2021-2022年高考数学大一轮复习 高考大题专项练6 文
2021年高考数学第一轮复习 课后练习册子及其答案和详细解析

强化练习题
目录
第 1 讲 集合与简易逻辑...........................................................................................................................- 1 第 2 讲 函数及其性质经典精讲 ...............................................................................................................- 2 第 3 讲 函数及其性质 2019 高考真题赏析 .............................................................................................- 3 第 4 讲 函数及其性质 2018 高考真题赏析 .............................................................................................- 4 第 5 讲 平面向量.......................................................................................................................................- 5 第 6 讲 三角函数与三角恒等变换经典精讲 ............................................................
2021版《大高考》高考数学(理)一轮总复习模拟创新题:第6章 第1节数列的概念及简单表示法

全国新课标区模拟精选题:依据高考命题大数据分析,重点关注基础题3,4,力量题12,14. 专项基础测试 模拟精选题 一、选择题1.(2022·陕西西安模拟)已知数列{a n }的通项公式为a n =n 2-2λn (n ∈N *),则“λ<1”是“数列{a n }为递增数列”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件解析 若数列{a n }为递增数列,则a n +1-a n >0,即2n +1>2λ对任意n ∈N *都成立,于是有3>2λ,λ<32,由λ<1可得λ<32;反之由λ<32不能得到λ<1,因此“λ<1”是“数列{a n }为递增数列”的充分不必要条件,故选A. 答案 A2.(2022·玉溪一中模拟)已知数列{a n }满足a 1=1,a n +1=⎩⎨⎧2a n (n 为正奇数),a n +1 (n 为正偶数),则其前6项之和是( ) A.16 B.20 C.33D.120解析 a 2=2a 1=2,a 3=a 2+1=3,a 4=2a 3=6,a 5=a 4+1=7,a 6=2a 5=14,∴S 6=1+2+3+6+7+14=33. 答案 C3.(2021·天津南开中学月考)下列可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( ) A.a n =1B.a n =(-1)n +12C.a n =2-|sin n π2|D.a n =(-1)n -1+32解析 A 项明显不成立;n =1时,a 1=-1+12=0,故B 项不正确;n =2时,a 2=(-1)2-1+32=1,故D 项不正确.由a n =2-|sin n π2|可得a 1=1,a 2=2,a 3=1,a 4=2,…,故选C. 答案 C4.(2022·济南外国语学校模拟)已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N *),则a 2 016等于( ) A.0 B.- 3 C. 3D.32解析 由已知得a 1=0,a 2=-3,a 3=3,a 4=0,a 5=-3=a 2,a 6=a 3,…,由此归纳得出a n +3=a n ,故a 2 016=a 3×672=a 3=3,选C. 答案 C5.(2022·北大附中模拟)在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 013的值是( ) A.8 B.6 C.4D.2解析 a 1a 2=2×7=14,∴a 3=4,4×7=28,∴a 4=8,4×8=32,∴a 5=2,2×8=16,∴a 6=6,a 7=2,a 8=2,a 9=4,a 10=8,a 11=2,∴从第三项起,a n 的值成周期排列,周期数为6,2 013=335×6+3,∴a 2 013=a 3=4. 答案 C 二、填空题6.(2022·山东聊城二模)如图所示是一个类似杨辉三角的数阵,则第n (n ≥2)行的第2个数为________.解析 每行的第2个数构成一个数列{a n },由题意知a 2=3,a 3=6,a 4=11,a 5=18,所以 a 3-a 2=3,a 4-a 3=5,a 5-a 4=7,…,a n -a n -1=2(n -1)-1=2n -3,由累加法得a n -a 2=[(2n -3)+3]×(n -2)2=n 2-2n ,所以a n =n 2-2n +a 2=n 2-2n +3(n ≥2). 答案 n 2-2n +3 创新导向题利用递推公式求数列通项公式问题7.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n ,若a 1=2,则数列{a n }的前n 项和为________. 解析 ∵a 2n +1-6a 2n =a n +1a n ,∴(a n +1-3a n )(a n +1+2a n )=0,∵a n >0,∴a n +1=3a n ,又a 1=2,∴{a n }是首项为2,公比为3的等比数列,∴S n =2(1-3n )1-3=3n -1.答案 3n -1利用S n 与a n 关系式求a n 问题8.已知数列{a n }的前n 项和S n =5n -3,则数列{a n }的通项公式为a n =________(n ∈N *). 解析 数列的前n 项和S n =5n -3, ∴当n =1时,a 1=S 1=5-3=2,当n ≥2时,a n =S n -S n -1=(5n -3)-(5n -1-3)=4×5n -1.此式中令n =1,得a 1=4, ∴a 1不适合a n =4×5n -1(n ≥2).故数 列的通项公式a n =⎩⎪⎨⎪⎧2 (n =1),4×5n -1 (n ≥2).答案 ⎩⎨⎧2 (n =1),4×5n -1 (n ≥2) 专项提升测试 模拟精选题 一、选择题9.(2022·广东佛山一模)数列{a n }满足a 1=1,a 2=1,a n +2=⎝ ⎛⎭⎪⎫1+sin 2n π2a n +4cos 2n π2,则a 9,a 10的大小关系为( )二、填空题10.(2021·温州质检)已知数列{a n }的通项公式为a n =(n +2)·⎝ ⎛⎭⎪⎫78n,则当a n 取得最大值时,n 等于________.解析 由题意知⎩⎪⎨⎪⎧a n ≥a n -1,a n ≥a n +1,∴⎩⎨⎧(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +1)⎝ ⎛⎭⎪⎫78n -1,(n +2)⎝ ⎛⎭⎪⎫78n ≥(n +3)⎝ ⎛⎭⎪⎫78n +1.解得⎩⎪⎨⎪⎧n ≤6,n ≥5.∴n =5或6.答案 5或611.(2021·天津新华中学模拟)已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为________.解析 由于S n =2a n -1,所以当n ≥2时,S n -1=2a n -1-1, 两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列. 又由于a 1=2a 1-1,所以a 1=1, 故a n =2n -1,而a nn ≤2,即2n -1≤2n , 所以有n ∈{1,2,3,4}. 答案 {1,2,3,4}12.(2022·河南洛阳模拟)已知数列{a n }满足a 1=2,a n +1=1+a n1-a n (n ∈N *),则该数列的前2 015项的乘积a 1·a 2·a 3·…·a 2 015=________. 解析 由题意可得,a 2=1+a 11-a 1=-3,a 3=1+a 21-a 2=-12,a 4=1+a 31-a 3=13,a 5=1+a 41-a 4=2=a 1,所以{a n }是以4为周期的数列,而2021=4×503+3,a 1a 2a 3a 4=1,则前2 015项的乘积为1503·a 1·a 2·a 3=3. 答案 3 三、解答题13.(2021·青岛一中模拟)在数列{a n }中,a 1=1,a 1+2a 2+3a 3+…+na n =n +12a n +1(n ∈N *). (1)求数列{a n }的通项a n ;(2)若存在n ∈N *,使得a n ≤(n +1)λ成立,求实数λ的最小值. 解 (1)当n ≥2时,由题可得a 1+2a 2+3a 3+…+(n -1)a n -1=n2a n .① a 1+2a 2+3a 3+…+na n =n +12a n +1,② ②-①得na n =n +12a n +1-n2a n , 即(n +1)a n +1=3na n ,(n +1)a n +1nan=3,∴{na n }是以2a 2=2为首项,3为公比的等比数列(n ≥2), ∴na n =2·3n -2, ∴a n =2n ·3n -2(n ≥2),∵a 1=1,∴a n =⎩⎪⎨⎪⎧1,n =1,2n·3n -2,n ≥2. (2)a n ≤(n +1)λ⇔λ≥a n n +1,由(1)可知当n ≥2时,a nn +1=2·3n -2n (n +1),设f (n )=n (n +1)2·3n(n ≥2,n ∈N *), 则f (n +1)-f (n )=2(n +1)(1-n )2·3n +1<0,∴1f (n +1)>1f (n )(n ≥2),又1f (2)=13及a 12=12,可得λ≥1f (2), ∴所求实数λ的最小值为13. 创新导向题利用S n 求a n 及数列求和问题14.设数列{a n }的前n 项和为S n ,已知a 1=a ,S n +1=2S n +n +1,n ∈N *. (1)求数列{a n }的通项公式; (2)当a =1时,若b n =na n +1-a n,数列{b n }的前n 项和为T n ,n ∈N *,证明:T n <2.(1)解 由S n +1=2S n +n +1得S n =2S n -1+n (n ≥2),两式相减得S n +1-S n =2(S n -S n -1)+1,即a n +1=2a n +1(n ≥2), ∴a n +1+1=2(a n +1),即a n +1+1a n +1=2(n ≥2). 故数列{a n +1}从第2项起,是以a 2+1为首项,2为公比的等比数列. 又S 2=2S 1+1+1,a 1=a ,∴a 2=a +2, ∴a n =(a +3)·2n -2-1(n ≥2), 又a 1=a ,不满足a n =(a +3)·2n -2-1. ∴a n =⎩⎨⎧a (n =1),(a +3)·2n -2-1 (n ≥2). (2)证明 由a 1=a =1,得a n =2n -1(n ∈N *),则b n =n (2n +1-1)-(2n -1)=n 2n +1-2n =n2n , ∴T n =12+2·122+3·123+…+n ·12n ①,从而12T n =122+2·123+…+(n -1)·12n +n ·12n +1②, ①-②得:12T n =12+122+…+12n -n 2n +1,故12T n =12⎝ ⎛⎭⎪⎫1-12n 1-12-n2n +1,∴T n =2-12n -1-n2n =2-n +22n <2.。
2021-2022年高考数学一轮复习高考大题专项练3高考中的数列

2021年高考数学一轮复习高考大题专项练3高考中的数列1.已知等差数列{a n}的前n项和为S n,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.(1)求数列{a n}的通项公式;(2)设是首项为1,公比为3的等比数列,求数列{b n}的前n项和T n.2.设数列{a n}的前n项和为S n,已知a1=3,S n+1=3S n+3.(1)求数列{a n}的通项公式;(2)若b n=,求数列{b n}的前n项和T n.3.已知数列{a n}的首项为1,S n为数列{a n}的前n项和,S n+1=qS n+1,其中q>0,n∈N+.(1)若a2,a3,a2+a3成等差数列,求数列{a n}的通项公式;(2)设双曲线x2-=1的离心率为e n,且e2=2,求+…+.4.已知数列{a n}的首项a1=,a n+1=(n∈N+).(1)求证:数列是等比数列;(2)求数列的前n项和S n.5.(xx江苏,19)对于给定的正整数k,若数列{a n}满足:a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”;(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明{a n}是等差数列.6.设S n为等差数列{a n}的前n项和,已知S3=a7,a8-2a3=3.(1)求a n;(2)设b n=,数列{b n}的前n项和为T n,求证:T n>(n∈N+).7.已知正项数列{a n}的首项a1=1,前n项和S n满足a n=(n≥2).(1)求证:{}为等差数列,并求数列{a n}的通项公式;(2)记数列的前n项和为T n,若对任意的n∈N+,不等式4T n<a2-a恒成立,求实数a的取值范围.8.(xx山东潍坊一模)已知数列{a n}是等差数列,其前n项和为S n,数列{b n}是公比大于0的等比数列,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.(1)求数列{a n}和{b n}的通项公式;(2)令c n=求数列{c n}的前n项和T n.参考答案高考大题专项练三高考中的数列1.解(1)依题意得,解得故a n=a1+(n-1)d=3+2(n-1)=2n+1,即a n=2n+1.(2)由题意可知=3n-1,则b n=a n·3n-1=(2n+1)·3n-1.故T n=3+5×3+7×32+…+(2n+1)·3n-1, ①3T n=3×3+5×32+7×33+…+(2n-1)·3n-1+(2n+1)·3n, ②①-②得-2T n=3+2×3+2×32+…+2·3n-1-(2n+1)3n=3+2·-(2n+1)3n=-2n·3n,因此,T n=n·3n.2.解(1)(方法一)∵S n+1=3S n+3,∴S n+1+=3.∴S n+3n-1=×3n-1=.∴当n≥2时,a n=S n-S n-1==3n,a1也适合.∴a n=3n.(方法二)由S n+1=3S n+3(n∈N+),可知当n≥2时,S n=3S n-1+3,两式相减,得a n+1=3a n(n≥2).又a1=3,代入S n+1=3S n+3得a2=9,故a n=3n.(2)∵b n=,∴T n=, ①∴T n=, ②由①-②,得T n=,解得T n=.3.解(1)由已知,S n+1=qS n+1,S n+2=qS n+1+1,两式相减得到a n+2=qa n+1,n≥1.又由S2=qS1+1得到a2=qa1,故a n+1=qa n对所有n≥1都成立.所以,数列{a n}是首项为1,公比为q的等比数列.从而a n=q n-1.由a2,a3,a2+a3成等差数列,可得2a3=a2+a2+a3.所以a3=2a2,故q=2.所以a n=2n-1.(2)由(1)可知,a n=q n-1.所以双曲线x2-=1的离心率e n=.由e2==2,解得q=.所以+…+=(1+1)+(1+q2)+…+[1+q2(n-1)]=n+[1+q2+…+q2(n-1)]=n+=n+(3n-1).4.(1)证明∵a n+1=,∴.∴-1=.又a1=,∴-1=.∴数列是以为首项,以为公比的等比数列.(2)解由(1)知-1=,则+1.故+n.设T n=+…+, ①则T n=+…+, ②由①-②得T n=+…+=1-,∴T n=2-.又1+2+3+…+n=,∴数列的前n项和S n=2-.5.证明(1)因为{a n}是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3, 所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列{a n}是“P(3)数列”.(2)数列{a n}既是“P(2)数列”,又是“P(3)数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n, ①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1), ③a n+2+a n+3=4a n+1-(a n-1+a n).④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d'.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2=a3-d',在①中,取n=3,则a1+a2+a4+a5=4a3,所以a1=a3-2d',所以数列{a n}是等差数列.6.(1)解设等差数列{a n}的公差为d,由题意得解得故a n=a1+(n-1)d=2n+1.(2)证明∵a1=3,d=2,∴S n=na1+d=n(n+2).∴b n=.∴T n=b1+b2+…+b n-1+b n=,故T n>.7.解(1)因为a n=,所以S n-S n-1=,即=1,所以数列{}是首项为=1,公差为1的等差数列,得=n,所以a n==n+(n-1)=2n-1(n≥2),当n=1时,a1=1也适合,所以a n=2n-1.(2)因为,所以T n=+…+.所以T n<.要使不等式4T n<a2-a恒成立,只需2≤a2-a恒成立,解得a≤-1或a≥2,故实数a的取值范围是(-∞,-1]∪[2,+∞).8.解(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q>0,且b1=-2a1=2,a3+b2=-1,S3+2b3=7.∴a1=-1,-1+2d+2q=-1,3×(-1)+3d+2×2×q2=7,解得d=-2,q=2.∴a n=-1-2(n-1)=1-2n,b n=2n.(2)c n=①当n=2k(k∈N+)时,数列{c n}的前n项和T n=T2k=(c1+c3+…+c2k-1)+(c2+c4+…+c2k)=2k++…+,令A k=+…+,∴A k=+…+,∴A k=+4+…++4×,可得A k=.∴T n=T2k=2k+.②当n=2k-1(k∈N+)时,数列{c n}的前n项和T n=T2k-2+a2k-1=2(k-1)++2=2k+.∴T n=k∈N+.。
