山东省日照市莒县五中2017-2018学年度第一学期人教版九年级数学上册期末检测试题_(全册)【有答
2017-2018学年人教版初三数学第一学期期末试卷含答案
2017-2018学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P 在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2017-2018学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD 的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。
2017-2018学年上期期末考试九年级数学试题含答案
2017-2018学年上期期末考试九年级数学试题一.选择题(每小题3分,共24分)1.在1-,0,2这四个数中,最大的数是( ) A.-1 B.0 C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )A .B .C .D .3.大量事实证明,环境污染治理刻不容缓.据统计,全球每秒钟约有14.2万吨污水排入江河湖海.把14.2万用科学记数法表示为( )A .1.42×105B .1.42×104C .142×103D .0.142×1064.如图,能判定ECAB 的条件是()A .B ACE ∠=∠ B .A ECD ∠=∠C .B ACB ∠=∠D .A ACE ∠=∠5.下列计算正确的是( ) A.32a a a ÷= B.()32628xx -= C.22423a a a += D.()222a b a b -=-6.在下列调查中,适宜采用调查的是( )A .了解全国中学生的视力情况B .了解九(1)班学生鞋子的尺码情况C .检测一批电灯泡的使用寿命D .调查郑州电视台《郑州大民生》栏目的收视率7.抛物线()212y x =-+的顶点坐标是( ) A.()1,2- B.()1,2-- C.()1,2- D.()1,28.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点F 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点F 的运动时间为t 秒,当t 的值为( )秒时.ABF △和DCE △全等.A .1B .1或3C .1或7D .3或7二.填空题(每小题3分,共21分) 9.计算:2=-__________.10.已知四条线段a ,b ,c ,d 是成比例线段,即ac b d=,其中3cm,2cm,6cm a b c ===,则11.有大小、形状、颜色完全相同的3个乒乓球,每个球上分别标有数字1,2,3中的一个,将这3个球放入不透明的袋子中搅匀,如果不放回的从中随机连续抽取两个,则这个两个球上的数字之和为偶数的概率是__________.12.如图,点A 是反比例函数k y x=图象上的一个动点,过点A 作AB x⊥轴,AC y ⊥轴,垂足点分别为B 、C ,矩形ABOC 的面积为4,则k =_____________.13如图,已知函数2y x b =+与函数3y kx =-的图象交于点P ,则不等式32kx x b ->+的解集是_____________.14.如图,如果圆内接四边形ABCD 两组对边的延长线分别相交于点E 、F ,且40E ∠=,60F ∠=,那么A ∠=____________.15.如图,Rt ABC △中,90ACB ∠=,3AC =,4BC =,将边AC 沿CE 翻折,使点A 落在AB 上的点D 处;再将边BC 沿CF 翻折,使点B 落在CD 的延长线上的点'B 处,两条折痕与斜边AB 分别交于点E 、F ,则线段'B F 的长为___________.三.解答题(本大题共8个小题,共75分)16.(本题8分) 先化简,再求值:2344111x x x x x ++⎛⎫--÷⎪++⎝⎭,其中x 是方程220x x +=的解。
初中数学2017-2018第一学期期末九数答案
2017—2018学年度第一学期期末教学质量检测九年级数学答案一、选择题:二、填空题:三、解答题:20.解:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,………………………………………2分即5+4m>0,解得:m>﹣.………………………………………4分∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1 (6)分将m=﹣1代入原方程得:x2+3x+2=0,解得:x1=﹣1,x2=﹣2.………………………………………………………9分故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B等级人数5人图略…………………………………………………………3分(2)40,72 ………………………………………………………………………5分……………………………………………………………………………………8分所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生== ………………………………………………………9分 22.解:(1)在Rt△ACE中,cos 22°=ACCE………………………………………………2分 ∴AC = 22cos CE=93.05.22≈24.2m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m.(2) 在Rt△ACE 中,tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4 =9m ……………………………………………………………………8分 ∴AB =AE+BE =9+3=12m ………………………………………………………9分23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x过点B (3,b )和D (2,b +1) ∴3b =2(b+1)…………………………………………………………… 3分解得b=2,…………………………………………………………………4分∴B点坐标为(3,2),D点坐标(2,3)………………………………5分把B点坐标(3,2)代入kyx=,解得k=6;……………………………6分∴当点A(1,b)在双曲线yx=,得到b =4……………………………7分当点C(4,b+1)在双曲线4yx=,得到b=0…………………………8分∴b的取值范围0≤b≤4 ……………………………………………………9分24.证明(1)∵△ABC∽△DEC,CA=CB,∴CE=CD,∠ACB=∠ECD,……………………………………………1分∴∠ACE=∠BCD在△ACE和△BCD中,CA=CB,CE=CD,∠ACE=∠BCD,∴△ACE ≌△BCD .…………………………………………………………3分∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EOCO =510即12=EO CO …………………………………………………8分 ∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分 解得⎪⎩⎪⎨⎧=-=9421b k所以3分(3)当V ≥50时,包含V =80,由函数图象可知,当28<x ≤88时,P 随x 的增大而增大,即当x =88时,P 取得最大值,所以当x =88时,P 取得最大为4400.………………………………………10分26.解:(1)24 ………………………………………2分(2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°, 故可得∠OAM =30°,则∠OAF =60°, 又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分 ②连接B 'F ,此时∠NAD =60°, ∵AB '=8,∠DAM =30°, ∴AF =AB 'cos∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离; 过点O 作OE ⊥DM , ∴OE =OM cos∠MOE ∵AM =331623830cos 0==AD 图18-3∴OE =OMcos∠MOE =43282343316>-=⨯⎪⎪⎭⎫⎝⎛- ………………………9分 ∴DM 与⊙O 的位置关系是相离…………………………………………………10分③90° …………………………………………………………………………12分备用图E备用图。
2017-2018学年第一学期九年级期末检测数学试卷(附答案)
2017—2018学年度第一学期期末考试九年级数学试题全卷满分150分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.一、选择题(每小题4分,共48分)1、下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4、如图,在44⨯的正方形网格中,每个小正方形的边长为1,若将∆,则的长为()。
∆绕点O顺时针旋转900得到BODAOCA.πB.6πC.3πD.1.5π5、如图,已知O=AB,M是AB上任意一点,Θ的半径为10,弦12则线段OM的长可能是( )A. 5B. 7C. 9D. 116、某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为,则可列方程为()。
A: 36482=+x)1()1(482=-x B: 36C: 48)1(362=+x-x D: 48)1(362=7、二次函数n+=2)(a的图象如图,则一次函数y=mx+n的图象经过y+mxA. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限7题图8题图9题图10题图8、在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作半径交BC于点M、N,半圆O与AB、AC相切,切点分别为D、E,则半圆O 的半径和MND∠的度数分别为()。
九年级数学上学期期末考试试题新人教版4
2017~2018学年九年级第一学期期末试卷九年级数学(试卷分值:100分 考试时刻:100分钟) 同窗们,一个学期的拼搏今天即将展此刻试卷上,教师相信你必然会把诚信答满试卷,也必然会让尽力书写成功,答题时记住细心和耐心.注意:1. 本试卷由问卷和答卷两部份组成,其中问卷共4页,答卷共4页。
要求在答卷上答题,在问卷上答题无效;2. 答题时能够利用科学计算器。
一、选择题:(此题共10小题,每题3分,共30分)在每题给出的四个选项中,只有一个是符合题目要求的,请将选项代号的字母填写在答卷的相应位置上.1.以下标志既是轴对称图形又是中心对称图形的是A .B .C .D . 2.将二次函数322+-=x x y 化为()k h x y +-=2的形式,结果为A .()214y x =-+B .()212y x =-+C .()214y x =++D .()212y x =++3.以下事件中,必然事件是A .抛掷1枚质地均匀的骰子,向上的点数为6B .两直线被第三条直线所截,同位角相等C .抛一枚硬币,落地后正面朝上D .实数的绝对值是非负数4.如图,点B 在⊙O 上,弦AC ∥OB ,︒=∠50BOC ,那么OAB ∠=A .︒25B .︒50C .︒60D .︒305.关于x 的一元二次方程()01222=++-x x m 有实数根,那么m 的取值范围是A .3≤mB .3<mC .23≠<m m 且D .23≠≤m m 且6.如图,在半径为5cm 的⊙O 中,弦6cm AB =,AB OC ⊥于点C ,那么OC =A .3cmB .4cmC .5cmD .6cm7.将一枚质地均匀的骰子掷两次,那么两次点数之和等于9的概率为A .13B .16C .19D .112 8.抛物线2y ax bx c =++的部份图象如下图(对称轴是1x =),若0<y ,那么x 的取值范围是A .41<<-xB .31<<-xC .1x <-或4x >D .1x <-或3x >9.某商场将进价为20元∕件的玩具以30元∕件的价钱出售时,天天可售出300件,经调查当单价每涨1元时,天天少售出10件.假设商场想天天取得3750元利润,那么每件玩具应涨多少元?假设设每件玩具涨x 元,那么以下说法错误的选项是A .涨价后每件玩具的售价是()x +30元B .涨价后天天少售出玩具的数量是x 10件C .涨价后天天销售玩具的数量是()x 10300-件D .可列方程为()()37501030030=-+x x10.如图,已知函数()02≠++=a c bx ax y 的图象如下图,有以下四个结论:①0=abc ,②0>++c b a ,③b a >,④042<-b ac ;其中正确的结论有 A .1个B .2个C .3个D .4个 二、填空题(本大题共6小题,每题3分,共18分,将正确的答案直接写在答卷的横线上)11.假设点()3,2M a -与()3,N a -关于原点对称,那么a = .12.关于x 的230x ax a --=的一个根是2x =-,那么它的另一个根是 .13.已知圆锥的底面半径是3cm ,高为4cm ,那么其侧面积为 2cm .14.一个不透明的袋中装有假设干个红球,为了估量袋中红球的个数,小文在袋中放入10个白球(每一个球除颜色外其余都与红球相同).摇匀后每次随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复摸球实验后发觉,摸到白球的频率是72,那么袋中红球约为 个. 15.有一人得了流感,通过两轮传染后共有169人得了流感,每轮传染中平均一个人传染了 人.16.如图,在ABC ∆中,90,5cm,12cm ACB AC BC ∠=︒==,将BCA ∆绕点B 顺时针旋转︒60,取得BDE ∆,连接DC 交AB 于点F ,那么ACF ∆与BDF ∆的周长之和为 cm .三、解答以下各题(第17题6分;第1八、19题每题7分;第20、2一、2二、23题每题8分;共52分)17.解方程:()()x x x -=-2223.18.某地域2015年投入教育经费2500万元,2017年投入教育经费3025万元.(1)求2015年至2017年该地域投入教育经费的年平均增加率;(2)依照(1)所得的年平均增加率,估量2018年该地域将投入教育经费多少万元.19.