【最新】九年级数学上册北师大版(贵州专用)习题课件:5.2(共19张PPT)
合集下载
北师大版九年级数学上册1.2.1矩形的性质与判定课件(共23张PPT)
边形是什么图形?
矩形的定义:
有一个角是直角的平行四边形是矩形
平行四边形
有一个角 是直角
矩形
矩形是特殊的平行四边形
生活中的实例
分组讨论 探究新知
问题1: 既然矩形是平行四边形,那么它具有平行四 边形的哪些性质?
性质
边
角
对角线 对称性
矩形
对边平行 且相等
对角相等
对角线互相 中心对称 平分 图形
问题2
例1:如图,在矩形ABCD中,两条对角线相交于点O, ∠AOD=120°,AB=2.5cm,求矩形对角线的长。
A
D
O
B
C
你还有其他解法吗?
反馈练习二
1. 下面性质中,矩形不一定具有的是 [ D ]
A.对角线相等 C.是轴对称图形
B.四个角都相等 D.对角线垂直
2. 如图,在矩形ABCD中,两条对角线AC与 BD相交于点O,AB=6,OA=4.求BD与AD的长.
矩形是特殊的平行四边形
公平,因为OA=OC=OB=OD
当矩形的大小不断变化时,发现的结论是否仍然成立?
(2)AC = BD
公平,因为OA=OC=OB=OD (2)在运动过程中四边形不变的是什么?
这是矩形所
矩形的四个角都是直角.
O
特有的性质
生活链接---投圈游戏
四个学生正在做投圈游戏,他们分别站在一
B
C
O
B
C
直角三角形斜边上的中线等于斜边的一半。这个结 论对于所有直角三角形都成立。
反馈练习一
已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线. (1)若BD=3㎝,则AC=_6____㎝; (2)若∠C=30°,AB=5㎝,则AC=__1_0__㎝,BD=__5___ ㎝.
矩形的定义:
有一个角是直角的平行四边形是矩形
平行四边形
有一个角 是直角
矩形
矩形是特殊的平行四边形
生活中的实例
分组讨论 探究新知
问题1: 既然矩形是平行四边形,那么它具有平行四 边形的哪些性质?
性质
边
角
对角线 对称性
矩形
对边平行 且相等
对角相等
对角线互相 中心对称 平分 图形
问题2
例1:如图,在矩形ABCD中,两条对角线相交于点O, ∠AOD=120°,AB=2.5cm,求矩形对角线的长。
A
D
O
B
C
你还有其他解法吗?
反馈练习二
1. 下面性质中,矩形不一定具有的是 [ D ]
A.对角线相等 C.是轴对称图形
B.四个角都相等 D.对角线垂直
2. 如图,在矩形ABCD中,两条对角线AC与 BD相交于点O,AB=6,OA=4.求BD与AD的长.
矩形是特殊的平行四边形
公平,因为OA=OC=OB=OD
当矩形的大小不断变化时,发现的结论是否仍然成立?
(2)AC = BD
公平,因为OA=OC=OB=OD (2)在运动过程中四边形不变的是什么?
这是矩形所
矩形的四个角都是直角.
O
特有的性质
生活链接---投圈游戏
四个学生正在做投圈游戏,他们分别站在一
B
C
O
B
C
直角三角形斜边上的中线等于斜边的一半。这个结 论对于所有直角三角形都成立。
反馈练习一
已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线. (1)若BD=3㎝,则AC=_6____㎝; (2)若∠C=30°,AB=5㎝,则AC=__1_0__㎝,BD=__5___ ㎝.
九年级数学北师大版(上册)《6.2反比例函数的图象》(共15张PPT)
你还有其他发现吗?
反比例函数的图象和性质
1.形状 反比例函数的图象是由两支曲线组成的, 因此称反比例函数的图象为双曲线.
2.位置 当k>0时,两支曲线分别位于第一、三象限内; 当k<0时,两支曲线分别位于第二、四象限内.
归纳:反比例函数的图象和性质: 图象性质见下表:
y= k
K>0
K<0
x
图 象
6.2反比例函数的图象与性质
y
O
x
1.什么是反比例函数? k
一般地,形如 y = —x( k是常数, k ≠0 ) 的函数叫做反比例函数.
2.反比例函数的定义中需要注意什么?
(1)k 是非零常数.
(2)xy = k.
3.还记得一次函数的图像与性质吗?