2021-2022年高考数学第一轮复习精品试题:统计

2021届高考数学第一轮复习精品试题:统计必修3 第2章统计§2.1 抽样方法重难点:结合实际问题情境,理解随机抽样的必要性和重要性,在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法.考纲要求:①理解随机抽样的必要性和重要性.②会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.经典例题:某校高中部有三个年级,其中高三有学生1000人,现采用分层抽样法抽取一个容量为185的样本,已知在高一年级抽取了75人,高二年级抽取了60人,则高中部共有多少学生?当堂练习:1.为了了解全校900名高一学生的身高情况,从中抽取90名学生进行测量,下列说法正确的是()A.总体是900 B.个体是每个学生C.样本是90名学生D.样本容量是90 2某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:①1000名考生是总体的一个样本;②1000名考生数学成绩的平均数是总体平均数;③70000名考生是总体;④样本容量是1000,其中正确的说法有:()A.1种B.2种C.3种D.4种3.对总数为N的一批零件抽取一个容量为30的样本,若每个零件被抽到的概率为0.25,则N的值为()A.120 B.200 C.150 D.1004.从某鱼池中捕得120条鱼,做了记号之后,再放回池中,经过适当的时间后,再从池中捕得100条鱼,计算其中有记号的鱼为10条,试估计鱼池中共有鱼的条数为()A.1000 B.1200 C.130 D.13005.要从已编号(1~60)的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是()A.5,10,15,20,25,30 B.3,13,23,33,43,53C.1,2,3,4,5,6D.2,4,8,16,32,486.从N个编号中抽取n个号码入样,若采用系统抽样方法进行抽取,则分段间隔应为()A.Nn B.n C.Nn⎡⎤⎢⎥⎣⎦ D.1Nn+⎡⎤⎢⎥⎣⎦7.某小礼堂有25排座位,每排有20个座位。
2024届全国高考数学一轮复习好题专项(导数的综合应用)练习(附答案)

2024届全国高考数学一轮复习好题专项(导数的综合应用)练习一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3eB .31e +C .4eD .41e +2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞⎪⎝⎭3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ] B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 二、提升练习1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2B .3C .ln 2D .52.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +.(1)求a 的值; (2)证明:()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<.9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>. 三、真题练习1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围.2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 4.(2020·山东海南省高考真题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线y =f (x )在点(1,f (1))处的切线与两坐标轴围成的三角形的面积; (2)若f (x )≥1,求a 的取值范围.5.(2020·浙江省高考真题)已知12a <≤,函数()e xf x x a =--,其中e =2.71828…为自然对数的底数.(Ⅰ)证明:函数()y f x =在(0)+∞,上有唯一零点;(Ⅱ)记x 0为函数()y f x =在(0)+∞,上的零点,证明:0x ≤≤; (ⅱ)00(e )(e 1)(1)x x f a a ≥--.6.(2019·全国高考真题(理))已知函数.(1)讨论f (x )的单调性,并证明f (x )有且仅有两个零点;(2)设x 0是f (x )的一个零点,证明曲线y =ln x 在点A (x 0,ln x 0)处的切线也是曲线的切线.()11ln x f x x x -=-+e x y =参考答案一、基础练习1.(2021ꞏ沙坪坝区ꞏ重庆一中高三其他模拟)已知e 为自然对数的底数,a ,b 为实数,且不等式()ln 310x e a x b +-++≤对任意()0,x ∈+∞恒成立,则当3b a+取最大值时,实数a 的值为( ) A .3e B .31e +C .4eD .41e +【答案】C 【答案解析】不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立,化为不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,必然有0a >.令1=x e,化为:31b a e +….令4a e =,1b =.利用导数研究函数的单调性极值最值即可得出结论. 【答案详解】解:不等式(3)10lnx e a x b +-++…对任意(0,)x ∈+∞恒成立, 则不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立, 则0a >. 令1=x e,则131a b e -+--…,化为:31b a e +…. 令4a e =,1b =.不等式31lnx ex ax b +--…对任意(0,)x ∈+∞恒成立,即不等式20lnx ex -+…对任意(0,)x ∈+∞恒成立, 令()2f x lnx ex =-+,则1()1()e x e f x e x x --'=-=,可得:1=x e 时,函数()f x 取得极大值即最大值,1(1120f e=--+=, 满足题意.可以验证其他值不成立. 故选:C .2.(2021ꞏ湖南高三其他模拟)已知函数()e ax f x =a 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .,2e ⎛⎫+∞⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .1,2e ⎛⎫+∞ ⎪⎝⎭【答案】C 【答案解析】函数零点即方程ax e =的解,2ax e x =(0x >),取对数得2ln ax x =,此方程有两个解,引入函数()ln 2g x x ax =-,利用导数求得函数的单调性,函数的变化趋势,然后由零点存在定理可得结论.【答案详解】显然(0)1f =,()e ax f x =有两个零点,即方程ax e =,2ax e x =在(0,)+∞上有两个解,两边取对数得到2ln ax x =,令()ln 2g x x ax =-,1()2g x a x '=-,()g x 在10,2a ⎛⎫ ⎪⎝⎭单调递增,在1,2a ⎛⎫+∞ ⎪⎝⎭单调递减,又当0x →时,()g x →-∞,当x →+∞时,()g x →-∞, 因为()g x 有两个零点,则11ln 1022g a a ⎛⎫=->⎪⎝⎭, 解得12e a <.所以正数a 的取值范围是10,2e ⎛⎫⎪⎝⎭. 故选:C .3.(2021ꞏ四川遂宁市ꞏ高三三模(理))已知函数()()2xh x x e =-,()212a a g x x x =-,又当()0h x ≥时,()()h x g x ≥恒成立,则实数a 的取值范围是( )A .(2,e ⎤-∞⎦B .(],e -∞C .(20,e ⎤⎦D .(]0,e【答案】A 【答案解析】首先根据()0h x ≥求出2x ≥,进而参变分离解决恒成立的问题即可. 【答案详解】因为()()2xh x x e =-,所以()0h x ≥,即2x ≥,所以当2x ≥时,()()h x g x ≥恒成立,即()2122xa a x e x x -≥-, 即()()1222xx e x ax -≥-, 当2x =时,()()1222xx e x ax -≥-恒成立,符合题意;当()2,x ∈+∞时,有12xe ax ≥,即2xe xa ≥,令()2x e m x x =,则()()2210x e x m x x-'=>,所以()m x 在()2,x ∈+∞上单调递增,而()22m e =,所以2e a ≥,故选:A.4.(2021ꞏ全国高三其他模拟)已知f (x )是定义在区间[﹣2,2]上的偶函数,当x ∈[0,2]时,f (x )=xxe ,若关于x 的方程2f 2(x )+(2a ﹣1)f (x )﹣a =0有且只有2个实数根,则实数a 的取值范围是( )A .[﹣1e ,﹣22e ]B .[﹣1e ,﹣22e ) C .(﹣22e,0)D .(﹣22e ,0)∪{﹣1e}【答案】D 【答案解析】利用导数研究函数在定义域上的单调性,得出1()f x e≤;结合题意得出()f x 在[]02,有且仅有1个解,计算(0)(2)f f 、的值即可. 【答案详解】当[]02x ∈,时()xxf x e =, 则1()x xf x e-'=令()=0f x ',解得1x =,所以当[]01x ∈,时()0f x '>,()f x 单调递增; 当[]12x ∈,时()0f x '<,()f x 单调递减, 所以max 1()(1)f x f e==,故1()f x e≤在定义域上恒成立,由22()(21)()0f x a f x a +--=有且只有2个实数根, 得方程[]12()()02f x a f x ⎡⎤+-=⎢⎥⎣⎦有2个解,又1()f x e≤,所以111()022f x e -≤-<,则()f x 在[]02,有且仅有1个解, 因为22(0)0(2)f f e ==,,则220a e <-<或1a e-=, 所以220a e-<<或1a e =-,即实数的取值范围是2210e e ⎛⎫⎧⎫--⎨⎬ ⎪⎝⎭⎩⎭,, 故选:D5.(2021ꞏ宁夏银川市ꞏ高三其他模拟(理))平行于x 轴的直线与函数ln ,0,(),0,x x f x e x x>⎧⎪=⎨-<⎪⎩的图像交于,A B 两点,则线段AB 长度的最小值为( ) A .1e e-B .1e e+C .eD .2e【答案】D 【答案解析】画出函数图像,数形结合构造函数,利用导数判断函数单调性并求函数最值即可. 【答案详解】根据题意,画出()f x 的图象如下所示:令()f x t =,(0)t >,故可得lnx t =,解得t x e =;e t x -=,解得e x t=-.故可得(),,,te A e t B t t ⎛⎫- ⎪⎝⎭,(0)t >, 故()teAB g t e t==+,(0)t >, 故可得()2te g t e t ='-,()30te g t e t'=+>'恒成立, 故()g t '是单调递增函数,且()10g '=,关于()0g t '<在()0,1成立,()0g t '>在()1,+∞成立, 故()g t 在()0,1单调递减,在()1,+∞单调递增, 故()()12min g t g e e e ==+=. 即||AB 的最小值为2e . 故选:D6.(2021ꞏ正阳县高级中学高三其他模拟(理))已知2m <-,若关于x 的不等式22e 2x mx n x +<+恒成立,则实数n 的取值范围为( ) A .[)3e,+∞ B .)2e ,⎡+∞⎣C .[)e,+∞D .[)2e,+∞【答案】D 【答案解析】参变分离可得222e x mx x n +-<,研究函数()222exmx xf x +-=,根据导函数()()22e x m x x m f x ⎛⎫--- ⎪⎝⎭'=以及2m <-,可得函数()f x 的极大值为22222e 0e m m f m -⎛⎫==> ⎪⎝⎭,当2x >,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,根据()f x 的最大值的范围即可得解. 【答案详解】由22e 2xmx n x +<+,得222exmx x n +-<, 令()222exmx xf x +-=,则()()22e xm x x m f x ⎛⎫--- ⎪⎝⎭'=,当2m <-时,210m-<<, 函数()f x 在2,m ⎛⎫-∞ ⎪⎝⎭,()2,+∞上单调递增,在2,2m ⎛⎫⎪⎝⎭上单调递减,故函数()f x 的极大值为22222e 0e mm f m -⎛⎫==> ⎪⎝⎭,极小值为()24220e m f -=<, 且2x >时,()2220ex mx x f x -+=<,所以()2max 2e m f x -⎡⎤=⎣⎦,由2m <-, 得22e 2e m -<,由()f x n <恒成立,得2e n ≥, 故选:D .7.【多选题】(2021ꞏ河北衡水中学高三其他模拟)已知函数()3e exxx a f x x -=-+-,则下列结论中正确的是( )A .若()f x 在区间[]1,1-上的最大值与最小值分别为M ,m ,则0M m +=B .曲线()y f x =与直线y ax =-相切C .若()f x 为增函数,则a 的取值范围为(],2-∞D .()f x 在R 上最多有3个零点 【答案】ACD 【答案解析】由定义法确定函数的奇偶性,再求导数判断函数的单调性与切线斜率,以及零点情况. 【答案详解】因为对于任意x ∈R ,都有()()()()3e e x x x x a xf x f -=-+---=--, 所以()f x 为奇函数,其图象关于原点对称,故A 正确.又()2e e 3xxx a f x =++-',令()f x a '=-,得2e e 30x x x -++=(*),因为e 0x >,e 0x ->,所以方程(*)无实数解,即曲线()y f x =的所有切线的斜率都不可能为a -,故B 错误.若()f x 为增函数,则()f x ¢大于等于0,即2e e 3x x a x -≤++,2e e 32x x x -++≥, 当且仅当0x =时等号成立,所以2a ≤,故C 正确.令()0f x =,得0x =或2e e x x x a x --+=(0x ≠).设()2e e x x g x x x--=+,则()()()21e 1e 2x x x x x x g x -'=-+++,令()()()1e 1e x xx x t x -=-++,则()()e exxx x t -='-.当0x >时,()0t x '>,当0x =时,()0t x '=,当0x <时,()0t x '>,所以函数()t x 为增函数,且()00t =,所以当0x >时,()0t x >,从而()0g x ¢>,()g x 单调递增.又因为对于任意0x ≠,都有()()g x g x -=,所以()g x 为偶函数,其图象关于y 轴对称. 综上,()g x 在(),0-?上单调递减,在()0,+?上单调递增,则直线y a =与()y g x =最多有2个交点,所以()f x 在R 上最多有3个零点,故D 正确. 故选ACD .8.(2021ꞏ黑龙江大庆市ꞏ高三一模(理))用总长11m 的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m ,则该容器容积的最大值为________m 3(不计损耗). 【答案】916. 【答案解析】设长方体的底面边长为,a b ,高为h ,由题可得3217244V b b b =--+,求出函数导数,判断单调性,即可求出最值. 