2018单调性与奇偶性

合集下载

函数单调性奇偶性周期性

函数单调性奇偶性周期性

函数单调性、奇偶性、周期性◆知识点梳理 一函数的奇偶性:1、定义域关于原点对称 奇函数)(x f 在原点有定义,则0)0(=f ;2、)(x f 是奇函数⇔)()(x f x f -=-⇔)(x f 图像关于原点对称;3、)(x f 是偶函数)()(x f x f =-⇔⇔)(x f 图像关于y 轴对称;4、一些判断奇偶性的规律: ①奇±奇=奇,偶±偶=偶②奇×/÷奇=偶,奇×/÷偶=奇,偶×/÷偶=偶二函数的单调性 方法:①导数法; ②规律判断法;③图像法; 1、单调性的定义:)(x f 在区间M 上是增减函数,,21M x x ∈∀⇔当21x x <时)0(0)()(21><-x f x f2、采用单调性的定义判定法应注意:一般要将式子)()(21x f x f -化为几个因式作积或作商的形式,以利于判断正负; 3、对于已知单调区间求参数范围,一般有以下两种方法: ①转化为恒成立问题,接着用求最值的视角去解决;②先求出该函数的完整单调区间,根据此区间比已知单调区间大去求解; 4、一些判断单调性的规律: ①减 + 减 =减,增 + 增 = 增;②1()()()f x f x f x -与、的单调性相反;三复合函数单调性的判定:定义域优先考虑1、首先将原函数)]([x g f y =分解为基本初等函数: )(x g u =与)(u f y =;2、分别研究两个函数在各自定义域内的单调性;3、根据“同增异减”来判断原函数在其定义域内的单调性; 四函数的周期性1、周期性的定义:若有)()(x f T x f =+,则称函数)(x f 为周期函数,T 为它的一个周期;如没有特别说明,遇到的周期都指最小正周期;2、三角函数的周期①π==T x y :tan ,||:tan ωπω==T x y ②||2:)cos(),sin(ωπϕωϕω=+=+=T x A y x A y 3、与周期有关的结论:①)()(a x f a x f -=+或(2)()f x a f x += ⇒)(x f 的周期为a 2; ②)()(x f a x f -=+⇒)(x f 的周期为a 2;③1()()f x a f x +=⇒)(x f 的周期为a 2;◆考点剖析一考查一般函数的奇偶性例1、 设函数fx 是定义在R 上的奇函数,若当x ∈0,+∞时,fx =lg x ,则满足fx >0的x 的取值范围是 .变式1、 若函数(1)()y x x a =+-为偶函数,则a = A .2- B .1- C .1 D .2变式2、 函数1()f x x x=-的图像关于A .y 轴对称B . 直线x y -=对称C . 坐标原点对称D . 直线x y =对称二考查函数奇偶性的判别例2、判断下下列函数的奇偶性122(1),0()(1),0x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩ 224()|3|3x f x x -=--变式3、已知函数0()(2≠+=x xax x f ,常数)a ∈R . 1讨论函数)(x f 的奇偶性,并说明理由; 变式4、判断下下列函数的奇偶性121()log 1x f x x -=+ 21,0()1,0x x f x x x ->⎧=⎨--≤⎩三考查抽象函数的奇偶性例3、已知函数fx,当x,y ∈R 时,恒有fx+y=fx+fy.求证:fx 是奇函数;变式5A 、若定义在R 上的函数fx 满足:对任意12,x x ∈R 有1212()()()1f x x f x f x +=++,则下列说法一定正确的是Afx 为奇函数 Bfx 为偶函数 C fx+1为奇函数 Dfx+1为偶函数变式5B 、已知函数()f x ,当,x y R ∈时,恒有()()()f x y xf y yf x +=+,求证()f x 是偶函数;三考查一般函数的单调区间暂不讲例4、 设函数1()(01)ln f x x x x x =>≠且,求函数()f x 的单调区间;变式6、函数x e x x f )3()(-=的单调递增区间是 A. )2,(-∞ B.0,3 C.1,4 D. ),2(+∞四考查复合函数的单调区间 例5、判断函数fx=12-x 在定义域上的单调性.变式7、求函数y=21log 4x-x 2的单调区间.五考查函数单调性的运用例6A 、定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则A (3)(2)(1)f f f <-<B (1)(2)(3)f f f <-<C (2)(1)(3)f f f -<<D (3)(1)(2)f f f <<-变式8、2008全国设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,例6B 、已知函数32()f x x ax ax =+-在区间(1,)+∞上递增,求a 的取值范围;变式9、已知函数0()(2≠+=x xa x x f ,常数)a ∈R . 1略 2若函数)(x f 在[2)x ∈+∞,上为增函数,求a 的取值范围.六考查函数周期性的应用例7、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15,f =-则()()5f f =__________;变式10、已知函数()f x 满足:()114f =,()()()()()4,f x f y f x y f x y x y R =++-∈,则()2010f =_____________.变式11、已知定义在R 上的奇函数fx 满足fx+2=-fx ,则,f 6的值为A -1B 0C 1 D2◆方法小结1、注意:单调区间一定要在定义域内,且不可以有“”,只能用“和”,“,”.2、含有参量的函数的单调性问题,可分为两类:一类是由参数的范围判定其单调性;一类是给定单调性求参数范围,其解法是由定义或导数法得到恒成立的不等式,结合定义域求出参数的取值范围.3、判断函数的奇偶性应首先检验函数的定义域是否关于原点对称,然后根据奇偶性的定义判断或证明函数是否具有奇偶性. 如果要证明一个函数不具有奇偶性,可以在定义域内找到一对非零实数a 与-a ,验证fa ±f -a ≠0.4、函数的周期性:第一应从定义入手,第二应结合图象理解.◆课后强化1.若函数2()()af x x a x=+∈R ,则下列结论正确的是A .a ∀∈R ,()f x 在(0,)+∞上是增函数B .a ∀∈R ,()f x 在(0,)+∞上是减函数C .a ∃∈R ,()f x 是偶函数D .a ∃∈R ,()f x 是奇函数2. 下列函数()f x 中,满足“对任意1x ,2x ∈0,+∞,当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB. ()f x =2(1)x - C .()f x =x e D ()ln(1)f x x =+ 3.已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是A 13,23B 13,23C 12,23D 12,234.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是A. 0B. 21C. 1D. 255.已知定义在R 上的奇函数)(x f ,满足(4)()f x f x -=-,且在区间0,2上是增函数,则 .A.(25)(11)(80)f f f -<<B. (80)(11)(25)f f f <<-C. (11)(80)(25)f f f <<-D. (25)(80)(11)f f f -<<6、已知()f x 在R 上是奇函数,且(4)(),f x f x +=2(0,2)()2,(7)x f x x f ∈==当时,则 A.—2 C.—987、设fx 为定义在R 上的奇函数,当x ≥0时,fx=2x +2x+bb 为常数,则f-1= A 3 B 1 C-1 D-38、给定函数①12y x =,②12log (1)y x =+,③|1|y x =-,④12x y +=,其中在区间0,1上单调递减的函数序号是A ①②B ②③C ③④D ①④9、若函数fx =3x +3-x 与gx =3x -3-x 的定义域均为R,则A .fx 与gx 均为偶函数 B. fx 为偶函数,gx 为奇函数 C .fx 与gx 均为奇函数 D. fx 为奇函数,gx 为偶函数 10、11、设函数fx=xe x +ae -x x ∈R 是偶函数,则实数a =________________12、以下4个函数: ①12+=x )x (f ; ②11+-=x x )x (f ; ③2211x x )x (f -+=; ④xxlg )x (f +-=11. 其中既不是奇函数, 又不是偶函数的是 A.①② B. ②③ C. ③④ D. ①②③13、已知函数), x x ( lg x )x (f 122+++=若f a =M, 则f -a 等于A. M a -22B. 22a M -C. 22a M -D. M a 22-14、设y =f x 是定义在R 上的奇函数, 当x ≥0时, f x =x 2-2 x, 则在R 上f x 的表达式为A. )x (x 2--B. ) |x | (x 2-C. ) x (|x |2-D. ) |x | (|x |2- 15.函数1)(+-=x a x f )1,0≠>a a 是减函数,则a 的取值范围是 A .()1,0∈a B .(]+∞∈,1a C .R a ∈ D .+∈R a 16.函数)(x f 112+-=x x 的单调增区间是 A .(][)∞+--∞-11, B .(][)∞+--∞-1,1, C .(]1,-∞- D .()()+∞--∞-,11,17.已知(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是A (0,1)B 1(0,)3C 11[,)73D 1[,1)718.若fx=-x 2+2ax 与1)(+=x ax g 在区间1,2上都是减函数,则a 的值范围是A .)1,0()0,1(⋃-B .]1,0()0,1(⋃-C .0,1D .]1,0(19.若函数)1,0( )(log )(3≠>-=a a ax x x f a 在区间)0,21(-内单调递增,则a 的取值范围是A .)1,41[B . )1,43[C .),49(+∞D .)49,1(20.函数)1lg()(2x x x f ++=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数 21.函数2222)(x x x f -+-=是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数22.函数⎪⎩⎪⎨⎧>+<-=)0(,)0(,)(22x x x x x x x f 是A .奇函数B .偶函数C .是奇函数也是偶函数D .非奇非偶函数23.定义在R 上的偶函数fx 满足fx =fx +2,当x ∈3,5时,fx =2-|x -4|,则A .f sin 6π<f cos 6πB .f sin1>f cos1C .f cos 32π<f sin 32πD .f cos2>f sin224.定义在R 上的函数)(x f 既是偶函数又是周期函数.若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为A .21-B .21C .23-D .23 25.已知定义在R 上的奇函数fx 满足fx+3=-fx ,则,f 6的值为A -1B 0C 1 D226.)(x f 是定义在R 上的以3为周期的偶函数,且0)2(=f ,则方程)(x f =0在区间0,6内解的个数的最小值是A .5B .4C .3D .227.下列函数既是奇函数,又在区间[]1,1-上单调递减的是 A ()sin f x x =B ()1f x x =-+C ()1()2x x f x a a -=+D 2()ln 2xf x x-=+ 28.若函数fx=121+X , 则该函数在-∞,+∞上是A 单调递减无最小值B 单调递减有最小值C 单调递增无最大值D 单调递增有最大值 29.下列函数中,在其定义域内既是奇函数又是减函数的是A. R x x y ∈-=,3B. R x x y ∈=,sinC. R x x y ∈=,D. R x x y ∈=,)21(30.已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =A0 B1 C -1 D ±131.若函数fx 是定义在R 上的偶函数,在]0,(-∞上是减函数,且f 2=0,则使得fx <0的x 的取值范围是A -∞,2B 2,+∞C -∞,-2⋃2,+∞D -2,232.