函数 正比例函数 反比例函数
解析式
y=kx(k是常数,k≠0) y =
【典例解析】
-4 1.画出函数y = — 的图x 象
【解析】1.列表:
x
… -8 -4 -3 -2 -1 1 … 1 1 2 3 4 8
2
2
y 4 … 1 1
x
2
4 3
2
4 8 … -8 -4 -2 4 -1 1
3
2
2.描点:以表中各组对应值作为点的坐标,在直角坐标 系内描出相应的点.
3.连线:用光滑的曲线顺次连接各点,就可得到图象.
函数图象画法 描点法
列 表
描 点
连 线
提问:反比例函数的图像与性质又如何呢? 这节课开始我们来一起探究吧。
你认为作反比例函数图象时应注意哪些问题?
1.列表时,选取的自变量的值,既要易于计算,又要便于描点, 尽量多取一些数值(取互为相反数的一对一对的数),多描一 些点,这样既可以方便连线,又可以使图象精确. 2.描点时要严格按照表中所列的对应值描点,绝对不能把 点的位置描错. 3.连线时一定要养成按自变量从小到大的顺序依次画线,连 线时必须用光滑的曲线连接各点,不能用折线连接. 4.图象是延伸的,注意不要画的有明确端点. 5.曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交.
新北师大版九年级数学上册《用因式分解法求解一元二次方程》优课件(共14张PPT)
2.4 用因式分解法求解一元二次方程
1.因式分解常用的方法有 提公因式法 、 公式法 . 2.因式分解法就是把一元二次方程的一边化为__0__,另一边分 解成两个一次因式的 乘积 的形式,让两个一次因式分别等 于__0__,得到的两个一元一次方程,解这两个一元一次方程,得 到的两个根就是原方程的两个根. 3.解一元二次方程的方法有: 直接开平方法 、 配方法 、
知识点二:根的判别式
6.下列关于x的方程有实数根的是( D )
A.x2+1=0 B.x2+x+1=0
C.x2-x+1=0 D.x2-x-1=0
7.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0
时,必有实数解”,能说说这个命题是假命题的反例是(
)
A
A.b=-1 B.b=2
C.b=-2 D.b=0
(1)甲同学的解法正确吗?为什么? (2)对甲同学的解法,你若有不同见解,请你写出对上述方程的 解法.
解:(1)不正确.因为当x+5=0时,甲的解法便无意义,而 当x+5=0时,方程两边仍相等
(2)原方程可化为x(x+5)-3(x+5)=0,(x+5)·(x-3)=0,∴x1 =3,x2=-5
11.用适当的方法解方程: (1)2(x+3)2=8
解:(x+3)2=4,∴x+3=±2,∴x1=-1,x2=-5 (2)x2+2x-2014=0
解:(x+1)2=2015,∴x+1=± 2015,∴x1=-1+ 2015, x2=-1- 2015
(3)(x+3)(x-4)=-12 解:整理得 x2-x=0,即 x(x-1)=0,∴x1=0,x2=1
请依照上述方法,用因式分解法解下列方程: (1)x2+8x+7=0;
解:∵x2+(7+1)x+7×1=0,(x+7)(x+1)=0,∴x1=-1 ,x2=-7
1.因式分解常用的方法有 提公因式法 、 公式法 . 2.因式分解法就是把一元二次方程的一边化为__0__,另一边分 解成两个一次因式的 乘积 的形式,让两个一次因式分别等 于__0__,得到的两个一元一次方程,解这两个一元一次方程,得 到的两个根就是原方程的两个根. 3.解一元二次方程的方法有: 直接开平方法 、 配方法 、
知识点二:根的判别式
6.下列关于x的方程有实数根的是( D )
A.x2+1=0 B.x2+x+1=0
C.x2-x+1=0 D.x2-x-1=0
7.已知命题“关于x的一元二次方程x2+bx+1=0,当b<0
时,必有实数解”,能说说这个命题是假命题的反例是(
)
A
A.b=-1 B.b=2
C.b=-2 D.b=0
(1)甲同学的解法正确吗?为什么? (2)对甲同学的解法,你若有不同见解,请你写出对上述方程的 解法.
