2014年人教A版高中数学必修二:4.3.1配套练习(含答案)

合集下载

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。

高中数学选择性必修二 4 3 1第2课时等比数列的性质及应用-练习

高中数学选择性必修二 4 3 1第2课时等比数列的性质及应用-练习

第四章数列4.3等比数列4.3.1等比数列的概念第2课时等比数列的性质及应用课后篇巩固提升基础达标练1.在等比数列{a n}中,a2=27,q=-1,则a5=()3A.-3B.3C.-1D.1,{a n}中,a2=27,q=-13则a5=a2·q3=-1,故选C.2.已知等比数列{a n}中,a3=4,a7=9,则a5=()A.6B.-6C.6.5D.±6:奇数项的符号相同,∴a5=√a3a7=√4×9=6.3.已知公比不为1的等比数列{a n}满足a15a5+a14a6=20,若a m2=10,则m=()A.9B.10C.11D.12,数列{a n}是等比数列,且a15a5+a14a6=2a102=20,所以a102=10,所以m=10.故选B.4.已知等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+…+log3a10=()A.12B.10C.1+log35D.2+log35{a n}是等比数列,所以a5a6=a4a7=9,于是log3a1+log3a2+…+log3a10=log3(a1a2…a10)=log3(a5a6)5=log395=10.5.在等比数列{a n}中,若a7=-2,则该数列的前13项的乘积等于()A.-213B.213C.26D.-26{a n}是等比数列,所以a1a13=a2a12=a3a11=a4a10=a5a9=a6a8=a72,于是该数列的前13项的乘积为a1a2…a13=a713=(-2)13=-213.6.(多选)已知数列{a n}是等比数列,且a3+a5=18,a9+a11=144,则a6+a8的值可能为()A.-36B.36C.-36√2D.36√2{a n}的公比为q,则a9+a11=q6(a3+a5),于是q6=a9+a11a3+a5=14418=8,因此q3=±2√2,所以a6+a8=q3(a3+a5)=±36√2.故选CD.7.在正项等比数列{a n}中,a1a3=9,a5=24,则公比q=.{a n}中,a1a3=9,a5=24,可得a22=9,a2=3,得q3=a5a2=8,解得q=2.8.在《九章算术》中,“衰分”是按比例递减分配的意思.今共有粮98石,甲、乙、丙按序衰分,乙分得28石,则衰分比例为.q ,则甲、乙、丙各分得28q 石,28石,28q 石,∴28q +28+28q=98,∴q=2或12.又0<q<1,∴q=12.9.等比数列{a n }同时满足下列三个条件:①a 1+a 6=11,②a 3·a 4=329,③三个数23a 2,a 32,a 4+49依次成等差数列.试求数列{a n }的通项公式.a 1a 6=a 3a 4=329,所以{a 1+a 6=11,a 1·a 6=329,解得{a 1=13,a 6=323或{a 1=323,a 6=13.当{a 1=13,a 6=323时,q=2,所以a n =13·2n-1,这时23a 2+a 4+49=329,2a 32=329,所以23a 2,a 32,a 4+49成等差数列,故a n =13·2n-1.当{a 1=323,a 6=13时,q=12,a n =13·26-n ,23a 2+a 4+49≠2a 32,不符合题意.故通项公式a n =13·2n-1. 10.设{a n }是各项均为正数的等比数列,b n =log 2a n ,b 1+b 2+b 3=3,b 1b 2b 3=-3,求a n .{a n }的首项为a 1,公比为q ,∵b 1+b 2+b 3=3,∴log 2a 1+log 2a 2+log 2a 3=3, ∴log 2(a 1a 2a 3)=3,∴a 1a 2a 3=8,∴a 2=2. ∵b 1b 2b 3=-3,∴log 2a 1·log 2a 2·log 2a 3=-3, ∴log 2a 1·log 2a 3=-3,∴log 2a2q ·log 2a 2q=-3,即(log 2a 2-log 2q )·(log 2a 2+log 2q )=-3, 即(1-log 2q )·(1+log 2q )=-3, 解得log 2q=±2.当log 2q=2时,q=4,a 1=a 2q=12,所以a n =12×4n-1=22n-3;当log 2q=-2时,q=14,a 1=a 2q=8,所以a n =8×(14)n -1=25-2n .能力提升练1.已知数列{a n }满足log 3a n +1=log 3a n+1(n ∈N *),且a 2+a 4+a 6=9,则lo g 13(a 5+a 7+a 9)的值为( )A .-5B .-15C .5D .15log 3a n +1=log 3a n+1,∴a n+1a n=3, ∴数列{a n }是等比数列,公比q=3,∴lo g 13(a 5+a 7+a 9)=lo g 13(a 2q 3+a 4q 3+a 6q 3)=lo g 13[(a 2+a 4+a 6)q 3]=lo g 13(9×33)=-5.2.某工厂去年产值为a ,计划10年内每年比上一年产值增长10%,那么从今年起第几年这个工厂的产值将超过2a ( )A.6B.7C.8D.9n 年这个工厂的产值为a n ,则a 1=1.1a ,a 2=1.12a ,…,a n =1.1n a.依题意,得1.1n a>2a ,即1.1n >2,解得n ≥8.3.在正项等比数列{a n }中,a 3=2,16a 52=a 2a 6,则数列{a n }的前n 项积T n 中最大的值是( )A.T 3B.T 4C.T 5D.T 6,数列{a n }是等比数列,所以16a 52=a 2a 6=a 42,所以q 2=116.又因为数列{a n }为正项等比数列,所以q=14,所以a n =a 3·q n-3=2·43-n =27-2n ,令a n >1,即27-2n >1,得n<72,因为n ∈N *,所以n ≤3,数列{a n }的前n 项积T n 中T 3最大,故选A .4.等比数列{a n }中,若a 12=4,a 18=8,则a 36的值为 .,a 12,a 18,a 24,a 30,a 36成等比数列,且a 18a 12=2,故a 36=4×24=64.5.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n-1a n a n+1=324,则n= .{a n }的公比为q ,由a 1a 2a 3=a 23=4与a 4a 5a 6=a 53=12可得a 53a 23=(q 3)3,q 9=3.又a n-1a n a n+1=a n 3=(a 2q n-2)3=324,因此q 3n-6=81=34=q 36,所以n=14.6.在公差不为零的等差数列{a n }中,2a 3-a 72+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则a 7= ,b 6b 8= .2a 3-a 72+2a 11=2(a 3+a 11)-a 72=4a 7-a 72=0,又b 7=a 7≠0,∴b 7=a 7=4.∴b 6b 8=b 72=16.167.等差数列{a n }的公差和等比数列{b n }的公比都是d (d ≠1),且a 1=b 1,a 4=b 4,a 10=b 10. (1)求实数a 1和d 的值.(2)b 16是不是{a n }中的项?如果是,是第几项?如果不是,请说明理由.设数列{a n },{b n }的通项公式分别为a n =a 1+(n-1)d ,b n =b 1q n-1=a 1d n-1.由{a 4=b 4,a 10=b 10,得{a 1+3d =a 1d 3,a 1+9d =a 1d 9. 即3d=a 1(d 3-1),9d=a 1(d 9-1). 以上两式相除,整理得d 6+d 3-2=0. 解得d 3=1或d 3=-2.∵d ≠1,∴d 3=-2. ∴d=-√23.代入原方程中,解得a 1=√23.故a 1=√23,d=-√23.(2)由(1)得,数列{a n },{b n }的通项公式分别为a n =(2-n )·√23,b n =-(-√23)n . 故b 16=-(-√23)16=-32√23. 由(2-n )√23=-32√23,解得n=34. 故b 16为a n 的第34项.素养培优练某地区发生流行性病毒感染,居住在该地区的居民必须服用一种药片预防,规定每人每天上午8时和晚上20时各服一片.现知该药片每片含药量为220毫克,若人的肾脏每12小时从体内滤出这种药的60%,该药物在人体内的残留量超过380毫克,就将产生副作用.(1)某人上午8时第一次服药,问到第二天上午8时服完药后,这种药在他体内还残留多少? (2)若人长期服用这种药,这种药会不会对人体产生副作用?说明理由.设人第n 次服药后,药在体内的残留量为a n 毫克,则a 1=220,a 2=220+a 1×(1-60%)=220×1.4=308, a 3=220+a 2×(1-60%)=343.2,即到第二天上午8时服完药后,这种药在他体内还残留343.2毫克.(2)由题意,得a n+1=220+25a n,∴a n+1-11003=25(a n-11003),∴{a n-11003}是以a1-11003=-4403为首项,25为公比的等比数列,∴a n-11003=-4403(25)n-1,∵-4403(25)n-1<0,∴a n<11003=36623,∴a n<380.故若人长期服用这种药,这种药不会对人体产生副作用.。