设()f x 是R 上的任意函数,则下列叙述正确的是 A ()()f x f x -是奇函数 B ()()f x f x -是奇函数 C ()()f x f x --是偶函数 D ()()f x f x +-是偶函数33.函数)2(log )(22--=x x x f 的单调增区间是___________,减区间是______________.34. 函数1231)(+--⎪⎭⎫⎝⎛=x x x f 的单调增区间是___________,减区间是______________.35.设fx 是定义在R 上的奇函数,且y=f x 的图象关于直线21=x 对称,则f 1+ f 2+ f 3+ f 4+ f 5=______________.36.若函数)2(log )(22a x x x f a ++=是奇函数,则a = . 37、函数fx =111122+++-++x x x x 的图象 A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称D.关于直线x =1对称38、函数fx 在R 上为增函数,则y =f |x +1|的一个单调递减区间是_________. 39、若fx 为奇函数,且在0,+∞内是增函数,又f -3=0,则xfx <0的解集为_________.40、如果函数fx 在R 上为奇函数,在-1,0上是增函数,且fx +2=-fx ,试比较f 31,f 32,f 1的大小关系______41、已知函数y =fx =cbx ax ++12 a ,b ,c ∈R ,a >0,b >0是奇函数,当x >0时,fx 有最小值2,其中b ∈N 且f 1<25.1试求函数fx 的解析式;2问函数fx 图象上是否存在关于点1,0对称的两点,若存在,求出点的坐标;若不存在,说明理由.42、已知函数()()1011且x x a f x a a a -=>≠+.1判断()f x 的奇偶性;2当1a >时,判断()f x 的单调性,并证明.43、已知函数()f x 是定义在R 上的偶函数,且在[)0,+∞上单调递增,()30f =,则不等式()0f x ≥的解集是 .44、函数()()212log 23f x x x =-++的单调递减区间是 .45、若函数()11a f x x x a=+-+是奇函数,则实数a 的值为 . 46、若函数()2f x a x b =-+在[)0,+∞上为增函数,则实数a 、b 的取值范围分别是 . 47、已知对于任意实数x ,函数()f x 满足()()f x f x -=,若方程()0f x =有2009个实数解,则这2009个实数解之和为 .◆详细解析 例1、(1,0)(1,)-+∞ 变式1、C 变式2、C例2、解:12222(1),0(1),0()()(1),0(1),0x x x x x x f x f x x x x x x x ⎧⎧---≥-+≤⎪⎪-===⎨⎨--+-<->⎪⎪⎩⎩ 故()f x 为偶函数;2()f x 的定义域由240|3|30x x ⎧-≥⎨--≠⎩确定,解得2206x x x -≤≤⎧⎨≠≠⎩且∴定义域为[2,0)(0,2]-关于原点对称∴()f x x =-∵()()f x f x x-==- 故()f x 为奇函数 变式3、解:1当0=a 时,2)(x x f =,对任意(0)(0)x ∈-∞+∞,,,)()()(22x f x x x f ==-=-, )(x f ∴为偶函数.当0≠a 时,2()(00)af x x a x x=+≠≠,,取1±=x ,得 (1)(1)20(1)(1)20f f f f a -+=≠--=-≠,,(1)(1)(1)(1)f f f f ∴-≠--≠,,∴ 函数)(x f 既不是奇函数,也不是偶函数.变式4、解:1由101x x ->+解得1,1x x <->或,则定义域关于原点对称; ∵222111()log log log ()111x x x f x f x x x x --+--===-=--+-+ ∴()f x 为奇函数 21,01,0()()1,01,0x x x x f x f x x x x x --->--<⎧⎧-===⎨⎨--≤-≥⎩⎩,故()f x 为偶函数;例3、证明: ∵函数定义域为R,其定义域关于原点对称.∵fx+y=fx+fy,令y=-x,∴f0=fx+f-x.令x=y=0, ∴f0=f0+f0,得f0=0.∴fx+f-x=0,得f-x=-fx, ∴fx 为奇函数. 变式5A 、C变式5B 、证明:令0x y ==,可得(0)0f =;令y x =-,可得()()()f x x xf x xf x -=--即(0)[()()]0f x f x f x =--= 又x R ∈ ∴()()f x f x -- ∴()f x 是偶函数例4、解:'22ln 1(),ln x f x x x +=-其中01x x >≠且若 '()0,f x < 则 1x e >,此时()f x 单调递减,故减区间为1(,1),(1,)e +∞;若 '()0,f x > 则 1x e <,此时()f x 单调递增,故增区间为1(0,)e;变式6、解析()()(3)(3)(2)x x x f x x e x e x e '''=-+-=-,令()0f x '>,解得2x >,故选D 例5、解: 函数的定义域为{x|x ≤-1或x ≥1},则fx=12-x ,可分解成两个简单函数.fx=)(,)(x u x u =x2-1的形式.当x ≥1时,ux 为增函数,)(x u 为增函数.∴fx=12-x 在1,+∞上为增函数.当x ≤-1时,ux 为减函数,)(x u 为减函数,∴fx=12-x 在-∞,-1上为减函数.变式7、解: 由4x-x 2>0,得函数的定义域是0,4.令t=4x-x 2,则y=21log t.∵t=4x-x 2=-x-22+4,∴t=4x-x 2的单调减区间是2,4,增区间是0,2.又y=21log t 在0,+∞上是减函数,∴函数y=21log 4x-x 2的单调减区间是0,2,单调增区间是2,4.例6、答案:A. 解析:由2121()(()())0x x f x f x -->等价,于2121()()0f x f x x x ->-则()f x 在1212,(,0]()x x x x ∈-∞≠上单调递增, 又()f x 是偶函数,故()f x 在1212,(0,]()x x x x ∈+∞≠单调递减.且满足*n N ∈时, (2)(2)f f -=, 03>21>>,得(3)(2)(1)f f f <-<,故选A. 变式8、D例6B 、解:∵32()f x x ax ax =+-在区间(1,)+∞上递增 ∴2()320f x x ax a '=+-≥在区间(1,)+∞上恒成立 即2(21)3x a x -≥-在区间(1,)+∞上恒成立 ∵210x ->∴2321x a x ≥--在区间(1,)+∞上恒成立 只要满足2max 3()21x a x ≥-- ∵23333334[(21)](2)321422142x x x x -=--++≤-⨯+=--- ∴3a ≥-变式9、2解:∵)(x f 在[2)x ∈+∞,上为增函数 ∴ ()0f x '≥在[2)x ∈+∞,上恒成立即32202a x a x x-≥≤即在[2)x ∈+∞,上恒成立,故只要满足3min (2)a x ≤显然33min (2)2216x =⋅= a ∴的取值范围是(16]-∞,. 例7、解析:由()()12f x f x +=得()()14()2f x f x f x +==+,所以(5)(1)5f f ==-,则()()115(5)(1)(12)5f f f f f =-=-==--+;变式10、解析:取x=1 y=0得21)0(=f 法一:通过计算)........4(),3(),2(f f f ,寻得周期为6 法二:取x=n y=1,有fn=fn+1+fn-1,同理fn+1=fn+2+fn 联立得fn+2= —fn-1 所以T=6 故()2010f =f0=21变式11、解析:由()()()()()x f x f x f x f x f =+-=+⇒-=+242由()x f 是定义在R 上的奇函数得()00=f ,∴()()()()002246=-==+=f f f f ,故选择B; 1、答案:C 解析对于0a =时有()2f x x =是一个偶函数2、解析依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确;3、答案A 解析由于fx 是偶函数,故fx =f|x|∴得f|2x -1|<f 13,再根据fx 的单调性 得|2x -1|<13 解得13<x <234、答案A 解析若x ≠0,则有)(1)1(x f xx x f +=+,取21-=x ,则有: )21()21()21(21211)121()21(f f f f f -=--=---=+-= ∵)(x f 是偶函数,则)21()21(f f =- 由此得0)21(=f 于是, 0)21(5)21(]21211[35)121(35)23(35)23(23231)123()25(==+=+==+=+=f f f f f f f 5、解析:因为)(x f 满足(4)()f x f x -=-,所以(8)()f x f x -=,所以函数是以8为周期的周期函数, 则)1()25(-=-f f ,)0()80(f f =,)3()11(f f =,又因为)(x f 在R 上是奇函数, (0)0f =,得0)0()80(==f f ,)1()1()25(f f f -=-=-,而由(4)()f x f x -=-得)1()41()3()3()11(f f f f f =--=--==,又因为)(x f 在区间0,2上是增函数,所以0)0()1(=>f f ,所以0)1(<-f ,即(25)(80)(11)f f f -<<,故选D.6、选A7、答案D8、答案:B9、D .()33(),()33()x x x x f x f x g x g x ---=+=-=-=-.10、11、解析 gx=e x +ae -x 为奇函数,由g0=0,得a =-1;12、A 13、A 14、B15、B 16、D 17、C 18、D30、A 33.()+∞,2;()1,-∞- 34.⎪⎭⎫ ⎝⎛+∞-,21;⎪⎭⎫ ⎝⎛-∞-21, 36.22 37、答案:C 解析:f -x =-fx ,fx 是奇函数,图象关于原点对称.38、解析:令t =|x +1|,则t 在-∞,-1]上递减,又y =fx 在R 上单调递增,∴y =f |x +1|在-∞,-1]上递减.答案:-∞,-1]39、答案:-3,0∪0,3 解析:由题意可知:xfx <0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或∴x ∈-3,0∪0,3 40、答案:f 31<f 32<f 1 解析:∵fx 为R 上的奇函数∴f 31=-f -31,f 32=-f -32,f 1=-f -1,又fx 在-1,0上是增函数且-31> -32>-1. ∴f -31>f -32>f -1,∴f 31<f 32<f 1.41、解:1∵fx 是奇函数,∴f -x =-fx ,即c bx c bx cbx ax c bx ax -=+⇒+-+-=++1122 ∴c =0,∵a >0,b >0,x >0,∴fx =bx x b a bx ax 112+=+≥22b a ,当且仅当x =a1时等号成立,于是22ba =2,∴a =b 2,由f 1<25得b a 1+<25即b b 12+<25,∴2b 2-5b +2<0,解得21<b <2,又b ∈N ,∴b =1,∴a =1,∴fx =x +x1.2设存在一点x 0,y 0在y =fx 的图象上,并且关于1,0的对称点2-x 0,-y 0也在y =fx 图象上,则⎪⎪⎩⎪⎪⎨⎧-=-+-=+0020002021)2(1y x x y x x 消去y 0得x 02-2x 0-1=0,x 0=1±2.∴y =fx 图象上存在两点1+2,22,1-2,-22关于1,0对称.42、解:1由()f x 的定义域为R ,关于原点对称()()1111x xx xa a f x f x a a -----===-++得()f x 为R 上的奇函数 2证明:12x x ∀<∈R ,则由1a >得12x x a a <()()()()()()()12121212122121101111x x x x x x x x a a a a f x f x f x f x a a a a ----=-=<⇒>++++ ∴当1a >时,()f x 在R 上单调递增 43、(][),33,-∞-+∞ 44、[)1,3 45、1 46、00且a b >≤ 47、0。