解:(1)不正确.因为当x+5=0时,甲的解法便无意义,而 当x+5=0时,方程两边仍相等
(2)原方程可化为x(x+5)-3(x+5)=0,(x+5)·(x-3)=0,∴x1 =3,x2=-5
11.用适当的方法解方程: (1)2(x+3)2=8
解:(x+3)2=4,∴x+3=±2,∴x1=-1,x2=-5 (2)x2+2x-2014=0
解:(x+1)2=2015,∴x+1=± 2015,∴x1=-1+ 2015, x2=-1- 2015
(3)(x+3)(x-4)=-12 解:整理得 x2-x=0,即 x(x-1)=0,∴x1=0,x2=1
请依照上述方法,用因式分解法解下列方程: (1)x2+8x+7=0;
解:∵x2+(7+1)x+7×1=0,(x+7)(x+1)=0,∴x1=-1 ,x2=-7
北师大版数学九年级上册1.1菱形的性质与判定课件(共17张PPT)
1
1
OB=OD= 2 BD = 2 ×6=3(菱形的对角线互相平分) 在等腰三角形ABC中,
A
O
C
∵∠BAD=60°, D
∴△ABD是等边三角形.
∴AB = BD = 6.
三、运用新知
在RtΔAOB中,由勾股定理,得
B
OA 2 +OB 2=AB 2,
O
∴OA = AB2 OB2 = 62 32= 3 3 .
∴CB=CD, CA平分∠BCD.
∴∠BCE=∠DCE.
又 CE=CE,
C
∴△BC E≌△COB(SAS).
B F
E
A
∴∠CB E=∠CDE.
D
∵在菱形ABCD中,AB∥CD,
∴∠AFD=∠FDC.
∴∠AFD=∠CBE.
五、归纳小结
1. 菱形的定义:有一组邻边相等的平行四边形是菱形.
2. 菱形的性质:①菱形是轴对称图形,对称轴是两条对角线所在 的直线;
观察 发现
观察下列图中的这些平行四边形,你能发现它 们有什么样的共同特征?
一、创设情境,引入新知
菱形的定义: 与一般的平行四边形相比较,这种平行四边形特殊在
哪里?你能给菱形下定义吗?
平行四边形
菱形
菱形:有一组邻边相等的平行四边形叫做菱形.
菱形的性质:
二、合作交流,探究新知
想一想: 1. 菱形与平行四边形有什么关系?
二、合作交流,探究新知 32 C.
对称轴之间有什么位置关系? 求证:∠AFD=∠CBE.
为BC,CD的中点,那么∠EAF 的度数是( ) 菱形中已知边长或对角线,求相关长度问题,一般利用菱形的对角线垂直平分,再结合勾股定理解题. ∴AB = BD = 6.
4.2平行线分线段成比例 课件(共16张PPT) 北师大版数学九年级上册
AF交BC于点D,若BF=3EF,则 =
.
.
( B)
.
.
点拨:过点E作 //交 BC 于点H,则
=
.
∵BE 是 △ 的中线, ∴ = , ∴ = .
∵ //, = , ∴
=
= , ∴
1 2 1 2
3 .计算
与
的值,你有什么发现?
2 3 2 3
如果不通过测量,我们要将一条长为5厘米的细线分成两部
分,使得这两部分之比为2:3.我们如何运用所学知识解决
这个问题呢?
知识讲解
自主探究
1.请同学们阅读课本82-83页内容.
2.思考并完成课本82页导入的内容中的问题可以得出什么结论?
例2:如图,已知AD为△ABC的角平分线,DE//AB交
AC于E,如果
= ,那么BD:BC等于(
D
)
A.3:5 B. 5:3 C.8:5 D. 3:8
点拨: ∵ //, ∴
=
=
,∴
=
.
【题型三】平行线分线段成比例与三角形中位线的综合应用
例3:如图,BE是△BC的中线,点F在BE上,延长
平行的直线,用它们截两条直线,然后测量被截
的每段线段的长度,观察并计算是否满足本节课
所学的基本事实.
清楚哪些线段是对应的,切勿写反.
注意:在应用基本事实和推论时,我们需要注意的是:对应线段成比例,一
新北师大版九年级数学上册《用公式法求解一元二次方程》优质课课件(共18张PPT)
解:(1)设该项绿化工程原计划每天完成 x m2,根据题意
46 000-22 000 46 000-22 000
得:
x
-
1.5x
=4,解得 x=2 000,经
检验,x=2 000 是原方程的解,答:该绿化项目原计划每天完
成 2 000 平方米 (2)设人行道的宽度为 x 米,根据题意得,(20
-3x)(8-2x)=56,解得 x1=2 或 x2=236(不合题意,舍去).答: 人行道的宽为 2 米
2.3 用公式法求解一元二次方程
1.对于一元二次方程 ax2+bx+c=0(a≠0),当 b2-4ac≥0 时, -b± b2-4ac
它的根 x=
2a
,我们把这个式子称为一元二次方程的
求根公式,用求根公式解一元二次方程称为 公式法 .