高中数学第四章圆与方程4.3.1空间直角坐标系4.3.2空间两点间的距离公式学案含解析新人教A版必修2

高中数学第四章圆与方程4.3.1空间直角坐标系4.3.2空间两点间的距离公式学案含解析新人教A版必修2

4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式知识导图学法指导1.结合长方体、正棱锥等常见几何体,把握建系的方法,并能写出空间中的点在坐标系中的坐标.2.类比平面上两点间的距离,熟记空间两点间的距离公式.3.体会利用空间直角坐标系解决问题的步骤.高考导航1.空间直角坐标系的应用很少单独命题,一般是在解答题中应用建立空间直角坐标系的方法求解,分值为2~3分.2.通过建立空间直角坐标系,计算两点间的距离公式或确定点的坐标,是常考知识点,常与后面将要学习的立体几何等知识相结合,分值为4~6分.知识点一空间直角坐标系的建立及坐标表示1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点O引三条两两垂直,且有相同单位长度的数轴:x 轴、y轴、z轴,这样就建立了一个空间直角坐标系O­xyz.②相关概念:点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,通过每两个坐标轴的平面叫作坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫作点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标.空间直角坐标系的画法(1)x 轴与y 轴成135 °(或45 °),x 轴与z 轴成135 °(或45 °).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.知识点二 空间两点间的距离公式1.空间中任意一点P (x ,y ,z )与原点之间的距离|OP |=x 2+y 2+z 2; 2.空间中任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.2.空间中点坐标公式:设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则AB 中点P(x 1+x 22,y 1+y 22,z 1+z 22).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( ) (2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式.( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2).( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,下列各点中位于yOz 平面内的是( ) A .(3,2,1) B .(2,0,0) C .(5,0,2) D .(0,-1,-3)解析:位于yOz 平面内的点,其x 坐标为0,其余坐标任意,故(0,-1,-3)在yOz 平面内.答案:D3.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .zOx 平面上 D .第一象限内解析:点(2,0,3)的纵坐标为0,所以该点在zOx 平面上. 答案:C4.若已知点A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:|AB|=-3-2+-3-2+-3-2=4 3.答案:A类型一空间中点的坐标的确定例1 如图,在长方体ABCD-A1B1C1D1中,|AD|=3,|AB|=5,|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.【解析】如图,以DA所在直线为x轴,以DC所在直线为y轴,以DD1所在直线为z 轴,建立空间直角坐标系O­xyz.因为长方体的棱长|AD|=|BC|=3,|DC|=|AB|=5,|DD1|=|AA1|=4,显然D(0,0,0),A在x轴上,所以A(3,0,0);C在y轴上,所以C(0,5,0);D1在z轴上,所以D1(0,0,4);B在xOy平面内,所以B(3,5,0);A1在xOz平面内,所以A1(3,0,4);C1在yOz平面内,所以C1(0,5,4).由B1在xOy平面内的射影为B(3,5,0),所以B1的横坐标为3,纵坐标为5,因为B1在z轴上的射影为D1(0,0,4),所以B1的竖坐标为4,所以B1(3,5,4).(1)建立适当的空间直角坐标系.(2)利用线段长度结合符号写出各点坐标.要注意与坐标轴正向相反的坐标为负.方法归纳(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.(2)对于长方体或正方体,一般取相邻的三条棱为x轴、y轴、z轴建立空间直角坐标系;确定点的坐标时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点的坐标的关键.跟踪训练1 在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.解析:如图所示,取AC 的中点O 和A 1C 1的中点O 1,连接BO ,OO 1,可得BO ⊥AC ,OO 1⊥AC ,OO 1⊥BO ,分别以OB ,OC ,OO 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32,∵点A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1,C 1在yOz 平面内,∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1. ∵点B 1在xOy 平面内的射影为点B ,且BB 1=1, ∴B 1⎝ ⎛⎭⎪⎫32,0,1,∴各点的坐标分别为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝⎛⎭⎪⎫0,12,0,A 1⎝⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1.建立空间直角坐标系,求出有关线段的长,再写出各点的坐标. 类型二 空间直角坐标系中的点的对称点例2 在空间直角坐标系中,点P (-2,1,4)关于x 轴对称的点P 1的坐标是________;关于xOy 平面对称的点P 2的坐标是________;关于点A (1,0,2)对称的点P 3的坐标是________.【解析】 点P 关于x 轴对称后,它的横坐标不变,纵坐标和竖坐标均变为原来的相反数,所以点P 关于x 轴的对称点P 1的坐标为(-2,-1,-4).点P 关于xOy 平面对称后,它的横坐标和纵坐标均不变,竖坐标变为原来的相反数,所以点P 关于xOy 平面的对称点P 2的坐标为(-2,1,-4).设点P 关于点A 的对称点的坐标为P 3(x ,y ,z ),由中点坐标公式可得⎩⎪⎨⎪⎧-2+x2=1,1+y2=0,4+z 2=2,解得⎩⎪⎨⎪⎧x =4,y =-1,z =0.故点P 关于点A (1,0,2)对称的点P 3的坐标为(4,-1,0).【答案】 (-2,-1,-4) (-2,1,-4) (4,-1,0)利用对称规律解决关于坐标轴、坐标平面的对称问题,利用中点坐标公式解决点关于点的对称问题.方法归纳在空间直角坐标系内,已知点P(x,y,z),则有:①点P关于原点的对称点是P1(-x,-y,-z)②点P关于横轴(x轴)的对称点是P2(x,-y,-z)③点P关于纵轴(y轴)的对称点是P3(-x,y,-z)④点P关于竖轴(z轴)的对称点是P4(-x,-y,z)⑤点P关于xOy坐标平面的对称点是P5(x,y,-z)⑥点P关于yOz坐标平面的对称点是P6(-x,y,z)⑦点P关于xOz坐标平面的对称点是P7(x,-y,z).跟踪训练2 已知M(2,1,3),求M关于原点对称的点M1,M关于xOy平面对称的点M2,M 关于x轴、y轴对称的点M3,M4.解析:由于点M与M1关于原点对称,所以M1(-2,-1,-3);点M与M2关于xOy平面对称,横坐标与纵坐标不变,竖坐标变为原来的相反数,所以M2(2,1,-3);M与M3关于x 轴对称,则M3的横坐标不变,纵坐标和竖坐标变为原来的相反数,即M3(2,-1,-3),同理M4(-2,1,-3).方法归纳求对称点的坐标问题一般依据“关于谁对称谁不变,其余均改变”来解决.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.要特别注意:点关于点的对称要用中点坐标公式解决.类型三空间两点间的距离,,例3 如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.【解析】由题意应先建立坐标系,以D为原点,建立如图所示空间直角坐标系.因为正方体棱长为a,所以B(a,a,0),A′(a,0,a),C′(0,a,a),D′(0,0,a).由于M为BD′的中点,取A′C′的中点O′,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,O ′⎝ ⎛⎭⎪⎫a 2,a2,a . 因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .根据空间两点间的距离公式,可得 |MN |=⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-3a 42+⎝ ⎛⎭⎪⎫a 2-a 2=64a .建立空间直角坐标系,先确定相关点的坐标,然后根据两点间的距离公式求解. 方法归纳求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.跟踪训练3 求A (0,1,3),B (2,0,1)两点之间的距离. 解析:|AB |=-2+-2+-2=3.解答本题可直接利用空间两点间的距离公式.[基础巩固](20分钟,40分)一、选择题(每小题5分,共25分)1.点M (0,3,0)在空间直角坐标系中的位置是在( ) A .x 轴上 B .y 轴上 C .z 轴上 D .xOz 平面上解析:因为点M (0,3,0)的横坐标、竖坐标均为0,纵坐标不为0,所以点M 在y 轴上. 答案:B2.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是( ) A .(4,2,2) B .(2,-1,2) C .(2,1,1) D .(4,-1,2)解析:设点P 与点Q 的中点坐标为(x ,y ,z ),则x =1+32=2,y =4-22=1,z =-3+52=1.答案:C3.在空间直角坐标系中,已知点P(1,2,3),过P作平面yOz的垂线PQ,则垂足Q的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:根据空间直角坐标系的概念知,yOz平面上点Q的x坐标为0,y坐标、z坐标与点P的y坐标2,z坐标3分别相等,∴Q(0,2,3).答案:B4.已知M(4,3,-1),记M到x轴的距离为a,M到y轴的距离为b,M到z轴的距离为c,则( )A.a>b>c B.c>b>aC.c>a>b D.b>c>a解析:借助长方体来思考,a、b、c分别是三条面对角线的长度.∴a=10,b=17,c=5.答案:B5.已知A点坐标为(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为( )A.(0,0,6) B.(6,0,1)C.(6,0,0) D.(0,6,0)解析:设P(x,0,0),|PA|=x-2+1+1,|PB|=x-2+9+9,由|PA|=|PB|,得x=6.答案:C二、填空题(每小题5分,共15分)6.如图,长方体ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),则点B1的坐标为________.解析:由题中图可知,点B1的横坐标和竖坐标与点A1的横坐标和竖坐标相同,点B1的纵坐标与点C的纵坐标相同,所以点B1的坐标为(a,b,c).答案:(a,b,c)7.在空间直角坐标系中,点(4,-1,2)关于原点的对称点的坐标是________.解析:空间直角坐标系中关于原点对称的点的坐标互为相反数,故点(4,-1,2)关于原点的对称点的坐标是(-4,1,-2).答案:(-4,1,-2)8.点P (-1,2,0)与点Q (2,-1,0)的距离为________. 解析:∵P (-1,2,0),Q (2,-1,0), ∴|PQ |=-1-2+[2--2+02=3 2.答案:3 2三、解答题(每小题10分,共20分)9.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,|AB |=|AC |=|AA 1|=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解析:如右图,以A 为原点,射线AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4),因为M 为BC 1的中点,N 为A 1B 1的中点,所以由空间直角坐标系的中点坐标公式得M (4+02,0+42,0+42),N (0+42,0+02,4+42),即M (2,2,2),N (2,0,4).所以由两点间的距离公式得 |MN |=-2+-2+-2=2 2.10.已知点P (2,3,-1),求:(1)点P 关于各坐标平面对称的点的坐标; (2)点P 关于各坐标轴对称的点的坐标; (3)点P 关于坐标原点对称的点的坐标.解析:(1)设点P 关于xOy 坐标平面的对称点为P ′,则点P ′的横坐标、纵坐标与点P 的横坐标、纵坐标相同,点P ′的竖坐标与点P 的竖坐标互为相反数.所以点P 关于xOy 坐标平面的对称点P ′的坐标为(2,3,1).同理,点P 关于yOz ,xOz 坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)设点P 关于x 轴的对称点为Q ,则点Q 的横坐标与点P 的横坐标相同,点Q 的纵坐标、竖坐标与点P 的纵坐标、竖坐标互为相反数.所以点P 关于x 轴的对称点Q 的坐标为(2,-3,1).同理,点P 关于y 轴,z 轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1). (3)点P (2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).[能力提升](20分钟,40分)11.在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0)解析:点M 关于y 轴对称的点是M ′(-4,7,-6),点M ′在xOz 平面上的射影的坐标为(-4,0,-6).答案:C12.已知点P ⎝ ⎛⎭⎪⎫32,52,z 到线段AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________.解析:由中点坐标公式,得线段AB 中点的坐标为⎝ ⎛⎭⎪⎫12,92,-2.又点P 到线段AB 中点的距离为3,所以⎝ ⎛⎭⎪⎫32-122+⎝ ⎛⎭⎪⎫52-922+[z --2=3,解得z =0或z =-4. 答案:0或-413.如图,已知长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解析:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).14.已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件. 解析:(1)根据空间两点间的距离公式得 |MN |=-2+-2+-2=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以x -2+y -2+z -2=x -2+y -2+z -2,化简得x +y -2z +3=0,因此,到M,N两点的距离相等的点P(x,y,z)的坐标满足的条件是x+y-2z+3=0.。

人教A版高中必修二试题3.3.1配套练习(含答案).doc

人教A版高中必修二试题3.3.1配套练习(含答案).doc

§3.3直线的交点坐标与距离公式3.3.1两条直线的交点坐标一、基础过关1.两直线2x-y+k=0和4x-2y+1=0的位置关系为() A.垂直B.平行C.重合D.平行或重合2.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线的方程是() A.2x+y-8=0 B.2x-y-8=0C.2x+y+8=0 D.2x-y+8=03.直线ax+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值为() A.1 B.-1 C.2 D.-24.两条直线l1:2x+3y-m=0与l2:x-my+12=0的交点在y轴上,那么m的值为() A.-24 B.6 C.±6 D.以上答案均不对5.若集合{(x,y)|x+y-2=0且x-2y+4=0}{(x,y)|y=3x+b},则b=________. 6.已知直线l过直线l1:3x-5y-10=0和l2:x+y+1=0的交点,且平行于l3:x+2y-5=0,则直线l的方程是______________.7.判断下列各题中直线的位置关系,若相交,求出交点坐标.(1)l1:2x+y+3=0,l2:x-2y-1=0;(2)l1:x+y+2=0,l2:2x+2y+3=0;(3)l1:x-y+1=0,l2:2x-2y+2=0.8.求经过两直线2x+y-8=0与x-2y+1=0的交点,且在y轴上的截距为在x轴上截距的两倍的直线l的方程.二、能力提升9.若两条直线2x-my+4=0和2mx+3y-6=0的交点位于第二象限,则m的取值范围是()A.⎝⎛⎭⎫-32,2 B .(0,2) C.⎝⎛⎭⎫-32,0D.⎣⎡⎦⎤-32,2 10.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为M (1,-1),则直线l 的斜率为( )A.32B.23C .-32D .-2311.当a 取不同实数时,直线(2+a )x +(a -1)y +3a =0恒过一个定点,这个定点的坐标为________.12.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的角平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求点A 和点C 的坐标.三、探究与拓展13.一束平行光线从原点O (0,0)出发,经过直线l :8x +6y =25反射后通过点P (-4,3),求反射光线与直线l 的交点坐标.答案1.D 2.A 3.B 4.C 5.26.8x +16y +21=07.解 (1)21≠1-2,所以方程组有唯一解,两直线相交,交点坐标为(-1,-1).(2)12=12≠23,所以方程组没有解,两直线平行. (3)12=-1-2=12,方程组有无数个解,两直线重合. 8.解 (1)2x +y -8=0在x 轴、y 轴上的截距分别是4和8,符合题意. (2)当l 的方程不是2x +y -8=0时, 设l :(x -2y +1)+λ(2x +y -8)=0, 即(1+2λ)x +(λ-2)y +(1-8λ)=0. 据题意,1+2λ≠0,λ-2≠0.令x =0,得y =-1-8λλ-2;令y =0,得x =-1-8λ1+2λ.∴-1-8λλ-2=2·⎝ ⎛⎭⎪⎫-1-8λ1+2λ 解之得λ=18,此时y =23x .即2x -3y =0.∴所求直线方程为2x +y -8=0或2x -3y =0. 9.A 10.D 11.(-1,-2)12.解 如图所示,由已知,A 应是BC 边上的高线所在直线与∠A的角平分线所在直线的交点.由⎩⎪⎨⎪⎧ x -2y +1=0y =0,得⎩⎪⎨⎪⎧y =0x =-1,故A (-1,0).又∠A 的角平分线为x 轴, 故k AC =-k AB =-1,∴AC 所在直线方程为y =-(x +1),又k BC =-2,∴BC 所在直线方程为y -2=-2(x -1), 由⎩⎪⎨⎪⎧ y =-(x +1)y -2=-2(x -1),得⎩⎪⎨⎪⎧x =5y =-6, 故C 点坐标为(5,-6).13.解 设原点关于l 的对称点A 的坐标为(a ,b ),由直线OA 与l 垂直和线段AO 的中点在l 上得 ⎩⎨⎧b a ·⎝⎛⎭⎫-43=-18×a 2+6×b2=25,解得⎩⎪⎨⎪⎧a =4b =3,∴A 的坐标为(4,3).∵反射光线的反向延长线过A (4,3),又由反射光线过P (-4,3),两点纵坐标相等,故反射光线所在直线方程为y =3.由方程组⎩⎪⎨⎪⎧y =38x +6y =25,解得⎩⎪⎨⎪⎧x =78y =3,∴反射光线与直线l 的交点坐标为⎝⎛⎭⎫78,3.。

人教A版高中必修二试题4.3.1配套练习(含答案).doc

人教A版高中必修二试题4.3.1配套练习(含答案).doc

高中数学学习材料马鸣风萧萧*整理制作§4.3空间直角坐标系4.3.1空间直角坐标系一、基础过关1.点P(5,0,-2)在空间直角坐标系中的位置是() A.y轴上B.xOy平面上C.xOz平面上D.x轴上2.设y∈R,则点P(1,y,2)的集合为() A.垂直于xOz平面的一条直线B.平行于xOz平面的一条直线C.垂直于y轴的一个平面D.平行于y轴的一个平面3.已知空间直角坐标系中有一点M(x,y,z)满足x>y>z,且x+y+z=0,则M点的位置是() A.一定在xOy平面上B.一定在yOz平面上C.一定在xOz平面上D.可能在xOz平面上4.在空间直角坐标系中,点P(3,4,5)关于yOz平面的对称点的坐标为() A.(-3,4,5) B.(-3,-4,5)C.(3,-4,-5) D.(-3,4,-5)5.在空间直角坐标系中,点A(1,2,-3)关于x轴的对称点为________.6.点P(-3,2,1)关于Q(1,2,-3)的对称点M的坐标是________.7.已知正方体ABCD-A1B1C1D1,E、F、G分别是DD1、BD、BB1的中点,且正方体棱长为1.请建立适当坐标系,写出正方体各顶点及E、F、G的坐标.B1C1D1的对称中心为坐标原点O,交于8. 如图所示,长方体ABCD-A同一顶点的三个面分别平行于三个坐标平面,顶点A(-2,-3,-1),求其它7个顶点的坐标. 二、能力提升9.在空间直角坐标系中,P (2,3,4)、Q (-2,-3,-4)两点的位置关系是( )A .关于x 轴对称B .关于yOz 平面对称C .关于坐标原点对称D .以上都不对10.如图,在正方体ABCD —A ′B ′C ′D ′中,棱长为1,|BP |=13|BD ′|,则P 点的坐标为( )A.⎝⎛⎭⎫13,13,13B.⎝⎛⎭⎫23,23,23C.⎝⎛⎭⎫13,23,13D.⎝⎛⎭⎫23,23,13 11.连接平面上两点P 1(x 1,y 1)、P 2(x 2,y 2)的线段P 1P 2的中点M 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,那么,已知空间中两点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2),线段P 1P 2的中点M 的坐标为_________. 12. 如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径,AD 与两圆所在的平面均垂直,AD =8.BC 是⊙O 的直径,AB =AC =6,OE ∥AD ,试建立适当的空间直角坐标系,求出点A 、B 、C 、D 、E 、F 的坐标. 三、探究与拓展13. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.试建立适当的空间直角坐标系,求出A 、B 、C 、D 、P 、E 的坐标.答案1.C 2.A 3.D 4.A 5.(1,-2,3) 6.(5,2,-7)7.解 如图所示,建立空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1),E ⎝⎛⎭⎫0,0,12,F ⎝⎛⎭⎫12,12,0,G ⎝⎛⎭⎫1,1,12. 8.解 长方体的对称中心为坐标原点O ,因为顶点坐标A (-2,-3,-1),所以A 关于原点的对称点C 1的坐标为(2,3,1).又因为C 与C 1关于坐标平面xOy 对称, 所以C (2,3,-1).而A 1与C 关于原点对称,所以A 1(-2,-3,1).又因为C 与D 关于坐标平面xOz 对称,所以D (2,-3,-1). 因为B 与C 关于坐标平面yOz 对称,所以B (-2,3,-1). B 1与B 关于坐标平面xOy 对称,所以B 1(-2,3,1). 同理D 1(2,-3,1).综上可知长方体的其它7个顶点坐标分别为:C 1(2,3,1),C (2,3,-1),A 1(-2,-3,1),B (-2,3,-1),B 1(-2,3,1),D (2,-3,-1),D 1(2,-3,1). 9.C 10.D11.⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 2212.解 因为AD 与两圆所在的平面均垂直,OE ∥AD ,所以OE 与两圆所在的平面也都垂直.又因为AB =AC =6,BC 是圆O 的直径,所以△BAC 为等腰直角三角形且AF ⊥BC ,BC =6 2.以O 为原点,OB 、OF 、OE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则原点O 及A 、B 、C 、D 、E 、F 各个点的坐标分别为O (0,0,0)、A (0,-32,0)、B (32,0,0)、C (-32,0,0)、D (0,-32,8)、E (0,0,8)、F (0,32,0).13.解 如图所示,以A 为原点,以AB 所在直线为x 轴,AP 所在直线为z 轴,过点A 与xAz 平面垂直的直线为y 轴,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,0,0), C (32,32,0),D (12,32,0),P (0,0,2), E (1,32,0).。