如图,在ABC Rt ∆中,︒=∠90B ,BC AB =,B A ,的坐标别离为()()4,2,4,0-,将ABC ∆绕点P 旋转︒180后取得A B C '''∆,其中点B 的 对应点B '的坐标为()2,2.(1)求出点C 的坐标;(2)求点P 的坐标,并求出点C 的对应点C '的坐标.20.有4张看上去无不同的卡片,上面别离写着1,2,3,4,随机抽取1张后,放回并混在一路,再随机抽取1张.(1)请用树状图或列表法等方式列出各类可能显现的结果;(2)求两次抽到的卡片上的数字之和等于5的概率.21.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,CD AC =,︒=∠120ACD .(1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部份的面积.22.如下图,某小区要用篱笆围成一矩形花坛,花坛的一边用足够长的墙,另外三边所用的篱笆之和恰好为16米.(1)求矩形ABCD 的面积(用s 表示,单位:平方米)与边AB (用x 表示,单位:米)之间的函数关系式(不要求写出自变量x 的取值范围);如何围,可使花坛面积最大?(2)如何围,可使此矩形花坛面积是30平方米?23.已知抛物线c bx x y ++=2通过()()1,0,3,0A B -两点. (1)求抛物线的解析式和极点坐标;(2)设点P 为抛物线上一点,假设6PAB S ∆=,求点P 的坐标.参考答案一.选择题(共8小题,总分值24分,每题3分)1.A .2.B .3.D 4.A .5.D .6.B .7.C .8.B .9.D .10.C .二.填空题(共6小题,总分值18分,每题3分)11.1.12.6.13.π15.14.25.15.12.16.42三.解答题(共8小题,总分值58分)17.由原方程,得()()0223=-+x x∴02023=-=+x x 或,解得 2,3221=-=x x .…6分 18.设2015年至2017年该地域投入教育经费的年平均增加率为x .依照题意得:()3025125002=+x 解得()舍去或1.21.0-==x x .答:2015年至2017年该地域投入教育经费的年平均增加率为%10.…5分(2)()5.3327%1013025=+⨯(万元).答:依照(1)所得的年平均增加率,估量2018年该地域将投入教育经费5.3327万元.…7分19.(1)()2,2-C ;…3分(2)()3,0P ,()2,4C '…7分20.解:(1)画树状图得:…5分(2)两次抽到的卡片上的数字之和等于5的概率为:41164=.…8分 21.解:(1)证明:连接OC .∵︒=∠=120,ACD CD AC ,∴︒=∠=∠30D A .∵OC OA =,∴︒=∠=∠302A .∴︒=∠-∠-∠-︒=∠902180D A OCD∴CD OC ⊥,∴CD 是⊙O 的切线.…4分(2)解:∵︒=∠30A ,∴︒=∠=∠6021A .∴π32=BOC S 扇形. 在OCD Rt ∆中,42==OC OD ,依照勾股定理可得:32=CD .∴3221=⋅=∆CD OC S OCD .∴图中阴影部份的面积为:π3232-.…8分 22.(1)()x x x x S 1622162+-=-=当4=x 时,S 有最大值.∴8,4===BC CD AB 时,花坛的面积最大.…4分(2)将30=S 代入x x S 1622+-=,解得53==x x 或答:10,3===BC CD AB 或6,5===BC CD AB 时花坛面积是30平方米.…8分23.(1)把()()1,0,3,0A B -别离代入c bx x y ++=2中,得:⎩⎨⎧=++=+-03901c b c b ,解得:⎩⎨⎧-=-=32c b , ∴抛物线的解析式为322--=x x y ,极点坐标为()4,1-.…4分(2)∵()()1,0,3,0A B -,∴4=AB .设()y x p ,,那么6221==⋅=∆y y AB S PAB ,∴3=y ,∴3±=y . ①当3=y 时,3322=--x x ,解得:71,7121-=+=x x ,现在P 点坐标为()()3,713,71-+或;②当3-=y 时,3322-=--x x ,解得:2,021==x x ;现在P 点坐标为()()3,23,0--或综上所述,P 点坐标为()()3,2,3,0--,()()3,71,3,71-+. …8分。
新人教2018届九年级上期末数学试题含答案
2017~2018学年度第一学期期末练习初三数学一、选择题(本题共16分,每小题2分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.如果32a b =(0ab ≠),那么下列比例式中正确的是 A .32a b = B .23b a = C .23a b = D .32a b = 2.将抛物线y = x 2向上平移2个单位后得到新的抛物线的表达式为 A .22y x =+ B .22y x =- C .()22y x =+D .()22y x =-3.如图,在Rt △ABC 中,∠C =90°,AB =5,BC =3,则tan A 的值为A .35B .34C .45D .434.“黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐.目前,照相机和手机自带的九宫格就是黄金分割的简化版.要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置 A .①B .②C .③D .④5.如图,点A 为函数ky x=(x >0)图象上的一点,过点A 作x 轴的平行线交y 轴于点B ,连接OA ,如果△AOB 的面积为2,那么k 的值为 A .1 B .2 C .3D .46.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是CB A②① ③ ④ ABCAB CD7.如图,A ,B 是⊙O 上的两点,C 是⊙O 上不与A ,B 重合的任意一点. 如果∠AOB =140°,那么∠ACB 的度数为 A .70° B .110° C .140°D .70°或110°8.已知抛物线2y ax bx c =++上部分点的横坐标x 与纵坐标y 的对应值如下表:①抛物线2y ax bx c =++的开口向下;②抛物线2y ax bx c =++的对称轴为直线1x =-; ③方程20ax bx c ++=的根为0和2; ④当y >0时,x 的取值范围是x <0或x >2. 其中正确的是 A .①④B .②④C .②③D .③④二、填空题(本题共16分,每小题2分) 9.如果sin α=12,那么锐角α=.10.半径为2的圆中,60°的圆心角所对的弧的弧长为. 11.如图1,物理课上学习过利用小孔成像说明光的直线传播.现将图1抽象为图2,其中线段AB 为蜡烛的火焰,线段A 'B '为其倒立的像. 如果蜡烛火焰AB 的高度为2cm ,倒立的像A 'B '的高度为5cm ,点O 到AB 的距离为4cm ,那么点O 到A 'B '的距离为 cm.12.如图,等边三角形ABC 的外接圆⊙O 的半径OA 的长为2,则其内切圆半径的长为.13.已知函数的图象经过点(2,1),且与x 轴没有交点,写出一个满足题意的函数的表达式.14.在平面直角坐标系中,过三点A (0,0),B (2,2),C (4,0)的圆的圆心坐标为.15.在北京市治理违建的过程中,某小区拆除了自建房,改建绿地. 如图,自建房占地是边长为8m 的正方形ABCD ,改建的绿地是矩形AEFG ,其中点E 在AB 上,点G 在AD 16图2图1A B'A'BO请回答以下问题:(1)连接OA ,OB ,可证∠OAP =∠OBP =90°,理由是; (2)直线P A ,PB 是⊙O 的切线,依据是.三、解答题(本题共68分,第17-24题,每小题5分,第25题6分,第26,27题,每小题7分,第28题8分) 17.计算:2cos30sin 45tan 60︒+︒-︒.18.如图,△ABC 中,DE ∥BC ,如果AD =2,DB =3,AE =4,求AC 的长.19.已知二次函数y =x 2- 4x +3.(1)用配方法将y =x 2- 4x +3化成y =a (x -h )2+k 的形式; (2)在平面直角坐标系xOy 中画出该函数的图象; (3)当0≤x ≤3时,y 的取值范围是.20知大小,以锯锯之,深一寸,锯道长一尺,问径几何?” 用现代语言表述为:如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,AE =1寸,CD =10寸,求直径AB 的长. 请你解答这个问题.21.在平面直角坐标系xOy 中,直线1y x =+与双曲线ky x=的一个交点为P (m ,2). (1)求k 的值;(2)M (2,a ),N (n ,b )是双曲线上的两点,直接写出当a >b 时,n 的取值范围.D CA E22.在北京市开展的“首都少年先锋岗”活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 顶部M 的仰角为35°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E . 请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度. (参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7)23.如图,人工喷泉有一个竖直的喷水枪AB ,喷水口A 距地面2m ,喷出水流的运动路线是抛物线. 如果水流的最高点P 到喷水枪AB 所在直线的距离为1m ,且到地面的距离为3.6m ,求水流的落地点C 到水枪底部B 的距离.24.如图,AB 是⊙O 的直径,点C 是»AB 的中点,连接AC 并延长至点D ,使CD AC =,点E 是OB 上一点,且23OE EB =,CE 的延长线交DB 的延长线于点F ,AF 交⊙O 于点H ,连接BH . (1)求证:BD 是⊙O 的切线;(2)当2OB =时,求BH 的长.25.如图,点E 是矩形ABCD 边AB 上一动点(不与点B 重合),过点E 作EF ⊥DE 交BC于点F ,连接DF .已知AB =4cm ,AD =2cm ,设A ,E 两点间的距离为x cm ,△DEF 面积为y cm 2.小明根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究.C D ABNMED C BAEF下面是小明的探究过程,请补充完整: (1)确定自变量x 的取值范围是;(2)通过取点、画图、测量、分析,得到了x 与y 的几组值,如下表:(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF 面积最大时,AE 的长度为cm .26.在平面直角坐标系xOy 中,抛物线2y x bx c =-++经过点(2,3),对称轴为直线x =1.(1)求抛物线的表达式;(2)如果垂直于y 轴的直线l 与抛物线交于两点A (1x ,1y ),B (2x ,2y ),其中01<x ,02>x ,与y 轴交于点C ,求BC -AC 的值;(3)将抛物线向上或向下平移,使新抛物线的顶点落在x 轴上,原抛物线上一点P 平移后对应点为点Q ,如果OP =OQ ,直接写出点Q 的坐标.27.如图,∠BAD=90°,AB=AD ,CB=CD ,一个以点C 为顶点的45°角绕点C 旋转,角的两边与BA ,DA 交于点M ,N ,与BA ,DA 的延长线交于点E ,F ,连接AC . (1)在∠FCE 旋转的过程中,当∠FCA =∠ECA 时,如图1,求证:AE =AF ; (2)在∠FCE 旋转的过程中,当∠FCA ≠∠ECA 时,如图2,如果∠B=30°,CB=2,用等式表示线段AE ,AF 之间的数量关系,并证明.EMN F AEMNFA28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”. (1)当⊙O 的半径为1时,①在点P 1(12,P 2(0,-2),P 30)中,⊙O 的“离心点”是; ②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.图2图12017—2018学年度第一学期期末练习初三数学参考答案一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9. 30°;10. 2π3;11. 10;12. 1;13.2yx=或245y x x=-+等,答案不唯一;14.(2,0);15.22864(08)y x x x=-++<<(可不化为一般式),2;16.直径所对的圆周角是直角;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17-24题每小题5分,第25题6分,第26,27题每小题7分,第28题8分)17. 解:2cos30sin45tan60︒+︒-︒=2+……3分-……4分……5分18.解:∵DE∥BC,∴AD AEDB EC=.……2分即243EC=.∴EC=6.……4分∴AC=AE+ EC=10.……5分其他证法相应给分.19.解:(1)2444+3y x x=-+-()221x=--. ……2分(2)如图:….3分(3)13y-≤≤….5分20.解:连接OC,∵AB为⊙O的直径,弦CD⊥AB于点E,且CD=10,∴∠BEC=90°,152CE CD==.……2分设OC=r,则OA=r,∴OE=1r-.在Rt OCE∆中,∵222OE CE OC+=,∴()22125r r-+=.∴=13r. …4分∴AB = 2r= 26(寸).答:直径AB的长26寸.…5分21. 解:(1) 一次函数1y x=+的图象经过点(,2)P m,∴1m=.……… 1分∴点P的坐标为(1,2). ……… 2分∵反比例函数kyx=的图象经过点P(1,2),∴2k=………3分(2)0n<或2n>…………5分22.解:由题意得,四边形ACDB,ACEN为矩形,∴EN=AC=1.5.AB=CD=15.在Rt MED中,∠MED=90°,∠MDE=45°,∴∠EMD=∠MDE=45°.DCAEx+3OEABC DCDABNME∴ME =DE . …2分设ME =DE =x ,则EC =x +15. 在Rt MEC 中,∠MEC =90°, ∠MCE =35°,∵tan ME EC MCE =⋅∠, ∴()0.715x x ≈+.