高中数学 函数的奇偶性与单调性复习

高中数学 函数的奇偶性与单调性复习

高中数学:函数的奇偶性与单调性复习一、函数奇偶性的复习函数的奇偶性是函数的重要性质之一,它反映了函数在输入与输出之间的内在关系。

根据奇偶性的定义,我们可以将函数分为奇函数和偶函数。

奇函数是指对于定义域内的任意x,都有f(-x)=-f(x)的函数;偶函数是指对于定义域内的任意x,都有f(-x)=f(x)的函数。

在复习过程中,我们需要掌握以下几点:1、掌握奇偶性的定义,理解奇函数和偶函数的特性。

2、掌握奇偶性的判断方法,能够根据函数的图像和性质判断其奇偶性。

3、了解奇偶性在函数性质中的应用,如对称性、单调性等。

二、函数单调性的复习函数的单调性是函数变化的另一种重要性质,它描述了函数在输入增加或减少时输出的变化情况。

如果对于定义域内的任意x1<x2,都有f(x1)<f(x2),则称函数在该区间上单调递增;如果对于定义域内的任意x1<x2,都有f(x1)>f(x2),则称函数在该区间上单调递减。

在复习过程中,我们需要掌握以下几点:1、掌握单调性的定义,理解单调递增和单调递减的含义。

2、掌握判断函数单调性的方法,能够根据函数的图像和性质判断其单调性。

3、了解单调性在函数性质中的应用,如最值、不等式等。

4、能够利用导数工具判断函数的单调性,并了解导数与单调性的关系。

三、总结函数的奇偶性和单调性是高中数学中重要的概念和性质,它们在函数的性质和应用中扮演着重要的角色。

通过复习,我们要能够深入理解奇偶性和单调性的定义和性质,掌握判断方法,并了解它们在解决实际问题中的应用。

我们还要能够利用导数工具判断函数的单调性,为后续的学习打下基础。

高中数学《函数的单调性》公开课一、教学背景分析函数的单调性是高中数学中非常重要的一部分,它不仅对于理解函数的概念有着关键性的作用,而且也是解决实际问题中常常需要用到的工具。

因此,通过对函数的单调性的学习,学生可以更好地理解函数的概念和性质,提高解决实际问题的能力。

高考复习-函数的单调性与奇偶性

高考复习-函数的单调性与奇偶性

函数的单调性与奇偶性知识集结知识元函数的单调性与奇偶性知识讲解1.奇偶性与单调性的综合【知识点的认识】对于奇偶函数综合,其实也并谈不上真正的综合,一般情况下也就是把它们并列在一起,所以说关键还是要掌握奇函数和偶函数各自的性质,在做题时能融会贯通,灵活运用.在重复一下它们的性质①奇函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f (﹣x)=﹣f(x),其图象特点是关于(0,0)对称.②偶函数f(x)的定义域关于原点对称,且定义域内任意一个x,都有f(﹣x)=f(x),其图象特点是关于y轴对称.【解题方法点拨】参照奇偶函数的性质那一考点,有:①奇函数:如果函数定义域包括原点,那么运用f(0)=0解相关的未知量;②奇函数:若定义域不包括原点,那么运用f(x)=﹣f(﹣x)解相关参数;③偶函数:在定义域内一般是用f(x)=f(﹣x)这个去求解;④对于奇函数,定义域关于原点对称的部分其单调性一致,而偶函数的单调性相反例题:如果f(x)=为奇函数,那么a=.解:由题意可知,f(x)的定义域为R,由奇函数的性质可知,f(x)==﹣f(﹣x)⇒a=1【命题方向】奇偶性与单调性的综合.不管出什么样的题,能理解运用奇偶函数的性质是一个基本前提,另外做题的时候多多总结,一定要重视这一个知识点.例题精讲函数的单调性与奇偶性例1.下列函数为奇函数且值域为R的是()A.y=x+B.y=xD.y=ln(x+)C.y=例2.下列函数,既是偶函数,又在(-∞,0)上单调递增的是()A.f(x)=-(x-1)2B.C.f(x)=3|x|D.f(x)=cos x例3.已知函数f(x)和f(x+2)都是定义在R上的偶函数,当x∈[0,2]时,f(x)=2x,则=()A.2 B.D.C.当堂练习单选题练习1.已知是(-∞,+∞)上的减函数,那么a的取值范围是()A.B.C.(0,1)D.练习2.已知函数f(x)=(x2-2x)sin(x-1)+x+1在[-1,3]上的最大值为M,最小值为m,则M+m=()A.4 B.2 C.1 D.0练习3.已知函数f(x)=,若当方程f(x)=m有四个不等实根x1,x2,x3,x4(x1<x2<x3<x4)时,不等式kx3x4+x12+x22≥k+11恒成立,则实数k的最小值为()A.B.2-C.D.-练习4.若函数f(x)=单调递增,则实数a的取值范围是()A.(,3)B.[,3)C.(1,3)D.(2,3)练习5.设奇函数f(x)在(0,+∞)上为减函数,且f(2)=0,则不等式>0的解集是()A.(-2,0)∪(2,+∝)B.(-∝,-2)∪(0,2)C.(-2,0)∪(0,2)D.(-∝,-2)∪(2,+∝)填空题练习1.已知函数f(x)=那么不等式f(x)≥1的解集为_______________.练习2.函数的单调区间是_________________。

函数的奇偶性与单调性

函数的奇偶性与单调性

函数的奇偶性与单调性一、基本概念(1)函数的奇偶性:前提:函数的定义域原点对称..........。

()()()(),x D f x f x f x f x ∈-=-=-任意则为偶函数;若,则为奇函数。

变式:()()()()()()0;10f x f x f x f x f x --±==±=的情况单独验证(整体性质)(2)函数的单调性:(局部性质)()()()()()12121212,,,x x D x x f x fx f x D f x fx D ∈<<>任意若能得到,则在上为增函数;得到,则在上为减函数。

()()()()1212121200f x f x fx f x D D x x x x --><--变式:,函数在上为增函数,,则函数在上为减函数。

y f x ±±⨯⨯⨯±=注:1.关于奇偶性,两函数的公共定义域存在且关于原点对称的前提下奇奇=奇函数,偶偶=偶函数,奇奇=偶函数,偶偶=偶函数,奇偶=奇函数奇偶=非奇非偶函数2.关于单调性:增+增=增函数,减+减=减函数,增-减=增函数,减-增=减函数;在的函数值全为正数(全为负数)的前提下,=减函数,=增函数增减()113.复合函数奇偶性与单调性的结论:()()()()()()(),,y fx y g x y g x y f x yf g x y fx y g x =====⎡⎤⎣⎦==的值域与的定义域有公共部分,则函数存在,其中是外层函数,是内层函数。

内偶外偶、内偶外奇、内奇外偶均为偶函数,只有内奇外奇才为奇函数。

内增外增、内减外减均为增函数,内增外减、内减外增均为减函数。

(3)函数的凹凸性(局部性质):()[]()()()[]()[]()121212,,,,,,22,f x f x x x y f x x a b x x f y f x a b a b ++⎛⎫=∈≠<= ⎪⎝⎭若任意都有则称在上为凹函数如图1,2;反之则称它在上为凸函数如图3,4。

2018届高考数学二轮复习函数的单调性和奇偶性课件(全国通用)

2018届高考数学二轮复习函数的单调性和奇偶性课件(全国通用)

(1)都有f(x1)<f(x2),则称f(x)是区间D上的增函数;
(2)都有f(x1)>f(x2),则称f(x)是区间D上的减函数. 3.函数的奇偶性的性质: (1)奇、偶函数的定义域关于原点对称; (2)若奇函数的定义域包含数0,则f(0)=0; (3)奇函数的图象关于原点对称; (4)偶函数的图象关于y轴对称.
【答案】 C 【解析】 f(x)为奇函数,所以有f(-x)=-f(x),由a+b>0得到a>-b, 因为f(x)在R上是增函数,所以有f(a)>f(-b),即f(a)>-f(b),所以f(a)+f(b)>0.选C.
【答案】 C
【解析】 f(x)=-x2+1定义域为R,且满足f(-x)=f(x)是偶函数,而且图象
开口向下,在(0,+∞)上单调递减,选C.
【答案】
D
【解析】 因为y=x2是偶函数,y=sinx是奇函数,f(x)=x2+sinx,则f(-
x)=x2-sinx≠-f(x),而f(-x)=x2-sinx≠f(x).选D.
【例4】 (2017天津高考文6)已知奇函数f(x)在R上是增函数.若a=-f(log2
A.y=x3
【答案】D 【解析】 A、B、C、D四个答案中,只有C、D是偶函数,其中y=-x2开口向下, 是在(0,+∞)上单调递减的函数,y=|x|+1是在(0,+∞)上单调递增的函数,选D.
7.(2017高考全国Ⅱ文数14)已知函数f(x)是定义在R上的奇函数,当x∈(-∞,0) 时,f(x)=2x3+x2,则f(2)=
4.几个常用的奇、偶函数:
5.帮助记忆口诀: 奇函数×奇函数⇒偶函数

函数奇偶性及单调性的综合应用课件

函数奇偶性及单调性的综合应用课件
定义
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) < f(x_2)$,则 称$f(x)$为增函数。
性质
增函数的图像是上升的,即随着$x$的 增大,$y$的值也增大。
单调减函数的定义与性质
定义
对于函数$f(x)$,如果对于任意$x_1 < x_2$,都有$f(x_1) > f(x_2)$,则称 $f(x)$为减函数。
奇偶性与单调性在数学问题中的应用实例
函数图像分析
通过分析函数的奇偶性和 单调性,可以更好地理解 函数的图像和性质,进而 解决相关的数学问题。
数值计算优化
在数值计算中,利用函数 的奇偶性和单调性,可以 更高效地求解数学问题和 优化算法。
数学建模应用
在数学建模中,结合奇偶 性和单调性,可以建立更 精确的数学模型,解决实 际问题。
THANKS
感谢观看
性质
减函数的图像是下降的,即随着$x$的增大,$y$的值减小。
单调性在函数图像中的应用
1 2 3
判断函数图像的单调性
通过观察函数图像的走势,可以判断函数的单调 性。
利用单调性判断函数值大小
在单调增函数中,如果$x_1 < x_2$,则有 $f(x_1) < f(x_2)$;在单调减函数中,如果$x_1 < x_2$,则有$f(x_1) > f(x_2)$。
对于函数$f(x) = x^{2}$,其在区间 $(-infty, 0)$上单调递减,在区间$(0, +infty)$上单调递增。对于函数$f(x) = frac{1}{x}$,其在区间$(-infty, 0)$ 和$(0, +infty)$上均为单调递减。

高中函数四性质(单调性、奇偶性、周期性与对称性)

高中函数四性质(单调性、奇偶性、周期性与对称性)

函数四性质之一:单调性1、定义:对定义在D 上的函数)(x f ,有D x x ∈21,若21x x <,)()(21x f x f <,则)(x f 为单调递增函数若21x x <,)()(21x f x f >,则)(x f 为单调递减函数经典例题1、 证明:函数)0()(>+=a xa x x f 在),(+∞a 上的单调递增函数。