【答案详解】设长方体的底面边长为,a b ,高为h ,则由题可得1a b =+,()411a b h ++=,则可得784b h -=,则708b <<, 则该容器容积()32781712444b V abh b b b b b -==+⋅⋅=--+,217176624212V b b b b ⎛⎫⎛⎫'=--+=--+ ⎪⎪⎝⎭⎝⎭,当10,2b ⎛⎫∈ ⎪⎝⎭时,0V '>,V 单调递增;当17,28b ⎛⎫∈ ⎪⎝⎭时,0V '<,V 单调递减, ∴当12b =时,max 916V =,即该容器容积的最大值为916. 故答案为:916.9.(2021ꞏ湖南高三其他模拟)中国最早的化妆水是1896年在香港开设的广生行生产的花露水,其具有保湿、滋润、健康皮肤的功效.已知该化妆水容器由一个半球和一个圆柱组成(其中上半球是容器的盖子,化妆水储存在圆柱中),容器轴截面如图所示,上部分是半圆形,中间区域是矩形,其外周长为12cm .则当圆柱的底面半径r =___________时,该容器的容积最大,最大值为___________.【答案】8 c m 2π+ ()32128 c m 2ππ+ 【答案解析】设圆柱的底面半径为r ,圆柱的高为h ,根据已知条件可得出262h r π+=-,根据柱体的体积公式可得()23262V r r πππ+=-,利用导数可求得V 的最大值及其对应的r 的值,即为所求.【答案详解】设圆柱的底面半径为r ,圆柱的高为h . 则由题意可得2212r h r π++=,所以()1222622r h r ππ-++==-.由0h >,得122r π<+. 故容器的容积()22232212660222V r h r r r r r πππππππ++⎛⎫⎛⎫==-=-<< ⎪ ⎪+⎝⎭⎝⎭,容易忽略上半球是容器的盖子,化妆水储存在圆柱中.()232122V r r πππ+'=-,令0V '=,解得0r =(舍)或82r π=+. 显然当80,2r π⎛⎫∈ ⎪+⎝⎭时,0V '>,函数()23262V r r πππ+=-单调递增; 当812,22r ππ⎛⎫∈⎪++⎝⎭时,0V '<,函数()23262V r r πππ+=-单调递减. 所以当8cm 2r π=+时,V 取得最大值, 此时2862cm 22h ππ+=-⨯=+,()23281282cm 22V ππππ⎛⎫=⨯= ⎪+⎝⎭+. 故答案为:8 c m 2π+;()32128 c m 2ππ+. 10.(2021ꞏ全国高三其他模拟)若函数ln ()1xxf x ae x=--只有一个零点,则实数a 的取值范围是 ________. 【答案】0a ≤或1a e= 【答案解析】将函数的零点转化为方程ln (0)x x x a x xe +=>的根,令ln ()xx xg x xe +=,利用导数研究函数的图象特征,即可得到答案; 【答案详解】ln ln 10(0)x x x x xae a x x xe +--=⇔=>, 令ln ()xx x g x xe+=,则'2()(1ln )()x x x x g x x e +--=, ''()01ln 0,()01ln 0,g x x x g x x x >⇔--><⇔--<令()1ln u x x x =--,则'1()10u x x=--<在0x >恒成立, ∴()1ln u x x x =--在(0,)+∞单调递减,且(1)0u =, ∴''()001,()01g x x g x x >⇒<<<⇒>,∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且1(1)g e=,当x →+∞时,()0g x →, 如图所示,可得当0a ≤或1a e =时,直线y a =与ln xx x y xe +=有且仅有一个交点, 故答案为:0a ≤或1a e=1.(2021ꞏ全国高三其他模拟)若不等式ln x ax b ≤+恒成立,则2a b +的最小值为( ) A .2 B .3C .ln 2D .5【答案】C 【答案解析】构造函数()ln f x ax x b =-+,根据函数的单调性及最值可得ln 1b a ≥--,故22ln 1a b a a +≥--,再构造()2ln 1g x x x =--,求得函数()g x 的最小值即可. 【答案详解】由ln x ax b ≤+恒成立,得ln 0ax x b -+≥, 设()ln f x ax x b =-+,()1f x a x'=-, 当0a ≤时,()0f x ¢<,()f x 在()0,+?上单调递减,不成立;当0a >时,令()0f x ¢=,解得1x a=,故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增, 故()10f x f a ⎛⎫≥≥⎪⎝⎭,即11ln 0a b a a ⎛⎫⋅-+≥ ⎪⎝⎭,ln 1b a ≥--,练提升22ln 1a b a a +≥--,设()2ln 1g x x x =--,()12g x x'=-, 令()0g x ¢=,12x =, 故()g x 在10,2⎛⎫ ⎪⎝⎭上单调递减,在1,2⎛⎫+∞ ⎪⎝⎭上单调递增, 故()1112ln 1ln 2222g x g ⎛⎫⎛⎫≥=⨯--=⎪ ⎪⎝⎭⎝⎭, 即2ln 2a b +≥, 故选:C.2.(2021ꞏ北京高考真题)已知函数()lg 2f x x kx =--,给出下列四个结论: ①若0k =,则()f x 有两个零点; ②0k ∃<,使得()f x 有一个零点; ③0k ∃<,使得()f x 有三个零点; ④0k ∃>,使得()f x 有三个零点. 以上正确结论得序号是_______. 【答案】①②④ 【答案解析】由()0f x =可得出lg 2x kx =+,考查直线2y kx =+与曲线()lg g x x =的左、右支分别相切的情形,利用方程思想以及数形结合可判断各选项的正误. 【答案详解】对于①,当0k =时,由()lg 20f x x =-=,可得1100x =或100x =,①正确; 对于②,考查直线2y kx =+与曲线()lg 01y x x =-<<相切于点(),lg P t t -,对函数lg y x =-求导得1ln10y x '=-,由题意可得2lg 1ln10kt t k t +=-⎧⎪⎨=-⎪⎩,解得100100lg e t k e e ⎧=⎪⎪⎨⎪=-⎪⎩, 所以,存在100lg 0k e e=-<,使得()f x 只有一个零点,②正确; 对于③,当直线2y kx =+过点()1,0时,20k +=,解得2k =-,所以,当100lg 2e k e-<<-时,直线2y kx =+与曲线()lg 01y x x =-<<有两个交点, 若函数()f x 有三个零点,则直线2y kx =+与曲线()lg 01y x x =-<<有两个交点,直线2y kx =+与曲线()lg 1y x x =>有一个交点,所以,100lg 220e k ek ⎧-<<-⎪⎨⎪+>⎩,此不等式无解, 因此,不存在0k <,使得函数()f x 有三个零点,③错误;对于④,考查直线2y kx =+与曲线()lg 1y x x =>相切于点(),lg P t t ,对函数lg y x =求导得1ln10y x '=,由题意可得2lg 1ln10kt t k t +=⎧⎪⎨=⎪⎩,解得100lg 100t ee k e =⎧⎪⎨=⎪⎩,所以,当lg 0100ek e<<时,函数()f x 有三个零点,④正确.故答案为:①②④.3.(2021ꞏ四川省绵阳南山中学高三其他模拟(文))设函数()()222ln xf x x x e aex e x =-+-,其中e 为自然对数的底数,曲线()y f x =在()()22f ,处切线的倾斜角的正切值为2322e e +. (1)求a 的值; (2)证明:()0f x >.【答案】(1)2a =;(2)证明见答案解析. 【答案解析】(1)求出函数的导函数,再代入计算可得;(2)依题意即证()()2222ln 0xf x x x e ex e x =-+->,即()12ln 2x x x e e x--+>,构造函数()()222x g x x e e-=-+,()ln xh x x =,利用导数说明其单调性与最值,即可得到()()>g x h x ,从而得证; 【答案详解】解:(1)因为()()222ln xf x x x e aex e x =-+-,所以()()222xef x x e ae x'=-+-,()22332222e ef ae e =+=+',解得2a =.(2)由(1)可得()()2222ln xf x x x e ex e x =-+-即证()()()2212ln 22ln 02x x x f x x x e ex e x x e e x-=-+->⇔-+>. 令()()222x g x x e e-=-+,()()21x g x x e -=-',于是()g x 在()0,1上是减函数,在()1,+∞上是增函数,所以()()11g x g e≥=(1x =取等号). 又令()ln x h x x =,则()21ln xh x x -'=,于是()h x 在()0,e 上是增函数,在(),e +∞上是减函数,所以()()1h x h e e≤=(x e =时取等号).所以()()>g x h x ,即()0f x >.4.(2021ꞏ全国高三其他模拟(理))已知函数()()ln e xf x x m x -=+-.(1)若()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,求m 的值; (2)在(1)的条件下,证明:当0x >时,()0f x >; (3)当1m >时,求()f x 的零点个数.【答案】(1)1m =;(2)证明见答案解析;(3)有一个零点. 【答案解析】(1)利用导数的几何意义求解即可(2)利用导数,得到()f x 在()0,∞+上单调递增,由()00f =,即可证明()0f x >在()0,∞+上恒成立 (3)由(2)可知当1m >且0x >时,()()ln 1e0xf x x x ->+->,即()f x 在()0,∞+上没有零点,再根据,0x m +>,得到x m >-, 对(),0x m ∈-进行讨论,即可求解 【答案详解】解:(1)因为()f x 的图象在点()()1,1f 处的切线与直线20x y -=平行,所以()112f '=, 因为()()11e x f x x x m -+-'=+, 所以()11112f m ='=+,解得1m =. (2)由(1)得当1m =时,()()()21e 11e 11ex xx x f x x x x -+-=+-=++', 当0x >时,因为()0f x '>,所以()f x 在()0,∞+上单调递增, 因为()00f =,所以()0f x >在()0,∞+上恒成立. (3)由(2)可知当1m >且0x >时,()()ln 1e 0xf x x x ->+->,即()f x 在()0,∞+上没有零点,当(),0x m ∈-时,()()()()2e 111e e x xxx m x m f x x x m x m -++--=+-=++',令()()2e 1xg x x m x m =++--,(),0x m ∈-,则()e 21xg x x m =++-'单调递增,且()e21e 10mm g m m m m ---=-+-=--<',()00g m '=>,所以()g x '在(),0m -上存在唯一零点,记为0x ,且()0,x m x ∈-时,()0g x '<,()0,0x x ∈时,()0g x '>, 所以()g x 在()0,m x -上单调递减,在()0,0x 上单调递增, 因为1m >, 所以()e0mg m --=>,()010g m =-<,因为()()00g x g <,所以()00g x <,所以()g x 在()0,m x -上存在唯一零点1x ,且在()0,0x 上恒小于零, 故()1,x m x ∈-时,()0g x >;()1,0x x ∈时,()0g x <,所以()f x 在()1,m x -上单调递增,在()1,0x 上单调递减,且()0ln 0f m =>, 所以()f x 在(),0m -上至多有一个零点, 取()e 2e ,0mm x m m -=-+∈-, 则有()()22ln e 0mf x x m m <++=,所以由零点存在定理可知()f x 在(),0m -上只有一个零点, 又f (0)不为0,所以()f x 在(),m -+∞上只有一个零点.5.(2021ꞏ黑龙江哈尔滨市ꞏ哈尔滨三中高三其他模拟(文))已知函数2211()(1)ln (0)22f x x a x a x a a =-+++>. (1)讨论()f x 的单调性;(2)若函数()y f x =只有一个零点,求实数a 的取值范围.【答案】(1)答案见答案解析;(2)01a <<+或a e >.【答案解析】 (1)求得()'fx ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论,结合函数的极值以及零点个数,求得a 的取值范围. 【答案详解】 (1)()()()'1x x a f x x--=,当01a <<时,由()'00f x x a >⇒<<或1x >,所以()f x 在()0,a ,()1,+∞单调递增,由()'01fx a x <⇒<<,所以()f x 在(),1a 单调递减;当1a >时,由()'001fx x >⇒<<或x a >,所以()f x 在()0,1,(),a +∞单调递增,由()'01f x x a <⇒<<,所以()f x 在()1,a 单调递减;当1a =时,()()2'10x f x x-=≥⇒()f x 在()0,∞+单调递增.(2)1(1)(1(12f a a ⎡⎤⎡⎤=--⎣⎦⎣⎦,()(ln 1)f a a a =-, 由(1)知当01a <<时,()f x 在x a =处,有极大值,且()0f a <,此时函数有一个零点; 当1a =时,()f x 在()0,∞+单调递增,且()10f <,此时函数有一个零点;当1a >时,()0,1,(),a +∞单调递增,()1,a 单调递减,()f x 在x a =处,有极小值,()f x 在1x =处,有极大值,则当()10f <,或()0f a >时函数有一个零点,有11a <<或a e >.综上:01a <<+或a e >.6.(2021ꞏ河北高三其他模拟)已知函数2ln 1()(ln )()2k x f x x k x+=+∈R . (1)当0k =时,求证:()1f x ≤; (2)当0k ≠时,讨论()f x 零点的个数.【答案】(1)证明过程见解答;(2)当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 【答案解析】(1)将0k =代入,对()f x 求导,得到其单调性,判断其最值,即可得证;(2)令t lnx =,则()0f x =即为2102t k t t e ++=,显然0t ≠,进一步转化为212t k t t e +-=,令21()(0)t t h t t t e+=≠,利用导数作出()h t 的大致图象,进而图象判断方程解的情况,进而得到函数()f x 零点情况. 【答案详解】(1)证明:当0k =时,1()(0)lnx f x x x +=>,则2()lnxf x x'=-, ∴当(0,1)x ∈时,()0f x '>,()f x 单增,当(1,)x ∈+∞时,()0f x '<,()f x 单减,()f x f ∴…(1)1=,即得证;(2)令t lnx =,则()0f x =即为2102t k t t e++=,当0t =,即1x =时,该方程不成立,故1x =不是()f x 的零点; 接下来讨论0t ≠时的情况,当0t ≠时,方程可化为212tk t t e +-=, 令21()(0)t t h t t t e +=≠,则222()tt th t t e++'=-,当0t <时,22220t t ++-=-<…,当且仅当t =当0t >时,22220t t +++=+>…,当且仅当t =时取等号,∴当0t <时,()0h t '>,()h t 单增,当0t >时,()0h t '<,()h t 单减,且当0t →时,()h t →+∞,(1)0h -=,当1t <-时,()0h t <,当0t >时,()0h t >, 函数()h t 的大致图象如下:由图象可知,当02k -<,即0k >时,212t k t t e +-=只有一个解,则()f x 有一个零点,当02k ->,即0k <时,212tk t t e +-=有两个解,则()f x 有两个零点. 综上,当0k <时,()f x 有两个零点,当0k >时,()f x 有一个零点. 7.(2021ꞏ重庆市育才中学高三二模)已知函数()x f x e =,()1g x ax =+. (1)已知()()f x g x ≥恒成立,求a 的值;(2)若(0,1)x ∈,求证:21ln 11()x x f x x-+-<. 【答案】(1)1a =;(2)证明见答案解析. 【答案解析】(1)作差,设()()()1x h x f x g x e ax =-=--,利用导数求出()h x 的最小值为(ln )ln 10h a a a a =--≥,只需1ln 10a a +-≤;设1()ln 1a a aϕ=+-,利用导数求出min ()(1)0a ϕϕ==,解出1a =; (2)利用1x e x >+把原不等式转化为证明1ln 111x x x x -+-<+,即证:21ln 10x x x-++>, 设21()ln 1F x x x x=-++,利用导数求出最小值,即可证明.