∴35x ≈. ∴35ME ≈.…4分 ∴36.5MN ME EN =+≈.∴人民英雄纪念碑MN .的高度约为36.5米.…5分23.解:建立平面直角坐标系,如图. 于是抛物线的表达式可以设为()2y a x h k =-+根据题意,得出A ,P 两点的坐标分别为A (0,2),P (1,3.6).……2分 ∵点P 为抛物线顶点, ∴1 3.6h k ==,. ∵点A 在抛物线上, ∴ 3.62a +=, 1.6a =-…3分∴它的表达式为()21.61 3.6y x =--+. ……4分当点C 的纵坐标y =0时,有()21.61 3.6=0x --+.10.5x =-(舍去),2 2.5x =.∴BC =2.5.∴水流的落地点C 到水枪底部B 的距离为2.5m.……5分24.(1)证明:连接OC ,∵AB 为⊙O 的直径,点C 是»AB 的中点,∴∠AOC =90°. ……1分 ∵OA OB =,CD AC =,∴OC 是ABD ∆的中位线. ∴OC ∥BD. ∴∠ABD =∠AOC =90°. ……2分 ∴AB BD ⊥.∴BD 是⊙O 的切线. ……3分 其他方法相应给分.(2)解:由(1)知OC ∥BD ,∴△OCE ∽△BFE. ∴OC OEBF EB=. ∵OB = 2,∴OC =OB = 2,AB = 4,∵23OE EB =,∴223BF =,∴BF =3. ……4分 在Rt ABF ∆中,∠ABF =90°,5AF .∵1122ABF S AB BF AF BH =⋅=⋅ ,∴AB BF AF BH ⋅=⋅.即435BH ⨯=. ∴BH =125. .……5分 其他方法相应给分.25.(1)04x ≤<;.……1分 (2)3.8,4.0; ……3分(3)如图 ……4分 (4)0或2. ……6分26. 解:(1)1,242 3.b bc ⎧=⎪⎨⎪-++=⎩……1分解得2,3.b c =⎧⎨=⎩. ……2分∴322++-=x x y . ……3分(2)如图,设l 与对称轴交于点M ,由抛物线的对称性可得,BM = AM. ……3分∴BC -AC = BM+MC -AC = AM+MC -AC= AC+CM+MC -AC =2 CM =2. ……5分 其他方法相应给分.(3)点Q的坐标为(12-)或(12-).……7分27.解:(1)证明:∵AB=AD ,BC=CD ,AC=AC ,∴△ABC ≌△ADC . …1分∴∠BAC =∠DAC =45°,可证∠FAC =∠EAC =135°. ……2分 又∵∠FCA =∠ECA ,∴△ACF ≌△ACE . ∴AE =AF .……3分 其他方法相应给分.(2)过点C 作CG ⊥AB 于点G ,求得AC =2.……4分∵∠FAC =∠EAC =135°,∴∠ACF +∠F =45°. 又∵∠ACF +∠ACE =45°,∴∠F =∠ACE . ∴△ACF ∽△AEC. ……5分 ∴ACAF AE AC =,即AF AE AC ⋅=2. ……6分 ∴2=⋅AF AE . ……7分28.解:(1)①2P ,3P ;……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分。
山东省2018届九年级上学期期末考试数学试题 (解析版)
2017-2018学年山东省九年级(上)期末数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的。
1.某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20%B.25%C.50%D.62.5%2.将抛物线y=2(x﹣4)2﹣1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为()A.y=2x2+1B.y=2x2﹣3C.y=2(x﹣8)2+1D.y=2(x﹣8)2﹣33.已知二次函数y=ax2+bx+c的图象如图所示,则()A.b>0,c>0B.b>0,c<0C.b<0,c<0D.b<0,c>04.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°5.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.6.已知反比例函数y=﹣,下列结论不正确的是()A.图象必经过点(﹣1,3)B.若x>1,则﹣3<y<0C.图象在第二、四象限内D.y随x的增大而增大7.如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43°B.35°C.34°D.44°8.如图,直线y=﹣x+b与x轴交于点A,与双曲线y=﹣(x<0)交于点B,若S=2,则b的值是()△AOBA.4B.3C.2D.19.如图,DE∥BC,在下列比例式中,不能成立的是()A.=B.=C.=D.=10.已知二次函数y=ax2+bx+c的y与x的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值y 随x的增大而增大;④方程ax2+bx+c=0有一个根大于4.其中正确的结论有()A.1个B.2个C.3个D.4个11.将含有30°角的直角三角板OAB如图放置在平面直角坐标中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,1)B.(1,﹣)C.(,﹣)D.(﹣,)12.如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线与边AD所在直线垂直于点M,若∠ABC=55°,则∠ACD等于()A.20°B.35°C.40°D.55°13.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.关于x的方程ax2+bx+c=﹣1有两个不相等的实数根14.如图,在正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,将△ABE 绕点A顺时针旋转90°,使点E落在点E'处,则下列判断不正确的是()A.△AEE′是等腰直角三角形B.AF垂直平分EE'C.△E′EC∽△AFDD.△AE′F是等腰三角形二、填空题(本大题共4小题,每小题5分,共20分)15.若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.16.已知△ABC∽△DEF,且S△ABC=4,S△DEF=25,则=.17.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为.18.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为.三、解答题(共58分)19.(10分)把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.20.(12分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P 顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,试猜想写出线段CP与BQ的数量关系,并证明你的猜想;(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?(直接写“成立”或“不成立”即可,不需证明).21.(12分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.22.(12分)宏兴企业接到一批产品的生产任务,按要求必须在14天内完成.已知每件产品的出厂价为60元.工人甲第x天生产的产品数量为y件,y与x满足如下关系:y=.(1)工人甲第几天生产的产品数量为70件?(2)设第x天生产的产品成本为P元/件,P与x的函数图象如图.工人甲第x天创造的利润为W元,求W与x的函数关系式,并求出第几天时,利润最大,最大利润是多少?23.(12分)如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,且OA=4,OC=3,若抛物线经过O,A两点,且顶点在BC边上,点E的坐标分别为(0,1),对称轴交BE于点F.(1)求该抛物线的表达式;(2)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以点A,F,M,N 为顶点的四边形是平行四边形?若存在,请求出所有符合条件的点M的坐标;若不存在,请说明理由.2017-2018学年山东省九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的。
2017-2018学年第一学期九年级数学期末试题参考答案
2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。
对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。
……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。
答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。
山东省日照市莒县五中度第一学期人教版九年级数学上册期末检测试题_(全册)
山东省日照市莒县五中2019-2019学年度第一学期人教版九年级数学上册期末检测试题(全册)考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.关于x的一元二次方程(x−1)x2−x+x2−1=0的一个根是0,则x的值为()A.1或−1B.−1C.1D.122.已知点x(x, 1)与x(−2, x)关于坐标原点对称,那么点x(x, x)绕原点顺时针旋转90∘后的对应点x′的坐标是()A.(−1, 2)B.(1, −2)C.(−1, −2)D.(1, 2)3.如图,以xx为直径的半圆绕x点,逆时针旋转60∘,点x旋转到点x′的位置,已知xx=6,则图中阴影部分的面积为()A.6xB.5xC.4xD.3x4.用配方法解方程:x2−4x+2=0,下列配方正确的是()A.(x−2)2=2B.(x+2)2=2C.(x−2)2=−2D.(x−2)2=65.如图是一个中心对称图形,它的对称中心是()A.点xB.点xC.点xD.点x或点x6.解方程(5x−1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法7.直角坐标系中,点(1, −2)关于原点的对称点的坐标为()A.(1, 2)B.(−1, 2)C.(−1, −2)D.(1, −2)8.如图,是一个圆锥的主视图,则这个圆锥的全面积是()A.12xB.15xC.21xD.24x9.关于x的方程xx2+3x−1=0有实数根,则x的取值范围是()A.x≤94B.x≥−94且x≠0C.x≥−94D.x>−94且x≠010.下面四个图案中,不能由基本图案旋转得到的是()A. B.C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.有一个面积为54xx2的长方形,将它的一边剪短5xx,另一边剪短2xx,得到一个正方形.若设这个正方形的边长为x xx,则根据题意第1页/共7页可得方程________.12.把一个正方形的一边增加2xx,另一边增加1xx,得到矩形面积的2倍比正方形面积多11xx2,则原正方形边长为________.13.圆是中心对称图形,________是对称中心;圆又是轴对称图形,它的对称轴有________条.14.已知x=(x+2)x x2+x−4是二次函数,且当x>0时,x随x增大而增大,则x=________.15.如图,xx是⊙x的直径,点x在⊙x上,xx // xx,若xx=1,则xx的长为________.16.设x、x为实数,则x=−x2+2x−3有最大(或最小)值为________.17.一个圆弧形拱桥的跨度为6x,桥的拱高为1x,则此拱桥的半径是________x.18.在一个不透明的盒子中装有仅颜色不同的红、白两种小球,其中红球4个,白球x个,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出x大约是________.19.一条抛物线和x=2x2的图象形状相同,并且顶点坐标是(−1, 0),则此抛物线的函数关系式为________.20.如图,在△xxx中,xx=90∘,xx=25∘,以点x为圆心、xx为半径的圆交xx于点x,则xx^的度数为________度.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,xx为⊙x的直径,xx为弦,xx=10,xx // xx,xx= 6.(1)求x四边形xxxx;(2)过x点作xx // xx,交xx于x点,求sin xxxx的值.22.某商场购进一种单价为40元的商品,如果以单价60元售出,那么每天可卖出300个,根据销售经验,每降价1元,每天可多卖出20个,假设每个降价x(元),每天销售x(个),每天获得利润x(元).(1)写出x与x的函数关系式________;(2)求出x与x的函数关系式(不必写出x的取值范围)23.一个布袋中有7个红球和13个白球,它们除颜色外都相同.(1)求从袋中摸出一个球是红球的概率;(2)现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋中摸出一个球是红球的概率是34,问取走了多少个白球?(要求通过列式或列方程解答)24.如图,点x为xx△xxx斜边xx上的一点,以xx为半径的⊙x与边xx交于点x,与边xx交于点x,连接xx,且xx平分xxxx.(1)试判断xx与⊙x的位置关系,并说明理由;(2)若xxxx=60∘,xx=2,求阴影部分的面积(结果保留x).25.如图,已知直角坐标平面上的△xxx,xx=xx,xxxx=90∘,且x(−1, 0),x(x, x),x(3, 0).若抛物线x=xx2+xx−3经过x、x两点.(1)求x、x的值;(2)将抛物线向上平移若干个单位得到的新抛物线恰好经过点x,求新抛物线的解析式;(3)设(2)中的新抛物的顶点x点,x为新抛物线上x点至x点之间的一点,以点x为圆心画图,当⊙x与x轴和直线xx都相切时,联结xx、xx,求四边形xxxx的面积.26.