2、常见函数的单调性一次函数 b kx y += 0>k 0<k二次函数 c bx ax y ++=2 a b a 2,0-> a b a 2,0-< 反比例函数xk y = 0>k 0<k 指数函数 x a y = 10<<a 1>a对数函数 x y a log = 10<<a 1>a对勾与斜对勾函数 x a x y += )0(>-=a xa x y另一组对称函数 x x x f ++=1)(2 x x x g -+=1)(2①)(x f 为单调增函数, )(x g 为单调减函数②1)()(=•x g x f ,即互为倒数3、复合函数的单调性复合函数))((x g f y =,分里函数)(x g ,外函数)(x f单调性遵循四个字:同增异减经典例题:设)(x f y =是R 上的减函数,则)3(-=x f y 的单调递减区间为:______________________4、组合函数的单调性增+增=增 减+减=减通常:一个函数的单调性:在到倒数和添负号两种情况下发生改变。

经典例题3(1)设函数3)1(4)(2-++=x a ax x f 在),2[+∞上递增,则a 的取值范围为:_____________(2)函数21)(++=x ax x f 在区间),2[+∞-上单调递增,刚实数a 的取值范围为:_____________(3)已知1)1()(2--=x x f ,1)(2-=x x g ,则))((x g f 在什么范围内递增?提高练习;1、已知偶函数)(x f 在区间),0[+∞单调递增,则满足)31()12(f x f <-的x 取值范围为______________2、函数)(x f 对任意的R b a ∈,,都有1)()()(-+=+b f a f b a f ,并且当0>x 时,1)(>x f(1)求证:)(x f 在R 上为增函数(2)若5)4(=f ,解不等式3)23(2<--m m f3、设函数)0(1)(2>-+=a ax x x f ,试确定,当a 的取什么值时,函数)(x f 在),0[+∞上为单调递减函数?函数四性质之一:奇偶性5、定义:在函数定义域对称的前提下,若)()(x f x f =-,则函数为偶函数;若)()(x f x f -=-,则函数为奇函数。

函数的单调性和奇偶性的综合应用教案

函数的单调性和奇偶性的综合应用教案

函数的单调性和奇偶性的综合应用教案第一章:函数的单调性1.1 单调性的定义引导学生理解函数单调性的概念,了解函数单调递增和单调递减的定义。

通过示例来说明函数单调性的判断方法。

1.2 单调性的性质引导学生了解单调性的几个重要性质,如单调性的传递性、复合函数的单调性等。

通过示例来演示这些性质的应用。

第二章:函数的奇偶性2.1 奇偶性的定义引导学生理解函数奇偶性的概念,了解奇函数和偶函数的定义。

通过示例来说明函数奇偶性的判断方法。

2.2 奇偶性的性质引导学生了解奇偶性的几个重要性质,如奇偶性的对称性、奇偶性与单调性的关系等。

通过示例来演示这些性质的应用。

第三章:单调性和奇偶性的综合应用3.1 单调性和奇偶性的关系引导学生了解单调性和奇偶性之间的关系,如奇函数的单调性、偶函数的单调性等。

通过示例来说明单调性和奇偶性在解决问题时的综合应用。

3.2 单调性和奇偶性的应用实例给出一些实际问题,引导学生运用单调性和奇偶性的知识来解决这些问题。

通过示例来说明单调性和奇偶性在实际问题中的应用。

第四章:函数的单调性和奇偶性的判断4.1 单调性和奇偶性的判断方法引导学生了解判断函数单调性和奇偶性的方法,如导数法、图像法等。

通过示例来说明这些方法的运用。

4.2 单调性和奇偶性的判断实例给出一些具体的函数,引导学生运用判断方法来确定这些函数的单调性和奇偶性。

通过示例来说明单调性和奇偶性的判断过程。

第五章:函数的单调性和奇偶性的综合应用练习5.1 单调性和奇偶性的综合应用练习题提供一些练习题,引导学生运用单调性和奇偶性的知识来解决问题。

通过练习来巩固学生对单调性和奇偶性的理解和应用能力。

5.2 练习题解答和解析对练习题进行解答和解析,帮助学生理解和巩固解题思路和方法。

通过解答和解析来提高学生对单调性和奇偶性的应用能力。

第六章:函数的单调性和奇偶性在图像分析中的应用6.1 图像的单调区间引导学生如何通过函数图像来判断函数的单调区间。

函数的单调性、奇偶性与最值

函数的单调性、奇偶性与最值

函数的单调性、奇偶性与最大(小)值1.函数的单调性(1)单调函数的定义如果y=f(x)在区间A上是增加的或是减少的,那么称A为单调区间.2.奇函数、偶函数图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.3.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是奇函数,两个奇函数的积函数是偶函数.②两个偶函数的和函数、积函数是偶函数.③一个奇函数,一个偶函数的积函数是奇函数.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=0.4.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫作f(x)的最小正周期.5.函数的最值1.函数单调性定义的理解(1)对于函数f (x ),x ∈D ,若x 1,x 2∈D 且(x 1-x 2)·[f (x 1)-f (x 2)]>0,则函数f (x )在D 上是增函数.( )(2)函数f (x )=2x +1在(-∞,+∞)上是增函数.( ) (3)(教材改编)函数f (x )=1x 在其定义域上是减函数.( )(4)已知f (x )=x ,g (x )=-2x ,则y =f (x )-g (x )在定义域上是增函数.( ) 2.函数的单调区间与最值(5)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1, +∞).( ) (6)(教材改编)函数y =1x 的单调递减区间是(-∞,0)∪(0,+∞).( ) (7)(2013·北京卷改编)函数y =lg|x |的单调递减区间为(0,+∞).( ) (8)函数f (x )=log 2(3x +1)的最小值为0.( ) 3.对奇偶函数的认识及应用(1)函数y =x 2,x ∈(0,+∞)是偶函数.( )(2)偶函数图像不一定过原点,奇函数的图像一定过原点.( )(3)(教材习题改编)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.( )(4)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.( )(5)(2013·山东卷改编)已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)=-2.( )(6)(2014·鹰潭模拟改编)已知函数y =f (x )是定义在R 上的偶函数,且在(-∞,0)上是减函数,若f (a )≥f (2),则实数a 的取值范围是[-2,2].( )4.对函数周期性的理解(7)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.( )(8)(2013·湖北卷改编)x为实数,[x]表示不超过x的最大整数,则函数f(x)=x-[x]在R 上是周期函数.()考点一确定函数的单调性或单调区间【例1】(1)判断函数f(x)=x+ax(a>0)在(0,+∞)上的单调性.(2)(2013·高安中学模拟)求函数y=log 13(x2-4x+3)的单调区间.【训练1】试讨论函数f(x)=axx-1(a≠0)在(-1,1)上的单调性.考点二利用单调性求参数【例2】若函数f(x)=ax-1x+1在(-∞,-1)上是减函数,则a的取值范围是________.【训练2】(1)函数y=x-5x-a-2在(-1,+∞)上单调递增,则a的取值范围是().A.{-3}B.(-∞,3)C.(-∞,-3]D.[-3,+∞)(2)(2014·贵溪模拟)若f(x)=-x2+2ax与g(x)=ax+1在区间[1,2]上都是减函数,则a的取值范围是().A.(-1,0)∪(0,1)B.(-1,0)∪(0,1] C.(0,1)D.(0,1]考点三利用函数的单调性求最值【例3】已知f(x)=x2+2x+ax,x∈[1,+∞).(1)当a=12时,求函数f(x)的最小值;(2)若对任意x∈[1,+∞),f(x)>0恒成立,试求实数a的取值范围.【训练3】已知函数f(x)对于任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,f(1)=-2 3.(1)求证:f(x)在R上是减函数;(2)求f(x)在[-3,3]上的最大值和最小值.考点四函数奇偶性的判断及应用【例1】 (1)判断下列函数的奇偶性: ①f (x )=x 2-1+1-x 2;②f (x )=ln 1-x1+x.(2)(2013·辽宁卷)已知函数f (x )=ln(1+9x 2-3x )+1,则f (lg 2)+f (lg 12)=( ). A .-1 B .0 C .1D .2【训练1】 (1)(2013·湖南卷)已知f (x )是奇函数,g (x )是偶函数,且f (-1)+g (1)=2, f (1)+g (-1)=4,则g (1)等于( ). A .4 B .3 C .2D .1(2)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x +2x +b (b 为常数),则f (-1)=( ). A .-3 B .-1 C .1 D .3考点五 函数的单调性与奇偶性【例2】 (1)(2014·山东实验中学诊断)下列函数中,在其定义域中,既是奇函数又是减函数的是( ).A .f (x )=1x B .f (x )=-x C .f (x )=2-x -2xD .f (x )=-tan x(2)(2013·江西九校联考)已知f (x )是定义在R 上的偶函数,在区间[0,+∞)上为增函数,且f ⎝ ⎛⎭⎪⎫13=0,则不等式f (log 18x )>0的解集为( ).A .⎝ ⎛⎭⎪⎫12,2B .(2,+∞)C .⎝ ⎛⎭⎪⎫0,12∪(2,+∞)D .⎝ ⎛⎭⎪⎫12,1∪(2,+∞)【训练2】 (2013·天津卷)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( ).A .[1,2]B .⎝ ⎛⎦⎥⎤0,12C .⎣⎢⎡⎦⎥⎤12,2D .(0,2]考点六 函数的单调性、奇偶性、周期性【例3】 (经典题)已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,则( ).A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)【训练3】 设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2 014).基础巩固题组 (建议用时:40分钟)一、选择题1.函数f (x )=1-1x 在[3,4)上( ). A .有最小值无最大值 B .有最大值无最小值 C .既有最大值又有最小值D .最大值和最小值皆不存在2.已知函数f (x )=2ax 2+4(a -3)x +5在区间(-∞,3)上是减函数,则a 的取值范围是( ). A .⎝ ⎛⎭⎪⎫0,34 B .⎝ ⎛⎦⎥⎤0,34 C .⎣⎢⎡⎭⎪⎫0,34 D .⎣⎢⎡⎦⎥⎤0,343.(2013·玉山一中模拟)已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x <f (1)的实数x 的取值范围是( ).A .(-1,1) B .(0,1) C .(-1,0)∪(0,1) D .(-∞,-1)∪(1,+∞)4.(2014·南昌模拟)已知函数y =f (x )的图像关于x =1对称,且在(1,+∞)上单调递增,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( ).A .c <b <aB .b <a <cC .b <c <aD .a <b <c5.(2013·渭南模拟)下列函数中既是偶函数,又在区间(0,+∞)上单调递增的函数是( ). A .y =x 3 B .y =|x |+1 C .y =-x 2+1 D .y =2x6. (2013·咸阳二模)若函数f (x )=sin x(x +a )2是奇函数,则a 的值为( ). A .0 B .1 C .2D .47. 函数f (x )是周期为4的偶函数,当x ∈[0,2]时,f (x )=x -1,则不等式xf (x )>0在[-1,3]上的解集为( ).A .(1,3)B .(-1,1)C .(-1,0)∪(1,3)D .(-1,0)∪(0,1)二、填空题8.函数f (x )=log 5(2x +1)的单调增区间是________.9.(2012·安徽卷)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.10.设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为12,则a =________. 11. (2014·临川二中)f (x )为奇函数,当x <0时,f (x )=log 2(1-x ),则f (3)=________. 12. 设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),则实数m 的取值范围是________.三、解答题13.已知函数f (x )=1a -1x (a >0,x >0). (1)判断函数f (x )在(0,+∞)上的单调性; (2)若f (x )在⎣⎢⎡⎦⎥⎤12,2上的值域是⎣⎢⎡⎦⎥⎤12,2,求a 的值.14. f (x )为R 上的奇函数,当x >0时,f (x )=-2x 2+3x +1,求f (x )的解析式.能力提升题组1.(2014·宜春模拟)下列函数中,在[-1,0]上单调递减的是( ). A .y =cos x B .y =-|x -1| C .y =ln2+x2-xD .y =e x +e -x 2.已知函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f (x )x 在 区间(1,+∞)上一定( ).A .有最小值B .有最大值C .是减函数D .是增函数3. (2013·吉安模拟)已知偶函数f (x )对任意x ∈R 都有f (x -2)=-f (x ),且当x ∈[-1,0]时f (x )=2x ,则f (2 013)=( ).A .1B .-1C .12D .-123.已知函数f (x )=x 2+ax (a >0)在(2,+∞)上递增,则实数a 的取值范围是________.。