2.对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac>0时,
-1+ 5
-1- 5
则方程(x+2)*5=0 的解为x1= 2 ,x2= 2
.
15.用公式法解方程:
(1)7x2-6x=5
3+2 11
3-2 11
解:x1= 7 ,x2= 7
(2)x(2x-4)=5-8x
-2+ 14
-2- 14
解:x1= 2 ,x2= 2
16.解方程 2x2+4 3x=2 2.有一位同学解答如下: 这里 a= 2,b=4 3,c=2 2,∴b2-4ac=(4 3)2-4× 2
(2)x2-2 3x+3=0 解:∵Δ=12-4×3=0,∴x1=x2= 3
知识点二:根的判别式 6.下列关于x的方程有实数根的是( D ) A.x2+1=0 B.x2+x+1=0 C.x2-x+1=0 D.x2-x-1=0 7.(2014·宁波)已知命题“关于x的一元二次方程x2+bx+1 =0,当b<0时,必有实数解”,能说说这个命题是假命题的 反例是( A ) A.b=-1 B.b=2 C.b=-2 D.b=0
北师大版九年级上册数学课件6.1反比例函数(共14张PPT)
。
一般地,如果两个变量x、y之间的关系可以表
一般地,如果两个变量x、y之间的关系可以表
示成
(k为常数,k≠0)的形式,那么称y
是x的反比例函数。
反比例函数自变量不能为0!
(3) (4) (5) (6)
做一做
1、一个矩形的面积为20cm2,相邻的两条边 长分别是xcm和ycm,那么变量y是变量x的函 数吗?是反比例函数吗?
1 x
是反比例函数,k值分别为
1 5
,1
2、用x表示自变量,y表示x的函数,下列给出的函数关系中,是 反比列函数关系的是( D )
A 长方形的周长为2,长为x,宽为y
B 正方形的边长为x,面积为y
C 李明以2米/秒的速度行走,行走的时间x,行走的路程y
D 王芳以x米/分钟的速度花y分钟爬完40米的高楼
A 1个
B 2个
C 3个
D 4个
m≠1 m≠o且m ≠-2
m=-1
通过这节课的学习你有哪些收获? 还有哪些问题?与同伴进行讨论!
例如:y=2x+3 y=10x y=-4x
认识反比例函数 熟悉反比例函数
快乐练习 自我感受
我们知道,电流I、电阻R、电压U之间满足关系式U=IR,当U=220V,
一般地,如果两个变量x、y之间的关系可以表
1、一个矩(形的1面)积为你20能cm2用,相含邻的有两R条边的长代分别数是x式cm和表yc示m,I那吗么变?量y是变量x的函数吗?是反比例函数吗?
1、一个矩形的面积为20cm2,相邻的两条边长分别是xcm和ycm,那么变量y是变量x的函数吗?是反比例函数吗?
特别地,当b=0时,称y是x的正比例函数.
(4)在水龙头前放满一桶水,出水的速度为x,放满一桶水的时间y
秋北师大版九年级数学上册习题课件:2.5 一元二次方程的根与系数的关系(共22张PPT)
(2)(x+1)2=4x(x-1). 解:整理得:3x2-6x-1=0, x1+x2=2, x1x2=-13.
4. 若关于 x 的一元二次方程 x2-4x+k-3=0 的两 个实数根为 x1,x2,且满足 x1=3x2,试求出方程的两个 实数根及 k 的值.
解:x1=3,x2=1,k=6.
5. (2017·南充)已知关于 x 的一元二次方程 x2-(m -3)x-m=0.
◎基础训练
1. (2017·烟台)若 x1,x2 是方程 x2-2mx+m2-m-
1=0 的两个根,且 x1+x2=1-x1x2,则 m 的值为( D )
A.-1 或 2
B.1 或-2
C.-2
D.1
【解析】由题意,x1+x2=2m,x1x2=m2-m-1, ∵x1+x2=1-x1x2,∴2m=1-(m2-m-1),解得
7. 若两个不等实数 m、n 满足条件:m2-2m-k=0, n2-2n-k=0.
(1)求 k 的取值范围; (2)若 m2+n2 的值是 6,求 k 的值.
解:(1)由已知得 m、n 分别是方程 x2-2x-k=0 不
相等的实数根,Δ=4+4k>0,得:k>-1.