【答案详解】(1)设()()()1x h x f x g x e ax =-=--,()x h x e a '=-,当0a ≤时,()0x h x e a '=->,()h x 单增,当,()x h x →-∞→-∞,不满足恒成立 当0a >,()h x 在(,ln )x a ∈-∞单减,()h x 在(ln ,)x a ∈+∞单增, 所以()h x 的最小值为(ln )ln 10h a a a a =--≥,即11ln 0a a --≥,即1ln 10a a+-≤ 设1()ln 1a a a ϕ=+-,21()a a aϕ-'=,所以()ϕx 在(0,1)x ∈单减,()ϕx 在(1,)+∞单增, 即min()(1)0a ϕϕ==,故1ln 10a a+-≤的解只有1a =,综上1a =(2)先证当(0,1)x ∈时,1x e x >+恒成立.令()1x h x e x =--,求导()10x h x e '=->,所以()h x 在(0,1)x ∈上单调递增,()(0)0h x h >=,所以1x e x >+所以要证1ln 11x x x e x -+-<,即证1ln 111x x x x-+-<+, 即证211ln 1x x x x x x +-++-<+,即证:21ln 10x x x -++>, 设21()ln 1F x x x x=-++,求导22111()2(1)20F x x x x x x x '=--=--<,所以()F x 在(0,1)上单调递减,所以()(1)10F x F >=>,即原不等式成立.所以当(0,1)x ∈时,如1ln 11()x x f x x-+-<成立. 8.(2021ꞏ全国高三其他模拟)已知函数()()ln x a f x a x+=+,()0,x ∈+∞.(1)当0a =时,讨论函数()f x 的单调性; (2)若函数()f x 存在极大值M ,证明:12M e≤<. 【答案】(1)当()0,x e ∈时,()f x 单调递增;当(),x e ∈+∞时,()f x 单调递减;(2)证明见答案解析. 【答案解析】(1)将0a =代入函数,并求导即可分析单调性;(2)求导函数,讨论当0a =,01a <<与1a ≥时分析单调性,并判断是否有极大值,再求解极大值,即可证明.【答案详解】(1)()f x 的定义域是()0,∞+ 当0a =时,()ln x f x x =,()21ln xf x x -'=, 令()0f x '=,得x e =,所以当()0,x e ∈时,()0f x '>,()f x 单调递增; 当(),x e ∈+∞时,()0f x '<,()f x 单调递减;(2)()()()()()22ln ln xx a x x a x ax a f x x x x a -+-+++'==+, 令()()()()ln ,0,g x x x a x a x =-++∈+∞, 则()()ln g x x a '=-+,由()f x 的定义域是()0,∞+,易得0a ≥,当0a =时,由(1)知,()f x 在x e =处取得极大值,所以()1==M f e e. 当1a ≥时,()0g x '<在()0,x ∈+∞上恒成立,所以()g x 在()0,∞+上单调递减,()ln 0g x a a <-<,所以()0f x '<,故()f x 没有极值. 当01a <<时,令()0g x '=,得1x a =-,所以当()0,1x a ∈-时,()0g x '>,()g x 单调递增;当()1,x a ∈-+∞时,()0g x '<,()g x 单调递减. 所以当()0,1x a ∈-时,()ln 0g x a a >->,又()110g a a -=->,()0-=-<g e a a ,且1-<-e a a ,所以存在唯一()01,∈--x a e a ,使得()()()0000ln g x x x a x a =-+⋅+,当()00,x x ∈时,()0g x >,即()0f x '>,()f x 单调递增;当()0,x x ∈+∞时,()0g x <,即()0f x '<,()f x 单调递减.所以当0x x =时,()f x 取得极大值,所以()()000ln x a M f x a x +==+,所以()()()()000000011ln M x a x x a x a x a x a x a=++-=++-+⋅+++. 令0x a t +=,则()1,t e ∈,设()1ln h t t t t t=+-,()1,t e ∈, 则()21ln 0h t t t'=--<, 所以()h t 在()1,e 上单调递减, 所以()12<<h t e ,所以12<<M e. 综上,若函数()f x 存在极大值M ,则12M e≤<. 9.(2021ꞏ重庆高三二模)已知函数()ln ()f x ax x a R =+∈在1x =处取得极值. (1)若对(0,),()1x f x bx ∀∈+∞≤-恒成立,求实数b 的取值范围;(2)设()()(2)x g x f x x e =+-,记函数()y g x =在1,14⎡⎤⎢⎥⎣⎦上的最大值为m ,证明:(4)(3)0m m ++<. 【答案】(1)211b e -≤;(2)证明见答案解析. 【答案解析】(1)由条件求出a ,然后由()1f x bx ≤-可得1ln 1+x b x x≤-,然后用导数求出右边对应函数的最小值即可;(2)11()(1)e 1(1)(xx g x x x e x x'=--+=--,令()1e x h x x =-,然后可得存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-,然后可得0max 000000000012()()(2)ln (2)12x m g x g x x e x x x x x x x x ===--+=---=--,然后判断出函数2()12G x x x=--的单调性即可. 【答案详解】 (1)∵1()f x a x'=+,(1)10f a '=+=,∴1a =-,由已知()1f x bx ≤-,即ln 1x x bx -≤-,即1ln 1+x b x x≤-对()0,x ∀∈+∞恒成立, 令1ln ()1x t x x x =+-,则22211ln ln 2()x x t x x x x --'=--=,易得()t x 在2(0,)e 上单调递减,在2(,)e +∞上单调递增, ∴2min 21()()1t x t e e==-,即211b e -≤. (2)()()(2)e (2)e ln x x g x f x x x x x =+-=--+,则11()(1)e 1(1)(xx g x x x e x x'=--+=--. 当114x <<时,10x -<,令()1e xh x x=-, 则21()e 0xh x x'=+>,所以()h x 在1[,1]4上单调递增.∵121(()e 202h h x ==-<,(1)10h e =->,∴存在01(,1)2x ∈使得()00h x =,即01ex x =,即00ln x x =-. ∴当01(,)4x x ∈时,()0h x <,此时()0g x '>; 当0(,1)x x ∈时,()0h x >,此时()0g x '<; 即()g x 在01(,)4x 上单调递增,在0(),1x 上单调递减,则0max 000000000012()()(2)ln (2)12xm g x g x x e x x x x x x x x ===--+=---=--. 令2()12G x x x =--,1(,1)2x ∈,则22222(1)()20x G x x x '-=-=>,∴()G x 在1(,1)2x ∈上单调递增,则1()(42G x G >=-,()(1)3G x G <=-, ∴43m -<<-.∴()()430m m ++<.10.(2021ꞏ江苏南通市ꞏ高三一模)已知函数()()21ln 22f x ax ax x =+-,0a >. (1)求函数()f x 的增区间;(2)设1x ,2x 是函数()f x 的两个极值点,且12x x <,求证:122x x +>.【答案】(1)答案见答案解析;(2)证明见答案解析. 【答案解析】(1)求函数的导数,分类讨论,解不等式即可求解;(2)根据极值点可转化为1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可得12x >且1x ≠,要证122x x +>,只要证212x x >-,利用构造函数的单调性证明即可. 【答案详解】(1)由题意得()21212ax ax x f x x x-+=+='-(0x >). 令()0f x '>,则2210ax x -+>.①当()2240a ∆=--≤,即1a ≥时,2210ax x -+>在()0,∞+上恒成立,即()f x 的增区间为()0,∞+;②当()2240a ∆=-->,即01a <<时,10x a -<<或1x a+>,即()f x 的增区间为10,a ⎛⎫ ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭.综上,当1a ≥时,()f x 的增区间为()0,∞+;当01a <<时,()f x 的增区间为10,a ⎛⎫- ⎪ ⎪⎝⎭和1,a ⎛⎫++∞ ⎪ ⎪⎝⎭. (2)因为()221x x ax xf -+'=(0x >),()f x 有两个极值点1x ,2x , 所以1x ,2x 是方程2210-+=ax x 的两个不相等的正实数根,可求出 从而()2240a ∆=-->,0a >,解得01a <<. 由2210-+=ax x 得221x a x -=. 因为01a <<,所以12x >且1x ≠.令()221x g x x -=,12x >且1x ≠,则()()321x g x x-'=,所以当112x <<时,()0g x '>,从而()g x 单调递增;当1x >时,()0g x '<,从而()g x 单调递减, 于是1222122121x x a x x --==(12112x x <<<). 要证122x x +>,只要证212x x >-,只要证明()()212g x g x <-. 因为()()12g x g x =,所以只要证()()112g x g x <-. 令()()()()()1111122112212122x x F x g x g x x x ---=--=-- 则()()()()1113311212212x x F x xx --⎡⎤-⎣⎦'=+-()()()11331121212x x x x --=+- ()()1331111212x x x ⎡⎤=--⎢⎥-⎢⎥⎣⎦()()()()22211111331141222x x x x x x x ⎡⎤--+-+⎣⎦=-.因为1112x <<, 所以()10F x '>,即()1F x 在1,12⎛⎫⎪⎝⎭上单调递增,所以()()110F x F <=,即()()112g x g x <-, 所以212x x >-,即122x x +>.1.(2021ꞏ全国高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图像与x 轴没有公共点,求a 的取值范围. 【答案】(1)()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭;(2)1a e >. 练真题(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据()10f >及(1)的单调性性可得()min 0f x >,从而可求a 的取值范围. 【答案详解】(1)函数的定义域为()0,∞+,又()23(1)()ax ax f x x+-'=,因为0,0a x >>,故230ax +>, 当10x a <<时,()0f x '<;当1x a>时,()0f x '>; 所以()f x 的减区间为10,a ⎛⎫ ⎪⎝⎭,增区间为1,+a ⎛⎫∞ ⎪⎝⎭.(2)因为()2110f a a =++>且()y f x =的图与x 轴没有公共点, 所以()y f x =的图象在x 轴的上方, 由(1)中函数的单调性可得()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭, 故33ln 0a +>即1a e>. 2.(2021ꞏ全国高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】1;证明见答案详解 【答案解析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-< , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <-> , ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞ ,1x t =-, 令()1ln g t t t t =-+,()'1ln 1ln g t t t =-++=,当()0,1t ∈时,()'0g x <,()g x 单减,假设()1g 能取到,则()10g =,故()()10g t g >=; 当()1,t ∈+∞时,()'0g x >,()g x 单增,假设()1g 能取到,则()10g =,故()()10g t g >=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞ 恒成立3.(2021ꞏ全国高考真题)已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见答案解析. 【答案解析】(1)求出函数的导数,判断其符号可得函数的单调区间; (2)设1211,x x a b==,原不等式等价于122x x e <+<,前者可构建新函数,利用极值点偏移可证,后者可设21x tx =,从而把12x x e +<转化为()()1ln 1ln 0t t t t -+-<在()1,+∞上的恒成立问题,利用导数可。
2021-2022年高考数学专题复习导练测 第六章 第2讲 等差数列及其前n项和 理 新人教A版

2021年高考数学专题复习导练测第六章第2讲等差数列及其前n项和理新人教A版一、选择题1. {a n}为等差数列,公差d=-2,S n为其前n项和.若S10=S11,则a1=( ) A.18 B.20C.22 D.24解析由S10=S11得a11=S11-S10=0,a1=a11+(1-11)d=0+(-10)×(-2)=20.答案 B2.设等差数列{a n}的前n项和为S n.若a1=-11,a4+a6=-6,则当S n取最小值时,n 等于( ).A.6 B.7 C.8 D.9解析由a4+a6=a1+a9=-11+a9=-6,得a9=5,从而d=2,所以S n=-11n+n(n-1)=n2-12n=(n-6)2-36,因此当S n取得最小值时,n=6.答案A3.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于( ).A.-1 B.1 C.3 D.7解析两式相减,可得3d=-6,d=-2.由已知可得3a3=105,a3=35,所以a20=a3+17d=35+17×(-2)=1.答案B4.在等差数列{a n}中,S15>0,S16<0,则使a n>0成立的n的最大值为( ).A .6B .7C .8D .9解析 依题意得S 15=15a 1+a 152=15a 8>0,即a 8>0;S 16=16a 1+a 162=8(a 1+a 16)=8(a 8+a 9)<0,即a 8+a 9<0,a 9<-a 8<0.因此使a n >0成立的n 的最大值是8,选C. 答案 C5.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ). A .8B .7C .6D .5解析 由a 1=1,公差d =2得通项a n =2n -1,又S k +2-S k =a k +1+a k +2,所以2k +1+2k +3=24,得k =5. 答案 D6.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且A n B n =7n +45n +3,则使得a n b n为整数的正整数的个数是( ). A .2B .3C .4D .5解析 由A n B n =7n +45n +3得:a n b n =A 2n -1B 2n -1=14n +382n +2=7n +19n +1,要使a n b n 为整数,则需7n +19n +1=7+12n +1为整数,所以n =1,2,3,5,11,共有5个. 答案 D 二、填空题7.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 解析 a 7-a 5=2d =4,d =2,a 1=a 11-10d =21-20=1,S k =k +k k -12×2=k 2=9.又k ∈N *,故k =3.答案 38.设等差数列{a n }的前n 项和为S n ,若S 412-S 39=1,则公差为________.解析 依题意得S 4=4a 1+4×32d =4a 1+6d ,S 3=3a 1+3×22d =3a 1+3d ,于是有4a 1+6d12-3a 1+3d9=1,由此解得d =6,即公差为6. 答案 69.在等差数列{a n }中,a 1=-3,11a 5=5a 8-13,则数列{a n }的前n 项和S n 的最小值为________.解析 (直接法)设公差为d ,则11(-3+4d )=5(-3+7d )-13, 所以d =59,所以数列{a n }为递增数列.