函数单调性和奇偶性数学教案

函数单调性和奇偶性数学教案

函数单调性和奇偶性数学教案教学建议一、知识结构(1)函数单调性的概念。

包括增函数、减函数的定义,单调区间的概念函数的单调性的判定方法,函数单调性与函数图像的关系.(2)函数奇偶性的概念。

包括奇函数、偶函数的定义,函数奇偶性的判定方法,奇函数、偶函数的图像.二、重点难点分析(1)本节教学的重点是函数的单调性,奇偶性概念的形成与认识.教学的难点是领悟函数单调性,奇偶性的本质,掌握单调性的证明.(2)函数的单调性这一性质学生在初中所学函数中曾经了解过,但只是从图象上直观观察图象的上升与下降,而现在要求把它上升到理论的高度,用准确的数学语言去刻画它.这种由形到数的翻译,从直观到抽象的转变对高一的学生来说是比较困难的,因此要在概念的形成上重点下功夫.单调性的证明是学生在函数内容中首次接触到的代数论证内容,学生在代数论证推理方面的能力是比较弱的,许多学生甚至还搞不清什么是代数证明,也没有意识到它的重要性,所以单调性的证明自然就是教学中的难点.三、教法建议(1)函数单调性概念引入时,可以先从学生熟悉的一次函数,,二次函数.反比例函数图象出发,回忆图象的增减性,从这点感性认识出发,通过问题逐步向抽象的定义靠拢.如可以设计这样的问题:图象怎么就升上去了?可以从点的坐标的角度,也可以从自变量与函数值的关系的角度来解释,引导学生发现自变量与函数值的的变化规律,再把这种规律用数学语言表示出来.在这个过程中对一些关键的词语(某个区间,任意,都有)的理解与必要性的认识就可以融入其中,将概念的形成与认识结合起来.(2)函数单调性证明的步骤是严格规定的,要让学生按照步骤去做,就必须让他们明确每一步的必要性,每一步的目的,特别是在第三步变形时,让学生明确变换的目标,到什么程度就可以断号,在例题的选择上应有不同的变换目标为选题的标准,以便帮助学生总结规律.函数的奇偶性概念引入时,可设计一个课件,以的图象为例,让自变量互为相反数,观察对应的函数值的变化规律,先从具体数值开始,逐渐让在数轴上动起来,观察任意性,再让学生把看到的用数学表达式写出来.经历了这样的过程,再得到等式时,就比较容易体会它代表的是无数多个等式,是个恒等式.关于定义域关于原点对称的问题,也可借助课件将函数图象进行多次改动,帮助学生发现定义域的对称性,同时还可以借助图象(如)说明定义域关于原点对称只是函数具备奇偶性的必要条件而不是充分条件.函数的奇偶性教学设计方案教学目标1.使学生了解奇偶性的概念,回会利用定义判断简单函数的奇偶性.2.在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的思想方法.3.在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.教学重点,难点重点是奇偶性概念的形成与函数奇偶性的判断难点是对概念的认识教学用具投影仪,计算机教学方法引导发现法教学过程一.引入新课前面我们已经研究了函数的单调性,它是反映函数在某一个区间上函数值随自变量变化而变化的性质,今天我们继续研究函数的另一个性质.从什么角度呢?将从对称的角度来研究函数的性质.对称我们大家都很熟悉,在生活中有很多对称,在数学中也能发现很多对称的问题,大家回忆一下在我们所学的内容中,特别是函数中有没有对称问题呢?(学生可能会举出一些数值上的对称问题,等,也可能会举出一些图象的对称问题,此时教师可以引导学生把函数具体化,如和等.)结合图象提出这些对称是我们在初中研究的关于轴对称和关于原点对称问题,而我们还曾研究过关于轴对称的问题,你们举的例子中还没有这样的,能举出一个函数图象关于轴对称的吗?学生经过思考,能找出原因,由于函数是映射,一个只能对一个,而不能有两个不同的,故函数的图象不可能关于轴对称.最终提出我们今天将重点研究图象关于轴对称和关于原点对称的问题,从形的特征中找出它们在数值上的规律.二.讲解新课2.函数的奇偶性(板书)教师从刚才的图象中选出,用计算机打出,指出这是关于轴对称的图象,然后问学生初中是怎样判断图象关于轴对称呢?(由学生回答,是利用图象的翻折后重合来判定)此时教师明确提出研究方向:今天我们将从数值角度研究图象的这种特征体现在自变量与函数值之间有何规律?学生开始可能只会用语言去描述:自变量互为相反数,函数值相等.教师可引导学生先把它们具体化,再用数学符号表示.(借助课件演示令比较得出等式,再令,得到,详见课件的使用)进而再提出会不会在定义域内存在,使与不等呢?(可用课件帮助演示让动起来观察,发现结论,这样的是不存在的)从这个结论中就可以发现对定义域内任意一个,都有成立.最后让学生用完整的语言给出定义,不准确的地方教师予以提示或调整.(1)偶函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做偶函数.(板书) (给出定义后可让学生举几个例子,如等以检验一下对概念的初步认识) 提出新问题:函数图象关于原点对称,它的自变量与函数值之间的数值规律是什么呢?(同时打出或的图象让学生观察研究)学生可类比刚才的方法,很快得出结论,再让学生给出奇函数的定义.(2)奇函数的定义:如果对于函数的定义域内任意一个,都有,那么就叫做奇函数.(板书) (由于在定义形成时已经有了一定的认识,故可以先作判断,在判断中再加深认识) 例1.判断下列函数的奇偶性(板书)(1);(2);(3);;(5);(6).(要求学生口答,选出1-2个题说过程)解:(1)是奇函数.(2)是偶函数.(3),是偶函数.前三个题做完,教师做一次小结,判断奇偶性,只需验证与之间的关系,但对你们的回答我不满意,因为题目要求是判断奇偶性而你们只回答了一半,另一半没有作答,以第(1)为例,说明怎样解决它不是偶函数的问题呢?学生经过思考可以解决问题,指出只要举出一个反例说明与不等.如即可说明它不是偶函数.(从这个问题的解决中让学生再次认识到定义中任意性的重要)从(4)题开始,学生的答案会有不同,可以让学生先讨论,教师再做评述.即第(4)题中表面成立的=不能经受任意性的考验,当时,由于,故不存在,更谈不上与相等了,由于任意性被破坏,所以它不能是奇偶性.教师由此引导学生,通过刚才这个题目,你发现在判断中需要注意些什么?(若学生发现不了定义域的特征,教师可再从定义启发,在定义域中有1,就必有-1,有-2,就必有2,有,就必有,有就必有,从而发现定义域应关于原点对称,再提出定义域关于原点对称是函数具有奇偶性的什么条件?可以用(6)辅助说明充分性不成立,用(5)说明必要性成立,得出结论.(3)定义域关于原点对称是函数具有奇偶性的必要但不充分条件.(板书)由学生小结判断奇偶性的步骤之后,教师再提出新的问题:在刚才的几个函数中有是奇函数不是偶函数,有是偶函数不是奇函数,也有既不是奇函数也不是偶函数,那么有没有这样的函数,它既是奇函数也是偶函数呢?若有,举例说明.经学生思考,可找到函数.然后继续提问:是不是具备这样性质的函数的解析式都只能写成这样呢?能证明吗?例2.已知函数既是奇函数也是偶函数,求证:.(板书)(试由学生来完成)证明:既是奇函数也是偶函数,=,且,=.,即.证后,教师请学生记住结论的同时,追问这样的函数应有多少个呢?学生开始可能认为只有一个,经教师提示可发现,只是解析式的特征,若改变函数的定义域,如,,,,它们显然是不同的函数,但它们都是既是奇函数也是偶函数.由上可知函数按其是否具有奇偶性可分为四类 (4)函数按其是否具有奇偶性可分为四类:(板书)例3.判断下列函数的奇偶性(板书)(1);(2);(3).由学生回答,不完整之处教师补充.解:(1)当时,为奇函数,当时,既不是奇函数也不是偶函数.(2)当时,既是奇函数也是偶函数,当时,是偶函数.(3)当时,于是,当时,,于是=,综上是奇函数.教师小结(1)(2)注意分类讨论的使用,(3)是分段函数,当检验,并不能说明具备奇偶性,因为奇偶性是对函数整个定义域内性质的刻画,因此必须均有成立,二者缺一不可.三.小结1.奇偶性的概念2.判断中注意的问题四.作业略五.板书设计2.函数的奇偶性例1.例3.(1)偶函数定义(2)奇函数定义(3)定义域关于原点对称是函数例2.小结具备奇偶性的必要条件(4)函数按奇偶性分类分四类探究活动(1)定义域为的任意函数都可以表示成一个奇函数和一个偶函数的和,你能试证明之吗?(2)判断函数在上的单调性,并加以证明.在此基础上试利用这个函数的单调性解决下面的问题:设为三角形的三条边,求证:.。

函数的奇偶性与单调性

函数的奇偶性与单调性

减↓ 增↑ 减↓ 减↓ 增↑
对于复合函数f[g(x)]:“同号得增,异号得减”
三、函数的奇偶性
1、如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x), 那么f(x)叫做奇函数.
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),
那么f(x)叫做偶函数.
2、奇函数的图像关于原点对称;偶函数的图像关于y 轴对称.
函数图像能直观地显示函数的单调性.在单调区间上的增函 数,它的图像是沿x轴正方向逐渐上升的;在单调区间上的减 函数,它的图像是沿x轴正方向逐渐下降的.
单调性性质规律: 若函数f(x),g(x)在给定的区间上具有单调性,利用增(减)函数的定 义容易证得,在这个区间上:
(1)函数f(x)与f(x)+C(C为常数)具有相同的单调性.
1 ],单增区间是[2,+∞) 2
单减区间是(-∞,-
例5: 求函数y=f(x)在R上是减函数, 求y=f(|1 - x|)的单调递增区间。
单调递增区间是( -∞,1] 例6: 求函数y=18+2(2-x2)-(2-x2)2的单调区间 单增区间是(-∞,- 1],[ 0,1) 单减区间是(-1,0), [ 1,+∞)
(3)f(x)= (x-1) .
1 x 1 x
评析 用定义判断函数的奇偶性的步骤与方法如下: (1)求函数的定义域,并考查定义域是否关于原点对称. (2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)
之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查其
3、奇函数
4、奇函数
5、定义在实数集上的函数f(x),对任意x,y∈R,有 f(x+y)+f(x-y)=2f(x)f(y),且f(x)不等于0 求证:f(0)=1;f(x)为偶函数