高中数学选择性必修二 4 3 1第一课时等比数列的概念及通项公式(含答案)

高中数学选择性必修二 4 3 1第一课时等比数列的概念及通项公式(含答案)

4.3.1 第一课时 等比数列的概念及通项公式[A 级 基础巩固]1.已知等比数列{a n }的公比为正数,且a 3a 9=2a 25,a 2=1,则a 1=( )A.12 B .2 C. 2 D .22 解析:选D 设数列{a n }的公比为q ,则q >0.由已知,得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2.又q >0,所以q =2,所以a 1=a 2q =12=22,故选D. 2.已知等比数列{a n }的各项均为正数,公比q ≠1,k a 1a 2…a k =a 11,则k =( )A .12B .15C .18D .21 解析:选Dk a 1a 2…a k =a 1q 1231k k ++++(-)=a 1q 12k -=a 1q 10,∵a 1>0,q ≠1,∴k -12=10,∴k =21,故选D. 3.已知数列{a n }满足a 1=2,a n +1=3a n +2,则a 2 019=( )A .32 019+1B .32 019-1C .32 019-2D .32 019+2解析:选B ∵a n +1=3a n +2,∴a n +1+1=3(a n +1).∵a 1+1=3,∴数列{a n +1}是首项,公比均为3的等比数列,∴a n +1=3n ,即a n =3n -1,∴a 2 019=32 019-1.故选B.4.各项都是正数的等比数列{a n }中,a 2,12a 3,a 1成等差数列,则a 3+a 4a 4+a 5的值为( ) A.5+12 D .5-12C.1-52 D .5+12或1-52解析:选B 设{a n }的公比为q (q >0,q ≠1),根据题意可知a 3=a 2+a 1,∴q 2-q -1=0,解得q =5+12或q =1-52(舍去),则a 3+a 4a 4+a 5=1q =5-12.故选B. 5.等比数列{a n }的公比为q ,且|q |≠1,a 1=-1,若a m =a 1·a 2·a 3·a 4·a 5,则m 等于( )A .9B .10C .11D .12解析:选C ∵a 1·a 2·a 3·a 4·a 5=a 1·a 1q ·a 1q 2·a 1q 3·a 1q 4=a 51·q 10=-q 10,a m =a 1qm -1=-q m -1, ∴-q 10=-q m -1,∴10=m -1,∴m =11.6.若数列{a n }的前n 项和为S n ,且a n =2S n -3,则{a n }的通项公式是________.解析:由a n =2S n -3得a n -1=2S n -1-3(n ≥2),两式相减得a n -a n -1=2a n (n ≥2),∴a n =-a n -1(n ≥2),a n a n -1=-1(n ≥2). 故{a n }是公比为-1的等比数列,令n =1得a 1=2a 1-3,∴a 1=3,故a n =3·(-1)n -1.答案:a n =3·(-1)n -17.已知等比数列{a n }中,a 3=3,a 10=384,则a 4=________.解析:设公比为q ,则a 1q 2=3,a 1q 9=384,所以q 7=128,q =2,故a 4=a 3q =3×2=6.答案:68.设等差数列{a n }的公差d 不为0,a 1=9d ,若a k 是a 1与a 2k 的等比中项,则k =________.解析:∵a n =(n +8)d ,又∵a 2k =a 1·a 2k ,∴[(k +8)d ]2=9d ·(2k +8)d ,解得k =-2(舍去)或k =4. 答案:49.已知递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2和a 4的等差中项,求a n .解:设等比数列{a n }的公比为q .依题意,知2(a 3+2)=a 2+a 4,∴a 2+a 3+a 4=3a 3+4=28,∴a 3=8,a 2+a 4=20,∴8q +8q =20,解得q =2或q =12(舍去). 又a 1=a 3q 2=2,∴a n =2n . 10.已知数列{a n }的前n 项和S n =2-a n ,求证:数列{a n }是等比数列.证明:∵S n =2-a n ,∴S n +1=2-a n +1.∴a n +1=S n +1-S n =(2-a n +1)-(2-a n )=a n -a n +1.∴a n +1=12a n . 又∵S 1=2-a 1,∴a 1=1≠0.又由a n +1=12a n 知a n ≠0, ∴a n +1a n=12. ∴数列{a n }是等比数列.[B 级 综合运用]11.(多选)已知公差为d 的等差数列a 1,a 2,a 3,…,则对重新组成的数列a 1+a 4,a 2+a 5,a 3+a 6,…描述正确的是( )A .一定是等差数列B .公差为2d 的等差数列C .可能是等比数列D .可能既非等差数列又非等比数列解析:选ABC 由题意得a 1+a 4=2a 1+3d ,a 2+a 5=2a 1+5d ,a 3+a 6=2a 1+7d ,…,令b n =a n +a n +3,则b n +1-b n =[2a 1+(2n +3)d ]-[2a 1+(2n +1)d ]=2d ,因此数列a 1+a 4,a 2+a 5,a 3+a 6,…一定是公差为2d 的等差数列,即A 、B 正确,D 错误;当a 1≠0,d =0时b n =2a 1,此时数列a 1+a 4,a 2+a 5,a 3+a 6,…可以是等比数列,即C 正确;故选A 、B 、C.12.如图给出了一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,1412,1434,38,316…记第i 行第j 列的数为a ij (i ,j ∈N *),则a 53的值为( )A.116D .18 C.516 D .54解析:选C 第一列构成首项为14,公差为14的等差数列,所以a 51=14+(5-1)×14=54.又因为从第三行起每一行数成等比数列,而且每一行的公比都相等,所以第5行构成首项为54,公比为12的等比数列,所以a 53=54×⎝⎛⎭⎫122=516. 13.已知等差数列{a n }的首项为a ,公差为b ,等比数列{b n }的首项为b ,公比为a ,其中a ,b 都是大于1的正整数,且a 1<b 1,b 2<a 3,对于任意的n ∈N *,总存在m ∈N *,使得a m +3=b n 成立,则a =________,a n =________.解析:∵a 1<b 1,b 2<a 3,∴⎩⎪⎨⎪⎧a <b ,ab <a +2b ,∴b (a -2)<a <b ,∴a <3, 又∵a >1,且a ∈N *,∴a =2.∵对于任意的n ∈N *,总存在m ∈N *,使得a m +3=b n 成立, ∴令n =1,得2+(m -1)b +3=b ,∴b (2-m )=5,又∵2-m <2,且2-m ∈N *,∴⎩⎪⎨⎪⎧ 2-m =1,b =5,∴a n =a +(n -1)b =5n -3.答案:2 5n -314.已知数列{a n }满足a 1=73,a n +1=3a n -4n +2(n ∈N *). (1)求a 2,a 3的值;(2)证明数列{a n -2n }是等比数列,并求出数列{a n }的通项公式.解:(1)由已知得a 2=3a 1-4+2=3×73-4+2=5, a 3=3a 2-4×2+2=3×5-8+2=9.(2)∵a n +1=3a n -4n +2,∴a n +1-2n -2=3a n -6n ,即a n +1-2(n +1)=3(a n -2n ).由(1)知a 1-2=73-2=13, ∴a n -2n ≠0,n ∈N *.∴a n +1-2(n +1)a n -2n=3, ∴数列{a n -2n }是首项为13,公比为3的等比数列.∴a n -2n =13×3n -1,∴a n =3n -2+2n . [C 级 拓展探究]15.已知数列{a n }满足a 1=1,na n +1=2(n +1)a n .设b n =a n n .(1)求b 1,b 2,b 3;(2)判断数列{b n }是不是为等比数列,并说明理由;(3)求{a n }的通项公式. 解:(1)由条件可得a n +1=2(n +1)n a n .将n =1代入得,a 2=4a 1, 而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2, 所以a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得a n +1n +1=2a n n,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得a n n =2n -1,所以a n =n ·2n -1.。

最新 人教A版 高中数学 必修二:4.3.2配套练习(含答案)

最新 人教A版 高中数学 必修二:4.3.2配套练习(含答案)

4.3.2 空间两点间的距离公式一、基础过关1.若A (1,3,-2)、B (-2,3,2),则A 、B 两点间的距离为( )A.61B .25C .5 D.57 2.在长方体ABCD -A 1B 1C 1D 1中,若D (0,0,0)、A (4,0,0)、B (4,2,0)、A 1(4,0,3),则对角线AC 1的长为( )A .9B.29C .5D .2 63.已知点A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |等于 ( )A.534B.532C.532D.1324.到点A (-1,-1,-1),B (1,1,1)的距离相等的点C (x ,y ,z )的坐标满足 ( )A .x +y +z =-1B .x +y +z =0C .x +y +z =1D .x +y +z =45.若点P (x ,y ,z )到平面xOz 与到y 轴距离相等,则P 点坐标满足的关系式为____________. 6.已知P ⎝⎛⎭⎫32,52,z 到直线AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________. 7.在yOz 平面上求与三个已知点A (3,1,2),B (4,-2,-2),C (0,5,1)等距离的点的坐标.8. 如图所示,BC =4,原点O 是BC 的中点,点A 的坐标为(32,12,0),点D 在平面yOz上,且∠BDC =90°,∠DCB =30°,求AD 的长度.二、能力提升9.已知A (2,1,1),B (1,1,2),C (2,0,1),则下列说法中正确的是( )A .A 、B 、C 三点可以构成直角三角形 B .A 、B 、C 三点可以构成锐角三角形 C .A 、B 、C 三点可以构成钝角三角形D .A 、B 、C 三点不能构成任何三角形10.已知A (x,5-x,2x -1),B (1,x +2,2-x ),当|AB |取最小值时,x 的值为( )A .19B .-87 C.87 D.191411.在空间直角坐标系中,已知点A (1,0,2),B (1,-3,1),点M 在y 轴上,且M 到A 与到B的距离相等,则M 的坐标是________.12. 在长方体ABCD —A 1B 1C 1D 1中,|AB |=|AD |=3,|AA 1|=2,点M 在A 1C 1上,|MC 1|=2|A 1M |,N 在D 1C 上且为D 1C 的中点,求M 、N 两点间的距离.三、探究与拓展13.在xOy平面内的直线x+y=1上确定一点M,使它到点N(6,5,1)的距离最小.答案1.C 2.B 3.B 4.B 5.x 2+z 2-y 2=0 6.0或-47.解 设P (0,y ,z ),由题意⎩⎪⎨⎪⎧|P A |=|PC ||PB |=|PC |所以⎩⎨⎧(0-3)2+(y -1)2+(z -2)2=(0-0)2+(y -5)2+(z -1)2(0-4)2+(y +2)2+(z +2)2=(0-0)2+(y -5)2+(z -1)2即⎩⎪⎨⎪⎧ 4y -z -6=07y +3z -1=0,所以⎩⎪⎨⎪⎧y =1z =-2, 所以点P 的坐标是(0,1,-2). 8.解 由题意得B (0,-2,0),C (0,2,0),设D (0,y ,z ),则在Rt △BDC 中,∠DCB =30°, ∴BD =2,CD =23,z =3,y =-1.∴D (0,-1,3).又∵A (32,12,0),∴|AD | =(32)2+(12+1)2+(-3)2= 6. 9.A 10.C 11.(0,-1,0)12.解 如图分别以AB 、AD 、AA 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.由题意可知C (3,3,0), D (0,3,0),∵|DD 1|=|CC 1|=2, ∴C 1(3,3,2),D 1(0,3,2),∵N 为CD 1的中点,∴N ⎝⎛⎭⎫32,3,1. M 是A 1C 1的三等分点且靠近A 1点, ∴M (1,1,2).由两点间距离公式,得|MN | =⎝⎛⎭⎫32-12+(3-1)2+(1-2)2 =212.13.解 ∵点M 在直线x +y =1(xOy 平面内)上,∴可设M (x,1-x,0).∴|MN |=(x -6)2+(1-x -5)2+(0-1)2 =2(x -1)2+51≥51, 当且仅当x =1时取等号,∴当点M的坐标为(1,0,0)时,|MN|min=51.。