经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量x件和销售该品牌玩具获得利润x元,并把结果填写在下列横线上:销售单价x(元)________;销售量x(件)________;销售玩具获得利润x(元)________;(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?答案1.B2.C3.A4.A第3页/共7页5.B6.A7.B8.D9.C10.D11.(x+5)(x+2)=54;(或x2+7x−44=0)12.1xx13.圆心无数14.215.216.−217.518.1619.x=−2(x+1)2或x=2(x+1)220.5021.解:(1)作xx⊥xx于x,连结xx,如图,∵xx⊥xx,∵xx=xx=12xx=12×6=3,∵直径xx=10,∵xx=5,在xx△xxx中,xx=√xx2−xx2=4,∵x四边形xxxx=12×(6+10)×4=32;(2)∵xx // xx,∵xx^=xx^,∵xx=xx,∵xx // xx,xx<xx,∵四边形xxxx是等腰梯形.作xx⊥xx于x,则xx=xx=4,xx=12(xx−xx)=2,在xx△xxx中,由勾股定理得,xx=√xx2+xx2=2√5,∵xx=xx=2√5.∵xx // xx,xx // xx,∵四边形xxxx是平行四边形,∵xx=xx=2√5,xx=xx=6,∵xx=xx−xx=4.∵x△xxx=12xx⋅xx⋅sin xxxx=12xx⋅xx,∵1 2×2√5×2√5⋅sin xxxx=12×4×4,∵sin xxxx=45.22.x=300+2x;(2)由题意可得,x与x的函数关系式为:x=(300+2x)(60−40−x)=−2x2−260x+6000.23.取走了8个白球.24.解:(1)xx与⊙x相切,理由:连接xx,∵xx平分xxxx,∵xxxx=xxxx,∵xx=xx,∵xxxx=xxxx,∵xxxx=xxxx,∵xx // xx,∵xxxx=90∘,∵xx⊥xx,∵xx与⊙x相切;(2)连接xx,xx,∵xxxx=60∘,xx=xx,∵△xxx为等边三角形,∵xxxx=60∘,∵xxxx=30∘,又∵xxxx=12xxxx=30∘,∵xxxx=xxxx,∵xx // xx,∵x△xxx=x△xxx,第5页/共7页∵阴影部分的面积=x 扇形xxx =60×x ×4360=23x . 25.解:(1)∵抛物线x =xx 2+xx −3经过x (−1, 0)、x (3, 0), ∵{x −x −3=09x +3x −3=0, 解得:{x =1x =−2;(2)设抛物线向上平移x 个单位后得到的新抛物线恰好经过点x ,则新抛物线的解析式为x =x 2−2x −3+x , ∵x (−1, 0)、x (3, 0), ∵xx =xx =3−(−1)=4,∵xxxx =90∘,∵点x 的坐标为(3, 4). ∵点x (3, 4)在抛物线x =x 2−2x −3+x 上, ∵9−6−3+x =4, 解得:x =4,∵新抛物线的解析式为x =x 2−2x +1;(3)设⊙x 与x 轴相切于点x ,与直线xx 相切于点x ,连接xx 、xx ,如图所示,则有xx ⊥xx ,xx ⊥xx ,xx =xx , ∵xxxx =xxxx =xxxx =90∘,∵四边形xxxx 是矩形. ∵xx =xx ,∵矩形xxxx 是正方形, ∵xx =xx . 设点x 的横坐标为x ,则有xx =x ,xx =xx =xx −xx =3−x , ∵点x 的坐标为(x , 3−x ). ∵点x 在抛物线x =x 2−2x +1上, ∵x 2−2x +1=3−x , 解得:x 1=2,x 2=−1.∵x 为抛物线x =x 2−2x +1上x 点至x 点之间的一点, ∵x =2,点x 的坐标为(2, 1),∵xx =2,xx =xx =1. 由x =x 2−2x +1=(x −1)2得顶点x 的坐标为(1, 0), ∵xx =1,xx =xx −xx =2−1=1, ∵x 四边形xxxx =x △xxx −x △xxx −x 梯形xxxx =12xx ⋅xx −12xx ⋅xx −12(xx +xx )⋅xx第7页/共7页=12×4×4−12×1×1−12×(1+4)×1 =5,∵四边形xxxx 的面积为5.26.x1000−10x −10x 2+1300x −30000(2)−10x 2+1300x −30000=10000解之得:x 1=50,x 2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得{1000−10≥540x ≥44 解之得:44≤x ≤46,x =−10x 2+1300x −30000=−10(x −65)2+12250, ∵x =−10<0,对称轴是直线x =65, ∵当44≤x ≤46时,x 随x 增大而增大. ∵当x =46时,x 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.。
20172018第一学期期末测试九年级数学试题及答案
2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。
考试结束后,只分。
考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。
满分为1201. 上交答题卡。
毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。
在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。
答案不能答在试题卷上。
毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。
018届九年级上学期期末考试数学试题(附答案)
2017-2018学年第一学期期末调研测试九年级数学一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1. 某反比例函数的图象经过点(-3,4),则此函数图象也经过点A .(2,-6)B .(2,6)C .(3,4)D .(4,3)2.下列说法中,正确的是A .概率很小的事件不可能发生B .随机事件发生的概率为12C .必然事件发生的概率为1D .投掷一枚质地均匀的硬币10次,正面朝上的次数一定为5次 3. 抛物线y =2x 2-3x +5与y 轴的交点坐标是A .(5,0)B .(0,5)C .(-5,0)D .(0,-5)4. 如图,将△ABC 绕着点A 顺时针旋转30°得到△AB ′C ′,若∠BAC ′=80°,则∠B ′AC =A .20°B .25°C .30°D .35°5. 若圆锥的底面半径长是5,母线长是13,则该圆锥的侧面面积是A .60B .60πC .65D .65πABCB ′C ′(第4题)(第7题)BP(第9题)6. 在反比例函数6y x=的图象上有三个点A (-1,a ),B (2,b ),C (3,c ),则下列表述a ,b ,c 大小关系正确的是 A .a <b <cB .a <c <bC .b <a <cD .b <c <a7. 如图,AB 是⊙O 的一条弦,AB =4,直径CD ⊥AB 于点E ,CE =6,则⊙O 的半径等于A .72B .92C .103D .1138. 在一个不透明的盒子中装有a 个除颜色外完全相同的球,这a 个球中只有5个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a 的值大约为 A .10B .15C .20D .259. 如图,PA 和PB 是⊙O 的切线,点A 和B 是切点,点C 是AB 上的点,连接AC 、BC ,若∠P =70°,则∠ACB 的大小是 A .100°B .115°C .125°D .130°10.请阅读下列内容:我们在平面直角坐标系中画出抛物线12+=x y 和双曲线xy 2=,利用两图象的交点个数和位置来确定方程xx 212=+有一个正实数根,这种利用函数图象判断方程根的情况的方法叫做图象法.请用图象法判断方程2265x x x-+=的根的情况A .一个正实数根B .两个正实数根C .三个正实数根D .一个正实数根,两个负实数根 二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把最终答案直接填写在答题卡相应位置.......上) 11.正六边形的中心角是 ▲ 度.12.将抛物线y =x 2向上平移1个单位长度后对应的解析式是 ▲ . 13.如图,AB ∥CD ∥EF ,AF 与BE 相交于点G ,且AG =2,GD =1,DF =5,则BCCE的值是 ▲ .14.已知⊙O 的半径为3cm ,点A 、B 、C 是直线l 上的三个点,点A 、B 、C 到圆心O 的距离分别为2cm ,3cm ,5cm ,则直线l 与⊙O 的的位置是 ▲ . 15.在反比例函数1k y x-=的图象每一条分支上,y 都随x 的增大而增大,则k 的取值范围是 ▲ .16.如图,点P 为矩形ABCD 边AD 上一点,点E 、F 分别为PB 、PC 的中点,若矩形ABCD的面积为5,那么△PEF 的面积为 ▲ .17.已知二次函数y =ax 2+bx +c (a ≠0)中,函数y 与自变量x 的部分对应值如表:则当y >-1时,x的取值范围是 ▲ . 18.如图,在△ABC 中,sin ∠BAC =35,BC =a ,将△ABC 绕点A 顺时针旋转(点B ′与点B 对应,点C ′与点C 对应),当点C ′落在射线AB 上时停止运动,连接BB ′,若此时点B 、C 、B ′恰好在同一条直线上,则AB = ▲ . (用含a 的式子表示)三、解答题(本大题共10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)19.(本小题满分10分)(1)计算:2sin60°.(2)已知y 与x 2成反比例,并且当x =3时,y =4,求y 关于x 的函数解析式.20.(本小题满分8分)如图,在Rt △ABC 中,∠BAC =90º,sin C=35,AC =8,BD 平分∠ABC 交边ACABC(第18题)B ′ABCDPE F(第16题)A BCDE F(第13题)G C ′C于点D .求(1)边AB 的长; (2)tan ∠ABD 的值.21.(本小题满分6分)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区宣传社会主义核心价值观,请用列表或画树状图的方法,求选出的同学恰好是1男1女的概率.22.(本小题满分9分)如图,△ABC 的顶点、点O 都在小正方形的格点上,OA =1.(1)画出△ABC 绕点O 顺时针旋转90°后得到的△A ′B ′C ′(点A ′与点A 对应,点B ′与点B 对应,点C ′与点C 对应);(2)求点C 移动的路径长度; (3)求线段AC 所扫过区域的面积.23.(本小题满分8分)如图,AD ⊥BC ,垂足为D ,BE ⊥AC ,垂足为E ,AD 与BE 相交于点F ,连接DE . (1)求证△BEC ∽△ADC ; (2)求证DE CEAB BC=.24.(本小题满分8分) 如图,在⊙O 中,直径AB =10, 弦BC =8, AD =BD ,连接CD . (1)求∠ACD 的度数;(2)求AC,AD的长.25.(本小题满分10分)如图,已知点A的坐标为(a,4)(其中a<-3),射线OA与反比例函数12yx=-的图象交于点P,点B,C分别在函数12yx=-的图象上,且AB//x轴,AC//y轴,连接BO,BP,CP.(1)当a=-6,求线段AC的长;(2)当AB BO时,求点A的坐标;(3)求△ABP与△ACP的面积的比值.26.(本小题满分10分)如图,用一段100米长的篱笆围成一个一边靠墙(墙足够长),中间用篱笆隔开的矩形养殖场,中间用两道篱笆隔开分出三个小的矩形,设矩形垂直于墙的一边长为x 米,矩形ABCD的面积记为y平方米.(1)直接写出y与x的函数关系式及自变量x的取值范围;(2)当x=8,求y的值;(3)当x取何值时,y的值最大,最大值是多少?27.(本小题满分14分)如图,在△ABC中,AB=AC=10,BC=5,点P是边AC上的一个动点,∠APD=∠ABC,AD∥BC,连接CD.(1)求证AD=2AP;(2)如图①,若BA与CD的延长线交于点M,AP=1,求AM的长;(3)如图②,若AB与DC的延长线交于点N,当△CDP与△BCN相似时,求证点P是AC 的中点.A B C DPABCDPMA BCDPN图①(第27题)图②28.(本小题满分13分)在平面直角坐标系中,我们把直线y =―x 上的点称为适合点.... (1)判断函数23y x=-的图象上是否存在适合点,若存在,求出其适合点的坐标;若不存在,请说明理由;(2)若二次函数26(0)y ax x c a =-+?的图象上有且只有一个适合点(52-,52),且当m ≤x ≤0时,函数216(0)4y ax x c a =-++?的最小值为―6,最大值为3,求m 的取值范围;(3)直线3y kx =+经过适合点P ,与x 轴交于点D ,与反比例函数ny x=的图象交于M ,N 两点(点M 在点N 的左侧),若点P 的横坐标为32-,且DM DN +≤出n 的取值范围.2017~2018学年度第一学期期终质量监测九年级数学参考答案及评分细则★说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共有10小题,每小题3分,共30分.)二、填空题(本大题共有8小题,每小题3分,共24分.) 11.60;12.y =x 2+1;13.35; 14.相交;15.k <1; 16.58; 17.0<x <4; 18.10a . 三、解答题(本大题共有10小题,共96分.请在答题卡指定.....区域..内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分10分)(1) 解:原式=2´2-3´············································ 3分 =1 ·········································································································· 5分 (2) 解:设2ky x =(k ≠0) ······································································· 2分 243k=,k =36 ··························································································· 4分 y 关于x 的函数解析式是236y x= ···················································· 5分20.