函数的单调性和奇偶性

函数的单调性和奇偶性

一 、函数的单调性1、函数的单调性定义:设函数)(x f y =的定义域为A ,区间A I ⊆,如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说)(x f y =在区间I上是单调增函数,I 称为)(x f y =的单调增区间;如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说)(x f y =在区间I上是单调减函数,I 称为)(x f y =的单调减区间。

2、确定函数的单调性或单调区间的常用方法: (1)①定义法(取值――作差――变形――定号);(2)在选择填空题中还可用数形结合法、特殊值法等等,特别要注意(0by ax a x=+>,0)b >型函数的图象和单调性在解题中的运用:增区间为(,)-∞+∞,减区间为[. 例如:(1)若函数2)1(2)(2+-+=x a x x f在区间(-∞,4] 上是减函数,那么实数a 的取值范围是______ (答:3-≤a));(2)已知函数1()2ax f x x +=+在区间()2,-+∞上为增函数,则实数a 的取值范围_____(答:1(,)2+∞)(3)复合函数法:复合函数单调性的特点是同增异减 (4)若)(x f 与)(x g 在定义域内都是增函数(减函数),那么)()(x g x f +在其公共定义域内是增函数(减函数)。

3、单调性的说明:(1)函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须先求函数的定义域; (2)函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即)(2121x x x x <<;三是同属于一个单调区间,三者缺一不可; (3)函数的单调性是对某个区间而言的,所以受到区间的限制,如函数xy 1=分别在)0,(-∞和),0(+∞内都是单调递减的,但是不能说它在整个定义域即),0()0,(+∞-∞ 内是单调递减的,只能说函数xy 1=的单调递减区间为)0,(-∞和),0(+∞。

2018年高考数学总复习(五) 函数的单调性、奇偶性及周期性 含答案

2018年高考数学总复习(五) 函数的单调性、奇偶性及周期性 含答案

高考达标检测(五) 函数的单调性、奇偶性及周期性一、选择题1.(2017·沈阳教学质量监测)下列函数中,在其定义域内是增函数且是奇函数的是( )A .y =2xB .y =2|x |C .y =2x-2-xD .y =2x+2-x解析:选C A 中函数是非奇非偶函数,B 、D 中函数是偶函数,对于选项C ,由奇函数的定义可知该函数是奇函数,由复合函数的单调性可知其在定义域内是增函数,故选C.2.(2017·辽宁阶段测试)设函数f (x )=ln(1+x )+m ln(1-x )是偶函数,则( ) A .m =1,且f (x )在(0,1)上是增函数 B .m =1,且f (x )在(0,1)上是减函数 C .m =-1,且f (x )在(0,1)上是增函数 D .m =-1,且f (x )在(0,1)上是减函数解析:选B 因为函数f (x )=ln(1+x )+m ln(1-x )是偶函数,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12,则 (m -1)ln 3=0,即m =1,则f (x )=ln(1+x )+ln(1-x )=ln(1-x 2),因为x ∈(0,1)时,y =1-x 2是减函数,故f (x )在(0,1)上是减函数,故选B.3.(2016·北京高考)已知x ,y ∈R ,且x >y >0,则( ) A.1x -1y>0B .sin x -sin y >0 C.⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y<0 D .ln x +ln y >0解析:选C A 项,考查的是反比例函数y =1x在(0,+∞)上单调递减,因为x >y >0,所以1x -1y<0,所以A 错误;B 项,考查的是三角函数y =sin x 在(0,+∞)上的单调性,y=sin x 在(0,+∞)上不单调,所以不一定有sin x >sin y ,所以B 错误;C 项,考查的是指数函数y =⎝ ⎛⎭⎪⎫12x 在(0,+∞)上单调递减,因为x >y >0,所以有⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y ,即⎝ ⎛⎭⎪⎫12x -⎝ ⎛⎭⎪⎫12y<0,所以C 正确;D 项,考查的是对数函数y =ln x 的性质,ln x +ln y =ln xy ,当x >y >0时,xy >0,不一定有ln xy >0,所以D 错误.4.(2016·山东高考)已知函数f (x )的定义域为R.当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝ ⎛⎭⎪⎫x +12=f ⎝ ⎛⎭⎪⎫x -12,则f (6)=( )A .-2B .-1C .0D .2解析:选D 由题意可知,当-1≤x ≤1时,f (x )为奇函数,且当x >12时,f (x +1)=f (x ),所以f (6)=f (5×1+1)=f (1).而f (1)=-f (-1)=-[(-1)3-1]=2,所以f (6)=2.故选D.5.(2017·湖南联考)已知函数f (x )是R 上的奇函数,且在区间[0,+∞)上单调递增,若a =f ⎝ ⎛⎭⎪⎫sin 2π7,b =f ⎝ ⎛⎭⎪⎫cos 5π7,c =f ⎝ ⎛⎭⎪⎫tan 5π7,则a ,b ,c 的大小关系为( )A .b <a <cB .c <b <aC .b <c <aD .a <b <c解析:选B ∵π2<5π7<3π4,∴tan 5π7<-1<cos 5π7<0,又sin 2π7>0,∴tan 5π7<cos5π7<sin 2π7.∵函数f (x )是R 上的奇函数,且在区间[0,+∞)上单调递增,∴函数f (x )是R上的增函数,∴c <b <a ,故选B.6.(2017·邢台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+ cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为( ) A .(0,1) B .(1,2)C .(-2,-2)D .(1,2)∪(-2,-1)解析:选B 依题意得f ′(x )>0,则f (x )是定义在(-1,1)上的增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则有⎩⎪⎨⎪⎧-1<1-a 2<1,-1<a -1<1,1-a 2<a -1.解得1<a <2, 选B.7.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc ,若函数f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3在(-∞,m )上单调递减,则实数m 的取值范围是( )A .(-2,+∞)B .[-2,+∞)C .(-∞,-2)D .(-∞,-2]解析:选D ∵⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,∴f (x )=⎪⎪⎪⎪⎪⎪x -1 2-x x +3=(x -1)(x +3)-2×(-x )=x 2+4x -3=(x +2)2-7,∴f (x )的单调递减区间为(-∞,-2), ∵函数f (x )在(-∞,m )上单调递减,∴(-∞,m )⊆(-∞,-2),即m ≤-2.故选D.8.(2016·广州模拟)定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x )=f (x +4),且当x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=( )A .1 B.45C .-1D .-45解析:选C 因为x ∈R ,且f (-x )=-f (x ),所以函数为奇函数,因为f (x )=f (x +4),所以函数的周期为4.所以f (log 220)=f (log 220-4)=f ⎝ ⎛⎭⎪⎫log 254 =-f ⎝ ⎛⎭⎪⎫-log 254=-f ⎝ ⎛⎭⎪⎫log 245=-⎝⎛⎭⎪⎫2log 245+15=-⎝ ⎛⎭⎪⎫45+15=-1,故选C.二、填空题9.(2016·天津高考)已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________.解析:∵f (x )是偶函数,且在(-∞,0)上单调递增, ∴f (x )在(0,+∞)上单调递减,f (-2)=f (2), ∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.答案:⎝ ⎛⎭⎪⎫12,32 10.(2016·四川高考)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.解析:∵f (x )为奇函数,周期为2,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0. ∵f (x )=4x,x ∈(0,1),∴f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-52+2=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-412=-2. ∴f ⎝ ⎛⎭⎪⎫-52+f (1)=-2. 答案:-211.(2017·江苏调研)已知函数f (x )是偶函数,且当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )的解析式为________________.解析:设x <0,则-x >0,因为当x >0时,f (x )=x 3+x +1,所以f (-x )=-x 3-x +1.又函数f (x )是偶函数,所以f (x )=-x 3-x +1.答案:f (x )=-x 3-x +112.(2017·台州模拟)已知函数g (x )是R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,g x ,x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是________.解析:设x >0,则-x <0. ∵x <0时,g (x )=-ln(1-x ), ∴g (-x )=-ln(1+x ). 又∵g (x )是奇函数, ∴g (x )=ln(1+x )(x >0),∴f (x )=⎩⎪⎨⎪⎧x 3,x ≤0,ln 1+x ,x >0.其图象如图所示.由图象知,函数f (x )在R 上是增函数. ∵f (2-x 2)>f (x ), ∴2-x 2>x ,即-2<x <1.所以实数x 的取值范围是(-2,1). 答案:(-2,1) 三、解答题13.已知函数f (x )是定义在R 上的偶函数,f (0)=0,当x >0时,f (x )=log 12x .(1)求函数f (x )的解析式; (2)解不等式f (x 2-1)>-2.解:(1)当x <0时,-x >0,则f (-x )=log 12(-x ).因为函数f (x )是偶函数,所以f (-x )=f (x ). 所以函数f (x )的解析式为 f (x )=⎩⎪⎨⎪⎧log 12x ,x >0,0,x =0,log 12-x ,x <0.(2)因为f (4)=log 124=-2,f (x )是偶函数,所以不等式f (x 2-1)>-2可化为f (|x 2-1|)>f (4). 又因为函数f (x )在(0,+∞)上是减函数, 所以|x 2-1|<4,解得-5<x <5, 即不等式的解集为(-5,5).14.(2017·湖南长郡中学测试)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (x )在[-1,1]上的解析式; (2)证明:f (x )在(0,1)上是减函数. 解:(1)当x ∈(-1,0)时,-x ∈(0,1). ∵f (x )是奇函数,∴f (x )=-f (-x )=-2-x 4-x +1=-2x4x +1.由f (0)=f (-0)=-f (0),且f (1)=-f (-1)=-f (-1+2)=-f (1), 得f (0)=f (1)=f (-1)=0.∴在区间[-1,1]上,有f (x )=⎩⎪⎨⎪⎧2x4x+1,x ∈0,1,-2x 4x+1,x ∈-1,0,0,x ∈{-1,0,1}.(2)证明:当x ∈(0,1)时,f (x )=2x4x +1,设0<x 1<x 2<1,则f (x 1)-f (x 2)=2x 14x 1+1-2x 24x 2+1=2x 2-2x 12x 1+x 2-14x 1+14x 2+1,∵0<x 1<x 2<1,∴2x 2-2x 1>0,2x 1+x 2-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 故f (x )在(0,1)上是减函数.。