高中数学第四章数列 等比数列的概念第2课时等比数列的性质课后提能训练新人教A版选择性必修第二册

高中数学第四章数列 等比数列的概念第2课时等比数列的性质课后提能训练新人教A版选择性必修第二册

第四章 4.3 4.3.1 第2课时A 级——基础过关练1.(多选)设数列{a n }为等比数列,则下面四个数列中,是等比数列的是( ) A .{a 2n }B .{pa n }(p 为非零常数)C .{a n ·a n +1}D .{a n +a n +1}【答案】ABCD 【解析】A 中,∵a 2n +1a 2n =⎝ ⎛⎭⎪⎫a n +1a n 2=q 2,∴{a 2n }是等比数列;B 中, ∵pa n +1pa n =a n +1a n =q ,∴{pa n }是等比数列;C 中,∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;D 中,∵a n +a n +1a n -1+a n =q (a n -1+a n )a n -1+a n=q ,∴{a n +a n +1}是等比数列.2.已知等比数列{a n }中,公比q =12,a 3a 5a 7=64,则a 4=( )A .1B .2C .4D .8【答案】D 【解析】由a 3a 5a 7=a 35=64,得a 5=4.又∵q =12,∴a 4=a 5q=8.3.(2022年广西模拟)在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2…a 8=16,则1a 1+1a 2+…+1a 8的值为( )A .2B .4C .8D .16【答案】A 【解析】由分数的性质得1a 1+1a 2+…+1a 8=a 8+a 1a 8a 1+a 7+a 2a 7a 2+…+a 4+a 5a 4a 5.∵a 8a 1=a 7a 2=a 3a 6=a 4a 5,∴原式=a 1+a 2+…+a 8a 4a 5=4a 4a 5.又∵a 1a 2…a 8=16=(a 4a 5)4,a n >0,∴a 4a 5=2,∴1a 1+1a 2+…+1a 8=2.4.(2021年驻马店期末)若数列{a n }满足1a n +1-3a n=0(n ∈N *),则称{a n }为“梦想数列”,已知数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,且b 1+b 2+b 3=2,则b 3+b 4+b 5=( )A .18B .16C .32D .36【答案】A 【解析】由1a n +1-3a n =0,得a n =3a n +1,即“梦想数列”为公比为13的等比数列.若数列⎩⎨⎧⎭⎬⎫1b n 为“梦想数列”,则1b n +1=13·1b n ,即b n +1=3b n ,即数列{b n }为公比为3的等比数列.若b 1+b 2+b 3=2,则b 3+b 4+b 5=9(b 1+b 2+b 3)=18.5.正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=( ) A .56 B .65 C .23D .32【答案】D 【解析】因为正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,所以a 4·a 6=6,a 4+a 6=5,解得a 4=3,a 6=2.所以a 5a 7=a 4a 6=32.6.已知等比数列{a n }中,a 4+a 8=-2,则a 6(a 2+2a 6+a 10)的值为( ) A .4 B .6 C .8D .-9【答案】A 【解析】a 6(a 2+2a 6+a 10)=a 6a 2+2a 26+a 6a 10=a 24+2a 4a 8+a 28=(a 4+a 8)2.∵a 4+a 8=-2,∴a 6(a 2+2a 6+a 10)=4.7.已知等比数列{a n }中,满足a 1=1,公比q =-3,下列说法正确的有( )①数列{3a n +a n +1}是等比数列;②数列{a n +1-a n }是等差数列;③数列{a n a n +1}是等比数列;④数列{log 3|a n |}是等差数列.A .①②B .①③C .②④D .③④【答案】D 【解析】等比数列{a n }中,满足a 1=1,公比q =-3,3a n +a n +1=3[(-3)n -1]+(-3)n=[(-1)n -1+(-1)n]·3n=0,∴数列{3a n +a n +1}是由0构成的常数列,不是等比数列,故①错误;a n +1-a n =(-3)n-(-3)n -1=43·(-3)n,是等比数列,故②错误;a n a n +1=(-3)n -1·(-3)n =(-3)2n -1,是等比数列,故③正确;log 3|a n |=log 3|(-3)n -1|=n -1,是等差数列,故④正确.故选D .8.在等比数列{a n }中,a n >0且a 1a 5+2a 3a 5+a 3a 7=25,则a 3+a 5=________.【答案】5 【解析】在等比数列{a n }中,a n >0且a 1a 5+2a 3a 5+a 3a 7=25,即a 23+2a 3a 5+a 25=25,∴(a 3+a 5)2=25,解得a 3+a 5=5.9.设等比数列{a n }的各项均为正数且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=________.【答案】10 【解析】由题意可得a 5a 6+a 4a 7=2a 5a 6=18,解得a 5a 6=9,∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=log 395=log 3310=10.10.有四个数,其中前三个数成等比数列,其积为216,后三个数成等差数列,其和为36,求这四个数.解:设这四个数为aq,a ,aq ,2aq -a ,则⎩⎪⎨⎪⎧a q ·a ·aq =216①,a +aq +(2aq -a )=36②,由①,得a 3=216,a =6③,将②变形得3aq =36,将③代入此式得q =2, 所以这四个数为3,6,12,18.B 级——能力提升练11.已知等比数列{a n }的公比q >0且q ≠1,又a 6<0,则( ) A .a 5+a 7>a 4+a 8 B .a 5+a 7<a 4+a 8 C .a 5+a 7=a 4+a 8 D .|a 5+a 7|>|a 4+a 8|【答案】A 【解析】∵a 6<0,q >0,∴a 5,a 7,a 8,a 4都是负数,∴a 5+a 7-a 4-a 8=a 4(q -1)+a 7(1-q )=(q -1)·(a 4-a 7).若0<q <1,则q -1<0,a 4-a 7<0,则有a 5+a 7-a 4-a 8>0;若q >1,则q -1>0,a 4-a 7>0,则有a 5+a 7-a 4-a 8>0,∴a 5+a 7>a 4+a 8.12.(多选)(2022年海南期末)在各项均为正数的等比数列{a n }中,已知a 1+a 5=1a 1+1a 5=52,则下列结论正确的是( ) A .a 2a 4=1 B .a 2+a 4=322C .q =2或12D .a 1=2或12【答案】ABD 【解析】设等比数列{a n }的公比为q ,因为a 1+a 5=1a 1+1a 5=52,所以⎩⎪⎨⎪⎧a 1+a 5=52,a 1a 5=1,所以⎩⎪⎨⎪⎧a 1=2,a 5=12或⎩⎪⎨⎪⎧a 1=12,a 5=2,即2×q 4=12或12×q 4=2,所以解得⎩⎪⎨⎪⎧a 1=2,q 2=12或⎩⎪⎨⎪⎧a 1=12,q 2=2,所以选项C 错误,选项D 正确;因为等比数列{a n }的各项均为正数,所以a 2a 4=a 1a 5=1,选项A 正确;a 2+a 4=a 1q +a 1q 3=322,选项B 正确.故选ABD .13.(2022年焦作四模)在各项均为正数的等比数列{a n }中,a 1a 11+2a 5a 9+a 3a 13=25,则a 1a 13的最大值是________.【答案】254【解析】由题意利用等比数列的性质知,a 1a 11+2a 5a 9+a 3a 13=a 26+2a 6a 8+a 28=(a 6+a 8)2=25,又因为a n >0,所以a 6+a 8=5,所以a 1a 13=a 6a 8≤⎝ ⎛⎭⎪⎫a 6+a 822=254,当且仅当a6=a 8=52时,取等号.14.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,则a 5=________,b 10=________.【答案】4 64 【解析】因为a n ,a n +1是函数f (x )=x 2-b n x +2n的两个零点,所以a n ,a n+1是方程f (x )=x 2-b n x +2n 的两个根,根据根与系数的关系,可得a n ·a n +1=2n,a n +a n +1=b n ,由a n ·a n +1=2n,可得a n +1·a n +2=2n +1,两式相除可得a n +2a n=2,所以a 1,a 3,a 5,…成公比为2的等比数列,a 2,a 4,a 6,…成公比为2的等比数列.又因为由a 1=1,得a 2=2,所以a 5=1×22=4,a 10=2×24=32,a 11=1×25=32,所以b 10=a 10+a 11=32+32=64.15.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a.设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝⎛⎭⎪⎫1-1a ,∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列,∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n,即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n. 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n<110(n ∈N *),解得n ≥4.故至少应操作4次后才能使酒精的浓度小于10%.。

4.3.1 等比数列(2)(人教A版高中数学选择性必修第二册)(解析版)

4.3.1 等比数列(2)(人教A版高中数学选择性必修第二册)(解析版)

课时同步练4.3.1 等比数列 (2)一、单选题1.已知数列{}n a 中,13n n a a +=,12a =,则4a 等于 ( )A .18B .54C .36D .72【答案】B【详细解析】数列{}n a 中,13n n a a +=,12a =,∴数列{}n a 是等比数列,公比3q =.则342354a =⨯=.故选B .2.22 ( )A .1B .1-C .1±D .2【答案】C【详细解析】设等比中项为a ,则,2(21,1a a ===±, 故选C .3.已知数列{}n a 是等比数列,函数2=53y x x -+的两个零点是15a a 、,则3a = ( )A .1B .1-C .D 【答案】D【详细解析】由韦达定理可知155a a +=,153a a ⋅=,则10a >,50a >,从而30a >,且231533a a a a =⋅=∴=故选D4.已知数列{}n a 为等比数列,且2234764a a a a =-=-,则46tan 3a a π⎛⎫=⎪⎝⎭( )A .BC .D .【答案】A【详细解析】由题意得3234364a a a a ==-,所以34a =-.又2764a =,所以78a =-或78a = (由于7a 与3a 同号,故舍去).所以463732a a a a ==,因此4632tan tan tan 11tan 3333a a πππππ⎛⎫⎛⎫⎛⎫==-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选A5.数列{}n a 中,121n n a a +=+,11a =,则6a = ( )A .32B .62C .63D .64【答案】C【详细解析】数列{}n a 中,121n n a a +=+,故()1121n n a a ++=+, 因为11a =,故1120a +=≠,故10n a +≠, 所以1121n n a a ++=+,所以{}1n a +为等比数列,公比为2,首项为2. 所以12nn a +=即21n n a =-,故663a =,故选C.6.在等比数列{}n a 中,121a a =,369a a =,则24a a = ( )A .3B .3±CD.【答案】A【详细解析】设等比数列{}n a 的公比为q ,因为1210a a =>,所以0q >, 又369a a =,所以423a a ===.故选A7.对于按复利计算机利息的储蓄,若本金为a 元,每期利率为r ,存期为n ,则本金和利息总和y (元)与存期n 的函数表达式为 ( )A .()1ny a r =+ B .()11n y a r -=+C .()11n y a r +=+D .()1y a nr =+【答案】A【详细解析】1期后的本息和为()1a ar a r +=+;2期后的本息和为()()()2111a r a r r a r +++=+;3期后的本息和为()()()223111a r a r r a r +++=+;…n 期后的本息和为()1ny a r =+. 故选A8.已知等比数列{n a }中,1a +2a =12,1a ﹣3a =34,则4a = A .﹣18B .18C .﹣4D .4【答案】A【详细解析】∵等比数列{a n }中,a 1+a 2=12,a 1﹣a 3=34, ∴112111234a a q a a q ⎧+=⎪⎪⎨⎪-=⎪⎩, 解得111,2a q ==-, ∴a 4=31a q =1× (﹣12)3=﹣18.故选A .9.等差数列{}n a 和等比数列{}n b 的首项均为1,公差与公比均为3,则1b a +2b a +3b a = ( )A .64B .32C .33D .38【答案】C【详细解析】依题意1231,3,9b b b ===,故139172533a a a ++=++=, 故选C.10.已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1611a a a ⋅⋅=-16117b b b π++=,则3948tan1b b a a +-⋅的值是 ( )A .1BC.D.【答案】D【详细解析】在等差数列{}n b 中,由16117b b b π++=,得637b π=,673b π=,3961423b b b π∴+==, 在等比数列{}n a 中,由1611a a a =-,得36a =-6a =(224861112a a a ∴-=-=-=-,则39481473tan tan tan tan 1233b b a a πππ+⎛⎫⎛⎫==-=-=⎪ ⎪-⋅-⎝⎭⎝⎭故选D.11.等比数列{}n a 的公比为,||1q q ≠,则2237a a +与2246a a +的大小关系是 ( )A .22223746a a a a +>+ B .22223746a a a a +<+ C .22223746a a a a +=+D .不能确定【答案】A【详细解析】由等比数列的通项公式可得,()22382371a a qa =++,()32426262a aq q a =++,()()()()()()()2826262233333222237461111111a q q q a q q a q q q q a a a a --=+--=--=-+-++()()()()()()222222224233111111a q q q q q q a q q q =-+-+++=-++,1,0n q a ≠≠,∴()()222423110a q q q -++>,即22223746a a a a +>+.故选A .12.已知数列{},{}n n a b 满足11111121.1,0.2,,,233n n n n n n b a a b a b a b n ++++====+∈N ,令n n n c a b =-,则满足4110n c ≤的n 最小值为 ( ) A .9B .10C .11D .12【答案】B【详细解析】()11111111121122223323n n n n n n n n n n n n b a a b b b a a b a a b ++++++⎛⎫-=-=-+=-++=- ⎪⎝⎭,1110.9c a b =-=,故{}n c 是首项为0.9,公比为13的等比数列,故110.93n n c -=⨯,则14110.9310n -⨯≤,即33310n -≥,当9n =时,63372910=<;当10n =时,733218710=>,显然当10n ≥时,33310n -≥成立,故n 的最小值为10. 故选B .二、填空题13.设{}n a 是等比数列,且245a a a =,427a =,则{}n a 的通项公式为_______.【答案】13-=n n a ,*n N ∈【详细解析】设等比数列{}n a 的公比为q , 因为245a a a =,427a =,所以223542427a a a a q q q ====,解得3q =,所以41327127a a q ===, 因此,13-=n n a ,*n N ∈. 故填13-=n n a ,*n N ∈14.等比数列{}n a 的各项为正数,且564718a a a a +=,则3132310log log log a a a +++=_____.【答案】10【详细解析】∵等比数列{}n a 的各项均为正数,且564718a a a a +=, ∴56479a a a a ==, ∴3132310log log log a a a +++31210()log a a a =⨯⨯⨯6535log ()a a ⨯= 103log 3=10=故填1015.各项为正数的等比数列{}n a 中,2a 与10a 则3438log log a a +=_____. 【答案】1-【详细解析】根据题意,等比数列{}n a 中,2a 与10a的等比中项为3,则有21013a a =又由等比数列的性质可得:4821013a a a a == 则343834831log log log log 13a a a a +===- 故填1-.16.已知数列{}n a 满足12a =且132n n a a +-=,则数列{}n a 的通项公式为__________.【答案】31n -【详细解析】因为132n n a a +-=,所以()113331n n n a a a ++=+=+,即1131n n a a ++=+, 即数列{}1n a +为首项3,公比为3的等比数列, 则1133n n a -+=⨯=3n ,所以31nn a =-.故填31n -.17.已知数列{}n a 中,12a =,且对于任意正整数m ,n 都有m n m n a a a +=,则数列{}n a 的通项公式是___________.【答案】2nn a =【详细解析】数列{}n a 中,令1m =,得12n n a a +=,又12a =, 所以{}n a 是首项和公比均为2的等比数列, 则122=2n n n a -⨯=.故填2nn a =18.各项均为正偶数的数列1234,,,a a a a 中,前三项依次成公差为(0)d d >的等差数列,后三项依次成公比为q 的等比数列.若4188a a -=,则q 的所有可能的值构成的集合为________.【答案】5837⎧⎫⎨⎬⎩⎭,【详细解析】因为前三项依次成公差为(0)d d >的等差数列,4188a a -=,所以这四项可以设为1111,,2,88a a d a d a +++,其中1,a d 为正偶数,后三项依次成公比为q 的等比数列,所以有()()()2111288a d a d a +=++,整理得14(22)0388d d a d -=>-,得(22)(388)0d d --<,88223d <<,1,a d 为正偶数,所以24,26,28d = 当24d =时,1512,3a q ==;当26d =时,12085a =,不符合题意,舍去;当28d =时,18168,7a q ==,故q 的所有可能的值构成的集合为5837⎧⎫⎨⎬⎩⎭,.故填5837⎧⎫⎨⎬⎩⎭,三、解答题19.数列{}n a 满足11a =,1120n n n n a a a a +++-=(1)写出数列的前5项;(2)由 (1)写出数列{}n a 的一个通项公式; 【详细解析】 (1)由已知可得11a =,213a =,315a =,417a =,519a =.(2)由 (1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为121n a n =-. 20.已知数列{}n a 满足156a =,()*11133n n a a n N +=+∈.(1)求证:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)求数列{}n a 的通项公式. 【详细解析】 (1)()*11133n n a a n N +=+∈,111111111132332362111132222n n n n n n n n a a a a a a a a +⎛⎫-+---⎪⎝⎭∴====----,因此,数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列; (2)由于115112623a -=-=,所以,数列12n a ⎧⎫-⎨⎬⎩⎭是以13为首项,以13为公比的等比数列,111112333n n na -⎛⎫∴-=⨯=⎪⎝⎭,因此,1123n n a =+. 21.已知数列{}n a 满足124n n n a a -=+,且13a =,求:(1)数列{}n a 的前3项; (2)数列{}n a 的通项公式. 【详细解析】 (1)124n n n a a -=+,且13a =∴2212422a a =+=,33224108a a =+=(2)由题可令:()11424nn n n a k a k --+⋅=+⋅-1242n n n ka a =-⋅又124n n n a a -=+,2k ∴=-故数列{}24nn a -⋅是以2为公比的等比数列,且首项-5∴ 12452n n n a --⋅=-⋅∴ 12452n n n a -=⋅-⋅22.已知等比数列{}n a 的首项为1,公比为2,数列{}n b 满足11b a =,22b a =,2122n n n b b b ++=-+.(1)证明{}1n n b b +-为等差数列;求数列{}n b 的通项公式; (2)求数列n n b a ⎧⎫⎨⎬⎩⎭的最大项. 【详细解析】 (1)根据等比数列的通项公式,得12n n a ,11b =,22b =.因为2122n n n b b b ++=-+所以()()2112n n n n b b b b +++---=,且2121211b b a a -=-=-=,所以数列{}1n n b b +-是以1为首项,2为公差的等差数列, 所以()112121n n b b n n +-=+-=-, 当2n ≥时,()()()121321n n n b b b b b b b b -=+-+-+⋅⋅⋅+-()11323n =+++⋅⋅⋅+- ()()123112n n +--=+()221122n n n =-+=-+,又2111212b ==-⨯+,满足上式,因此222n b n n =-+.(2)设21222n n n n b n n c a --+==, 所以()()()()22112112122422222n n n n n n n n n n n c c -------+---+-=-=-, 所以123456c c c c c c =<=>>>⋅⋅⋅,故n c 的最大值为2343482524c c -+===.。

