抽象函数问题解决举例

合集下载

抽象函数解题方法与技巧

抽象函数解题方法与技巧

抽象函数解题方法与技巧所谓抽象函数问题,是指没有具体地给出函数的解析式,只给出它的一些特征或性质。

解决这类问题常涉及到函数的概念和函数的各种性质,因而它具有抽象性、综合性和技巧性等特点。

抽象函数问题既是教学中的难点,又是近几年来高考的热点。

一、换元法 换元法包括显性换元法和隐性换元法,它是解答抽象函数问题的基本方法. 例1. 已知f(1+sinx)=2+sinx+cos 2x , 求f(x)解:令u=1+sinx ,则sinx=u-1 (0≤u ≤2),则f(u)=-u 2+3u+1 (0≤u ≤2) 故f(x)=-x 2+3x+1 (0≤x ≤2)二、方程组法 运用方程组通过消参、消元的途径也可以解决有关抽象函数的问题。

例2..232|)(:|,)1(2)(),)(,(≥=-=x f x x f x f x f x f(x)y 求证且为实数即是实数函数设解:x x x f x x f x f x x 323)(,1)(2)1(,1--==-联立方程组,得得代换用322323|)(|≥+=∴x x x f三、待定系数法如果抽象函数的类型是确定的,则可用待定系数法来解答有关抽象函数的问题。

例3.已知f(x)是多项式函数,且f(x+1)+f(x-1)=2x 2-4x ,求f(x). 解:由已知得f(x)是二次多项式,设f(x)=ax 2+bx+c (a≠0) 代入f(x+1)=a(x+1)2+b(x+1)+c=ax 2+(2a+b)x+a+b+c f(x-1)= a(x-1)2+b(x-1)+c=ax 2+( b -2a)x+a-b+c ∴f(x+1)+ f(x-1)=2ax 2+2bx+2a+2c=2x 2-4x 比较系数得:a=1,b= -2,c= -1 , f(x)=x 2-2x-1.四、赋值法有些抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。

例4.对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______. 解:令x=y=0,得:f(0)=0,令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2,∵f(1)≠0 ∴f(1)= . 令x=n,y=1,得f(n+1)=f(n)+2[f(1)]2=f(n)+即f(n+1)-f(n)= 12,故f(n)= 2n ,f(2001)= 20012例5.已知f(x)是定义在R 上的不恒为零的函数,且对于任意的实数a,b 都满足 f(ab)=af(b)+bf(a). (1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论; (3)若f(2)=2,u n =f(2n ) (n ∈N*),求证:u n+1>u n (n ∈N*). 解:(1)令a=b=0,得f(0)=0,令a=b=1,得f(1)=0.(2)f(x)是奇函数。

抽象函数问题解法

抽象函数问题解法

抽象函数问题解法抽象函数是指没有给出具体的函数解析式或图像,但给出了函数满足的一部分性质或运算法则的函数。

它与函数的奇偶性、单调性、周期性、对称性等函数性质联系在一起,具有很强的抽象性。

这类问题主要考查数学思想方法的运用能力,以及对数学语言以及符号的阅读理解能力。

本文结合具体问题分类剖析这类问题的求解策略。

一、利用函数性质的解题思想函数性质是反映函数特征的主要途径,充分利用题设条件中已表明或隐含的函数性质,选择适当的方法解决抽象函数问题。

1.利用对称性,数形结合例1:已知函数f(x)对一切实数x都有f(2+x)= f(2-x),如果方程f(x)=0恰好有4个不同的实根,求这些实根之和。

策略:由f(2+x)= f(2-x)可知是函数图像关于直线x=2对称。

又f(x)=0四个根按由小到大的顺序可设为x1、x2、x3、x4,则x1+x4=2×2=4,x2+x3=2×2=4,∴x1+x2+x3+x4=8。

2. 利用奇偶性分析函数特征例2:已知函数f(x)=ax+bsinx+3,且f(-3)=7,求f(3)的值。

策略:注意到g(x)=ax+bsinx=f(x)-3是奇函数,可得g(-3)= -g(3),即f(-3)-3= -[f(3)-3],f(3)=6-f(-3)= -1。

3. 利用单调性等价转化例3:已知奇函数f(x)在定义域(-1,1)上是减函数,试求满足不等式f(1-a)+f(1-a2)4.利用周期性研究函数特征例4:已知f(x)是定义在正整数集上的函数,对任意正整数x 都有f(x)=f(x-1)+f(x+1),且f(1)=2002,求f(2002)。

分析:根据x的任意性,判断函数的周期。

略解:由f(x)=f(x-1)+f(x+1),可得:f(x+3)=-f(x)。

∴f(x+6)=-f(x+3)=[-f(x)]=f(x),∴f(x)是以6为周期的周期函数,∴f(2002)=f(333×6+4)=f(4)=f(3+1)=-f(1)=-2002。

抽象函数问题的解题策略

抽象函数问题的解题策略

抽象函数问题的解题策略固镇二中陈学军2012-5-15抽象函数问题的解题策略抽象函数问题是高考中的热点、难点问题,处理这类问题往往需要深厚的数学知识的积淀。

同时掌握必要的解题技巧,对解决这类问题也有很大帮助。

下面通过实例来分析一下。

一、合理赋值对于求值问题,要善于通过对已知条件和结论的观察、比较,大胆尝试。

通过对变量合理赋值,使问题得到解决。

例1.已知定义在R上的函数f(x)满足对任意x,y∈R, f(x+y)=f(x)+f(y)-1,则f(0)=______解:令x=y=0,得f(0)=1二、合理变形通过合理变形,使条件和结论更接近。