(2)由 m+n=2,mn=-k, m2+n2=(m+n)2-2mn,得 4+2k=6, 解得 k=1.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/122021/9/122021/9/122021/9/129/12/2021 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年9月12日星期日2021/9/122021/9/122021/9/12 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年9月2021/9/122021/9/122021/9/129/12/2021 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/9/122021/9/12September 12, 2021 17、儿童是中心,教育的措施便围绕他们而组织起来。2021/9/122021/9/122021/9/122021/9/12
北师大版九年级数学上册《概率的进一步认识——用树状图或表格求概率》教学PPT课件(3篇)
1 小红赢的概率是 4 ,据此判断该游戏 不不公公平平 (填“公平” 或“不公平”).
例题精讲
知识点 1 利用画树状图法或列表法求复杂的等可能事件的概率 例1 (教材 P64 随堂练习)有三张大小一样而画面不同的画片,先将每 一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在 第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个 盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.
知识点 2 不同颜色球的数目不等的摸球游戏中的概 率
例2 (教材 P67 例 2)一个盒子中装有两个红球,两个白球 和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球, 记下颜色后放回,再从中随机摸出一个球,求两次摸到的球 的颜色能配成紫色的概率.
【思路点拨】(红色和蓝色可以配成紫色)画树状图展示 所有 25 种等可能的结果数,再找出红色和蓝色的结果数,根 据概率公式求解.
不遗漏
2. 判断游戏公平性,先计算游戏双方获胜的概率,如果 概率相等,则游戏公平;如果不相等,则游戏不公平.
第三章 概率的进一步认识
3.1 用树状图或表格求概率
第3课时
教学目标
能借助画树状图或列表计算与转盘有关的配色游戏及数 目不等型游戏中的概率.(重难点)
课前预习
预习反馈
1. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两
上的数字之和为 5 的概率是 3 .
例题精讲 知识点 1 转盘配紫色游戏中的概率
例1 小明和小亮用下面两个可以自由转动的转盘做“配 紫色”游戏(红色和蓝色在一起能配成紫色),同时随机转动这 两个转盘,若能配成紫色,则小明胜,否则小亮胜,这个游 戏对双方公平吗?请用列表或画树状图的方法说明理由.
例题精讲
知识点 1 利用画树状图法或列表法求复杂的等可能事件的概率 例1 (教材 P64 随堂练习)有三张大小一样而画面不同的画片,先将每 一张从中间剪开,分成上下两部分;然后把三张画片的上半部分都放在 第一个盒子中,把下半部分都放在第二个盒子中.分别摇匀后,从每个 盒子中各随机地摸出一张,求这两张恰好能拼成原来的一幅画的概率.
知识点 2 不同颜色球的数目不等的摸球游戏中的概 率
例2 (教材 P67 例 2)一个盒子中装有两个红球,两个白球 和一个蓝球,这些球除颜色外都相同,从中随机摸出一个球, 记下颜色后放回,再从中随机摸出一个球,求两次摸到的球 的颜色能配成紫色的概率.
【思路点拨】(红色和蓝色可以配成紫色)画树状图展示 所有 25 种等可能的结果数,再找出红色和蓝色的结果数,根 据概率公式求解.
不遗漏
2. 判断游戏公平性,先计算游戏双方获胜的概率,如果 概率相等,则游戏公平;如果不相等,则游戏不公平.
第三章 概率的进一步认识
3.1 用树状图或表格求概率
第3课时
教学目标
能借助画树状图或列表计算与转盘有关的配色游戏及数 目不等型游戏中的概率.(重难点)
课前预习
预习反馈
1. 用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两
上的数字之和为 5 的概率是 3 .
例题精讲 知识点 1 转盘配紫色游戏中的概率
例1 小明和小亮用下面两个可以自由转动的转盘做“配 紫色”游戏(红色和蓝色在一起能配成紫色),同时随机转动这 两个转盘,若能配成紫色,则小明胜,否则小亮胜,这个游 戏对双方公平吗?请用列表或画树状图的方法说明理由.
北师大版九年级上册数学 知识点复习课件(共46张PPT)
知识点八 位似
(1) 如果两个图形不仅相似,而且对应顶点的连线相 交于一点,那么这样的两个图形叫做位似图形,这 个点叫做位似中心. (这时的相似比也称为位似比)
(2) 性质:位似图形上任意一对对应点到位似中心的 距离之比等于位似比;对应线段平行或者在 一条直 线上.