高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 2等比数列的性质及应用(知识梳理+例题+变式+练习)(含答案)

4.3.1.2等比数列的性质及应用要点一 等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *)(2)若p +q =s +t (p 、q 、s 、t ∈N *),则a p ·a q =s t a a 【重点总结】(1)在已知等比数列{a n }中任一项a m 及公比q 的前提下,可以利用a n =a m q n-m求等比数列中任意项a n ;(2)已知等比数列{a n }中的a m 和a n 两项,就可以使用a n a m =q n -m 求公比,其中m 可大于n ,也可小于n.要点二 等比数列的单调性已知等比数列{a n }的首项为a 1,公比为q ,则(1)当⎩⎪⎨⎪⎧ a 1>0q >1或⎩⎪⎨⎪⎧a 1<00<q <1时,等比数列{a n }为递增数列; (2)当⎩⎪⎨⎪⎧ a 1>00<q <1或⎩⎪⎨⎪⎧a 1<0q >1时,等比数列{a n }为递减数列; (3)当q=1时,等比数列{a n }为常数列(这个常数列中各项均不等于0); (4)当1<1时,等比数列{a n }为摆动数列. 【重点总结】由等比数列的通项公式可知,公比影响数列各项的符号:一般地,q>0时,等比数列各项的符号相同;q<0时,等比数列各项的符号正负交替.要点三 等比数列的其它性质 若{a n }是公比为q 的等比数列,则(1)若m ,p ,n (m ,n ,p ∈N *)成等差数列,则a m ,a p ,a n 成等比数列;(2)数列{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n }都是等比数列,且公比分别是q ,1q ,q 2. (3)若{b n }是公比为p 的等比数列,则{a n b n }与⎩⎨⎧⎭⎬⎫a n b n 也都是等比数列,公比分别为pq 和qp .(4)在数列{a n }中,每隔k (k ∈N *)项取出一项,按原来的顺序排列,所得数列仍为等比数列,且公比为q k +1. (5)在数列{a n }中,连续相邻k 项的和(或积)构成公比为q k (或qk 2)的等比数列. 【重点总结】若数列{a n }是各项都为正数的等比数列,则数列{lg a n }是公差为lg q 的等差数列; 若数列{b n }是等差数列,公差为d ,则数列{cb n }是以c d (c>0且c ≠1)为公比的等比数列. 【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积.( ) (2)当q >1时,{a n }为递增数列.( )(3)当q =1时,{a n }为常数列.( )(4)若{a n },{b n }都是等比数列,则{a n +b n }是等比数列.( ) 【答案】(1)√(2)×(3)√(4)×2.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 【答案】D【解析】∵q <0,a 1>0,∴所有奇数项为正、偶数项为负,故成摆动数列,选D. 3.(多选题)若数列{a n }为等比数列,则下列式子一定成立的是( ) A .a 2+a 5=a 1+a 6 B .a 1a 9=a 25 C .a 1a 9=a 3a 7 D .a 1a 2a 7=a 4a 6 【答案】BC【解析】根据等比数列的性质知BC 正确.4.在等比数列{a n }中,已知a 7a 12=5,则a 8a 9a 10a 11的值为________. 【答案】25【解析】∵a 7a 12=a 8a 11=a 9a 10=5,∴a 8a 9a 10a 11=25.题型一 等比数列性质的应用 【例1】已知{a n }为等比数列.(1)等比数列{a n }满足a 2a 4=12,求a 1a 23a 5; (2)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(3)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.【解析】(1)等比数列{a n }中,因为a 2a 4=12,所以a 23=a 1a 5=a 2a 4=12,所以a 1a 23a 5=14. (2)由等比中项,化简条件得a 23+2a 3a 5+a 25=25,即(a 3+a 5)2=25,∵a n >0,∴a 3+a 5=5.(3)由等比数列的性质知a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9, ∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 10) =log 3[(a 1a 10)(a 2a 9)(a 3a 8)(a 4a 7)(a 5a 6)] =log 395=10. 【方法归纳】有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项“下标”的指导作用.【跟踪训练1】(1)已知数列{a n }为等比数列,a 3=3,a 11=27,求a 7. (2)已知{a n }为等比数列,a 2·a 8=36,a 3+a 7=15,求公比q .【解析】(1)法一:⎩⎪⎨⎪⎧a 1q 2=3,a 1q 10=27相除得q 8=9.所以q 4=3,所以a 7=a 3·q 4=9.法二:因为a 27=a 3a 11=81,所以a 7=±9, 又a 7=a 3q 4=3q 4>0,所以a 7=9.(2)因为a 2·a 8=36=a 3·a 7,而a 3+a 7=15, 所以a 3=3,a 7=12或a 3=12,a 7=3. 所以q 4=a 7a 3=4或14,所以q =±2或q =±22.题型二 灵活设项求解等比数列【例2】已知4个数成等比数列,其乘积为1,第2项与第3项之和为-32,则此4个数为________________.【解析】设此4个数为a ,aq ,aq 2,aq 3.则a 4q 6=1,aq (1+q )=-32,① 所以a 2q 3=±1,当a 2q 3=1时,q >0,代入①式化简可得q 2-14q +1=0,此方程无解;当a 2q 3=-1时,q <0,代入①式化简可得q 2+174q +1=0,解得q =-4或q =-14.当q =-4时,a =-18;当q =-14时,a =8.所以这4个数为8,-2,12,-18或-18,12,-2,8.【变式探究】本例中的条件换为“前三个数依次成等比数列,它们的积是-8,后三个数依次成等差数列,它们的积是-80”,则这4个数为__________________.【答案】1,-2,4,10或-45,-2,-5,-8【解析】由题意设此四个数为bq ,b ,bq ,a ,则有⎩⎪⎨⎪⎧b 3=-8,2bq =a +b ,ab 2q =-80,解得⎩⎪⎨⎪⎧a =10,b =-2,q =-2,或⎩⎪⎨⎪⎧a =-8,b =-2,q =52.所以这四个数为1,-2,4,10或-45,-2,-5,-8.【方法归纳】巧设等差数列、等比数列的方法(1)若三数成等差数列,常设成a -d ,a ,a +d .若三数成等比数列,常设成aq ,a ,aq 或a ,aq ,aq 2.(2)若四个数成等比数列,可设为a q ,a ,aq ,aq 2.若四个正数成等比数列,可设为a q 3,aq ,aq ,aq 3.题型三 等比数列与等差数列的综合应用【例3】在公差为d (d ≠0)的等差数列{a n }和公比为q 的等比数列{b n }中,已知a 1=b 1=1,a 2=b 2,a 8=b 3. (1)求d ,q 的值;(2)是否存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立?若存在,求出a ,b 的值;若不存在,请说明理由.【解析】(1)由a 2=b 2,a 8=b 3,得⎩⎪⎨⎪⎧ a 1+d =b 1q ,a 1+7d =b 1q 2,即⎩⎪⎨⎪⎧1+d =q ,1+7d =q 2, 解得⎩⎪⎨⎪⎧ d =5,q =6,或⎩⎪⎨⎪⎧d =0,q =1,(舍去).(2)由(1)知a n =1+(n -1)·5=5n -4, b n =b 1q n -1=6n -1.假设存在常数a ,b ,使得对任意n ∈N *,都有a n =log a b n +b 成立,则5n -4=log a 6n -1+b , 即5n -4=n log a 6+b -log a 6.比较系数,得⎩⎪⎨⎪⎧log a 6=5,b -log a 6=-4,所以⎩⎪⎨⎪⎧a =615,b =1.故存在a =615,b =1,使得对任意n ∈N *,都有a n =log a b n +b 成立.【解题关键】 (1)联立方程组可求.(2)假设存在,由(1)得出方程,注意比较系数可求a ,b. 【方法归纳】求解等差、等比数列综合问题的技巧(1)理清各数列的基本特征量,明确两个数列间各量的关系.(2)发挥两个数列的基本量a 1,d 或b 1,q 的作用,并用好方程这一工具. (3)结合题设条件对求出的量进行必要的检验.【跟踪训练2】已知{a n }为等差数列,且a 1+a 3=8,a 2+a 4=12. (1)求{a n }的通项公式;(2)记{a n }的前n 项和为S n, 若a 1,a k ,S k +2成等比数列,求正整数k 的值。