令a n ≤0,所以-3+(n -1)·59≤0,所以n ≤325,又n ∈N *,前6项均为负值, 所以S n 的最小值为-293.答案 -29310.设项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,则这个数列的中间项是________,项数是________. 解析 设等差数列{a n }的项数为2n +1,S 奇=a 1+a 3+…+a 2n +1=n +1a 1+a 2n +12=(n +1)a n +1,S 偶=a 2+a 4+a 6+…+a 2n =n a 2+a 2n2=na n +1,∴S 奇S 偶=n +1n =4433,解得n =3,∴项数2n +1=7,S 奇-S 偶=a n +1,即a 4=44-33=11为所求中间项. 答案 11 7 三、解答题11.设a 1,d 为实数,首项为a 1,公差为d 的等差数列{a n }的前n 项和为S n ,满足S 5S 6+15=0.(1)若S 5=5,求S 6及a 1; (2)求d 的取值范围.解 (1)由题意知S 6=-15S 5=-3,a 6=S 6-S 5=-8,所以⎩⎨⎧5a 1+10d =5,a 1+5d =-8.解得a 1=7,所以S 6=-3,a 1=7.(2)因为S 5S 6+15=0,所以(5a 1+10d )(6a 1+15d )+15=0,即2a 21+9da 1+10d 2+1=0, 故(4a 1+9d )2=d 2-8,所以d 2≥8. 故d 的取值范围为d ≤-22或d ≥2 2.12.在等差数列{a n }中,公差d >0,前n 项和为S n ,a 2·a 3=45,a 1+a 5=18. (1)求数列{a n }的通项公式;(2)令b n =S nn +c(n ∈N *),是否存在一个非零常数c ,使数列{b n }也为等差数列?若存在,求出c 的值;若不存在,请说明理由. 解 (1)由题设,知{a n }是等差数列,且公差d >0,则由⎩⎨⎧a 2a 3=45,a 1+a 5=18,得⎩⎨⎧a 1+da 1+2d =45,a 1+a 1+4d =18.解得⎩⎨⎧a 1=1,d =4.∴a n =4n -3(n ∈N *).(2)由b n =S nn +c=n 1+4n -32n +c=2n ⎝ ⎛⎭⎪⎫n -12n +c,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }也为等差数列.13.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n . 解 (1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.∴a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. ∴当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×(-52+45) =n 2-9n +40,∴S n =⎩⎨⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.14.已知数列{a n }的前n 项和为S n ,且a 2a n =S 2+S n 对一切正整数n 都成立. (1)求a 1,a 2的值;(2)设a 1>0,数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫lg 10a 1a n 的前n 项和为T n .当n 为何值时,T n 最大?并求出T n 的最大值.解 (1)取n =1,得a 2a 1=S 2+S 1=2a 1+a 2, ① 取n =2,得a 22=2a 1+2a 2,② 由②-①,得a 2(a 2-a 1)=a 2,③(i)若a 2=0,由①知a 1=0,(ii)若a 2≠0,由③知a 2-a 1=1. ④由①、④解得,a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2.综上可得a 1=0,a 2=0;或a 1=2+1,a 2=2+2;或a 1=1-2,a 2=2- 2. (2)当a 1>0时,由(1)知a 1=2+1,a 2=2+2.当n ≥2时,有(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1, 所以(1+2)a n =(2+2)a n -1,即a n =2a n -1(n ≥2), 所以a n =a 1(2)n -1=(2+1)·(2)n -1. 令b n =lg 10a 1a n,则b n =1-lg(2)n -1=1-12(n -1)lg 2=12lg 1002n -1,所以数列{b n }是单调递减的等差数列(公差为-12lg 2),从而b 1>b 2>…>b 7=lg 108>lg 1=0,当n ≥8时,b n ≤b 8=12lg 100128<12lg 1=0,故n =7时,T n 取得最大值,且T n 的最大值为T 7=7b 1+b 72=71+1-3lg 22=7-212lg 2.。
2021-2022年高考数学复习 例题精选精练(6)

2021-2022年高考数学复习 例题精选精练(6)一、选择题(共6个小题,每小题5分,满分30分)1.已知ξ的分布列ξ=-1,0,1,对应P =12,16,13,且设η=2ξ+1,则η的期望是( )A .-16 B.23C.2936D .1解析:E (ξ)=(-1)×12+0×16+1×13=-16,∵η=2ξ+1,∴E (η)=2E (ξ)+1=2×⎝ ⎛⎭⎪⎫-16+1=23.答案:B2.已知三个正态分布密度函数φi (x )=12πσie -x -μi22σ2i (x ∈R ,i =1,2,3)的图象如图所示,则( )A .μ1<μ2=μ3,σ1=σ2>σ3B .μ1>μ2=μ3,σ1=σ2<σ3C .μ1=μ2<μ3,σ1<σ2=σ3D .μ1<μ2=μ3,σ1=σ2<σ3解析:正态分布密度函数φ2(x )和φ3(x )的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x )的对称轴的横坐标值比φ1(x )的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x )和φ2(x )的图象一样“瘦高”,φ3(x )明显“矮胖”,从而可知σ1=σ2<σ3.答案:D3.若X是离散型随机变量,P(X =x1)=23,P(X=x2)=13,且x1<x2,又已知E(X)=43,D(X)=29,则x1+x2的值为( )A.53B.73C.3 D.113解析:分析已知条件,利用离散型随机变量的均值和方差的计算公式得:⎩⎪⎨⎪⎧x1·23+x2·13=43,x1-432·23+x2-432·13=29,解得⎩⎪⎨⎪⎧x1=53x2=23或⎩⎪⎨⎪⎧x1=1,x2=2,又∵x1<x2,∴⎩⎪⎨⎪⎧x1=1,x2=2,∴x1+x2=3.答案:C4.在正态分布N⎝⎛⎭⎪⎫0,19中,数值落在(-∞,-1)∪(1,+∞)内的概率为( ) A.0.097 B.0.046C.0.03 D.0.002 6解析:∵μ=0,σ=13,∴P(x<-1或x>1)=1-P(-1≤x≤1)=1-P(μ-3σ≤x≤μ+3σ)=1-0.997 4=0.002 6.答案:D5.有10件产品,其中3件是次品,从中任取两件,若X表示取到次品的个数,则E(X)等于( )A.35B.815C.1415D.1解析:ξ=0时,P=C21C210;ξ=1时,P=C17C13C210;ξ=2时,P=C23C210,∴E(ξ)=0×C21C2101×C17C13C210+2×C 23C 210=7×3+2×3C 210=35. 答案:A6.设l 为平面上过点(0,1)的直线,l 的斜率等可能地取-22,-3,-52,0,52,3,22,用X 表示坐标原点到l 的距离,则随机变量X 的数学期望E (X )等于( ) A.47 B.67 C.45D.56解析:当l 的斜率k 为±22时,直线方程为±22x -y +1=0,此时d 1=13;k =±3时,d 2=12;k =±52时,d 3=23;k =0时,d 4=1.由等可能性事件的概率可得分布列如下: X 13 12 23 1 P27272717答案:A二、填空题(共3个小题,每小题5分,满分15分)7.某班有50名学生,一次考试后数学成绩X (X ∈N)服从正态分布N (100,102),已知P (90≤X ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为________.解析:由题意知,P (X >110)=1-2P90≤X ≤1002=0.2,∴该班学生数学成绩在110分以上的人数为0.2×50=10.答案:108.抛掷两个骰子,至少有一个4点或5点出现时,就说这次试验成功,则在10次试验中,成功次数X 的期望是_____________________________________________________.解析:由题意一次试验成功的概率为1-23×23=59,10次试验为10次独立重复试验,则成功次数X ~B ⎝ ⎛⎭⎪⎫10,59, 所以E (X )=509.答案:5099.甲、乙两工人在一天生产中出现废品数分别是两个随机变量ξ、η,其分布列分别为:________. 解析:甲、乙的均值分别为E (ξ)=0×0.4+1×0.3+2×0.2+3×0.1=1,E (η)=0×0.3+1×0.5+2×0.2=0.9,所以E (ξ)>E (η),故乙的技术较好. 答案:乙三、解答题(共3个小题,满分35分)10.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)记“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列及其数学期望E (ξ). 解:(1)由x 2-x -6≤0得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0. 所以A 包含的基本事件为:(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为:所以E (ξ)=0×16+1×13+4×3+9×6=6.11.在一个选拔项目中,每个选手都需要进行4轮考核,每轮考核都设有一个问题,能正确回答者进入下一轮考核,否则被淘汰,已知某选手能正确回答第一、二、三、四轮问题的概率分别为56、45、34、13,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮考核才被淘汰的概率; (2)求该选手至多进入第三轮考核的概率;(3)该选手在选拔过程中回答过的问题的个数记为X ,求随机变量X 的分布列和数学期望. 解:设事件A i (i =1,2,3,4)表示“该选手能正确回答第i 轮问题”,由已知得P (A 1)=56,P (A 2)=45,P (A 3)=34,P (A 4)=13,(1)设事件B 表示“该选手进入第三轮考核才被淘汰”, 则P (B )=P (A 1A 2A 3)=P (A 1)P (A 2)P (A 3) =56×45×(1-34)=16. (2)设事件C 表示“该选手至多进入第三轮考核”, 则P (C )=P (A 1∪A 1A 2∪A 1A 2A 3)=P (A 1)+P (A 1A 2)+P (A 1A 2A 3)=16+56×15+56×45×(1-34)=12.(3)X 的可能取值为1,2,3,4.P (X =1)=P (A 1)=16,P (X =2)=P (A 1A 2)=56×(1-45)=16, P (X =3)=P (A 1A 2A 3)=56×45×(1-34)=16, P (X =4)=P (A 1A 2A 3)=56×45×34=12,所以X 的分布列为E (X )=1×16+2×16+3×16+4×2=3.12.在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 1为0.25,在B 处的命中率为q 2.该同学选择先在A 处投一球,以后都在B 处投,用X 表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 2的值;(2)求随机变量X的均值E(X);(3)试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.解:(1)由题设知,“X=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知P(X=0)=(1-q1)(1-q2)2=0.03,解得q2=0.8.(2)根据题意P1=P(X=2)=(1-q1)C12(1-q2)q2=0.75×2×0.2×0.8=0.24;P2=P(X=3)=q1(1-q2)2=0.25×(1-0.8)2=0.01;P3=P(X=4)=(1-q1)q22=0.75×0.82=0.48;P4=P(X=5)=q1q2+q1(1-q2)q2=0.25×0.8+0.25×0.2×0.8=0.24.因此E(X)=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(X=4)+P(X=5)=P3+P4=0.48+0.24=0.72.P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处投以后都在B 处投得分超过3分的概率.i24017 5DD1 巑40369 9DB1 鶱39922 9BF2 鯲tb32501 7EF5 绵38667 970B 霋e27058 69B2 榲E 25719 6477 摷8。
2021-2022年高考数学大一轮复习 第六章 不等式、推理与证明同步练习 文

2021-2022年高考数学大一轮复习第六章不等式、推理与证明同步练习文1.了解现实世界和日常生活中的不等关系.2.了解不等式(组)的实际背景.3.掌握不等式的性质及应用.1.实数大小顺序与运算性质之间的关系a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇒a+c>b+c,a>b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc,a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a b>b n(n∈N,n≥1);(6)可开方:a>b>0⇒na>nb(n∈N,n≥2).不等式的两类常用性质(1)倒数性质①a>b,ab>0⇒1a<1b;②a<0<b⇒1a>1b;③a>b>0,0<c<d⇒ac>bd;④0<a<x<b或a<x<b<0⇒1b>1x>1a.(2)有关分数的性质若a>b>0,m>0,则①真分数的性质b a <b+ma+m;ba>b-ma-m(b-m>0);②假分数的性质a b >a+mb+m;ab<a-mb-m(b-m>0).1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( )(2)一个非零实数越大,则其倒数就越小.( )(3)同向不等式具有可加和可乘性.( )(4)两个数的比值大于1,则分子不一定大于分母.( )答案:(1)×(2)×(3)×(4)√2.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <bD .若a <b ,则a <b答案: D3.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 解析: ⎩⎨⎧a >0b >0⇒⎩⎨⎧a +b >0ab >0.又当ab >0时,a 与b 同号,由a +b >0知a >0,且b >0.答案: C4.12-1________3+1(填“>”或“<”).解析:12-1=2+1<3+1. 答案: <5.下列不等式中恒成立的是________.①m -3>m -5;②5-m >3-m ;③5m >3m ;④5+m >5-m . 解析: m -3-m +5=2>0,故①恒成立;5-m-3+m=2>0,故②恒成立;5m-3m=2m,无法判断其符号,故③不恒成立;5+m-5+m=2m,无法判断其符号,故④不恒成立.答案:①②比较两个数(式)的大小自主练透型1.若a1<a2,b1<b2,则a1b1+a2b2与a1b2+a2b1的大小关系是________.解析:作差可得(a1b1+a2b2)-(a1b2+a2b1)=(a1-a2)·(b1-b2),∵a1<a2,b1<b2,∴(a1-a2)·(b1-b2)>0,即a1b1+a2b2>a1b2+a2b1.答案:a1b1+a2b2>a1b2+a2b12.若a=ln 22,b=ln 33,则a________b(填“>”或“<”).解析:易知a,b都是正数,ba=2ln 33ln 2=log89>1,所以b>a.答案:<3.若实数m≠1,比较m+2与31-m的大小.解析:m+2-31-m=-m2-m-11-m=m2+m+1m-1,∴当m>1时,m+2>31-m;当m <1时,m +2<31-m. 比较两个数大小的常用方法(1)作差法:其基本步骤为:作差、变形、判断符号、得出结论,用作差法比较大小的关键是判断差的正负,常采用配方、因式分解、分子(分母)有理化等变形方法.(2)作商法:即判断商与1的关系,得出结论,要特别注意当商与1的大小确定后必须对商式分子分母的正负做出判断,这是用作商法比较大小时最容易漏掉的关键步骤.