(本题满分8分)解:(1)∵在Rt △ABC 中,sin C =35∴tan C =34································································································· 2分 又∵AC =8∴AB =6 ····································································································· 4分 (2)过点C 作DE ⊥BC 于点E ∵BD 平分∠ABC ,DA ⊥AB ,DE ⊥BC∴DA =DE ·································································································· 5分设DA =DE =x∵在Rt △ABC 中,AB =6,AC =8∴BC =10 ··································································································· 6分 ∵S △ABC =12×6×x +12×10×x =12×6×8 ∴x =3 ······································································································· 7分 在Rt △ABD 中,tan ∠ABD =AD AB =36=12························································· 8分21.(本题满分6分)解:列表或画树状图(略) ·········································································· 4分 所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种, 则P (选出的两名主持人“恰好为一男一女”)= 812=23. ·································· 6分 22.(本题满分9分)解:(1)图略 ····························································································· 3分(2)902360p 创? ······································································ 6分(3)22114p p 轾创-?犏臌=74p ····························································· 9分 23.(本题满分8分)解:(1)证明:∵AD ⊥BC ,BE ⊥AC∴∠ADC =∠BEC =90° ·················································································· 1分 又∵∠C =∠C∴△BEC ∽△ADC ······················································································· 3分 (2)证明:∵△BEC ∽△ADC∴CEBCCD AC = ···························································································· 4分 ∴CECDBCAC= ···························································································· 5分 又∵∠C =∠C∴△CDE ∽△CAB ······················································································· 7分 ∴DE CEAB BC= ···························································································· 8分 24.(本题满分8分) 解:(1)∵AB 为直径又∵AD=BD∴∠ACD=∠BCD=12∠ACB=45° ························································ 4分(2)∵在Rt△ABC中,AB=10,BC=8∴AC=6 ······················································································· 5分∵AD=BD∴∠DAB=∠DBA ························································································ 6分∵在Rt△ABD中,∠CAB=∠CBA=45°,AB=10∴AD=······························································································ 8分25.(本题满分10分)解:(1)∵AC∥y轴,∴点A、C的横坐标相等∴点C的坐标(-6,2) ············································································· 1分∴AC=4—2=2 ················································································· 2分(2)∵AB∥x轴,∴点A、B的纵坐标相等∴点B的坐标(-3,4) ············································································· 3分∴AB=BO=5∴点A(—8,4) ······················································································· 5分(2)延长AB交y轴于点D,延长AC交x轴于点E,连接CO∵AB∥x轴,AC∥y轴∴四边形AEOD为平行四边形又∵∠DOE=90°∴平行四边形AEOD为矩形 ······································································· 6分∴S△AEO=S△ADO又∵S△CEO=S△BDO=6又∵S △ACP =AP AO ×S △ACO ,S △ACP =APAO×S △ABO∴S △ACP = S △ACP∴比值为1 ································································································ 10分 26.(本题满分10分)解:(1)由题意,2(1004)4100y x xx x =-?-+ ······································· 3分 (0<x <25) ····························································································· 4分 (2)当x =8时,y =-4×82+800 ·································································· 5分 =544平方米 ······························································································· 6分 (3)x =1002(4)-?=12.5时, ······································································· 8分y 有最大值,最大值625平方米 ····································································· 10分 27.(本题满分14分) 解:(1)证明:∵AD ∥BC∴∠DAP =∠ACB ························································································ 1分 又∵∠APD =∠ABC ∴△DAP ∽△ACB∴ADAP AC BC = ········································································ 3分 ∴105ADAP= ∴AD =2AP ············································································· 4分(2)∵AP =1,∴AD =2AP =2 ········································································· 5分 ∵AD ∥BC ∴△MAD ∽△MBC ∴AM ADMB BC=………………………………………………………………7分 ∴2105AM AM =+∴AM =203……………………………………………………………………9分 (3)∵∠APD =∠ABC∴∠CPD =∠CBN ························································································ 10分 又∵∠ACP >∠N∴当△CDP 与△BCN 相似时,只能是△CPD ∽△CBN ····································· 11分 设AP =x ,BN =y ,则AD =PD =2x ,CP =10-x∵△CPD ∽△CBN ,∴BN BC DP CP =,∴5210y x x=- ······································ 12分 ∵AD ∥BC ,∴△NBC ∽△NAD ,∴BN BC NA AD =,∴5102y y x=+……13分 解出x =5,∴点P 是AC 的中点 ····································································· 14分28.(本题满分13分)解:(1)令23x x-=- 解出x 1=1,x 2=2 ······················································································· 2分 ∴存在,适合点的坐标是(1,—1),(2,—2) ···························· 4分(2)令26ax x c x -+=-,得250ax x c -+=∵有且只有一个适合点∴根的判别式等于0,即25—4ac =0 ································································ 6分将(52-,52)代入26(0)y ax x c a =-+?,得 2551542a c ++= ····················································································· 7分 解出a =-1,c =254- ·················································································· 8分 y=2251644x x ---+=266x x --- 结合图象可知,-6≤m ≤-3 ······················································ 10分(3)—94<x <0或0<x ≤4 ······························································ 14分。
2017-2018学年九年级上数学期末试卷及答案解析
)
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题
;④
11、方程
有两个不等的实数根,则 a 的取值范围是________。
12、如图,⊙O 中,弦 AB=3,半径 BO=,C 是 AB上一点且 AC=1,点 P 是⊙O 上一动点,连 PC,则 PC长的最小 值是
B.4
C.5 D.6
8、.已知二次函数 y=ax2+bx+c(a≠0)的图象如图,
有下列 5 个结论:①abc<0;②3a+c>0;
③4a+2b+c>0;④2a+b=0;⑤b2>4ac.
其中正确的结论的有( )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
9、如图,已知 AB=12,点 C,D 在 AB上,且 AC=DB=2,点 P 从点 C 沿线段 CD向点 D 运动(运动到点 D 停止),以 AP、BP为斜边在 AB的同侧画等腰 Rt△APE和等腰 Rt△PBF,连接 EF,取 EF的中点 G,下列说法中正确的有 ()