人教A版高中必修二试题4.2.1配套练习(含答案).doc

人教A版高中必修二试题4.2.1配套练习(含答案).doc

高中数学学习材料马鸣风萧萧*整理制作§4.2 直线、圆的位置关系4.2.1 直线与圆的位置关系一、基础过关1.直线3x +4y +12=0与圆(x +1)2+(y +1)2=9的位置关系是( ) A .过圆心B .相切C .相离D .相交 2.直线l 将圆x 2+y 2-2x -4y =0平分,且与直线x +2y =0垂直,则直线l 的方程为( ) A .y =2xB .y =2x -2C .y =12x +32D .y =12x -32 3.若圆C 半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( ) A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 4.若直线ax +by =1与圆x 2+y 2=1相交,则点P (a ,b )的位置是 ( ) A .在圆上B .在圆外C .在圆内D .都有可能 5.过原点O 作圆x 2+y 2-6x -8y +20=0的两条切线,设切点分别为P 、Q ,则线段PQ 的长为________.6.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线l :y =x -1被该圆所截得的弦长为22,则圆C 的标准方程为____________.7.已知圆C 和y 轴相切,圆心C 在直线x -3y =0上,且被直线y =x 截得的弦长为27,求圆C 的方程.8.已知圆C :x 2+y 2-2x +4y -4=0.问是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 满足:以AB 为直径的圆经过原点.二、能力提升9.由直线y =x +1上的一点向圆(x -3)2+y 2=1引切线,则切线长的最小值为( ) A .1B .2 2 C.7 D .310.圆x2+y2+2x+4y-3=0上到直线l:x+y+1=0的距离为2的点有() A.1个B.2个C.3个D.4个11.由动点P向圆x2+y2=1引两条切线P A、PB,切点分别为A、B,且∠APB=60°,则动点P的轨迹方程为__________________.12.已知P是直线3x+4y+8=0上的动点,P A、PB是圆C:x2+y2-2x-2y+1=0的两条切线,A、B是切点.(1)求四边形P ACB面积的最小值;(2)直线上是否存在点P,使∠BP A=60°,若存在,求出P点的坐标;若不存在,说明理由.三、探究与拓展13.圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0(m∈R).(1)证明:不论m取什么数,直线l与圆C恒交于两点;(2)求直线l被圆C截得的线段的最短长度,并求此时m的值.答案1.D 2.A 3.A 4.B5.46.(x -3)2+y 2=47.解 设圆心坐标为(3m ,m ),∵圆C 和y 轴相切,得圆的半径为3|m |,∴圆心到直线y=x 的距离为|2m |2=2|m |. 由半径、弦心距的关系得9m 2=7+2m 2,∴m =±1.∴所求圆C 的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9.8.解 假设存在且设l 为:y =x +m ,圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2).解方程组⎩⎪⎨⎪⎧y =x +m y +2=-(x -1) 得AB 的中点N 的坐标N (-m +12,m -12), 由于以AB 为直径的圆过原点,所以|AN |=|ON |.又|AN |=|CA |2-|CN |2=9-(m +3)22, |ON |=(-m +12)2+(m -12)2. 所以9-(3+m )22=⎝⎛⎭⎫-m +122+⎝⎛⎭⎫m -122,解得m =1或m =-4. 所以存在直线l ,方程为x -y +1=0和x -y -4=0,并可以检验,这时l 与圆是相交于两点的.9.C 10.C11.x 2+y 2=412.解 (1)如图,连接PC ,由P 点在直线3x +4y +8=0上,可设P 点坐标为(x ,-2-34x ).圆的方程可化为(x -1)2+(y -1)2=1,所以S 四边形P ACB =2S △P AC =2×12×|AP |×|AC |=|AP |. 因为|AP |2=|PC |2-|CA |2=|PC |2-1,所以当|PC |2最小时,|AP |最小.因为|PC |2=(1-x )2+(1+2+34x )2=(54x +1)2+9. 所以当x =-45时,|PC |2min =9. 所以|AP |min =9-1=2 2.即四边形P ACB 面积的最小值为2 2.(2)假设直线上存在点P 满足题意.因为∠APB =60°,|AC |=1,所以|PC |=2.设P (x ,y ),则有⎩⎪⎨⎪⎧(x -1)2+(y -1)2=4,3x +4y +8=0. 整理可得25x 2+40x +96=0,所以Δ=402-4×25×96<0.所以这样的点P 是不存在的.13.(1)证明 ∵直线l 的方程可化为(2x +y -7)m +(x +y -4)=0(m ∈R ).∴l 过⎩⎪⎨⎪⎧2x +y -7=0x +y -4=0的交点M (3,1). 又∵M 到圆心C (1,2)的距离为d =(3-1)2+(1-2)2=5<5,∴点M (3,1)在圆内,∴过点M (3,1)的直线l 与圆C 恒交于两点.(2)解 ∵过点M (3,1)的所有弦中,弦心距d ≤5,弦心距、半弦长和半径r 构成直角三角形,∴当d 2=5时,半弦长的平方的最小值为25-5=20.∴弦长AB 的最小值|AB |min =4 5.此时,k CM =-12,k l =-2m +1m +1. ∵l ⊥CM ,∴12·2m +1m +1=-1, 解得m =-34. ∴当m =-34时,取到最短弦长为4 5.。

【创新设计】2014届高考数学 评估4配套训练 新人教A版必修2

【创新设计】2014届高考数学 评估4配套训练 新人教A版必修2

章末质量评估(四)(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若方程x 2+y 2-x +y +m =0表示圆,则实数m 的取值范围是( ). A .m <12 B .m <1C .m >12D .m ≤12解析 由二元二次方程表示圆的充要条件D 2+E 2-4F >0,得(-1)2+12-4m >0,∴m <12.答案 A2.圆x 2+y 2-4x =0在点P (1,3)处的切线方程为( ). A .x +3y -2=0 B .x +3y -4=0 C .x -3y +4=0 D .x -3y +2=0解析 设切线方程为y -3=k (x -1),由于圆心坐标为C (2,0),则k CP =-3,从而k =13,故所求切线方程为y -3=13(x -1),即x -3y +2=0.答案 D3.若直线ax +by =1与圆x 2+y 2=1相交,则点P (a ,b )的位置是( ). A .在圆上 B .在圆外 C .在圆内 D .以上都有可能解析 直线ax +by =1与圆x 2+y 2=1相交知,1a 2+b2<1,即a 2+b 2>1.可知(a ,b )在圆外,故选B. 答案 B4.设点P (a ,b ,c )关于原点的对称点P ′,则|PP ′|=( ). A.a 2+b 2+c 2B .2a 2+b 2+c 2C .|a +b +c |D .2|a +b +c |解析 P ′(a ,b ,c )关于原点对称的点为P (-a ,-b ,-c ),则|PP ′|=[a --a ]2+[b --b ]2+[c --c ]2=2a 2+b 2+c 2.答案 B5.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为2的点共有( ).A .1个B .2个C .3个D .4个解析 ∵x 2+y 2+2x +4y -3=0,∴(x +1)2+(y +2)2=8,圆心(-1,-2)到x +y +1=0的距离为d =|-1-2+1|2=2=r2,∴有三个点,故选C.答案 C6.设圆x 2+y 2+2x +23y -5=0与x 轴交于A ,B 两点,则|AB |的长是( ). A. 6 B .2 6 C .2 3 D .3解析 当y =0时,方程为x 2+2x -5=0,此方程的两根为-1±6,所以|AB |=2 6. 答案 B7.若△ABC 在空间直角坐标系中的位置及坐标如图所示,则BC 边上的中线的长是( ).A. 2 B .2 C. 3 D .3解析 A (0,0,1),B (2,0,0),C (0,2,0),BC 中点坐标为(1,1,0),由距离公式得12+12+12= 3.故选C. 答案 C8.由方程x 2+y 2+x +(m -1)y +12m 2=0所确定的圆中,最大面积是( ).A.32π B .34π C.3π D.不存在 解析 所给圆的半径为r =1+m -12-2m22=12-m +12+3.所以当m =-1时,半径r 取最大值32,此时最大面积是34π.故选B. 答案 B9.当点P 在圆x 2+y 2=1上变动时,它与定点Q (3,0)相连,线段PQ 的中点M 的轨迹方程是( ).A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1 D .(2x +3)2+4y 2=1解析 设M (x ,y ),则P (2x -3,2y ),代入x 2+y 2=1,得(2x -3)2+4y 2=1. 答案 C10.若直线y =kx -1与曲线y =-1-x -22有公共点,则k 的取值范围是( ).A.⎝ ⎛⎦⎥⎤0,43B.⎣⎢⎡⎦⎥⎤13,43C.⎣⎢⎡⎦⎥⎤0,12 D .[0,1] 解析 曲线y =-1-x -22的图形是一个半圆,直线y =kx -1过定点(0,-1),在同一坐标系中画出直线和半圆的草图,由图可知,k 的取值范围是[0,1],故选D. 答案 D二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上) 11.在空间中点A (3,4,-5)关于z 轴对称的点的坐标是________.解析 空间中关于z 轴对称的点的坐标的特点是:竖坐标不变,横、纵坐标变为原来的相反数.答案 (-3,-4,-5)12.若点P (1,-1)在圆(x +2)2+y 2=m 的内部,则实数m 的取值范围是________. 解析 (1+2)2+(-1)2<m ,即m >10,∴m 的取值范围是(10,+∞). 答案 (10,+∞)13.已知圆心在x 轴上,半径为2的圆O 位于y 轴左侧,且与直线x +y =0相切,则圆O 的方程是________.解析 设圆心为(a,0)(a <0), 则r =|a +0+0|12+12=2, ∴a =-2,∴圆O 的方程为(x +2)2+y 2=2. 答案 (x +2)2+y 2=214. 对于任意实数k ,直线(3k +2)x -ky -2=0与圆x 2+y 2-2x -2y -2=0的位置关系是________.解析 直线方程可化为k (3x -y )+2x -2=0,由⎩⎪⎨⎪⎧3x -y =0,2x -2=0,得⎩⎪⎨⎪⎧x =1,y =3.所以直线恒过定点(1,3),而(1,3)在圆上,所以直线与圆相交或相切. 答案 相切或相交三、解答题(本大题共5小题,共54分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(10分)求经过原点,且过圆x 2+y 2+8x -6y +21=0和直线x -y +5=0的两个交点的圆的方程.解 由⎩⎪⎨⎪⎧x 2+y 2+8x -6y +21=0,x -y +5=0,求得交点(-2,3),(-4,1).设所求圆的方程为x 2+y 2+Dx +Ey +F =0, ∵(0,0),(-2,3),(-4,1)三点在圆上,∴⎩⎪⎨⎪⎧F =0,4+9-2D +3E +F =0,16+1-4D +E +F =0,解得⎩⎪⎨⎪⎧D =195,E =-95,F =0,所以所求圆的方程为x 2+y 2+195x -95y =0.16.(10分)已知圆M :x 2+y 2-2mx +4y +m 2-1=0与圆N :x 2+y 2+2x +2y -2=0相交于A 、B 两点,且这两点平分圆N 的圆周,求圆M 的圆心坐标.解 由圆M 和圆N 的方程易知两圆的圆心分别为M (m ,-2),N (-1,-1). 两圆方程相减得直线AB 的方程为 2(m +1)x -2y -m 2-1=0. ∵A 、B 两点平分圆N 的圆周,∴AB 为圆N 的直径,直线AB 过点N (-1,-1). ∴2(m +1)×(-1)-2×(-1)-m 2-1=0. 解得m =-1.故圆M 的圆心为M (-1,-2).17.(10分)如图所示,圆O 1和圆O 2的半径都等于1,O 1O 2=4,过动点P 分别作圆O 1,圆O 2的切线PM ,PN (M ,N 为切点),使PM =2PN ,试建立平面直角坐标系,并求动点P 的轨迹方程.解 如图所示,以O 1O 2中点O 为原点,O 1O 2所在直线为x 轴建立平面直角坐标系,则O 1(-2,0),O 2(2,0).已知PM =2PN ,得PM 2=2PN 2,由两圆半径均为1得PO 21-1=2(PO 22-1). 设点P (x ,y ),则(x +2)2+y 2-1=2[(x -2)2+y 2-1], 即(x -6)2+y 2=33. 所以所求点P 轨迹方程为 (x -6)2+y 2=33.18.(12分)如图所示,在空间直角坐标系中,BC =2,原点O 是BC 的中点,点A 的坐标是⎝ ⎛⎭⎪⎫32,12,0,点D 在平面yOz 内,且∠BDC =90°,∠DCB =30°,求点D 的坐标并判断△ABC 的形状.解 过D 作DE ⊥BC ,垂足为E ,在Rt △BDC 中,∠BDC =90°,∠DCB =30°,BC =2,则BD =1,CD =3, ∴DE =CD sin 30°=32, OE =OB -BE =OB -BD cos 60°=1-12=12.∴D 坐标为⎝ ⎛⎭⎪⎫0,-12,32.∵B (0,-1,0),C (0,1,0),A ⎝ ⎛⎭⎪⎫32,12,0, ∴|AB |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫12+12+0=3,|AC |=⎝ ⎛⎭⎪⎫322+⎝⎛⎭⎪⎫12-12+0=1,∴|AB |2+|AC |2=|BC |2=4∴△ABC 是直角三角形.19.(12分)在平面直角坐标系xOy 中,已知圆C 1:(x -4)2+(y -5)2=4和圆C 2:(x +3)2+(y -1)2=4.(1)若直线l 1过点A (2,0),且与圆C 1相切,求直线l 1的方程.(2)若直线l 2过点B (4,0),且被圆C 2截得的弦长为23,求直线l 2的方程;(3)直线l 3的方程是x =52,证明:直线l 3上存在点P ,满足过P 的无穷多对互相垂直的直线l 4和l 5,它们分别与圆C 1和圆C 2相交,且直线l 4被圆C 1截得的弦长与直线l 5被圆C 2截得的弦长相等.解 (1)若直线斜率不存在,x =2符合题意;当直线斜率存在时,设直线l 1的方程为:y =k (x -2), 即kx -y -2k =0由条件得:|4k -5-2k |k 2+1=2,解得:k =2120,所以直线l 1的方程:x =2或y =2120(x -2),即x =2或21x -20y -42=0.(2)由题意知直线l 2的斜率存在,设直线l 2的方程为:y =k (x -4), 即kx -y -4k =0,由条件得:圆心C 2到直线l 2的距离d =22-⎝⎛⎭⎪⎫2322=1, 结合点到直线的距离公式,得:|-3k -1-4k |k 2+1=1,化简得:24k 2+7k =0, k =0或k =-724,所以直线l 2的方程为:y =0或y =-724(x -4),即y =0或7x +24y -28=0.(3)由题意知,直线l 4,l 5的斜率存在,设直线l 4的斜率为k ,则直线l 5的斜率为-1k,设点P 坐标为⎝ ⎛⎭⎪⎫52,n ,互相垂直的直线l 4,l 5的方程分别为y -n =k ⎝ ⎛⎭⎪⎫x -52,y -n =-1k ⎝ ⎛⎭⎪⎫x -52,即kx -y +n -52k =0,-1k x -y +n +52k=0,根据直线l 4被圆C 1截得的弦长与直线l 5被圆C 2截得的弦长相等,两圆半径相等.由垂径定理得;圆心C 1到直线l 4与圆心C 2到直线l 5的距离相等.故有⎪⎪⎪⎪⎪⎪4k -5+n -52k k 2+1=⎪⎪⎪⎪⎪⎪3k -1+n +52k 1k 2+1,化简得⎝ ⎛⎭⎪⎫52-n k =212-n 或⎝ ⎛⎭⎪⎫12+n k =-n -12=-⎝ ⎛⎭⎪⎫12+n .关于k 的方程有无穷多解, 有12+n =0,即n =-12, 即直线l 3上满足条件的点P 是存在的,坐标是⎝ ⎛⎭⎪⎫52,-12.。