(3)特值验证法:对于一些题目,有的给出取值范围,可采用特值验证法比较大小. 不等式的性质分层深化型(1)(xx·四川卷)若a >b >0,c <d <0,则一定有( ) A .a d >b c B .a d <b c C .a c >b dD .a c <b d(2)(xx·陕西咸阳摸底)若a ,b 是任意实数,且a >b ,则下列不等式成立的是( ) A .a 2>b 2B .b a<1C .lg(a -b )>0D .⎝ ⎛⎭⎪⎫13a <⎝ ⎛⎭⎪⎫13b 解析: (1)∵c <d <0,∴0>1c >1d,∴-1d>-1c>0, 又a >b >0,∴-a d >-b c,故选B .(2)当a =-1,b =-2时,a 2<b 2,b a>1,lg(a -b )=0,可排除A ,B ,C ,故选D . 答案: (1)B (2)D1.(xx·广东东莞一模)设a ,b ∈R ,若a +|b |<0,则下列不等式中正确的是( ) A .a -b >0 B .a 3+b 3>0 C .a 2-b 2<0D .a +b <0解析: 当b ≥0时,a +b <0;当b <0时,a -b <0, ∴a <b <0,∴a +b <0,故选D . 答案: D2.若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +b c<0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4解析: ∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ), ∴ac +bd <0,∴a d +b c =ac +bdcd<0,故②正确.∵c <d ,∴-c >-d .∵a >b ,∴a +(-c )>b +(-d ),a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C . 答案: C3.(xx·浙江卷)已知函数f (x )=x 3+ax 2+bx +c ,且0<f (-1)=f (-2)=f (-3)≤3,则( )A .c ≤3B .3<c ≤6C .6<c ≤9D .c >9解析: 由0<f (-1)=f (-2)=f (-3)≤3,得0<-1+a -b +c =-8+4a -2b +c =-27+9a -3b +c ≤3, 由-1+a -b +c =-8+4a -2b +c ,得3a -b -7=0①, 由-1+a -b +c =-27+9a -3b +c ,得4a -b -13=0②,由①②,解得a =6,b =11,∴0<c -6≤3,即6<c ≤9,故选C . 答案: C1.判断不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质.2.在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.用不等式(组)表示不等关系互动讲练型某厂拟生产甲、乙两种适销产品,甲、乙产品都需要在A ,B 两种设备上加工,在每台A ,B 设备上加工一件甲产品所需工时分别为1小时、2小时,加工一件乙产品所需工时分别为2小时、1小时,A ,B 两种设备每月有效使用台时数分别为400和500.写出满足上述所有不等关系的不等式.解析: 设甲、乙两种产品的产量分别为x ,y ,则由题意可知⎩⎪⎨⎪⎧x +2y ≤400,2x +y ≤500,x ≥0,x ∈N ,y ≥0,y ∈N .某化工厂制定明年某产品的生产计划,受下面条件的制约:生产此产品的工人不超过200人;每个工人的年工作时间约为2 100 h ;预计此产品明年的销售量至少为80 000袋;生产每袋产品需用4 h ;生产每袋产品需用原料20 kg ;年底库存原料600 t ,明年可补充1 200 t .试根据这些数据预测明年的产量.解析: 设明年的产量为x 袋,则⎩⎪⎨⎪⎧4x ≤200×2 100,x ≥80 000,0.02x ≤600+1 200,解得80 000≤x ≤90 000.预计明年的产量在80 000袋到90 000袋之间.用不等式(组)表示实际问题中的不等关系时,除了把文字语言“翻译”成符号语言,把握“不超过”、“不低于”、“至少”、“至多”等关键词外,还应考虑变量的实际意义,即变量的取值范围.A 级 基础训练1.已知a 1,a 2∈(0,1),记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析: M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1), ∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0. ∴M >N . 答案: B2.设α∈⎝ ⎛⎭⎪⎫0,π2,β∈⎣⎢⎡⎦⎥⎤0,π2,那么2α-β3的取值范围是( )A .⎝⎛⎭⎪⎫0,5π6 B .⎝ ⎛⎭⎪⎫-π6,5π6C .(0,π)D .⎝ ⎛⎭⎪⎫-π6,π解析: 由题设得0<2α<π,0≤β3≤π6,∴-π6≤-β3≤0,∴-π6<2α-β3<π.答案: D3.(xx·山西太原模拟)已知a ,b 为非零实数,且a <b ,则下列命题成立的是( ) A .a 2<b 2B .a 2b <ab 2C .1ab2<1a 2bD .b a <ab解析: 由a <b <0得a 2>b 2,知A 不成立;由a <b ,若ab <0,则a 2b >ab 2,知B 不成立;若a =1,b =2,则b a =2,a b =12,此时b a >a b ,所以D 不成立;对于C ,∵1ab 2-1a 2b =a -ba 2b2<0,∴1ab 2<1a 2b.故选C .答案: C4.(xx·山东泰安一模)如果a >b ,则下列各式正确的是( ) A .a lg x >b lg x B .ax 2>bx 2C .a 2>b 2D .a ·2x>b ·2x解析: A 项,当lg x =0,即x =1时不满足;B 项,当x 2=0时不满足;C 项,当a =1,b =-2时不满足;D 项,因为2x>0,所以a ·2x>b ·2x.综上可知选D .答案: D5.设甲:m ,n 满足⎩⎪⎨⎪⎧2<m +n <4,0<mn <3.乙:m ,n 满足⎩⎪⎨⎪⎧0<m <1,2<n <3,那么甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 由⎩⎪⎨⎪⎧0<m <1,2<n <3⇒2<m +n <4,0<mn <3;但⎩⎪⎨⎪⎧2<m +n <4,0<mn <3⇒/ ⎩⎪⎨⎪⎧0<m <1,2<n <3.反例,如⎩⎪⎨⎪⎧m =32,n =1,故甲是乙的必要不充分条件.答案: B6.若1<α<3,-4<β<2,则α-|β|的取值范围是________. 解析: ∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0. ∴-3<α-|β|<3. 答案: (-3,3)7.已知a +b >0,则a b2+b a2与1a +1b的大小关系是________.解析:a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a2 =(a -b )⎝ ⎛⎭⎪⎫1b 2-1a 2=a +b a -b 2a 2b 2.∵a +b >0,(a -b )2≥0, ∴a +ba -b2a 2b 2≥0.∴a b2+b a2≥1a +1b.答案:a b 2+b a 2≥1a +1b8.已知-1≤x +y ≤4,且2≤x -y ≤3,则z =2x -3y 的取值范围是________(用区间表示).解析: ∵z =-12(x +y )+52(x -y ),∴3≤-12(x +y )+52(x -y )≤8,∴z ∈[3,8]. 答案: [3,8]9.若a >b >0,c <d <0,e <0.求证:e a -c2>e b -d2.证明: ∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0. ∴0<1a -c2<1b -d2.又∵e <0,∴e a -c2>e b -d2.10.某公司租赁甲、乙两种设备生产A ,B 两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元,现该公司要生产A 类产品至少50件,B 类产品至少140件,所需租赁费最多不超过2 500元,写出满足上述所有不等关系的不等式.解析: 设甲种设备需要生产x 天,乙种设备需要生产y 天,则甲、乙两种设备每天生产A ,B 两类产品的情况如表所示:A 类产品(件)B 类产品(件)租赁费(元)甲设备 5 10 200 乙设备620300则x ,y 满足⎩⎪⎨⎪⎧5x +6y ≥50,10x +20y ≥140,200x +300y ≤2 500,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧5x +6y ≥50,x +2y ≥14,2x +3y ≤25,x ∈N ,y ∈N .B 级 能力提升1.(xx·北京平谷4月)已知a ,b ,c ,d 均为实数,有下列命题: ①若ab >0,bc -ad >0,则c a -db>0; ②若ab >0,c a -d b>0,则bc -ad >0; ③若bc -ad >0,c a -d b>0,则ab >0.其中正确命题的个数是( ) A .0 B .1 C .2D .3解析: ∵ab >0,bc -ad >0, ∴c a -d b =bc -adab>0,∴①正确;∵ab >0,又c a -db>0,即bc -adab>0, ∴bc -ad >0,∴②正确; ∵bc -ad >0,又c a -d b >0,即bc -adab>0, ∴ab >0,∴③正确.故选D . 答案: D2.已知存在实数a 满足ab 2>a >ab ,则实数b 的取值范围是________. 解析: ∵ab 2>a >ab ,∴a ≠0, 当a >0时,b 2>1>b ,即⎩⎪⎨⎪⎧ b 2>1,b <1,解得b <-1;当a <0时,b 2<1<b ,即⎩⎪⎨⎪⎧b 2<1,b >1无解.综上可得b <-1. 答案: (-∞,-1)3.已知12<a <60,15<b <36,求a -b ,a b的取值范围. 解析: ∵15<b <36,∴-36<-b <-15. 又12<a <60,∴12-36<a -b <60-15, ∴-24<a -b <45,即a -b 的取值范围是(-24,45). ∵136<1b <115, ∴1236<a b <6015, ∴13<ab<4,即a b 的取值范围是⎝ ⎛⎭⎪⎫13,4. 4.某单位组织职工去某地参观学习需包车前往.甲车队说:“如果领队买一张全票,其余人可享受7.5折优惠.”乙车队说:“你们属团体票,按原价的8折优惠.”这两个车队的原价、车型都是一样的,试根据单位去的人数比较两车队的收费哪家更优惠.解析: 设该单位职工有n 人(n ∈N *),全票价为x 元,坐甲车需花y 1元,坐乙车需花y 2元,则y 1=x +34x ·(n -1)=14x +34xn ,y 2=45nx .所以y 1-y 2=14x +34xn -45nx=14x -120nx =14x ⎝ ⎛⎭⎪⎫1-n 5. 当n =5时,y 1=y 2; 当n >5时,y 1<y 2; 当n <5时,y 1>y 2.因此当单位去的人数为5人时,两车队收费相同;多于5人时,甲车队更优惠;少于5人时,乙车队更优惠.第二节 一元二次不等式及其解法1.会从实际情境中抽象出一元二次不等式模型.2.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的关系. 3.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.三个“二次”间的关系 判别式Δ=b 2-4acΔ>0 Δ=0 Δ<0二次函数y =ax 2+bx +c(a >0)的图象一元二次方程有两相异实根有两相等实根没有ax2+bx+c=0(a >0)的根x1,x2(x1<x2)x1=x2=-b2a实数根ax2+bx+c>0(a>0)的解集{x|x<x1或x>x2}⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x⎪⎪⎪x≠-b2aR ax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅1.分式不等式与一元二次不等式的关系(1)x-ax-b>0等价于(x-a)(x-b)>0.(2)x-ax-b<0等价于(x-a)(x-b)<0.(3)x-ax-b≥0等价于⎩⎪⎨⎪⎧x-a x-b≥0,x-b≠0.(4)x-ax-b≤0等价于⎩⎪⎨⎪⎧x-a x-b≤0,x-b≠0.2.两个常用的结论(1)不等式ax2+bx+c>0(a≠0)对任意实数x恒成立⇔⎩⎪⎨⎪⎧a>0,Δ<0.(2)不等式ax2+bx+c<0(a≠0)对任意实数x恒成立⇔⎩⎪⎨⎪⎧a<0,Δ<0.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)若不等式ax2+bx+c<0的解集为(x1,x2),则必有a>0.( )(2)若不等式ax2+bx+c>0的解集是(-∞,x1)∪(x2,+∞),则方程ax2+bx+c=0的两个根是x1和x2.( )(3)若方程ax2+bx+c=0(a≠0)没有实数根,则不等式ax2+bx+c>0的解集为R.( )(4)不等式ax2+bx+c≤0在R上恒成立的条件是a<0且Δ=b2-4ac≤0.()(5)若二次函数y=ax2+bx+c的图象开口向下,则不等式ax2+bx+c<0的解集一定不是空集.( )答案:(1)√(2)√(3)×(4)×(5)√2.不等式x(2-x)>0的解集是( )A .(-∞,0)B .(0,2)C .(-∞,0)∪(2,+∞)D .(2,+∞)答案: B3.x 2-ax +b >0的解集为{x |x <2或x >3},则a +b 的值是( ) A .1 B .-1 C .11 D .12答案: C4.a <0时,不等式x 2-2ax -3a 2<0的解集是________. 解析: ∵x 2-2ax -3a 2=0, ∴x 1=3a ,x 2=-a .又a <0,∴不等式的解集为{x |3a <x <-a }. 答案: {x |3a <x <-a }5.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析: ∵不等式x 2+ax +4<0的解集不是空集, ∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案: (-∞,-4)∪(4,+∞)一元二次不等式的解法互动讲练型 解下列不等式: (1)x 2+3x +4<0; (2)-3x 2-2x +8≤0; (3)12x 2-ax >a 2(a ∈R ).解析: (1)由Δ=9-16=-7<0,故不等式的解集为∅.(2)原不等式等价于3x 2+2x -8≥0⇔(x +2)(3x -4)≥0⇔x ≤-2或x ≥43,故不等式的解集为⎩⎨⎧⎭⎬⎫x | x ≤-2或x ≥43 . (3)原不等式可化为12x 2-ax -a 2>0⇔(4x +a )(3x -a )>0, 令(4x +a )(3x -a )=0得x 1=-a 4,x 2=a3. ①a >0时,-a 4<a 3,此时不等式等价于x <-a 4或x >a3.②a =0时,不等式等价于x 2>0⇔x ≠0.③a <0时,-a 4>a 3,此时不等式等价于x <a 3或x >-a4.综上所述,当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x | x <-a 4或x >a 3; 当a =0时,不等式的解集为{x |x ≠0}; 当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x | x <a 3或x >-a 4 .解下列不等式: (1)8x -1≤16x 2;(2)ax 2-(2a +1)x +2<0(a >0).解析: (1)原不等式转化为16x 2-8x +1≥0, 即(4x -1)2≥0,∴x ∈R , 故原不等式的解集为R .(2)原不等式可化为(ax -1)(x -2)<0.因a >0,原不等式可以化为a (x -2)⎝⎛⎭⎪⎫x -1a <0,根据不等式的性质知这个不等式等价于(x -2)·⎝⎛⎭⎪⎫x -1a <0,方程(x -2)⎝ ⎛⎭⎪⎫x -1a =0的两个根是2,1a.当0<a <12时,2<1a ,不等式的解集是⎩⎨⎧⎭⎬⎫x | 2<x <1a ,当a =12时,不等式的解集是∅,当a >12时,1a <2,不等式的解集是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a <x <2 .综上所述,当0<a <12时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2<x <1a ; 当a =12时,不等式的解集为∅;当a >12时,不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1a<x <2 .1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图象,写出不等式的解集.2.解含参数的一元二次不等式可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.