C.与 x 轴相切、与 y 轴相离 D.与 x 轴、y 轴都相切
7、某口袋中有 20个球,其中白球 x 个,绿球 2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜, 甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则 乙获胜.则当 x=________时,游戏 对甲、乙双方公平 ()
A.3
5、如图,A,B,C是⊙O 上三个点,∠AOB=2∠BOC,则下列说法中正确的是
A. ∠OBA=∠OCA
B. 四边形 OABC内接于⊙O
C.. AB=2BC
D. ∠OBA+∠BOC=90°
6、在平面直角坐标系中,以点(3,2)为圆心,2 为半径的圆与坐标轴的位置关系为( )
2017-2018学年九年级数学上册(人教版)期末测试题(含答案)
2017-2018学年第一学期期末水平测试试卷九年级数学(测试时间:100分钟,满分:120分)一、单项选择题(共10个小题,每小题3分,满分30分) 1.下列图形中既是中心对称图又是轴对称图形的是 ( )A .B .C .D .2.从数据21-,—6,1.2,π,—2中任取一个数,则该数为无理数的概率为( ) A .51 B .52 C .53 D .543.若关于x 的方程01)2(2=-+-mx x m 是一元二次方程,则m 的取值范围是( ) A .m ≠2B .m =2C .m ≥2D .m ≠04.若反比例函数()0≠=k xky 的图象过点(2,1),则这个函数的图象一定过点 ( ) A .(2,—1) B .(1,—2) C .(—2,1) D .(—2,—1) 5.商场举行抽奖促销活动,对于宣传语“抽到一等奖的概率为0.1”,下列说法正确的是( )A .抽10次奖必有一次抽到一等奖B .抽一次不可能抽到一等奖C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 6.如果一个扇形的弧长是π34,半径是6,那么此扇形的圆心角为 ( ) A .40° B .45° C .60° D .80° 7.抛物线3)1(22---=x y 与y 轴交点的横坐标为( ) A .—3 B .—4 C .—5D .—18.直角三角形两直角边长分别为3-和1,那么它的外接圆的直径是( )A .1B .2C .3D .49.如图,过⊙O 上一点C 作⊙O 的切线,交直径AB 的延长线于点D ,若∠D =40°,则∠A 的度数为( )A .20°B .25°C .30°D .40°10.二次函数y =a (x +m )2+n 的图象如图所示,则一次函数y =mx +n 的图象经过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限二、填空题(共6个小题,每小题4分,满分24分)11.如图,在△ABC 中, ∠BAC =60°,将△ABC 绕着点A 顺时针旋转40°后得到△ADE ,则∠BAE = 度.12.已知方程032=++mx x 一个根是1,则它的另一个根是 .13.袋中装有6个黑球和n 个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是白球的概率为41”,则这个袋中白球大约有 个. 14.如图,已知点P (1,2)在反比例函数xky =的图象上,观察图象可知,当x <1时,y的取值范围是 .15.如图,二次函数y =ax 2+bx +c 的图象经过点(—1,0)、(3,0)和(0,2),当x =2时,y 的值为 .第9题图第10题图第11题图第14题图第15题图 第16题图16.如图,等边三角形ABC 的内切圆的面积为9π,则△ABC 的周长为 .三、解答题(一)(共3个小题,每小题6分,满分18分) 17.(6分)解方程:122=+x x .18.(6分)已知:二次函数m x m x y ---=)1(2.(1)若图象的对称轴是y 轴,求m 的值;(2)若图象与x 轴只有一个交点,求m 的值. 19.(6分)在如图所示的直角坐标系中,解答下列问题:(1)将△ABC 绕点A 顺时针旋转90°,画出旋转后的△A 1B 1C 1; (2)求经过A 1B 1两点的直线的函数解析式.四、解答题(二)(共3个小题,每小题7分,满分21分) 20.(7分)如图,⊙O 的半径为10cm ,弦AB ∥CD ,AB =16cm ,CD =12cm ,圆心O 位于AB 、CD 的上方,求AB 和CD 间的距离.21.(7分)将分别标有数字1,3,5的三张卡牌洗匀后,背面朝上放在桌面上. (1)随机抽取一张卡片,求抽到数字恰好为1的概率;(2)请你通过列表或画树状图分析,随机地抽取一张作为十位数上的数字(不放回),再抽取一张作为个位上的数字,求所组成的两位数恰好是“35”的概率.22.(7分)反比例函数xky =在第一象限的图象如图所示,过点A (1,0)作x 轴的垂线, 交反比例函数xky =的图象于点M ,△AOM 的面积为3. (1)求反比例函数的解析式; (2)设点B 的坐标为(t ,0),其中t >1,若以AB 为一边的正方形有一个顶点在反比例函第19题图C D 第20题图数xky的图象上,求t 的值.五、解答题(三)(共3个小题,每小题9分,满分27分) 23.(9分)如图,O 为正方形ABCD 对角线AC 上的一点,以O 为圆心,OA 长为半径的⊙O 与BC 相切于点M .(1)求证:CD 与⊙O 相切;(2)若⊙O 的半径为1,求正方形ABCD 的边长. 24.(9分)将一条长度为40cm 的绳子剪成两段,并以每一段绳子的长度为周长围成一个正方形.(1)要使这两个正方形的面积之和等于58cm 2,那么这段绳子剪成两段后的长度分别是多少?(2)求两个正方形的面积之和的最小值,此时两个正方形的边长分别是多少? 25.(9分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =—1,且抛物线经过A (1,0),C (0,3)两点,与x 轴相交于点B . (1)求抛物线的解析式;(2)在抛物线的对称轴x =—1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标; (3)设点P 为抛物线的对称轴x =—1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.MA第22题图 C D A B O 第23题图M第25题图2017—2018学年度上学期期末水平测试九年级数学参考答案及评分建议一、1.C ; 2.B ; 3.A ; 4.D ; 5.C ; 6.A ; 7.C ; 8.B ; 9.B ; 10.C . 二、11.100; 12.3; 13.2 ; 14. 0<y <2; 15.2. ; 16.318 三、17.解 :0122=-+x x (1)分02122=-++x x …………………………………………………………2分2122=++x x ………………………………………………………3分2)1(2=+x ………………………………………………………… 4分21,2121--=+-=x x ………………………………………… 6分18.解:(1)若图象的对称轴是y 轴,∴=-a b 2021=-m ,………………………………………………………………………………………… 2分∴m=1; …………………………………………………………………………………… 3分(2)若图象与x 轴只有一个交点,则△=0,……………………………………………………………………4分即0)(14)1(2=-⨯⨯--m m , ............................................................ 5分 ∴m =﹣1. (6)分19. 解:(1)(图略) ………………………………………………………………………… 3分(2)设线段B 1A 所在直线l 的解析式为:)0(≠+=k b kx y ,…………………………………… 4分∵B 1(﹣2,3),A (2,0), ∴⎩⎨⎧=+=+-0232b k b k , ………………………………………………………………………………………… 5分23,43=-=b k , ……………………………………………………………………………………… 6分∴线段B 1A 所在直线l 的解析式为:2343+-=x y , ……………………………………………………7分20.解:过点O 作弦AB 的垂线,垂足为E ,延长OE 交CD 于点F ,连接OA ,OC , 1分∵AB ∥CD ,∴OF ⊥CD , (2)分∵AB =16cm ,CD =12cm , ∴AE =21AB =21×16=8cm , CF =21CD =21×12=6cm ,…………………………………… 3分在Rt △AOE 中,OE =22AE OA -=22810-=6cm ,………………………………………… 4分在Rt △OCF 中,OF=22CF OC -=22610-=8cm , ......... ...... (5)分∴EF =OF ﹣OE =8﹣6=2cm .∴AB 和CD 的距离为2cm . …………………………………………………………… …… 6分21.解:(1)∵卡片共有3张,“1”有一张,∴抽到数字恰好为1的概率31=P ;……………………………………………………………3分 (2)画树状图:………………………………………6分由树状图可知,所有等可能的结果共有6种,其中两位数恰好是“35”有1种. ∴组成两位数恰好是35的概率P=61. …………………………………………… 7分 22. 解:(1)∵△AOM 的面积为3,∴|k |=3,而k >0,∴k =6,∴反比例函数解析式为xy 6=; ………………………… 2分 (2)当以AB 为一边的正方形ABCD 的顶点D 在反比例函数xy 6=的图象上,则D 点与M 点重合,即AB =AM ,6,61===y xy x 得代入把,∴M 点坐标为(1,6),∴AB =A M =6, 761=+=t ; ……………………………………………………… 4分 当以AB 为一边的正方形ABCD 的顶点C 在反比例函数xy 6=的图象上, )1,(,1-∴-==t t C t BC AB 点坐标为则,∴6)1(=-t t , ……………………………………………………………………………………… 5分062=--t t 整理得,)(2,321舍去解得-==t t ,∴3=t , ………………………………………………………………………………………………… 6分 ∴以AB 为一边的正方形有一个顶点在反比例函数xy 6=的图象上时,t 的值为7或3. (7)分 23.(1)证明:过O 作ON ⊥CD 于N ,连接OM ,……………………………………… 1分∵⊙O 与BC 相切于点M , ∴OM ⊥BC ,∵AC 为正方形ABCD 对角线, ∴∠BAC =∠ACB =45°, ………………………………………………………………………………………………… 2分 ∵四边形ABCD 为正方形, ∴∠B =90°,AB ∥CD ∴AB ∥OM ∥DC ,∴∠NOC =∠NCO =∠MOC =∠MCO =45°, 且OC 为公共边,易知△OMC ≌△ONC (SAS ) ………………………………………………………………………… 3分 ∴ON =OM ,且ON ⊥CD∴CD 与⊙O 相切; ………………………………………………………………………………………………… 4分 (2)解:由(1)易知△MOC 为等腰直角三角形,OM 为半径, ∴1==MC OM ,∴211222=+=+=MC OM OC , ∴2=OC , ……………………………………………………………………………………………… 5分∴21+=+=OC AO AC ,………………………………………………………………… 6分 在R t △ABC 中,BC AB =,222BC AB AC +=,∴222AC AB =, ……………………………………………………………………………………… 7分 ∴222221+=+=AB . 故正方形ABCD 的边长为222+.………………………………………………………………………………… 9分24. 解:(1)设其中一个正方形的边长为xcm ,则另一个正方形的边长为(10﹣x )cm ,………………………………… 1分依题意列方程得58)10(22=-+x x , …………………………………………………………………………… 3分整理得:021102=+-x x ,解方程得7,321==x x , ……………………………………………………………………………… 4分.1228-402874,281240,1243cm cm cm cm ==⨯=-=⨯,或因此这段绳子剪成两段后的长度分别是12cm 、28cm ; ……………………………………… 5分 (2)设两个正方形的面积和为y ,则50)5(2)10(222+-=-+=x x x y , …………………………………… 7分.5,50,55-105052cm cm cm y x 都为此时两个正方形的边长最小值是即两个正方形的面积和,此时的最小值时,当===∴……………9分25.解:⎪⎪⎩⎪⎪⎨⎧==++-=-3012)1(c c b a a b依题意得,⎪⎩⎪⎨⎧=-=-=321c b a 解得:,∴抛物线解析式为322+--=x x y . ……………………………………… 2分分别代入直线、把)3,0()0,3(C B - n mx y +=, ⎩⎨⎧-==+-303n n m 得,⎩⎨⎧==31n m 解得:, 3+=∴x y 直线解析式为;……………………………………………… 3分(2)设直线BC 与对称轴x =﹣1的交点为M ,则此时MA +MC 的值最小.,231=+=-=y x y x ,得代入直线把∴M (﹣1,2),即当点M 到点A 的距离与到点C 的距离之和最小时M 的坐标为(﹣1,2);……… 5分)3,0(),0,3(),,1()3(C B t P --又设 ,1061)3(,4)31(,182********+-=+-=+=++-==t t t PC t t PB BC2:,106418,22222-=+-=++=+t t t t PC PB BC B 解得即:为直角顶点,则若点 ………………………………… 6分;4:,410618,22222=+=+-+=+t t t t PB PC BC C 解得即:为直角顶点,则若点 (7)分.2173,2173:,181064,2122222-=+==+-++=+t t t t t BC PC PB P 解得即:为直角顶点,则若点)21731-21731-4,1-2-1--+,)或(,)或()或(,的坐标为(综上所述P (9)分。