人教A版高中必修二试题4.1.1配套练习(含答案).doc

人教A版高中必修二试题4.1.1配套练习(含答案).doc

第四章 圆与方程§4.1 圆的方程4.1.1 圆的标准方程一、基础过关1.(x +1)2+(y -2)2=4的圆心与半径分别为( ) A .(-1,2),2B .(1,-2),2C .(-1,2),4D .(1,-2),4 2.点P (m 2,5)与圆x 2+y 2=24的位置关系是 ( ) A .在圆内B .在圆外C .在圆上D .不确定 3.圆的一条直径的两个端点是(2,0),(2,-2),则此圆的方程是 ( ) A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x +2)2+(y +1)2=14.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离为 ( ) A.12 B.32 C .1 D. 3 5.圆O 的方程为(x -3)2+(y -4)2=25,点(2,3)到圆上的最大距离为________.6.圆(x -3)2+(y +1)2=1关于直线x +2y -3=0对称的圆的方程是________________.7.求满足下列条件的圆的方程:(1)经过点P (5,1),圆心为点C (8,-3);(2)经过点P (4,2),Q (-6,-2),且圆心在y 轴上.8.求经过A (6,5),B (0,1)两点,并且圆心在直线3x +10y +9=0上的圆的方程.二、能力提升9.方程y =9-x 2表示的曲线是( ) A .一条射线B .一个圆C .两条射线D .半个圆10.若直线y =ax +b 通过第一、二、四象限,则圆(x +a )2+(y +b )2=1的圆心位于( )A .第一象限B .第二象限C .第三象限D .第四象限 11.如果直线l 将圆(x -1)2+(y -2)2=5平分且不通过第四象限,那么l 的斜率的取值范围是________.12.平面直角坐标系中有A (0,1),B (2,1),C (3,4),D (-1,2)四点,这四点能否在同一个圆上?为什么?三、探究与拓展13.已知点A (-2,-2),B (-2,6),C (4,-2),点P 在圆x 2+y 2=4上运动,求|P A |2+|PB |2+|PC |2的最值.答案1.A 2.B 3.B 4.A5.5+ 26.⎝⎛⎭⎫x -1952+⎝⎛⎭⎫y -352=1 7.解 (1)圆的半径r =|CP |=(5-8)2+(1+3)2=5,圆心为点C (8,-3),∴圆的方程为(x -8)2+(y +3)2=25.(2)设所求圆的方程是x 2+(y -b )2=r 2.∵点P 、Q 在所求圆上,依题意有⎩⎪⎨⎪⎧ 16+(2-b )2=r 2,36+(2+b )2=r 2,⇒⎩⎨⎧ r 2=1454,b =-52.∴所求圆的方程是x 2+⎝⎛⎭⎫y +522=1454. 8.解 由题意知线段AB 的垂直平分线方程为3x +2y -15=0,∴由⎩⎪⎨⎪⎧3x +2y -15=0,3x +10y +9=0, 解得⎩⎪⎨⎪⎧x =7,y =-3. ∴圆心C (7,-3),半径r =|AC |=65.∴所求圆的方程为(x -7)2+(y +3)2=65.9.D 10.D11.[0,2]12.解 能.设过A (0,1),B (2,1),C (3,4)的圆的方程为(x -a )2+(y -b )2=r 2.将A ,B ,C 三点的坐标分别代入有⎩⎪⎨⎪⎧ a 2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2,(3-a )2+(4-b )2=r 2,解得⎩⎪⎨⎪⎧ a =1,b =3,r = 5.∴圆的方程为(x -1)2+(y -3)2=5.将D (-1,2)代入上式圆的方程,得(-1-1)2+(2-3)2=4+1=5,即D 点坐标适合此圆的方程.故A ,B ,C ,D 四点在同一圆上.13.解 设P (x ,y ),则x 2+y 2=4.|P A |2+|PB |2+|PC |2=(x +2)2+(y +2)2+(x +2)2+(y -6)2+(x -4)2+(y +2)2=3(x 2+y 2)-4y +68=80-4y .∵-2≤y ≤2,∴72≤|P A |2+|PB |2+|PC |2≤88.即|P A |2+|PB |2+|PC |2的最大值为88,最小值为72.。

高中试卷-4.3.1等比数列的概念 (2) -A基础练(含答案)

高中试卷-4.3.1等比数列的概念 (2)  -A基础练(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!4.3.1等比数列的概念 (2)-A 基础练一、选择题1.(2021·天津和平区·耀华中学高二期末)已知等比数列{}n a 中,24a =-,512a =,则公比q =( )A .2-B .12-C .12D .2【答案】B【详解】352a a q =Q ,即3142q =-,解得12q =-.故选:B.2.(2021·河南信阳市高二期末)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f ,则第六个单音的频率为( )A .B .CD 【答案】B【详解】由题意知,十三个单音的频率构成等比数列{}n a ,公比为,\第六个单音的频率561a a q f =×=.故选:B.3.(2021·南昌市新建区二中高二期末)若数列{}n a 是公比为4的等比数列,且12a =,则数列{}2log n a 是( )A .公差为2的等差数列B .公差为lg 2的等差数列C .公比为2的等比数列D .公比为lg 2的等比数列【答案】A【详解】因为数列{}n a 是公比为4的等比数列,且12a =,所以121242n n n a --=´=,,22212o 1l g log 2n n a n -==-,所以数列{}2log n a 是公差为2的等差数列,故选A.4.(2021·安徽宣城市高二期末)在等比数列{}n a 中,12345a a a a +++=,233a a =-,则12341111a a a a +++=( )A .35B .53-C .53D .35-【答案】B【详解】解:2314123414231111a a a a a a a a a a a a +++++=+××.∵在等比数列{}n a 中,14233a a a a ×=×=-,所以12341111a a a a +++12342353a a a a a a +++==-×.故选:B .5.(多选题)(2021·江苏连云港市高二期末)据美国学者詹姆斯·马丁的测算,近十年,人类知识总量已达到每三年翻一番,到2020年甚至要达到每73天翻一番的空前速度.因此,基础教育的任务已不是教会一切人一切知识,而是让一切人学会学习.已知2000年底,人类知识总量为a ,假如从2000年底到2009年底是每三年翻一番,从2009年底到2019年底是每一年翻一番,2020年(按365天计算)是每73天翻一番,则下列说法正确的是( ).A .2006年底人类知识总量是2aB .2009年底人类知识总量是8aC .2019年底人类知识总量是132aD .2020年底人类知识总量是182a【答案】BCD【详解】2000年到2006年每三年翻一番,则总共翻了2006-2000=23番.2000年底,人类知识总量为a ,则2006年底,人类知识总量为224a a ×=,故A 错.2000年到2009年每三年翻一番,则总共翻了2009-2000=33番.则2009年底,人类知识总量为328a a ×=,故B 正确,2009年到2009年每一年翻一番,则总共翻了2019200910-=番则2019年底,人类知识总量为1013822a a ×=,故C 正确.2020年是每73天翻一番,则总共翻了365573=番,则2020年底,人类知识总量为13518222a a ×=,故D 正确.故选:BCD.6.(多选题)(2021·江苏宿迁高二期末)设{}n a 是公比为2的等比数列,下列四个选项中是正确的命题有()A .1n a ìüíýîþ是公比为12的等比数列B .{}2n a 是公比为4的等比数列C .{}2n a 是公比为4的等比数列D .{}1n n a a +是公比为2的等比数列【答案】AB【详解】由于数列{}n a 是公比为2的等比数列,则对任意的n *ÎN ,0n a ¹,且公比为12n na q a +==.对于A 选项,1111112n n n na a a q a ++===,即数列1n a ìüíýîþ是公比为12的等比数列,A 选项正确;对于B 选项,22224n na q a +==,即数列{}2n a 是公比为4的等比数列,B 选项正确;对于C 选项,1222n na q a +==,即数列{}2n a 是公比为2的等比数列,C 选项错误;对于D 选项,212214n n n n n na a a q a a a ++++===,即数列{}1n n a a +是公比为4的等比数列,D 选项错误.故选:AB.二、填空题7.(2021·安徽池州市高期二末)已知数列{}n a 是等比数列,0n a >,512a =,且28118a a a =,则数列{}n a 的公比q =___________ .【答案】2【详解】数列{}n b 是等比数列,则437281177758a a a a a q a q a q=××==,所以72a =,而0n a >,512a =,所以公比2q =.8.(2021·北京昌平区昌平一中高二期末)有一改形塔几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为8,如果改形塔的最上层正方体的边长等于1,那么该塔形中正方体的个数是___________ .【答案】7【详解】设从最底层开始的第n 层的正方体棱长为n a ,则{}n a 为以8为公比的等比数列,所以其通项公式为111732228222n n n n a ----+æö=´=´=ç÷èø,令1n a =可得,7n =.9.(2021·天津和平区·耀华中学高二期末)在等比数列{}n a 中,0n a >,344a a =,则212226log log log a a a ++¼+值为__________.【答案】6【详解】因为{}n a 是等比数列,0n a >,所以321222621262342342log log log log ()log ()3log ()3log 46a a a a a a a a a a ++¼+=====L .10.(2021·陕西咸阳市高二期末)已知数列{}n a 满足112a =,()*112n n a a n +=ÎN .设2n nn b a l -=,*n ÎN ,且数列{}n b 是递增数列,则实数l 的取值范围是________.【答案】3,2æö-¥ç÷èø【详解】由()*112n n a a n +=ÎN 可得,数列{}n a 是首项和公比均为12的等比数列,所以12n n a =,则()222n n nn b n a ll -==-,又因为{}n b 是递增数列,所以()()()11122222220n n n n n b b n n n l l l ++=+---=+->-恒成立,即220n l +->恒成立,所以()min 223n l <+=,所以32l <.三、解答题11.(2021·安徽肥东高二期末)已知数列{}n a 的前n 项和2392n n S +-=.(1)证明:{}n a 是等比数列.(2)求数列{}3log n a 的前n 项和.【详解】(1)当2n ³时.,21113332n n n n n n a S S +++--=-==,又119a S ==,所以{}n a 的通项公式为13n n a +=.因为13n na a +=,所以{}n a 是首项为9,公比为3的等比数列.(2)因为13n n a +=,所以3log 1n a n =+,所以数列{}3log n a 的前n 项和:231n T n =++++L 2(21)322n n n n+++==.12.(2021·上海市建平中学高二期末)诺贝尔奖每年发放一次,把奖金总金额平均分成6份,奖励在6项(物理、化学、文学、经济学、生理学和医学、和平)为人类做出最有贡献人.每年发放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以便保证奖金数逐年递增.资料显示:1998年诺贝尔奖发奖后的基金总额(即1999年的初始基金总额)已达19516万美元,基金平均年利率为 6.24%r =.(1)求1999年每项诺贝尔奖发放奖金为多少万美元(精确到0.01);(2)设n a 表示()1998n +年诺贝尔奖发奖后的基金总额,其中*n N Î,求数列{}n a 的通项公式,并因此判断“2020年每项诺贝尔奖发放奖金将高达193.46万美元”的推测是否具有可信度.【详解】(1)由题意得1999年诺贝尔奖发奖后基金总额为()1195161 6.24%19516 6.24%20124.8992201252´+-´´=»万美元,每项诺贝尔奖发放奖金为1119516 6.24%101.483210162æö´´´=»ç÷èø万美元;(2)由题意得120125a =,()()211111 6.24% 6.24%1 3.12%2a a a a =×+-××=×+,()()()23222111 6.24% 6.24%1 3.12%1 3.12%2a a a a a =×+-××=×+=×+…所以()1201251 3.12%n n a -=×+,2019年诺贝尔奖发奖后基本总额为()2021201251 3.12%a =×+,2020年每项诺贝尔奖发放奖金为2111 6.24%193.4662a ´´´»万美元,故该推测具有可信度.。

高中数学选择性必修二 4 3 1第二课时等比数列的性质及应用(习题课)(含答案)

高中数学选择性必修二 4 3 1第二课时等比数列的性质及应用(习题课)(含答案)
所以abn=a13n-1,①
又abn=a1+(bn-a1.
因为a1=2d≠0,所以bn=2×3n-1-1.
[C级 拓展探究]
15.容器A中盛有浓度为a%的农药mL,容器B中盛有浓度为b%的同种农药mL,A,B两容器中农药的浓度差为20%(a>b),先将A中农药的 倒入B中,混合均匀后,再由B倒入一部分到A中,恰好使A中保持mL,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?
[B级 综合运用]
11.设各项为正数的等比数列{an}中,公比q=2,且a1·a2·a3·…·a30=230,则a3·a6·a9·…·a30=()
A.230B.210
C.220D.215
解析:选C∵a1·a2·a3·…·a30=230,
∴a ·q1+2+3+…+29=a ·q =230,
∴a1=2- ,
A.2B.4
C.8D.16
解析:选C等比数列{an}中,a3a11=a =4a7,解得a7=4,等差数列{bn}中,b5+b9=2b7=2a7=8.
6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.
解析:设此三数为3,a,b,则
解得 或 所以这个未知数为3或27.
2.在正项等比数列{an}中,an+1<an,a2·a8=6,a4+a6=5,则 等于()
A. D.
C. D.
解析:选D法一:设公比为q,则由等比数列{an}各项为正数且an+1<an知0<q<1,由a2·a8=6,得a =6.
∴a5= ,a4+a6= + q=5.
解得q= ,∴ = = 2= .
法二:设公比为q,由an>0,且an+1<an知0<q<1.