专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(新高考地区专用)(解析版)

专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)(新高考地区专用)(解析版)

专题07 函数的单调性、奇偶性、周期性与对称性(知识梳理)一、函数的单调性(一)函数的单调性和单调区间定义:1、增函数与减函数的定义:设函数)(x f y =的定义域为A ,区间A M ⊆,如果取区间M 中的任意两个值1x 、2x ,改变量012>-=∆x x x ,则当0)()(12>-=∆x f x f y 时,就称函数)(x f y =在区间M 上是增函数;当0)()(12<-=∆x f x f y 时,就称函数)(x f y =在区间M 上是减函数。

2、函数的单调性与单调区间:如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间)。

此时也说函数是这一区间上的单调函数。

在单调区间上,增函数的图像是上升的,减函数的图像是下降的。

[多选]例1-1.下列给定函数中,在区间)10(,上单调递减的函数是( )。

A 、x x f =)(B 、)1(log )(21+=x x g C 、|1|)(-=x x h D 、12)(+=x x w【答案】BC【解析】x x f =)(在)0[∞+,上是增函数,)1(log )(21+=x x g 在)1(∞+-,上是减函数,|1|)(-=x x h 在]1(,-∞上是减函数,12)(+=x x w 在R 上是增函数,则)(x g 和)(x h 在区间)10(,上单调递减的函数,选BC 。

(二)对函数单调性定义的理解1、函数的单调性是局部性质:从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,即单调区间是定义域的子集,是函数的局部特征。

函数的单调性只在定义域内讨论,可以是整个定义域,也可以是定义域的某个子区间;如果一个函数在某个区间上是单调的,那么在这个区间的子区间上也是单调的。

但在某个区间上单调,在整个定义域上不一定单调。

如函数2x y =的定义域为R ,当)0[∞+∈,x 时是增函数,当]0(,-∞∈x 时是减函数。

函数的单调性和奇偶性精品讲义

函数的单调性和奇偶性精品讲义

第三讲 函数的单调性、奇偶性一、知识点归纳函数的单调性〔1〕定义:设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)〔f (x 1)>f (x 2)〕,那么就说f (x )在区间D 上是增函数〔减函数〕,区间D 为函数y =f (x )的增区间〔减区间〕概括起来,即1212121212121212()()()()()()()()x x x x f x f x f x f x x x x x f x f x f x f x ⎧⎧<>⎧⎪⎪⎨⎨<>⎪⎩⎪⎩⎨⎧<>⎧⎪⎪⎨⎨⎪><⎪⎩⎩⎩增函数或“同增异减”减函数或 〔2〕函数单调性的证明的一般步骤:①设1x ,2x 是区间D 上的任意两个实数,且12x x < ②作差12()()f x f x -,并通过因式分解、配方、通分、有力化等方法使其转化为易于判断正负的式子;③确定12()()f x f x -的符号;④给出结论证明函数单调性时要注意三点:①1x 和2x 的任意性,即从区间D 中任取1x 和2x ,证明单调性时不可随意用量额特殊值代替;②有序性,即通常规定12x x <;③同区间性,即1x 和2x 必须属于同一个区间。

〔3〕设复合函数()[]x g f y =是定义区间M 上的函数,假设外函数f(x)与内函数g(x)的单调性相反,那么()[]x g f y =在区间M 上是减函数;假设外函数f(x)与内函数g(x)的单调性相同,那么()[]x g f y =在区间M 上是增函数。

概括起来,即“同增异减II 号〞 〔4〕简单性质: ①()f x()f x 与()f x -及1()f x 单调性相反 ②在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数。

函数单调性与奇偶性

函数单调性与奇偶性

函数单调性与奇偶性1. 函数的单调性在数学中,函数的单调性是指函数在定义域上的增减性质。

具体地说,一个函数被称为是递增的(或非递减的),如果对于任意的 x1 和 x2(x1 < x2)都满足f(x1) <= f(x2);一个函数被称为是递减的(或非递增的),如果对于任意的 x1 和x2(x1 < x2)都满足 f(x1) >= f(x2);一个函数被称为是严格递增的,如果对于任意的 x1 和 x2(x1 < x2)都满足 f(x1) < f(x2);一个函数被称为是严格递减的,如果对于任意的 x1 和 x2(x1 < x2)都满足 f(x1) > f(x2)。

函数的单调性对于函数图像的形状有着重要的影响。

当一个函数递增时,其图像会从左下方向右上方倾斜;当一个函数递减时,其图像会从左上方向右下方倾斜。

严格递增和严格递减是指函数图像不会出现水平的平行线段。

2. 函数的奇偶性函数的奇偶性描述了函数图像关于坐标轴的对称性。

具体地说,一个函数被称为是奇函数,如果对于任意的 x,都满足 f(-x) = -f(x);一个函数被称为是偶函数,如果对于任意的 x,都满足 f(-x) = f(x)。

此外,如果一个函数既不是奇函数也不是偶函数,则被称为是既非奇也非偶函数。

奇函数的图像关于原点对称,即如果点 (x, y) 在函数图像上,则点 (-x, -y) 也在函数图像上;偶函数的图像关于 y 轴对称,即如果点 (x, y) 在函数图像上,则点 (-x, y) 也在函数图像上。