一元二次不等式恒成立问题分层深化型 设函数f (x )=mx 2-mx -1(m ≠0).(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)若对于x ∈[1,3],f (x )<-m +5恒成立,求m 的取值范围. 解析: (1)要使mx 2-mx -1<0恒成立,由m ≠0,得⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0⇒-4<m <0.所以-4<m <0.(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:法一:令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)=7m -6<0, 所以m <67,则0<m <67;当m <0时,g (x )在[1,3]上是减函数,所以g (x )max =g (1)=m -6<0,所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪0<m <67或m <0. 法二:因为x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0,又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝ ⎛⎭⎪⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 因为m ≠0,所以,m 的取值范围是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫m ⎪⎪⎪m <0或0<m <67 .1.(xx·河南郑州调研)若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12都成立,求a 的最小值.解析: 法一:由于x >0,则由已知可得a ≥-x -1x 在x ∈⎝ ⎛⎦⎥⎤0,12上恒成立,而当x ∈⎝ ⎛⎦⎥⎤0,12时,⎝⎛⎭⎪⎫-x -1x max =-52,∴a ≥-52,故a 的最小值为-52.法二:设f (x )=x 2+ax +1,则其对称轴为x =-a2.(1)若-a 2≥12,即a ≤-1时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递减,此时应有f ⎝ ⎛⎭⎪⎫12≥0,从而-52≤a ≤-1.(2)若-a 2<0,即a >0时,f (x )在⎝ ⎛⎦⎥⎤0,12上单调递增,此时应有f (0)=1>0恒成立,故a >0.(3)若0≤-a 2<12,即-1<a ≤0时,则应有f ⎝ ⎛⎭⎪⎫-a 2=a 24-a22+1=1-a 24≥0恒成立,故-1<a ≤0.综上可知a ≥-52,故a 的最小值为-52.2.求使不等式x 2+(a -6)x +9-3a >0,|a |≤1恒成立的x 的取值范围.解析: 将原不等式整理为形式上是关于a 的不等式(x -3)a +x 2-6x +9>0. 令f (a )=(x -3)a +x 2-6x +9. 因为f (a )>0在|a |≤1时恒成立,所以(1)若x =3,则f (a )=0,不符合题意,应舍去.(2)若x ≠3,则由一次函数的单调性,可得⎩⎪⎨⎪⎧f-1>0,f 1>0,即⎩⎪⎨⎪⎧x 2-7x +12>0,x 2-5x +6>0,解得x <2或x >4.故x 的取值范围为(-∞,2)∪(4,+∞).3.(xx·广东湛江检测)设奇函数f (x )在[-1,1]上是单调函数,且f (-1)=-1.若函数f (x )≤t 2-2at +1对所有的x ∈[-1,1]都成立,则当a ∈[-1,1]时,求t 的取值范围.解析: ∵f (x )为奇函数,f (-1)=-1, ∴f (1)=-f (-1)=1.又∵f (x )在[-1,1]上是单调函数, ∴-1≤f (x )≤1,∴当a ∈[-1,1]时,t 2-2at +1≥1恒成立, 即t 2-2at ≥0恒成立.令g (a )=t 2-2at ,a ∈[-1,1],∴⎩⎪⎨⎪⎧t 2-2t ≥0,t 2+2t ≥0,解得t ≥2或t =0或t ≤-2.t 的取值范围为t ≥2或t =0或t ≤-2.恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.一元二次不等式的应用互动讲练型某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8 0≤x ≤5,10.2x >5,假定该产品产销平衡,那么根据上述统计规律: (1)要使工厂有盈利,产品数量x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?解析: 依题意得G (x )=x +2,设利润函数为f (x ),则f (x )=R (x )-G (x ),所以f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8 0≤x ≤5,8.2-x x >5,(1)要使工厂有盈利,则有f (x )>0,因为f (x )>0⇔⎩⎪⎨⎪⎧0≤x ≤5,-0.4x 2+3.2x -2.8>0或⎩⎪⎨⎪⎧x >5,8.2-x >0⇒⎩⎪⎨⎪⎧0≤x ≤5,x 2-8x +7<0或5<x <8.2⇒⎩⎪⎨⎪⎧0≤x ≤5,1<x <7或5<x <8.2⇒1<x ≤5或5<x <8.2⇒1<x <8.2.所以要使工厂盈利,产品数量应控制在大于100台小于820台的范围内.(2)0≤x ≤5时,f (x )=-0.4(x -4)2+3.6, 故当x =4时,f (x )有最大值3.6. 而当x >5时,f (x )<8.2-5=3.2, 所以当工厂生产400台产品时,盈利最大, 又x =4时,R 44=2.4(万元/百台)=240(元/台).故此时每台产品的售价为240元.某同学要把自己的计算机接入因特网.现有两家ISP 公司可供选择.公司A 每小时收费1.5元;公司B 在用户每次上网的第1小时内收费1.7元,第2小时内收费1.6元,以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算).假设该同学一次上网时间总和小于17小时,那么该同学如何选择ISP 公司较省钱?解析: 假设一次上网x 小时,则公司A 收取的费用为1.5x 元, 公司B 收取的费用为x 35-x20元.若能够保证选择A 比选择B 费用少,则x 35-x20>1.5x (0<x <17),整理得x 2-5x <0,解得0<x <5,所以当一次上网时间在5小时以内时,选择公司A 的费用少;超过5小时,选择公司B 的费用少;上网5小时,公司A 、B 的费用一样.求解不等式应用题的四个步骤(1)阅读理解,认真审题,把握问题中的关键量,找准不等关系.(2)引进数学符号,将文字信息转化为符号语言,用不等式表示不等关系,建立相应的数学模型.(3)解不等式,得出数学结论,要注意数学模型中自变量的实际意义. (4)回归实际问题,将数学结论还原为实际问题的结果.A 级 基础训练1.(xx·广东惠州模拟)不等式1-x2+x ≥0的解集为( )A .[-2,1]B .(-2,1]C .(-∞,-2)∪(1,+∞)D .(-∞,-2]∪(1,+∞)解析: 1-x2+x ≥0⇔⎩⎪⎨⎪⎧1-x 2+x ≥0,2+x ≠0⇔-2<x ≤1.答案: B2.已知不等式x 2-2x -3<0的解集为A ,不等式x 2+x -6<0的解集为B ,不等式x 2+ax +b <0的解集为A ∩B ,那么a +b 等于( )A .-3B .1C .-1D .3解析: 由题意得A ={x |-1<x <3},B ={x |-3<x <2},A ∩B ={x |-1<x <2},由根与系数的关系可知,a =-1,b =-2,∴a +b =-3.答案: A3.下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)解析: 由x <1x<x2可得⎩⎪⎨⎪⎧x <1x ,1x <x 2,即⎩⎪⎨⎪⎧x 2-1x<0,1-x 3x <0,解得⎩⎪⎨⎪⎧x <-1或0<x <1,x <0或x >1,综合知x <-1.答案: A4.如果关于x 的不等式5x 2-a ≤0的所有正整数解是1,2,3,4,那么实数a 的取值范围是( )A .[80,125)B .(80,125)C .(-∞,80)D .(125,+∞)解析: 由5x 2-a ≤0,得-a5≤x ≤a5,而5x 2-a ≤0的所有正整数解是1,2,3,4,∴4≤a5<5,∴80≤a <125.答案: A5.(xx·辽宁五校协作体联考)已知一元二次不等式f (x )≤0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≤12或x ≥3,则f (e x )>0的解集为( ) A .{x |x <-ln 2或x >ln 3} B .{x |ln 2<x <ln 3} C .{x |x <ln 3}D .{x |-ln 2<x <ln 3}解析: 由题意可知一元二次不等式所对应的二次函数的图象开口向下,故f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <3, 又∵f (e x)>0,∴12<e x <3,解得-ln 2<x <ln 3.答案: D6.不等式|x (x -2)|>x (x -2)的解集是________.解析: 不等式|x (x -2)|>x (x -2)的解集即x (x -2)<0的解集,解得0<x <2. 答案: {x |0<x <2}7.(xx·重庆万州考前模拟)若关于x 的不等式ax >b 的解集为⎝ ⎛⎭⎪⎫-∞,15,则关于x 的不等式ax 2+bx -45a >0的解集为____________.解析: 由已知ax >b 的解集为⎝⎛⎭⎪⎫-∞,15,可知a <0,且b a =15,将不等式ax 2+bx -45a>0两边同除以a ,得x 2+b a x -45<0,所以x 2+15x -45<0,即5x 2+x -4<0,解得-1<x <45,故原不等式的解集为⎝⎛⎭⎪⎫-1,45. 答案: ⎝⎛⎭⎪⎫-1,45 8.若关于x 的不等式ax 2-x +2a <0的解集为∅,则实数a 的取值范围是________. 解析: 依题意可知,问题等价于ax 2-x +2a ≥0恒成立, 当a =0时,-x ≥0不恒成立,故a =0舍去; 当a ≠0时,要使ax 2-x +2a ≥0恒成立, 即f (x )=ax 2-x +2a 的图象不在x 轴的下方,∴⎩⎪⎨⎪⎧a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,1-8a 2≤0,解得a ≥24,即a 的取值范围是⎣⎢⎡⎭⎪⎫24,+∞. 答案: ⎣⎢⎡⎭⎪⎫24,+∞ 9.已知二次函数y =x 2+px +q ,当y <0时,有-12<x <13,解不等式qx 2+px +1>0.解析: 因为当y <0时,有-12<x <13,所以x 1=-12与x 2=13是方程x 2+px +q =0的两个实数根.由根与系数的关系得⎩⎪⎨⎪⎧13-12=-p ,13×⎝ ⎛⎭⎪⎫-12=q ,解得⎩⎪⎨⎪⎧p =16,q =-16,所以不等式qx 2+px +1>0⇔-16x 2+16x +1>0⇔x 2-x -6<0,解得-2<x <3,即不等式qx 2+px +1>0的解集为{x |-2<x <3}. 10.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值范围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解析: (1)∵函数f (x )=ax 2+2ax +1的定义域为R , ∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立,当a ≠0时,则有⎩⎪⎨⎪⎧a >0,Δ=2a 2-4a ≤0,∴0<a ≤1.综上可知,a 的取值范围是[0,1]. (2)∵f (x )=ax 2+2ax +1 =ax +12+1-a ,∵a >0,∴当x =-1时,f (x )min =1-a , 由题意得,1-a =22, ∴a =12,∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0,解得-12<x <32,所以不等式的解集为⎝ ⎛⎭⎪⎫-12,32. B 级 能力提升1.对一切正整数n ,不等式2x -1x >nn +1恒成立,则实数x 的取值范围是( )A .(-∞,0)B .(-∞,0)∪(1,+∞)C .(1,+∞)D .(-∞,0)∪[1,+∞)解析: 由条件知只需2x -1x >⎝ ⎛⎭⎪⎫n n +1max ,而n n +1=11+1n<1.∵2x -1x ≥1,解得x ∈(-∞,0)∪[1,+∞).答案: D2.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是________. 解析: 原不等式即(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3.综上可得-4≤a ≤3. 答案: [-4,3]3.一个服装厂生产风衣,月销售量x (件)与售价p (元/件)之间的关系为p =160-2x ,生产x 件的成本R =500+30x (元).(1)该厂月产量多大时,月利润不少于1 300元?(2)当月产量为多少时,可获得最大利润,最大利润是多少? 解析: (1)由题意知,月利润y =px -R ,即y =(160-2x )x -(500+30x )=-2x 2+130x -500. 由月利润不少于1 300元,得-2x 2+130x -500≥1 300. 即x 2-65x +900≤0,解得20≤x ≤45.故该厂月产量在20~45件时,月利润不少于1 300元.(2)由(1)得,y =-2x 2+130x -500=-2⎝⎛⎭⎪⎫x -6522+3 2252, 由题意知,x 为正整数.故当x =32或33时,y 最大为1 612.所以当月产量为32或33件时,可获最大利润,最大利润为1 612元.4.设二次函数f (x )=ax 2+bx +c ,函数F (x )=f (x )-x 的两个零点为m ,n (m <n ). (1)若m =-1,n =2,求不等式F (x )>0的解集; (2)若a >0,且0<x <m <n <1a,比较f (x )与m 的大小.解析: (1)由题意知,F (x )=f (x )-x =a (x -m )·(x -n ), 当m =-1,n =2时,不等式F (x )>0, 即a (x +1)(x -2)>0.那么当a >0时,不等式F (x )>0的解集为{x |x <-1或x >2}; 当a <0时,不等式F (x )>0的解集为{x |-1<x <2}.(2)f(x)-m=a(x-m)(x-n)+x-m=(x-m)(ax-an+1),∵a>0,且0<x<m<n<1a,∴x-m<0,1-an+ax>0.∴f(x)-m<0,即f(x)<m.第三节二元一次不等式(组)及简单的线性规划问题1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧的所有点组成的平面区域不包括边界直线Ax+By+C≥0包括边界直线不等式组各个不等式所表示平面区域的公共部分满足二元一次不等式(组)的x和y的取值构成的有序数对(x,y),叫做二元一次不等式(组)的解,所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.3.线性规划的有关概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式(组)目标函数关于x,y的函数解析式,如z=x+2y线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题1.确定二元一次不等式表示的平面区域的方法确定二元一次不等式表示的平面区域,常采用“直线定界,测试点定域”的方法.(1)直线定界,即若不等式不含等号,则应把直线画成虚线;若不等式含有等号,把直线画成实线.(2)特殊点定域,由于对在直线Ax +By +C =0同侧的点,实数Ax +By +C 的值的符号都相同,故为确定Ax +By +C 的值的符号,可采用特殊点法,如取原点、(0,1)、(1,0)等点.2.求二元一次函数z =ax +by (ab ≠0)的最值的方法将函数z =ax +by 转化为直线的斜截式:y =-ab x +z b ,通过求直线的截距z b的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距z b取最小值时,z 也取最小值; (2)当b <0时,截距z b取最大值时,z 取最小值;截距z b取最小值时,z 取最大值.1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( ) (2)任何一个二元一次不等式组都表示平面上的一个区域.( ) (3)线性目标函数的最优解可能是不唯一的.( )(4)线性目标函数取得最值的点一定在可行域的顶点或边界上.( )(5)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( )答案: (1)× (2)× (3)√ (4)√ (5)×2.