人教版九年级数学上册第一学期期末试卷
2017—2018学年度第一学期期末教学质量检测九年级数学试卷题号 一 二 三 总分人复核人 总分 得分请各位考生注意:1.本试题共4页,总分120分,考试时间120分钟。
2.请将试卷左侧的内容填完整。
3.答卷时请用蓝色、黑色钢笔或圆珠笔书写。
一.选择题(下列每小题给出的四个选项中只有一个正确选项,每小题3分,共30分) 1.观察下列图形,是中心对称图形的是( )A .B .C .D .2. 下列一元二次方程中,有实数根的方程是( )A .x 2+x-1=0 B. x 2-2x+3=0 C. x 2-x+1=0 D. x 2+4=0 3.下列事件为必然事件的是( ) A .打开电视机,它正在播广告B .投掷一枚普通的正方体骰子,掷得的点数小于7C .某彩票的中奖机会是1%,买1张一定不会中奖D .抛掷一枚硬币,一定正面朝上4.二次函数2(3)1y x =--+的最大值为( )A .-1B .1C .-3D .35.某地区2015年投入教育经费2500万元,预计到2017年共投入8000万元.设这两年投入教育经费的年平均增长率为x ,则下列方程正确的是( ) A .2500+2500(1+x )+2500(1+x )2=8000 B .2500x 2=8000C .2500(1+x )2=8000D .2500(1+x )+2500(1+x )2=80006.将函数231y x =-+的图象向右平移2个单位得到的新图象的函数解析式为( ) A.()2321y x =--+ B.()2321y x =-++C.232y x =-+D.232y x =--,7.如图,将Rt △ABC (其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( ) A .55° B .70° C .110° D .125°8.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形, 则∠ADC 的大小为( )A .45°B .50°C .60°D .75°9.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面 宽0.8米,最深处水深0.2米,则此输水管道的半径是( ) A .0.5B .1C .2D .410.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图,有下列5个结论: ①abc <0;②4a+2b+c >0;③2a+b=0;④b 2>4ac ; ⑤ 3a+c >0. 其中正确的结论的有( )A. 2个B.3个C. 4个D. 5个 二.填空题(每题3分,共24分)11. 方程x 2=3x 的根为 .12.二次函数y=2(x ﹣1)2+3的图象的顶点坐标是 .13.已知点A (2,4)与点B (b-1,2a )关于原点对称,则ab= . 14.正多边形的一个中心角为36°,那么这个正多边形的一个内角等于________. 15.方程有两个不相等的实数根,则a 的取值范围是 .16.如图,PA 、PB 分别切⊙O 于点A 、B ,点E 是⊙O 上一点,且 60=∠AEB ,则=∠P ___________度.17. 如图,AB 是⊙O 的直径,弦CD⊥AB,∠CDB=30°,CD=,则阴影部分图形的面积为.18.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,...,按此规律排列,则第n 个图形中小圆圈的个数为 .县/区学校 班级 姓名 学号 1 密 封 线 内 不 要 答 题三.解答题(共66分)19.解方程(本小题满分6分)(1)0242=++x x (2)()33x x x -=-+20.(本小题满分5分)已知圆锥的侧面展开图是一个半径为12cm ,弧长为12πcm 的扇形,求这个圆锥的侧面积及高.21.(本小题满分5分)如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)请直接写出点A 关于原点对称的点的坐标;(2)将△ABC 绕坐标原点O 逆时针旋转90度.画出图形,直接写出点B 的对应点的坐标; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.22.(本小题满分6分)二次函数)0(2≠++=a c bx ax y 的图象如图所示,根据图象解答下列问题:(1)写出方程02=++c bx ax 的两个根; (2)当x 为何值时,y >0; y <0 ?23. (本小题满分6分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市20000 名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1) 表中a 和b 所表示的数分别为:a =___________,b =_______________; (2) 请在图中补全频数分布直方图;(3) 如果把成绩在70分以上(含70分)定为合格,那么该市20000名九年级考生数学成绩为合格的学生约有多少名?24. (本小题满分6分)一个盒子里有标号分别为1,2,3,4,5,6的六个小球,这些小球除标号数字外都相同.(1)从盒中随机摸出一个小球,求摸到标号数字为奇数的小球的概率;(2)甲、乙两人用着六个小球玩摸球游戏,规则是:甲从盒中随机摸出一个小球,记下标号数字后放回盒里,充分摇匀后,乙再从盒中随机摸出一个小球,并记下标号数字.若两次摸到小球的标号数字同为奇数或同为偶数,则判甲赢;若两次摸到小球的标号数字为一奇一偶,则判乙赢.请用列表法或画树状图的方法说明这个游戏对甲、乙两人是否公平.25. (本小题满分7分)已知正方形ABCD 和正方形AEFG 有一个公共点A,点G 、E 分别在线段AD 、AB 上.若将正方形AEFG 绕点A 按顺时针方向旋转, 连接DG,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等?并以图(2)为例说明理由.26.(本小题满分7分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件,根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件,售价提高多少元时,才能在半个月内获得最大利润? 最大利润是多少?图1G FE D C BA(1)D图2GFE CBA(2)县/区 学校 班级 姓名 学号 1 密 封 线 内 不 要 答 题27. (本小题满分8分)如图,已知AB 是⊙的直径,AC 是弦,点P 是BA 延长线上一点,连接PC 、BC ,且∠PCA=∠B. (1)求证:PC 是⊙O 的切线; (2)若PC=6,PA=4,求直径AB 的长.28.(本小题满分10分)已知:如图,抛物线y = −x 2+bx +c 与x 轴、y 轴分别相交于点A (− 1,0)、B (0,3)两点,其顶点为D .(1)求这条抛物线的解析式;(2)若抛物线与x 轴的另一个交点为E .求△ODE 的面积;(3)抛物线的对称轴上是否存在点P 使得△PAB 的周长最短,若存在请求出P 点的坐标,若不存在说明理由。
人教版九年级上册数学期末测试卷及答案
2017-2018学年度九年级上册数学期末试卷一、选择题1.下列图形中,既是中心对称图形又是轴对称图形的是 ()2.将函数y =2x 2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是( )A .y =2(x -1)2-3B .y =2(x -1)2+3C .y =2(x +1)2-3D .y =2(x +1)2+33.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A 按顺时针方向旋转到△AB 1C 1的位置,使得点C 、A 、B 1在同一条直线上,那么旋转角等于( )A.55°B.70°C.125°D.145°4.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O 到水面的距离OC 是( )A. 4 B. 5 C. D. 6365.一个半径为2cm 的圆内接正六边形的面积等于( )A .24cm 2B . cm 2C . cm 2D .26.如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=55°,则∠BCD 的度数为( )A .35°B .45°C .55°D .75°7.函数的图象上有两点,,若,则( m x x y +--=822),(11y x A ),(22y x B 221-<<x x )A. B. C. D.、的大小不确定21y y <21y y >21y y =1y 2y 8.将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为( )A .B .C .D .第3题图第6题图第4题图9.一次函数与二次函数在同一坐标系中的图像可能是( )y ax b =+2y ax bx c =++A . B . C . D .10.如图,有一圆锥形粮堆,其正视图是边长为6m 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时,小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是 m .(结果不取近似值)A .3B .3根号3C .D .4二、填空题:1112.如图,将△ABC 的绕点A 顺时针旋转得到△AED,点D 正好落在BC 边上.已知∠C=80°,则∠EAB= °.13.若函数的图象与x 轴只有一个公共点,则常数m 的值是_______221y mx x =++14.抛物线y=-x 2+bx+c 的部分图象如图所示,若y >0,则x 的取值范围是.15.如图,在一个正方形围栏中均匀地散步者许多米粒,正方形内有一个圆(正方形的内切园),一只小鸡仔围栏内啄食,则“小鸡正在院内”啄食的概率为_______.16.如图,把直角三角形ABC 的斜边AB 放在定直线l 上,按顺时针方向在l 上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A 运动到点A″的位置时,点A 经过的路线与直线l 所围成的面积是 _________ .第12题图第14题图第16题图三、解答下列各题1.解方程:(1) (2)122=+x x 0)3(2)3(2=-+-x x 2.已知关于x 的一元二次方程2(31)30kx k x +++=(0)k ≠.(1)求证:无论k 取何值,方程总有两个实数根;(2)若二次函数3)13(2+++=x k kx y 的图象与x 轴两个交点的横坐标均为整数,且k 为整数,求k 的值.3.如图,平面直角坐标系中,每个小正方形边长都是1.(1)按要求作图:①△ABC 关于原点O 逆时针旋转90°得到△A 1B 1C 1;②△A 1B 1C 1关于原点中心对称的△A 2B 2C 2.(2)△A 2B 2C 2中顶点B 2坐标为 .4.某校九年级举行毕业典礼,需要从九年(1)班的2名男生1名女生(男生用A 1表示,女生用B 1表示)和九年(2)班的1名男生1名女生(男生用A 2表示,女生用B 2表示)共5人中随机选出2名主持人.(1)用树状图或列表法列出所有可能情形;(2)求2名主持人来自不同班级的概率; (3)求2名主持人恰好1男1女的概率.5.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量箱与销售价元/箱之间的函数关系式.y x(2)求该批发商平均每天的销售利润w(元)与销售价(元/箱)之间的函数关系x式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?6、如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.(1)求∠ABC的度数;(2)求证:AE是⊙O的切线;(3)当BC=4时,求劣弧的长.»AC7、已知:如图,抛物线y= −x2+bx+c与x轴、yB(0,3)两点,其顶点为D.(1)求这条抛物线的解析式;(2)若抛物线与x轴的另一个交点为E.求△ODE8、如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20m,如果水位上升3m时,水面CD的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km(桥长忽略不计).货车正以每小时40km的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m的速度持续上涨(货车接到通知时水位在CD处,当水位达到桥拱最高点O时,禁止车辆通行).试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?答案第6页,总1页。
初三上册数学期末试卷答案