(3) 位似性质的应用:能将一个图形放大或缩小.
墙壁等)上得到的影子叫做物体的投影. 投影所在的平面叫做投影面.
投影
投影面
2.中心投影指的是由同一点(知点识光源专)题发出的光线所形成的投影。
中心投影的投射线相交于一点,这 一点称为投影中心。
3.中心投影的特点:
知识专题
1).物体离光源越远,影子越长。
2).物体方向改变,影子方向随之改变。
3).光源离物体越近,影子越短。 4).光源方向改变,影子方向随之改变。
第一章 特殊的平行四边形
本章小结
一、菱形、矩形、正方形的性质
对边
角
平行
对角相等
且四边相等 邻角互补
平行且相等
四个角 都是直角
平行
四个角
且四边相等 都是直角
对角线
互相垂直且平分, 每一条对角线平分
一组对角
互相平分且 相等
互相垂直平分且相 等,每一条对角线
平分一组对角
二、菱形、矩形、正方形的判定方法
(2) 反比例函数的性质
k>0
图象 y
o yk
x
(k≠0) k<0
y
o
所在象限 性质
一、三象 在每个象
限(x,y 限内,y
同号) 随 x 的增
x
大而减小
二、四象 在每个象
限(x,y 限内,y
2021年北师大版九年级数学上册《认识一元二次方程》优质课课件(共13张PPT)
认识一元二次方程
问题1
5x-15=0
这是一个什么样的方程?
只含有一个未知数(元),并且未知数的次数是1的整式 方程叫一元一次方程(linear equation with one unknown)
问题2 大明休闲中心有一个长为10m,宽为6m的游泳池,
现想将游泳池的面积改造成35m2,若长宽同时减少 相同的长度,问减少多少米?
解 去括号,得 3x2-3x=2x-4-4
移项,合并同类项,得方程的一般形式:
3x2-5x+8=0 它的二次项系数是3,一次项系数是-5,常数项是8
1、填空:
方程
一般式
x2-4x-3=0 x2-4x-3=0
0.5x2= 5
0.5x2-√5 =0
2 y-4y2=0 -4y2 +√2y =0
(2x)2=(x+1)2 3x2-2x-1=0
你能结合方程①给方 程②起一个名字吗?
一元二次方程
一元二次方程的定义 方程X2-16x+25=0的两边都是整式,只含有一个未知数,并且
未知数的最高次数是2次,我们把这样的方程叫做一元二次方程。 ①方程两边都是整式
一元二次方程要素
②只含有一个未知数
③未知数的最高次数是2次
试一试
1、判断下列方程中,哪些是一元二次方程?
bx+c=0
ax2+c=0 ax2+bx=0
ax2=0
只要满足a≠0,a,b,c可以为任意实数
一元二次方程的一般形式 ax2+bx+c=0中
二次项系数 a
ax2
二次项
一次项系数 b
bx
一次项
c
常数项
问题1
5x-15=0
这是一个什么样的方程?
只含有一个未知数(元),并且未知数的次数是1的整式 方程叫一元一次方程(linear equation with one unknown)
问题2 大明休闲中心有一个长为10m,宽为6m的游泳池,
现想将游泳池的面积改造成35m2,若长宽同时减少 相同的长度,问减少多少米?
解 去括号,得 3x2-3x=2x-4-4
移项,合并同类项,得方程的一般形式:
3x2-5x+8=0 它的二次项系数是3,一次项系数是-5,常数项是8
1、填空:
方程
一般式
x2-4x-3=0 x2-4x-3=0
0.5x2= 5
0.5x2-√5 =0
2 y-4y2=0 -4y2 +√2y =0
(2x)2=(x+1)2 3x2-2x-1=0
你能结合方程①给方 程②起一个名字吗?
一元二次方程
一元二次方程的定义 方程X2-16x+25=0的两边都是整式,只含有一个未知数,并且
未知数的最高次数是2次,我们把这样的方程叫做一元二次方程。 ①方程两边都是整式
一元二次方程要素
②只含有一个未知数
③未知数的最高次数是2次
试一试
1、判断下列方程中,哪些是一元二次方程?
bx+c=0
ax2+c=0 ax2+bx=0
ax2=0
只要满足a≠0,a,b,c可以为任意实数
一元二次方程的一般形式 ax2+bx+c=0中
二次项系数 a
ax2
二次项
一次项系数 b
bx
一次项
c
常数项
相关主题