下面给出的四个点中,位于⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0表示的平面区域内的点是( )A .(0,2)B .(-2,0)C .(0,-2)D .(2,0)解析: 将四个点的坐标分别代入不等式组⎩⎪⎨⎪⎧x +y -1<0,x -y +1>0,满足条件的是(0,-2).答案: C3.(xx·湖北卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤4,x -y ≤2,x ≥0,y ≥0,则2x +y 的最大值是( )A .2B .4C .7D .8解析: 画出x ,y 的约束条件限定的可行域为如图阴影区域,令u =2x +y ,则y =-2x +u ,先画出直线y =-2x ,再平移直线y =-2x ,当经过点A (3,1)时,代入u ,可得最大值为7,故选C .答案: C4.已知实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≤2,x -y ≤0,则此不等式组表示的平面区域的面积是________.解析: 作出可行域为如图所示的三角形,∴S △=12×1×1=12.答案: 125.若x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥0x +2y ≥32x +y ≤3,则z =x -y 的最大值是________.解析: 作出约束条件⎩⎪⎨⎪⎧x ≥0x +2y ≥32x +y ≤3表示的平面区域,如图阴影部分所示,当直线z=x -y 过点A (1,1)时,目标函数z =x -y 取得最大值0.答案: 0二元一次不等式(组)表示的平面区域自主练透型1.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≥1,x +y ≤2,y ≥ax所表示的区域为三角形,则实数a 的取值范围是( )A .(-∞,1)B .(0,1)C .(-1,1)D .(1,+∞)解析: y =ax 为过原点的直线,当a ≥0时,若能构成三角形,则需0≤a <1;当a <0时,若能构成三角形,则需-1<a <0,综上a ∈(-1,1).答案: C2.(xx·安徽卷)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.解析: 作出不等式组表示的平面区域如图中阴影部分所示,可知S △ABC =12×2×(2+2)=4.答案: 41.作平面区域时要“直线定界,测试点定域”,当不等式无等号时直线画成虚线,有等号时直线画成实线,若直线不过原点,测试点常选取原点.2.求平面区域的面积,要先确定区域,若是规则图形可直接求,若不规则可通过分割求解.求线性目标函数的最值分层深化型(1)(xx·辽宁卷)已知x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,则目标函数z =3x +4y的最大值为________.(2)(xx·湖南卷)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x ,x +y ≤4,y ≥k ,且z =2x +y 的最小值为-6,则k =________.解析: (1)画出x ,y 满足约束条件的可行域如图阴影部分.由⎩⎪⎨⎪⎧3x -y -3=0,x -2y +4=0得⎩⎪⎨⎪⎧x =2,y =3,∴点A 的坐标为(2,3).作直线l 0:3x +4y =0,可知当平移l 0到l (l 过点A )时,目标函数有最大值,此时z max =3×2+4×3=18.(2)由题意知当z =2x +y 过(k ,k )时z =2x +y 有最小值,将(k ,k )代入z =2x +y ,∴3k =-6,∴k =-2.答案: (1)18 (2)-21.(xx·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0,x -3y +1≤0,3x -y -5≥0,则z =2x -y 的最大值为( )A .10B .8C .3D .2解析: 作出可行域如图中阴影部分所示,由z =2x -y 得y =2x -z ,作出直线y =2x ,平移使之经过可行域,观察可知,当直线经过点A (5,2)时,对应的z 值最大.故z max =2×5-2=8.答案: B2.(xx·北京卷)若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为( )A .2B .-2C .12D .-12解析: 作出可行域,如图中阴影部分所示,当k >0时,z =y -x 无最小值,所以k <0,当k =-2时可行域内为点(0,2),不合题意.∴k =-12,故选D .答案: D3.(xx·浙江卷)若实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1,则x +y 的取值范围是________.解析: 画出约束条件所确定的可行域(如图中阴影部分所示).令z =x +y ,则y =-x +z ,画出直线l :y =-x ,平移直线l ,当l 经过可行域中的点A (1,0)时,z 取最小值,且z min =1+0=1;当l 经过可行域中的点B (2,1)时,z 取最大值,且z max =2+1=3,故x +y 的取值范围是[1,3].答案: [1,3]4.若x ,y 满足条件⎩⎪⎨⎪⎧3x -5y +6≥0,2x +3y -15≤0,y ≥0,当且仅当x =y =3时,z =ax -y 取得最小值,则实数a 的取值范围是________.解析: 画出可行域,如图中阴影部分所示,直线3x -5y +6=0与2x +3y -15=0交于点M (3,3),由目标函数z =ax -y ,得y =ax -z ,其纵截距为-z ,当z 最小时,-z 最大.依题意,有-23<a <35.答案: ⎝ ⎛⎭⎪⎫-23,355.(xx·课标全国卷Ⅰ)不等式组⎩⎪⎨⎪⎧x +y ≥1,x -2y ≤4的解集记为D ,有下面四个命题:p 1:∀(x ,y )∈D ,x +2y ≥-2,p 2:∃(x ,y )∈D ,x +2y ≥2, p 3:∀(x ,y )∈D ,x +2y ≤3,p 4:∃(x ,y )∈D ,x +2y ≤-1.其中的真命题是( ) A .p 2,p 3 B .p 1,p 2 C .p 1,p 4D .p 1,p 3解析: 画出可行域如图阴影部分所示.作直线l 0:y =-12x ,平移l 0,当直线经过A (2,-1)时,x +2y 取最小值,此时(x +2y )min =0.故p 1:∀(x ,y )∈D ,x +2y ≥-2为真,p 2:∃(x ,y )∈D ,x +2y ≥2为真.故选B .答案: B6.(xx·浙江卷)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.解析: 画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.答案: ⎣⎢⎡⎦⎥⎤1,32 线性目标函数最值问题的解题策略(1)求线性目标函数的最值.线性目标函数的最优解一般在平面区域的顶点或边界处取得,所以对于一般的线性规划问题,我们可以直接解出可行域的顶点,然后将坐标代入目标函数求出相应的数值,从而确定目标函数的最值.(2)由目标函数的最值求参数.求解线性规划中含参数问题的基本方法有两种:一是把参数当成常数用,根据线性规划问题的求解方法求出最优解,代入目标函数确定最值,通过构造方程或不等式求解参数的值或取值范围;二是先分离含有参数的式子,通过观察的方法确定含参的式子所满足的条件,确定最优解的位置,从而求出参数.求非线性目标函数的最值互动讲练型(1)(xx·福建卷)已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29 B .37D .49(2)实数x ,y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,求z =y -1x +1的取值范围. 解析: (1)平面区域Ω,如图中阴影部分所示,∵圆C 与x 轴相切,∴b =1,把y =1分别代入x -y +3=0和x +y -7=0, 得x =-2和x =6,∴-2≤a ≤6,∴(a 2)max =36,∴(a 2+b 2)max =36+1=37,故选C .(2)作出不等式组表示的可行域,如图中的阴影部分.z =y -1x +1=y -1x --1,所以z 的几何意义是动点(x ,y )与定点A (-1,1)所连直线的斜率.结合图可知,z 的最小值为直线l 1的斜率,z 的最大值无限接近于直线l 2的斜率值.l 1的斜率k 1=k AB ,l 2与直线x -y =0平行.由⎩⎪⎨⎪⎧y =0,2x -y -2=0,得点B 的坐标为(1,0),k 1=-12.∴z ∈⎣⎢⎡⎭⎪⎫-12,1. 答案: (1)C变量x ,y 满足⎩⎪⎨⎪⎧x -4y +3≤0,3x +5y -25≤0,x ≥1.(1)设z =y x,求z 的最小值;(2)设z =x 2+y 2,求z 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学大一轮复习高考大题专项练6 文
1.A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:
(1)试估计40min内不能赶到火车站的概率;
(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;
(3)现甲、乙两人分别有40min和50min时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.
2.(xx天津,文15)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:
现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
(1)用表中字母列举出所有可能的结果;
(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.
3.(xx东北三校二模)某个团购网站为了更好地满足消费者需求,对在其网站发布的团购产品展开了用户调查,每个用户在使用了团购产品后可以对该产品进行打分,最高分是10分.上个月该网站共卖出了100份团购产品,所有用户打分的平均分作为该产品的参考分值,将这些产品按照得分分成以下几组:第一组[0,2),第二组[2,4),第三组[4,6),第四组[6,8),第五组[8,10],得到的频率分布直方图如图所示.
(1)分别求第三、四、五组的频率;
(2)该网站在得分较高的第三、四、五组中用分层抽样的方法抽取了6个产品作为下个月团购的特惠产品,某人决定在这6个产品中随机抽取2个购买,求他抽到的2个产品均来自第三组的概率.
4.某重要会议在北京召开,为了搞好对外宣传工作,会务组选聘了16名男记者和14名女记者担任对外翻译工作,调查发现,男、女记者中分别有10人和6人会俄语.
(1)根据以上数据完成以下2×2列联表,并回答能否在犯错的概率不超过0.10的前提下认为性别与会俄语有关?
参考公式:K2=,其中n=a+b+c+d.
参考数据:
08
230635
(2)会俄语的6名女记者中有4人曾在俄罗斯工作过,若从会俄语的6名女记者中随机抽取2人做同声翻译,则抽出的2人都在俄罗斯工作过的概率是多少?
5.(xx福建福州质检)近年来,我国许多地方出现雾霾天气,影响了人们的出行、工作与健康.其形成与PM2.5有关.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.PM2.5日均值越小,空气质量越好.为加强生态文明建设,我国国家环保部于2012年2月29日,发布了《环境空气质量标准》.见下表:
PM2.5日均值k(微克)空气质量等级
k≤35一级35<k≤75二级k>75超标
某环保部门为了了解甲、乙两市的空气质量状况,在过去某月30天中分别随机抽取了甲、乙两市6天的日均值作为样本,样本数据茎叶图如图所示(十位为茎,个位为叶).
(1)分别求出甲、乙两市PM2.5日均值的样本平均数,据此判断哪个市的空气质量较好;
(2)若从甲市这6天的样本数据中随机抽取2天的数据,求恰有一天空气质量等级为一级的概率.
6.(xx福建厦门部分中学高三联考)某公司销售A、B、C三款手机,每款手机都有移动版和联通版两种型号,据统计3月份共售出1000部手机(具体销售情况见下表).
已知在售出的1000部手机中,移动版B款手机售出的频率是0.21.
(1)现用分层抽样的方法在A,B,C三款手机中抽取50部,求在C款手机中抽取多少部;
(2)若y≥136,z≥133,求售出的C款手机中移动版比联通版多的概率.
答案:1.解:(1)由已知共调查了100人,其中40min内不能赶到火车站的有12+12+16+4=44人,则用频率估计概率为0.44.
(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:
(3)设A1,A2分别表示甲选择L1和L2时,在40min内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50min内赶到火车站.
由(2)知P(A1)=0.1+0.2+0.3=0.6,
P(A2)=0.1+0.4=0.5,
则P(A1)>P(A2),故甲应选择L1.
同理,P(B1)=0.1+0.2+0.3+0.2=0.8,
P(B2)=0.1+0.4+0.4=0.9,
则P(B2)>P(B1),
故乙应选择L2.
2.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为
{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z },{Y,Z},共15种.
(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为
{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.
因此,事件M发生的概率P(M)=.
3.解:(1)第三组的频率是0.150×2=0.3,
第四组的频率是0.100×2=0.2,
第五组的频率是0.050×2=0.1.
(2)设“抽到的两个产品均来自第三组”为事件A,
由题意可知,从第三、四、五组中分别抽取3个,2个,1个.
不妨设第三组抽到的是A1,A2,A3,第四组抽到的是B1,B2,第五组抽到的是C1,所含基本事件总数
为:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A1,C1},{A2,B1},{A2,B2},{A2,C1},{A3,B1},{A3,B2},{A
C1},{B1,B2},{B1,C1},{B2,C1},抽到的2个产品均来自第三组的事件为{A1,A2},{A1,A3},{A2,A3}, 3,
共3个,故P(A)=.
4.解:(1)如下表:
假设是否会俄语与性别无关.
由已知数据可求得
k=
≈1.1575<2.706.
故在犯错的概率不超过0.10的前提下不能判断会俄语与性别有关.
(2)会俄语的6名女记者,分别设为A,B,C,D,E,F,其中A,B,C,D曾在俄罗斯工作过.
则从这6人中任取2人有AB,AC,AD,AE,AF,BC,BD,BE,BF,CD,CE,CF,DE,DF,EF共15种,其中2人都在俄罗斯工作过的是AB,AC,AD,BC,BD,CD共6种,
故抽出的女记者中,2人都在俄罗斯工作过的概率是P=.
5.解:(1)甲市抽取的样本数据分别是32,34,45,56,63,70;
乙市抽取的样本数据分别为33,46,47,51,64,71.
=50,
=52.
因为,所以甲市的空气质量较好.
(2)由茎叶图知,甲市6天中有2天空气质量等级为一级,有4天空气质量等级为二级,设空气质量等级为二级的4天数据分别为a,b,c,d,空气质量等级为一级的2天数据分别为m,n,则从6天中抽取2天的所有情况为ab,ac,ad,am,an,bc,bd,bm,bn,cd,cm,cn,dm,dn,mn,基本事件总数为15.
记“恰有一天空气质量等级为一级”为事件A,则事件A包含的基本事件
为:am,bm,cm,dm,an,bn,cn,dn,事件数为8.
所以P(A)=,即恰有一天空气质量等级为一级的概率为.
6.解:(1)因为=0.21,所以x=210,
所以C款手机的总数y+z=1000-(150+200+160+210)=280,则应在C款手机中抽取的手机数为×280=14.
(2)设“售出的C款手机中移动版比联通版多”为事件M,售出的C款手机中移动版、联通版的手机数记为(y,z).
因为y+z=280,y,z∈N*,满足y≥136,z≥133的基本事件有
(136,144),(137,143),(138,142),(139,141),(140,140),(141,139),(142,138),(143,137),(1 44,136),(145,135),(146,134),(147,133),共12个,事件M包含的基本事件有
(141,139),(142,138),(143,137),(144,136),(145,135),(146,134),(147,133),共7个,所以P(M)=,即售出的C款手机中移动版比联通版多的概率为.
实用文档。