22017-2018学年度第一学期期末试卷九年级数学2018.1 一、选择题(本题共 16分,每小题2分) 1.如图,在 Rt △ ABC 中,/ ACB=90° 如果 AC=3, AB=5,那么 sinB 等于( ). 2•点 A(1,yJ , B. C. D. A . y 1 y 2 3•抛物线 B (3,y 2)是反比例函数B. % y 2C. -图象上的两点,那么 y , y 2的大小关系是( ). x y 1 y 2 D .不能确定 y (x 4)2 5的顶点坐标和开口方向分别是( A. (4, C. ( 4, 5),开口向上 4. 圆心角为60,且半径为A. 48nB. 24 5. 如图,AB 是O O 的直径, 等于(A . 34 5),开口向上 12的扇形的面积等于( n C. 4 n CD 是O O 的弦,如果Z B. (4, 5),开口向下 D. ( 4, 5),开口向下 ). D. 2n ACD=34 ° C . 56 °6.如果函数 B . 46 ° D .66 °).x 2 4x m 的图象与x 轴有公共点,那么 m 的取值范围是( B. m<4C. m > 4D. m>P 在厶ABC 的边AC 上,如果添加一个条件后可以得到 ). A. m W 4 7.如图,点 △ ABPACB ,那么以下添加的条件中,不 正确的是( A . Z ABP=Z C2C . AB AP AC B . Z APB=Z ABC AB ACD . BP CB 2 8.如图,抛物线y ax bx 3(a 工0的对称轴为直线 x 1 , 2如果关于x 的方程axbx 0(a ^0的一个根为4,那么 该方程的另一个根为( A .4B .二、填空题(本题共16分,每小题 ).C . 1 2分)9.抛物线y x 23与y 轴的交点坐标为10.如图,在△ ABC 中,D , E 两点分别在 AB , AC 边上,DE // BC ,AD 3如果,AC=10,那么EC=DB 2C11. 如图,在平面直角坐标系 xOy 中,第一象限内的点 P(x,y)与点A(2,2)在同一个反比例函数的图象上, PC 丄y 轴于点C , PD 丄x 轴于点D ,那么矩形 ODPC 的面积等于 _______212. 如图,直线 y i kx n (k ^0 与抛物 y ? ax bx c (a ^0分别交于 A( 1,0) , B(2, 3)两点,那么当 y 1 y 2时,x 的 取值范围是 _________________ .13. 如图,O O 的半径等于4,如果弦AB 所对的圆心角等于120 , 那么圆心O 到弦AB 的距离等于 _________ .14.2017年9月热播的专题片《辉煌中国 一一圆梦工程》展示的中国桥、中国路等超级工程展现了中 国现代化进程中的伟大成就,大家纷纷点赞“厉害了,我的国!”片中提到我国已成为拥有斜拉桥最多的国家,世界前十座斜拉桥中,中国占七座,其中苏通长江大桥(如图 1所示)主桥的主跨长度在世界斜拉桥中排在前列 •在图2的主桥示意图中,两座索塔及索塔两侧的斜拉索对称分布, 大桥主跨BD 的中点为E,最长的斜拉索 CE 长577 m ,记CE 与大桥主梁所夹的锐角 CED 为那么用CE 的长和 的三角函数表示主跨 BD 长的表达式应为 BD=(m).2 _15. 如图,抛物线y ax bx c (a 0)与y 轴交于点C ,与x 轴 交于A , B 两点,其中点B 的坐标为B(4,0),抛物线的对称轴交 x 轴于点D , CE // AB ,并与抛物线的对称轴交于点 E.现有下列结论: ①a 0 :②b 0 :③4a 2b c 0:④AD CE 4.其中所有 正确结论的序号是 _________ .16. 如图,O O 的半径为3, A , P 两点在O O 上,点B 在O O 内,4tan APB - , AB AP .如果OB 丄OP ,那么OB 的长为 ____________ .3解答题(本题共68分,第17- 20题每小题5分,第21、22题每小题6分,第23、24题每小 题5分,第25、26题每小题6分,第27、28题每小题7分)20 .在△ ABC 中,AB=AC= 2, BAC 45 .将△ ABC 绕点 A 逆时针旋转 度(0< <180)得到△ ADE , B , C 两点的对应点分别为点 D , E , BD , CE 所在直线交于点 F . (1)当厶ABC 旋转到图1位置时,/ CAD= __________ (用 的代数式表示), BFC 的 度数为 ________21•运动员将小球沿 与地面成一定角度的方向 击出,在不考虑空气阻力的条件下,小球的飞行高17.计算:2si n302cos 45 tan6018. 如图,AB // CD , AC 与 BD 的交点为 E ,Z ABE= / ACB .(1) 求证:△ ABEACB ;(2) 如果 AB=6, AE=4, 求 AC , CD 的长.219. 在平面直角坐标系 xOy 中,抛物线 G : y x 2x .(1)补全表格:抛物线顶点坐标与x 轴交点坐标与y 轴交点坐标2小yx 2x(1,1)(0,0)(2)将抛物线C 1向上平移3个单位得到抛物线 C 2,请画出抛物线C 1, C 2,并直接回答:抛物线C 2与x 轴的两交点之间的距离是抛物线 G 与x 轴的两交点之间(2)当=45时,在图2中画出△ ADE ,并求此时点 A 到直线BE 的距离.图1度h (m)与它的飞行时间t (s)满足二次函数关系,t与h的几组对应值如下表所示t (s) 00.51 1.52…h (m) 08.751518.7520…(2)求小球飞行3 s时的高度;(3 )问:小球的飞行高度能否达到22 m?请说明理由.k22. 如图,在平面直角坐标系xOy中,双曲线y — ( 20)与直线x1y -x的交点为A(a, 1) , B(2,b)两点,双曲线上一点P的横2坐标为1,直线PA, PB与x轴的交点分别为点M , N,连接AN .(1)直接写出a, k的值;(2)求证:PM=PN , PM PN .23. 如图,线段BC长为13,以C为顶点,CB为一边的满足5cos .锐角△ ABC的顶点A落在的另一边I上,且134满足si nA —.求厶ABC的高BD及AB边的长,并结合你的5计算过程画出高BD及AB边.(图中提供的单位长度供补全图形使用)24•如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E在OD上,DCE二B .(1)求证:CE是半圆的切线;(2)若CD= 10, tanB -,求半圆的半径.325.已知抛物线G:y x2 2ax a 1 (a为常数).(1)当a 3时,用配方法求抛物线G的顶点坐标;(2)若记抛物线G的顶点坐标为P(p,q).①分别用含a的代数式表示p, q;②请在①的基础上继续用含p的代数式表示q;③由①②可得,顶点P的位置会随着a的取值变化而变化,但点P总落在 _________ 的图象上.A .一次函数B .反比例函数C.二次函数(3)小明想进一步对(2)中的问题进行如下改编:将(2)中的抛物线G改为抛物线H: y x 2ax N ( a为常数),其中N为含a的代数式,从而使这个新抛物线H满足:无论a取何值,它的顶点总落在某个一次函数的图象上.请按照小明的改编思路,写出一个符合以上要求的新抛物线H的函数表达式:________ (用含a的代数式表示),它的顶点所在的一次函数图象的表达式y kx b(k,b 为常数,k 0)中,k= ________ ,b= ____ .226.在平面直角坐标系xOy中,抛物线M: y ax bx c (a 0)经过A( 1,0),且顶点坐标为B(0,1).(1 )求抛物线M的函数表达式;(2)设F(t,0)为x轴正半轴上一点,将抛物线M绕点F旋转180°得到抛物线M1.①抛物线M1的顶点B的坐标为______ ;②当抛物线M1与线段AB有公共点时,结合函数的图象,求t的取值范围.27.如图1,在Rt△ AOB 中,/ AOB=90 °, / OAB=30 °,点C 在线段0B 上,OC=2BC, AO 边上的一点D满足/ OCD=30°.将厶OCD绕点O逆时针旋转%度(90° <aW0°)得到△ OCD , C, D两点的对应点分别为点C , D,连接AC , BD,取AC的中点M,连接OM.(1)_______________________________ 如图2,当CD // AB时,a= __________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省日照市莒县五中2017-2018学年度第一学期人教版九年级数学上册期末检测试题_(全册)【有答案】
1 / 5
山东省日照市莒县五中2017-2018学年度第一学期人教版九年级数学上册
期末检测试题 (全册)
考试总分: 120 分 考试时间: 120 分钟
学校:__________ 班级:__________ 姓名:__________ 考号:__________
一、选择题(共 10 小题 ,每小题 3 分 ,共 30 分 )
1.关于 的一元二次方程 的一个根是 ,则 的值为( )
A. 或
B.
C.
D.
2.已知点 与 关于坐标原点对称,那么点 绕原点顺时针旋转
后的对应点 的坐标是( ) A. B. C. D.
3.如图,以 为直径的半圆绕 点,逆时针旋转 ,点 旋转到点 的位置,已知 ,则图中阴影部分的面积为( )
A. B. C. D. 4.用配方法解方程: ,下列配方正确的是( ) A. B. C. D. 5.如图是一个中心对称图形,它的对称中心是( )
A.点
B.点
C.点
D.点 或点
6.解方程 的最适当方法应是( ) A.直接开平方法 B.配方法 C.公式法 D.因式分解法
7.直角坐标系中,点 关于原点的对称点的坐标为( ) A. B. C.
D.
8.如图,是一个圆锥的主视图,则这个圆锥的全面积是( )
A. B. C. D.
9.关于 的方程 有实数根,则 的取值范围是( )
A. B.
且 C.
D.
且
10.下面四个图案中,不能由基本图案旋转得到的是( ) A.
B.
C.
D.
二、填空题(共 10 小题 ,每小题 3 分 ,共 30 分 )
11.有一个面积为 的长方形,将它的一边剪短 ,另一边剪短 ,得到一个正方形.若设这个正方形的边长为 ,则根据题意可得方程________.
12.把一个正方形的一边增加 ,另一边增加 ,得到矩形面积的 倍比正方形面积多 ,则原正方形边长为________.
13.圆是中心对称图形,________是对称中心;圆又是轴对称图形,它的对称轴有________条.
14.已知
是二次函数,且当 时, 随 增大而增大,则
________.
15.如图, 是 的直径,点 在 上, ,若 ,则 的长为________.
16.设 、 为实数,则 有最大(或最小)值为________.
17.一个圆弧形拱桥的跨度为 ,桥的拱高为 ,则此拱桥的半径是________ .
18.在一个不透明的盒子中装有仅颜色不同的红、白两种小球,其中红球个,白球个,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于,那么可以推算出大约是
________.
19.一条抛物线和的图象形状相同,并且顶点坐标是,则此抛物线的函数关系式为________.
20.如图,在中,,,以点为圆心、为半径的圆交
于点,则的度数为________度.
三、解答题(共 6 小题,每小题 10 分,共 60 分)
21.如图,为的直径,为弦,,,.
求四边形;
过点作,交于点,求的值.
22.某商场购进一种单价为元的商品,如果以单价元售出,那么每天可卖出
个,根据销售经验,每降价元,每天可多卖出个,假设每个降价(元),每天销售(个),每天获得利润(元).
写出与的函数关系式________;
求出与的函数关系式(不必写出的取值范围)23.一个布袋中有个红球和个白球,它们除颜色外都相同.
求从袋中摸出一个球是红球的概率;
现从袋中取走若干个白球,并放入相同数量的红球.搅拌均匀后,要使从袋中摸出一个球是红球的概率是,问取走了多少个白球?(要求通过列式或列方程解答)
24.如图,点为斜边上的一点,以为半径的与边交于点,与边交于点,连接,且平分.
试判断与的位置关系,并说明理由;
若,,求阴影部分的面积(结果保留).
山东省日照市莒县五中2017-2018学年度第一学期人教版九年级数学上册期末检测试题_(全册)【有答案】
3 / 5
25.如图,已知直角坐标平面上的 , , ,且 ,
, .若抛物线 经过 、 两点.
求 、 的值; 将抛物线向上平移若干个单位得到的新抛物线恰好经过点 ,求新抛物线的解析式; 设 中的新抛物的顶点 点, 为新抛物线上 点至 点之间的一点,以点 为圆心画图,当 与 轴和直线 都相切时,联结 、 ,求四边形 的面积. 26.经营某种品牌的玩具,购进时的单价是 元,根据市场调查:在一段时间内,销售单价是 元时,销售量是 件,而销售单价每涨 元,就会少售出 件玩具. 不妨设该种品牌玩具的销售单价为 元 ,请你分别用 的代数式来表示销售量 件和销售该品牌玩具获得利润 元,并把结果填写在下列横线上: 销售单价 (元)________; 销售量 (件)________;
销售玩具获得利润 (元)________; 在 问条件下,若商场获得了 元销售利润,求该玩具销售单价 应定为多
少元. 在 问条件下,若玩具厂规定该品牌玩具销售单价不低于 元,且商场要完成不少于 件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?
答案 1.B 2.C 3.A 4.A
5.B
6.A
7.B
8.D
9.C 10.D 11. ;(或 ) 12.
13.圆心无数 14. 15. 16. 17. 18. 19. 或 20. 21.解: 作 于 ,连结 ,如图, ∵ , ∴
,
∵直径 , ∴ , 在 中, ,
∴ 四边形
;
∵ ,
∴,
∴ ,
∵ ,,
∴四边形是等腰梯形.
作于,则,,在中,由勾股定理得,,∴.
∵ ,,
∴四边形是平行四边形,
∴,,
∴ .
∵,
∴,
∴.22.;由题意可得,与的函数关系式为:
.
23.取走了个白球.
24.解:与相切,
理由:连接,
∵ 平分,
∴ ,
∵ ,
∴ ,
∴ ,
∴ ,
∵ ,
∴ ,
∴ 与相切;
连接,,
∵ ,,
∴ 为等边三角形,
∴ ,
山东省日照市莒县五中2017-2018学年度第一学期人教版九年级数学上册期末检测试题_(全册)【有答案】
5 / 5
∴ ,
又∵
, ∴ ,
∴ ,
∴ ,
∴阴影部分的面积 扇形
.
25.解: ∵抛物线 经过 、 , ∴
, 解得:
; 设抛物线向上平移 个单位后得到的新抛物线恰好经过点 ,
则新抛物线的解析式为 , ∵ 、 ,
∴ ,
∵ ,∴点 的坐标为 .
∵点 在抛物线 上, ∴ , 解得: ,
∴新抛物线的解析式为 ; 设 与 轴相切于点 ,与直线 相切于点 ,连接 、 ,如图所示,
则有 , , , ∴ , ∴四边形 是矩形. ∵ ,
∴矩形 是正方形, ∴ .
设点 的横坐标为 ,
则有 , , ∴点 的坐标为 .
∵点 在抛物线 上, ∴ , 解得: , .
∵ 为抛物线 上 点至 点之间的一点, ∴ ,点 的坐标为 , ∴ , .
由 得顶点 的坐标为 , ∴ , , ∴ 四边形 梯形
,
∴四边形 的面积为 .
26. 解之得: ,
答:玩具销售单价为 元或 元时,可获得 元销售利润. 根据题意得
解之得: ,
, ∵ ,对称轴是直线 , ∴当 时, 随 增大而增大. ∴当 时, 最大值 (元)
. 答:商场销售该品牌玩具获得的最大利润为 元.。