人教A版高中数学选择性必修第二册课后习题 第四章 数列 4.4 数学归纳法 (3)

人教A版高中数学选择性必修第二册课后习题 第四章 数列 4.4 数学归纳法 (3)

第四章4.4*数学归纳法A级必备知识基础练A.13k+1B.13k+1−1k+1C.13k+2+13k+3+13k+4D.13k+2+13k+4−23(k+1)2.[探究点一]用数学归纳法证明:(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1)(n∈N*).从n=k(k∈N*)到n=k+1,若设f(k)=(k+1)(k+2)…(k+k),则f(k+1)=( )A.f(k)+[2(2k+1)]B.f(k)·[2(2k+1)]C.f(k)+2k+1k+1D.f(k)·2k+1k+1A.p(k)对k=528成立B.p(k)对每一个自然数k都成立C.p(k)对每一个正偶数k都成立D.p(k)对某些偶数可能不成立4.[探究点一](多选题)对于不等式√n2+n≤n+1(n∈N*),某学生的证明过程如下:①当n=1时,√12+1≤1+1,不等式成立.②假设n=k(k ∈N *)时,不等式成立,即√k 2+k <k+1,则n=k+1时,√(k +1)2+(k +1)=√k 2+3k +2<√(k 2+3k +2)+(k +2)=√(k +2)2=(k+1)+1,所以当n=k+1时,不等式成立.关于上述证明过程的说法正确的是( ) A.证明过程全都正确 B.当n=1时的验证正确 C.归纳假设正确D.从n=k 到n=k+1的推理不正确5.[探究点五·江西新余月考]用数学归纳法证明34n+2+52n+1(n ∈N)能被14整除时,当n=k+1时,对于34(k+1)+2+52(k+1)+1应变形为 .6.[探究点四]在数列{a n }中,a 1=12,a n+1=3a n a n +3.(1)求出a 2,a 3并猜想{a n }的通项公式; (2)用数学归纳法证明你的猜想.7.[探究点三·人教B版教材例题]求证:当n是大于或等于5的正整数时,2n>n2.8.[探究点二·北师大版教材习题]平面内有n(n≥2,n∈N*)条直线,其中任何两条都不平行,任何三条都不经过同一点,用数学归纳法证明:交点的个数f(n)=n(n-1).2B级关键能力提升练9.用数学归纳法证明不等式1n+1+1n+2+…+1n+n>1314(n∈N*)的过程中,由n=k递推到n=k+1时,不等式左边( )A.增加了12(k+1)B.增加了12k+1+12k+2C.增加了12(k+1)−1k+1D.增加了12k+1+12k+2−1k+110.利用数学归纳法证明等式:1·n+2·(n-1)+3·(n-2)+…+n·1=16n(n+1)(n+2)(n∈N*),当n=k时,左边的和1·k+2·(k-1)+3·(k-2)+…+k·1,记作S k,则当n=k+1时左边的和,记作S k+1,则S k+1-S k=( )A.1+2+3+…+kB.1+2+3+…+(k-1)C.1+2+3+…+(k+1)D.1+2+3+…+(k-2)A.若f(6)<7成立,则f(5)<6成立B.若f(3)≥4成立,则当k≥1时,均有f(k)≥k+1成立C.若f(2)<3成立,则f(1)≥2成立D.若f(4)≥5成立,则当k≥4时,均有f(k)≥k+1成立12.用数学归纳法证明“当n ∈N *时,f(n)=5n +2×3n-1+1能被8整除”时,第二步“假设当n=k(k ∈N *)时,f(k)=5k +2×3k-1+1能被8整除,证明当n=k+1时f(k+1)也能被8整除”的过程中,得到f(k+1)=5k+1+2×3(k+1)-1+1=f(k)+A,则A 的表达式为 .13.是否存在a,b,c 使等式(1n )2+(2n )2+(3n )2+…+(n n)2=an 2+bn+cn对一切n ∈N *都成立?若不存在,说明理由;若存在,用数学归纳法证明你的结论.14.[北师大版教材例题]用数学归纳法证明:(1+α)n≥1+nα(其中α>-1,n∈N*).(x>0),f n+1(x)=f1(f n(x)). 15.已知数列{f n(x)}满足f1(x)=√1+x2(1)求f2(x),f3(x),并猜想{f n(x)}的通项公式;(2)用数学归纳法证明猜想.C级学科素养创新练16.观察下列不等式:5+3≥8,25+9≥32,125+27≥128,625+81≥512,….4.4* 数学归纳法1.D 当n=k 时,不等式的左边等于1k+1+1k+2+1k+3+…+13k+1,且k ∈N *,当n=k+1时,不等式的左边等于1k+2+1k+3+1k+4+…+13k+1+13k+2+13k+3+13k+4,当n=k+1时,不等式的左边比当n=k 时增加的项为13k+2+13k+3+13k+4−1k+1=13k+2+13k+4−23k+3.故选D.2.B 由数学归纳法证明(n+1)·(n+2)…(n+n)=2n ×1×3×…×(2n -1)(n ∈N *)时,从“k”到“k+1”的证明,左边需增添的一个因式是(2k+1)(2k+2)k+1=2(2k+1),则f(k+1)=f(k)·[2(2k+1)].3.AD 由题意知p(k)对k=2,4,6,…,成立,当k 取其他值时不能确定p(k)是否成立,故选AD.4.BCD n=1的验证及归纳假设都正确,但从n=k 到n=k+1的推理中没有使用归纳假设,而通过不等式的放缩法直接证明,不符合数学归纳法的证题要求.故选BCD.5.34(34k+2+52k+1)-56·52k+1 34(k+1)+2+52(k+1)+1=34(34k+2+52k+1)-56·52k+1.6.(1)解由a 1=12,a n+1=3a na n +3,得a 2=3a 1a 1+3=3212+3=37,a 3=3a 2a 2+3=9737+3=924=38.猜想a n =3n+5.(2)证明①当n=1时,a1=12=36=31+5,结论成立.②假设当n=k(k∈N*)时,结论成立,即a k=3k+5,那么,当n=k+1时,a k+1=3a ka k+3=3·3k+53 k+5+3=93k+18=3(k+1)+5,结论成立.由①和②可知对任意n∈N*,都有a n=3n+5成立.综上可知,不等式对任何大于或等于5的正整数n都成立.9.D 当n=k时,1k+1+1k+2+…+1k+k>1314,当n=k+1时,1k+1+1+1k+1+2+…+1k+k+1k+k+1+1k+1+k+1>1314,左边增加了12k+1+12k+2−1k+1.10.C 依题意,S k=1·k+2·(k-1)+3·(k-2)+…+k·1,则S k+1=1·(k+1)+2·k+3·(k-1)+4·(k-2)+…+k·2+(k+1)·1,∴S k+1-S k=1·[(k+1)-k]+2·[k-(k-1)]+3·[(k-1)-(k-2)]+4·[(k-2)-(k-3 )]+…+k·(2-1)+(k+1)·1=1+2+3+…+k+(k+1).11.AD 选项A中,若f(5)<6不成立,则f(5)≥6,由题意知f(6)≥7,与f(6)<7成立矛盾,所以f(5)<6成立,故A正确;选项D中,若f(4)≥5成立,则f(n0+1)≥n0+2(n0≥4,n0∈N*),即f(k)≥k+1(k≥5),结合f(4)≥5,所以当k≥4时,均有f(k)≥k+1成立,故D正确;选项C中,同选项A,应有f(1)<2成立,故C错误;B不一定成立.所以选AD.12.A=4(5k +3k-1) 因为f(k)=5k +2×3k-1+1,f(k+1)=5k+1+2×3(k+1)-1+1=5×5k +2×3k +1=5k +2×3k-1+1+4×5k +4×3k-1=f(k)+4(5k +3k-1).故A=4(5k +3k-1). 13.解取n=1,2,3可得{a +b +c =1,8a +4b +2c =5,27a +9b +3c =14,解得a=13,b=12,c=16.下面用数学归纳法证明(1n )2+(2n )2+(3n )2+…+(n n)2=2n 2+3n+16n=(n+1)(2n+1)6n.即证12+22+…+n 2=16n(n+1)(2n+1), ①当n=1时,左边=1,右边=1, ∴等式成立;②假设当n=k(k ∈N *)时等式成立,即12+22+…+k 2=16k(k+1)(2k+1)成立,则当n=k+1时,等式左边=12+22+…+k 2+(k+1)2=16k(k+1)(2k+1)+(k+1)2=16[k(k+1)(2k+1)+6(k+1)2]=16(k+1)(2k 2+7k+6)=16(k+1)(k+2)(2k+3),故当n=k+1时等式成立.由数学归纳法,综合①②当n ∈N *等式成立,故存在a=13,b=12,c=16使已知等式成立.15.解(1)f2(x)=f1[f1(x)]=1√1+f12(x)=√1+2x2,f3(x)=f1[f2(x)]=2√1+f22(x)=√1+3x2.猜想:f n(x)=√1+nx2(n∈N*).(2)下面用数学归纳法证明f n(x)=√1+nx2(n∈N*),①当n=1时,f1(x)=√1+x2,显然成立.②假设当n=k(k∈N*)时,猜想成立,即f k(x)=√1+kx2,则当n=k+1时,f k+1=f1[f k(x)]=x√1+kx2√1+(√1+kx2)=√2,即对n=k+1时,猜想也成立.结合①②可知,猜想f n(x)=√1+nx2对一切n∈N*都成立.第11页共11页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§4.3 空间直角坐标系
4.3.1 空间直角坐标系
一、基础过关
1.点P (5,0,-2)在空间直角坐标系中的位置是
( )
A .y 轴上
B .xOy 平面上
C .xOz 平面上
D .x 轴上 2.设y ∈R ,则点P (1,y,2)的集合为
( )
A .垂直于xOz 平面的一条直线
B .平行于xOz 平面的一条直线
C .垂直于y 轴的一个平面
D .平行于y 轴的一个平面
3.已知空间直角坐标系中有一点M (x ,y ,z )满足x >y >z ,且x +y +z =0,则M 点的位置是
( )
A .一定在xOy 平面上
B .一定在yOz 平面上
C .一定在xOz 平面上
D .可能在xOz 平面上
4.在空间直角坐标系中,点P (3,4,5)关于yOz 平面的对称点的坐标为
( )
A .(-3,4,5)
B .(-3,-4,5)
C .(3,-4,-5)
D .(-3,4,-5)
5.在空间直角坐标系中,点A (1,2,-3)关于x 轴的对称点为________. 6.点P (-3,2,1)关于Q (1,2,-3)的对称点M 的坐标是________.
7.已知正方体ABCD -A 1B 1C 1D 1,E 、F 、G 分别是DD 1、BD 、BB 1的中点,且正方体棱长为1.请建立适当坐标系,写出正方体各顶点及E 、F 、G 的坐标. 8. 如图所示,长方体ABCD -A
1B 1C 1D 1的对称中心为坐标原点O ,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3, -1),求其它7个顶点的坐标. 二、能力提升
9.在空间直角坐标系中,P (2,3,4)、Q (-2,-3,-4)两点的位置关系是
( )
A .关于x 轴对称
B .关于yOz 平面对称
C .关于坐标原点对称
D .以上都不对
10.如图,在正方体ABCD —A ′B ′C ′D ′中,棱长为1,|BP |=1
3
|BD ′|,则P 点的坐标为
( )
A.⎝⎛⎭⎫13,13,13
B.⎝⎛⎭⎫
23,23,23
C.⎝⎛⎭
⎫13,23,13
D.⎝⎛⎭⎫
23,23,13 11.连接平面上两点P 1(x 1,y 1)、P 2(x 2,y 2)的线段P 1P 2的中点M 的坐标为⎝⎛
⎭⎫x 1+x 22,y 1+y 22,
那么,已知空间中两点P 1(x 1,y 1,z 1)、P 2(x 2,y 2,z 2),线段P 1P 2的中点M 的坐标为_________. 12. 如图所示,AF 、DE 分别是⊙O 、⊙O 1的直径,AD 与两圆所在的平面均垂直,AD =8.BC 是⊙O 的直径,AB =AC =6,OE ∥AD ,试建立适当的空间直角坐标系,
求出点A 、B 、C 、D 、E 、F 的坐标. 三、探究与拓展
13. 如图所示,四棱锥P -ABCD 的底面ABCD 是边长为1的菱形,∠BCD =
60°,E 是CD 的中点,P A ⊥底面ABCD ,P A =2.试建立适当的空间直角坐标系,求出A 、B 、C 、D 、P 、E 的坐标.
答案
1.C 2.A 3.D 4.A 5.(1,-2,3) 6.(5,2,-7)
7.解 如图所示,建立空间直角坐标系,则A (1,0,0),B (1,1,0),C (0,1,0),
D (0,0,0),A 1(1,0,1),B 1(1,1,1),C 1(0,1,1),D 1(0,0,1),
E ⎝
⎛⎭⎫0,0,12,F ⎝⎛⎭⎫12,12,0,G ⎝
⎛⎭⎫1,1,12. 8.解 长方体的对称中心为坐标原点O ,因为顶点坐标A (-2,-3,-1),所以A 关于原点的对称点C 1的坐标为(2,3,1).
又因为C 与C 1关于坐标平面xOy 对称, 所以C (2,3,-1).
而A 1与C 关于原点对称,所以A 1(-2,-3,1).
又因为C 与D 关于坐标平面xOz 对称,所以D (2,-3,-1). 因为B 与C 关于坐标平面yOz 对称,所以B (-2,3,-1). B 1与B 关于坐标平面xOy 对称,所以B 1(-2,3,1). 同理D 1(2,-3,1).
综上可知长方体的其它7个顶点坐标分别为:C 1(2,3,1),C (2,3,-1),A 1(-2,-3,1),B (-2,3,-1),B 1(-2,3,1),D (2,-3,-1),D 1(2,-3,1). 9.C 10.D
11.⎝⎛⎭⎫x 1+x 22,y 1+y 22,z 1+z 22
12.解 因为AD 与两圆所在的平面均垂直,OE ∥AD ,所以OE 与两圆所在的平面也都垂直.
又因为AB =AC =6,BC 是圆O 的直径,所以△BAC 为等腰直角三角形且AF ⊥BC ,BC =6 2.
以O 为原点,OB 、OF 、OE 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则原点O 及A 、B 、C 、D 、E 、F 各个点的坐标分别为O (0,0,0)、A (0,-32,0)、B (32,0,0)、C (-32,0,0)、D (0,-32,8)、E (0,0,8)、F (0,32,0).
13.解 如图所示,以A 为原点,以AB 所在直线为x 轴,AP 所在直
线为z 轴,过点A 与xAz 平面垂直的直线为y 轴,建立空间直角坐标系.则相关各点的坐标分别是A (0,0,0),B (1,0,0), C (32,32,0),D (12,3
2
,0),P (0,0,2),
3
E(1,
2,0).。

相关文档
最新文档