既非奇也非偶函数的图像不具备对称性。

3. 函数单调性与奇偶性的关系对于一个函数而言,其单调性与奇偶性有一定的关系。

如果一个函数是奇函数,则它可能是严格递增的或严格递减的;如果一个函数是偶函数,则它可能是递增的或递减的。

但需要注意的是,一个函数的单调性并不决定它的奇偶性,也就是说,递增(或递减)函数可以是奇函数、偶函数或既非奇也非偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单调性与奇偶性一.选择题(共16小题)1.函数f (x )=4x 2﹣mx +5在区间[﹣2,+∞)上是增函数,则f (1)的取值范围是( )A .f (1)≥25B .f (1)=25C .f (1)≤25D .f (1)>252.若函数f (x )=﹣x 2+2ax 与g (x )=1+x a 在区间[1,2]上都是减函数,则实数a 的取值范围是( )A .(﹣1,0)∪(0,1)B .(﹣1,0)∪(0,1]C .(0,1)D .(0,1] 3.已知f (x )为R 上的减函数,则满足f (|x 1|)<f (1)的实数x 的取值范围是( ) A .(﹣1,1) B .(0,1) C .(﹣1,0)∪(0,1) D .(﹣∞,﹣1)∪(1,+∞)4.已知f (x )是R 上的增函数,A (0,﹣1)、B (3,1)是其图象上的两点,那么|f (x +1)|<1的解集是( )A .(3,+∞)B .[2,+∞)C .(﹣1,2)D .(2,3)5.函数f (x )=x 3+b 3x +1(x ∈R ),若f (a )=2,则f (﹣a )的值为( )A .﹣3B .0C .﹣1D .﹣26.定义在R 上的函数f (x )是偶函数,且f (x )=f (2﹣x ).若f (x )在区间[1,2]上是减函数,则f (x )( )A .在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数B .在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数C .在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数D .在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数7.若函数y=f (2x +1)是偶函数,则函数y=f (x )的图象的对称轴方程是( )A .x=1B .x=﹣1C .x=2D .x=﹣28.已知f (x +1)为偶函数,则函数y=f (2x )的图象的对称轴是( )A .x=1B .21=xC .21-=x D .x=﹣1 9.函数y=f (2x ﹣1)是偶函数,则函数y=f (2x +1)的对称轴是( ) A .x=﹣1 B .x=0 C .21=x D .21-=x 10.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数11.已知y=f (x )是偶函数,且在[0,+∞)上是减函数,则f (1﹣x 2)是增函数的区间是( )A .[0,+∞)B .(﹣∞,0]C .[﹣1,0)∪(1,+∞)D .(﹣∞,﹣1]∪(0,1]12.如果函数f (x )是奇函数,且在(0,+∞)上单调递增,且f (2)=0,那么0)()(<--x x f x f 解集为( )A .(﹣∞,﹣2)∪(0,2)B .(﹣2,0)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞D .(﹣2,0)∪(2,+∞)13.已知偶函数f (x )在区间[0,+∞)单调递减,则满足)31()12(f x f <-的x 取值范围( ) A .),32+∞( B .)31,(-∞ C .),32()31,+∞∞- ( D .),3231( 14.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则)25(f 的值是( ) A .0 B .21 C .1 D .25 15.设f (x )是连续的偶函数,且当x >0时,f (x )是单调函数,则满足f (x )=f (43++x x )的所有x 之和为( )A .﹣8B .﹣3C .8D .3 16.已知q (x ),g (x )均为R 上的奇函数,若函数f (x )=aq (x )+bg (x )+1在(0,+∞)上有最大值5,则f (x )在(﹣∞,0)上有( )A .最小值﹣5B .最小值﹣2C .最小值﹣3D .最大值﹣5二.填空题(共2小题)17.设f (x ),g (x )都是单调函数,有如下四个命题:①若f (x )单调递增,g (x )单调递增,则f (x )﹣g (x )单调递增;②若f (x )单调递增,g (x )单调递减,则f (x )﹣g (x )单调递增;③若f (x )单调递减,g (x )单调递增,则f (x )﹣g (x )单调递减;④若f (x )单调递减,g (x )单调递减,则f (x )﹣g (x )单调递减;其中,正确的命题是 .18.已知函数y=f (x )满足f (x )=f (4﹣x )(x ∈R ),且f (x )在x >2时为增函数,则)4(),56(),53(f f f按从大到小的顺序排列出来是.三.解答题(共2小题)19.函数y=f(x)对于任意x,y∈R都有f(x+y)=f(x)+f(y)﹣1,当x>0时,f(x)>1,并且f(3)=4.(1)求证:f(x)是增函数.(2)求f(x)在[1,2]上的最大值和最小值.20.设f(x)是奇函数,g(x)是偶函数,并且f(x)﹣g(x)=x2﹣x﹣1,求f(x)和g(x)的表达式.单调性与奇偶性一.选择题(共16小题)1.函数f (x )=4x 2﹣mx +5在区间[﹣2,+∞)上是增函数,则f (1)的取值范围是( )A .f (1)≥25B .f (1)=25C .f (1)≤25D .f (1)>25【解答】解:由y=f (x )的对称轴是x=8m ,可知f (x )在[8m ,+∞)上递增, 由题设只需8m ≤﹣2,解得m ≤﹣16, ∴f (1)=9﹣m ≥25.故选:A . 2.若函数f (x )=﹣x 2+2ax 与g (x )=1+x a 在区间[1,2]上都是减函数,则实数a 的取值范围是( )A .(﹣1,0)∪(0,1)B .(﹣1,0)∪(0,1]C .(0,1)D .(0,1]【解答】解:∵f (x )=﹣x 2+2ax 的图象是开口朝下,以x=a 为对称轴的抛物线,f (x )=﹣x 2+2ax 在区间[1,2]上是减函数,∴a ≤1①;g (x )=1+x a 在区间[1,2]上都是减函数,0>∴a 故选:D . 3.已知f (x )为R 上的减函数,则满足f (|x 1|)<f (1)的实数x 的取值范围是( ) A .(﹣1,1) B .(0,1) C .(﹣1,0)∪(0,1) D .(﹣∞,﹣1)∪(1,+∞)【解答】解:由已知得解得﹣1<x <0或0<x <1,故选:C .4.已知f (x )是R 上的增函数,A (0,﹣1)、B (3,1)是其图象上的两点,那么|f (x +1)|<1的解集是( )A .(3,+∞)B .[2,+∞)C .(﹣1,2)D .(2,3)【解答】解:由题意知f (0)=﹣1,f (3)=1.又|f (x +1)|<1⇔﹣1<f (x +1)<1,即f (0)<f (x +1)<f (3).又f (x )为R 上的增函数,∴0<x +1<3.∴﹣1<x <2,故选:C .5.函数f (x )=x 3+b 3x +1(x ∈R ),若f (a )=2,则f (﹣a )的值为( )A .﹣3B .0C .﹣1D .﹣2【解答】解:∵函数f (x )=x 3+b 3x +1,∴f (x )﹣1=x 3+b 3x 在R 上是奇函数,∵f (a )﹣1=1,∴f (﹣a )﹣1=﹣1,∴f (﹣a )=0,故选:B .6.定义在R 上的函数f (x )是偶函数,且f (x )=f (2﹣x ).若f (x )在区间[1,2]上是减函数,则f (x )( )A .在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数B .在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数C .在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数D .在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数【解答】解:由f (x )=f (2﹣x )可知f (x )图象关于x=1对称,又∵f (x )为偶函数,∴f (x )=f (x ﹣2)∴f (x )为周期函数且周期为2,结合f (x )在区间[1,2]上是减函数,可得f (x )草图. 故选:B .7.若函数y=f (2x +1)是偶函数,则函数y=f (x )的图象的对称轴方程是( )A .x=1B .x=﹣1C .x=2D .x=﹣2【解答】解;∵y=f (2x +1)=f (2(x ))∴函数y=f (x )的图象纵坐标不变,横坐标缩短为原来的,得出y=f (2x ),再向左平移个单位得出y=f (2x +1)=f (2(x ))的图象.∵函数y=f (2x +1)是偶函数 ∴函数y=f (2x +1)的对称轴为x=0,∴函数y=f (2x )的对称轴为x=, y=f (x )的对称轴为x=1, 故选:A .8.已知f (x +1)为偶函数,则函数y=f (2x )的图象的对称轴是( )A .x=1B .x=C .x=﹣D .x=﹣1【解答】解:∵f (x +1)是偶函数,∴函数f (x +1)的图象关于y 轴对称,∴函数f (x )的图象关于直线x=1对称,∴函数f (2x )的图象关于直线x=对称,故选:B .9.函数y=f (2x ﹣1)是偶函数,则函数y=f (2x +1)的对称轴是( )A .x=﹣1B .x=0C .21=xD .21-=x 【解答】解:∵函数y=f (2x ﹣1)是偶函数,∴函数的图象关于y 轴对称∵函数y=f (2x +1)是由函数y=f (2x ﹣1)的图象向左平移1个单位得到,∴函数y=f (2x +1)的对称轴是直线x=﹣1,故选:A .10.若定义在R 上的函数f (x )满足:对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,则下列说法一定正确的是( )A .f (x )为奇函数B .f (x )为偶函数C .f (x )+1为奇函数D .f (x )+1为偶函数 【解答】解:∵对任意x 1,x 2∈R 有f (x 1+x 2)=f (x 1)+f (x 2)+1,∴令x 1=x 2=0,得f (0)=﹣1∴令x 1=x ,x 2=﹣x ,得f (0)=f (x )+f (﹣x )+1,∴f (x )+1=﹣f (﹣x )﹣1=﹣[f (﹣x )+1],∴f (x )+1为奇函数.故选:C .11.已知y=f (x )是偶函数,且在[0,+∞)上是减函数,则f (1﹣x 2)是增函数的区间是( )A .[0,+∞)B .(﹣∞,0]C .[﹣1,0)∪(1,+∞)D .(﹣∞,﹣1]∪(0,1]【解答】解:∵y=f (x )是偶函数,且在[0,+∞)上是减函数,∴在(﹣∞,0]是增函数,令t=1﹣x 2,要使f (t )是增函数,应有t ≤0 时t 是增函数,或者t ≥0时,t 是减函数. ∵t ≤0时,有 x ≥1 或x ≤﹣1,t=1﹣x 2 在(﹣∞,﹣1]上是增函数,f (1﹣x 2)是增函数,t ≥0时,1≥x ≥﹣1,t=1﹣x 2 在(0,1]上是减函数,f (1﹣x 2)是增函数,则f (1﹣x 2)是增函数的区间是 (﹣∞,﹣1]∪(0,1],故选:D .12.如果函数f (x )是奇函数,且在(0,+∞)上单调递增,且f (2)=0,那么0)()(<--x x f x f 解集为( )A .(﹣∞,﹣2)∪(0,2)B .(﹣2,0)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞D .(﹣2,0)∪(2,+∞)【解答】解:∵奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,∴函数f (x )在(﹣∞,0)上为增函数,且f (﹣2)=f (2)=0,作出函数f (x )的草图如图:∵f (x )是奇函数,∴不等式0)()(<--x x f x f 等价为0)(2<xx f , 即0)(<x xf ,解得0<x <2或﹣2<x <0,∴<0的解集为:(﹣2,0)∪(0,2),故选:B .13.已知偶函数f (x )在区间[0,+∞)单调递减,则满足)31()12(f x f <-的x 取值范围( C )A .),32+∞(B .)31,(-∞C .),32()31,+∞∞- ( D .),3231( 14.已知函数f (x )是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有xf (x +1)=(1+x )f (x ),则)25(f 的值是( ) A .0 B .21 C .1 D .25 【解答】解:若x ≠0,则有,取,则有:∵f (x )是偶函数,则 由此得于是,故选:A .15.设f (x )是连续的偶函数,且当x >0时,f (x )是单调函数,则满足f (x )=f (43++x x )的所有x 之和为( )A .﹣8B .﹣3C .8D .3【解答】解:∵f (x )为偶函数,且当x >0时f (x )是单调函数∴等价于或∴x 2+3x ﹣3=0或x 2+5x +3=0,此时x 1+x 2=﹣3或x 3+x 4=﹣5.∴满足的所有x 之和为﹣3﹣5=﹣8.故选:A .16.已知q (x ),g (x )均为R 上的奇函数,若函数f (x )=aq (x )+bg (x )+1在(0,+∞)上有最大值5,则f (x )在(﹣∞,0)上有( )A .最小值﹣5B .最小值﹣2C .最小值﹣3D .最大值﹣5【解答】解:设F (x )=aq (x )+bg (x ),∵q (x ),g (x )均为R 上的奇函数, 则F (﹣x )=﹣F (x ).∴F (x )是奇函数,且它在(0,+∞)上有最大值5﹣1=4,根据对称性,它在(﹣∞,0)上有最小值:﹣4,则f (x )在(﹣∞,0)上有最小值:﹣4+1=﹣3.故选:C .二.填空题(共2小题)17.设f (x ),g (x )都是单调函数,有如下四个命题:①若f (x )单调递增,g (x )单调递增,则f (x )﹣g (x )单调递增;②若f (x )单调递增,g (x )单调递减,则f (x )﹣g (x )单调递增;③若f (x )单调递减,g (x )单调递增,则f (x )﹣g (x )单调递减;④若f (x )单调递减,g (x )单调递减,则f (x )﹣g (x )单调递减;其中,正确的命题是 ②③ .【解答】解:对于①,令f (x )=x ,g (x )=2x ,则f (x )﹣g (x )=﹣x 为减函数,故排除①; 对于②,设任意的x 1,x 2,且x 1<x 2,则由题意得f (x 1)<f (x 2),g (x 1)>g (x 2), ∴[f (x 1)﹣g (x 1)]﹣[f (x 2)﹣g (x 2)]=[f (x 1)﹣f (x 2)]﹣[g (x 1)﹣g (x 2)]<0,故f (x )﹣g (x )单调递增;故②正确;对于③,设任意的x 1,x 2,且x 1<x 2,则由题意得f (x 1)>f (x 2),g (x 1)<g (x 2), ∴[f (x 1)﹣g (x 1)]﹣[f (x 2)﹣g (x 2)]=[f (x 1)﹣f (x 2)]﹣[g (x 1)﹣g (x 2)]>0,故f (x )﹣g (x )单调递减;故③正确;对于④,令f (x )=﹣x ,g (x )=﹣2x ,则f (x )﹣g (x )=x 为增函数,故排除④.故答案为:②③.18.已知函数y=f (x )满足f (x )=f (4﹣x )(x ∈R ),且f (x )在x >2时为增函数,则)4(),56(),53(f f f 按从大到小的顺序排列出来是 f (4)>f (53)>f (56). . 【解答】解:由f (x )=f (4﹣x ),得f ()=f (4﹣)=f (),f ()=f (4﹣)=f (),因为f (x )在(2,+∞)上是增函数,且2<56<53<4, 所以f (56)<f (53)<f (4),即f (56)<f (53)<f (4), 故答案为:f (4)>f (53)>f (56). 三.解答题(共2小题)19.函数y=f (x )对于任意x ,y ∈R 都有f (x +y )=f (x )+f (y )﹣1,当x >0时,f (x )>1,并且f (3)=4.(1)求证:f (x )是增函数.(2)求f (x )在[1,2]上的最大值和最小值.【解答】(1)证明:在R 上任取x 1,x 2,且x 1<x 2,则f (x 1)﹣f (x 2)=f (x 1)﹣f (x 2﹣x 1+x 1)=f (x 1)﹣f (x 2﹣x 1)﹣f (x 1)+1=1﹣f (x 2﹣x 1), ∵x 2﹣x 1>0,∴f (x 2﹣x 1)>1,故f (x 1)﹣f (x 2)<0 即f (x 1)<f (x 2)则f (x )为R 上的单调递增函数.(2)解:令x=y=1得f (2)=2f (1)﹣1,令x=2,y=1得,f (3)=f (1)+f (2)﹣1=4,则有3f (1)﹣2=4,即有f (1)=2,即有f (2)=3.由f (x )为R 上的单调递增函数,则f(x)在[1,2]上的最大值为f(2)=3,最小值为f(1)=2.20.设f(x)是奇函数,g(x)是偶函数,并且f(x)﹣g(x)=x2﹣x﹣1,求f(x)和g(x)的表达式.【解答】解:∵f(x)为奇函数,∴f(﹣x)=﹣f(x);∵g(x)为偶函数,∴g(﹣x)=g(x).由f(x)﹣g(x)=x2﹣x﹣1①,得f(﹣x)﹣g(﹣x)=x2+x﹣1,从而﹣f(x)﹣g(x)=x2+x﹣1,即f(x)+g(x)=﹣x2﹣x+1②,联立①②解得,f(x)=﹣x,g(x)=1﹣x2.。

相关文档
最新文档