的正方体,则正方体的一条对角线贯穿的小长方体的个数是()
A.64
B.66
C. 68
D.70
分析:由2、3、5的最小公倍数为30,由2、3、5组成的棱长为30的正方体的一条对角线穿过的长方体为整数个,所以由2、3、5组成棱长为90的正方体的一条对角线穿过的小长方体的个数应为3的倍数.
答案:B
2.图11是一个奖杯,可以近似地看作由哪几种几何体组成?
图11
答案:奖杯的底座是一个正棱台,底座的上面是一个正四棱柱,奖杯的最上部,在正棱柱上底面的中心放着一个球.
(四)拓展提升
1.请想一想正方体的截面可能是什么形状的图形?
活动:静止是相对的,运动是绝对的,点动成线,线动成面.用运动的观点看几何问题的形成,容易建立空间想象力,这样对于分割和组合图形是有好处的.
明确棱柱、棱锥、棱台等多面体的定义及圆柱、圆锥、圆台的生成过程,以及柱、锥、台的相互关系,对于我们正确的割补图形也是有好处的.
对于正方体的分割,可通过实物模型,实际切割实验,还可借助于多媒体手段进行切割实验.对于切割所得的平面图形可根据它的定义进行证明,从而判断出各个截面的形状.
探究:本题考查立体几何的空间想象能力,通过尝试、归纳,可以有如下各种肯定或否定性的答案:(1)截面可以是三角形:等边三角形、等腰三角形、一般三角形.
(2)截面三角形是锐角三角形,截面三角形不能是直角三角形、钝角三角形.
(3)截面可以是四边形:平行四边形、矩形、菱形、正方形、梯形、等腰梯形;截面为四边形时,这个四边形至少有一组对边平行.
(4)截面不能是直角梯形.
(5)截面可以是五边形:截面五边形必须有两组分别平行的边,同时有两个角相等;截面五边形不
可能是正五边形.
(6)截面可以是六边形:截面六边形必须有分别平行的边,同时有两个角相等.
(7)截面六边形可以是等角(均为120°)的六边形,即正六边形.
截面图形如图12中各图所示:
图12
(五)课堂小结
本节课学习了简单组合体的概念和结构特征.
(六)作业
习题1.1 A组第3题;B组第2题.。

相关文档
最新文档