常见的变形有:和差互化、积商互化等。

例 2.对于任意x,y∈R ,f(x+y)=f(x)+f(y),且对任意x>0有f(x)>0,求证:f(x)是R上的增函数。

分析:根据函数单调性的定义,要证f(x)在R上是增函数,即证对任意x1,x2∈R且x1<x2,都有f(x1)<f(x2),即f(x1)-f(x2)<0,也就是说,结论中出现的是函数值的差。

而条件中出现的是函数值的和,两者不“融合”,这就需要对条件进行“和差”互换,以使条件能和结论“融合”。

证:∵对任意x,y∈R ,f(x+y)=f(x)+f(y)∴f(x)=f(x+y)-f(y)而x=x+y-y即f(x+y-y)=f(x+y)-f(y),设x>0,则f(x)= f(x+y-y)=f(x+y)-f(y)>0,令x+y= x2y= x1则x+y>y,即x2> x1 ,f(x2)>f( x1),由于x,y的任意性,∴x1,x2也是任意的。

由函数单调性的定义知f(x)是R上的增函数。

例3.已知f(x)是定义域为R的函数,且对任意x∈R,f(x)>0,对任意x,y∈R,f(x+y)=f(x)〃f(y),x>0时,f(x)>1.(1)求f(0)的值;(2)求证:f(x)是R上的增函数解:(1)通过合理赋值,令x=y=0,则由f(x+y)=f(x)〃f(y)得f(0)=f2(0),又∵f(x)>0,∴f(0)=1.(2)分析:证明f(x)在R上单调递增,常用以下两种方法:一、证任意x1, x2∈R,且x1 <x2,证明f(x1)<f(x2),即f(x1)-f(x2)<0.二、当f(x)>0时,证明对任意x1, x2∈R且x1 <x2 ,f(x2)/ f(x1)>1.从本题的条件来看,可以看出它和方法二所需结果较为接近,而要把已知条件转化为所需结论,就需要实现两个转化:1.和差转化。

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法

抽象函数问题求解的常用方法抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识.可以说,这一类问题,是考查学生能力的较好途径,因此,在近年的高考中,这一类题目有增多和分量加重的趋势.【方法荟萃】1.函数原型法【例1】给出四个函数,分别满足①()()()f x y f x f y+=+;②()()()g x y g x g y+=;③()()()h x y h x h y=+;④()()()t xy t x t y=,又给出四个函数图象正确的匹配方案是()(A)①—丁②—乙③—丙④—甲(B)①—乙②—丙③—甲④—丁)①—丙②—甲③—乙④—丁(D)①—丁②—甲③—乙④—丙的函数抽象而成的。

如正比例函数()(0)f x kx k=≠可抽象为()()()f x y f x f y+=+。

因此,我们可得知如下结论:(1)抽象函数()()()f x y f x f y+=+可由一个特殊函数正比例函数()(0)f x kx k=≠抽象而成的;(2)抽象函数()()()t xy t x t y=可由一个特殊函数幂函数()t x xα=抽象而成的;(3)抽象函数()()()g x y g x g y+=可由一个特殊函数指数函数()(0,1)xg x a a a=>≠抽象而成的;(4)抽象函数()()()h xy h x h y=+可由一个特殊函数对数函数()log(0,1)ah x x a a=>≠抽象而成的;(5)抽象函数()f x y+=()()1()()f x f yf x f y+-可由一个特殊函数正切函数()tanf x x=抽象而成的;根据上述分析,可知应选D。

2.代数演绎法【例2】设定义在R上的函数()f x对于任意,x y都有()()()f x y f x f y+=+成立,且(1)2f=-,当x>时,()0f x<。

关于抽象函数问题的解法

关于抽象函数问题的解法

抽象函数问题有关解法一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。

例1:已知 ()211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑配法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。

例2:已知3311()f x x x x +=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。

例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。

解决抽象函数问题的常用方法

解决抽象函数问题的常用方法

解决抽象函数问题的常用方法一、赋值法观察与分析抽象函数问题中的已知与未知的关系,巧妙地对一般变量赋予特殊值,或把函数赋予特殊函数等,从而达到解决问题的目的,这是常用的方法 1、赋特殊值例 1. 设函数)0x R x )(x (f y ≠∈=且,对任意实数1x 、2x 满足)x x (f )x (f )x (f 2121=+。

(1)求证:0)1(f )1(f =-=; (2)求证:)x (f y =为偶函数;(3)已知)x (f y =在),0(+∞上为增函数,解不等式0)21x (f )x (f <-+。

证明:(1)令1x x 21==,得)11(f )1(f )1(f ⨯=+,故0)1(f =;令1x x 21-==,得0)1(f )]1()1[(f )1(f )1(f ==-⨯-=-+-,故0)1(f =-。

(2)令x x x 21==,得)x (f )x (f 22=;令x x x 21-==,得)x (f )x (f 22=-,所以)x (f )x (f =-,即)x (f y =为偶函数。

(3)0)21x (f )x (f <-+,即)1(f )]21x (x [f <-,或)1(f )]21x (x [f -<-,由(2)和)x (f y =在),0(+∞上为增函数,可得0)21x (x 11)21x (x 0<-<-<-<或,解得4171x 4171+<<-且21,0x ≠。

2、赋特殊函数例2. 对于任意的函数)x (f y =,在同一个直角坐标系中,函数)1x (f y -=与函数)x 1(f y -=的图像恒( )(A )关于x 轴对称 (B )关于直线1x =对称(C )关于直线1x -=对称(D )关于y 轴对称解:取函数2x )x (f =,则22)x 1()x 1(f y ,)1x ()1x (f y -=-=-=-=,这两个函数是同一个函数,它们的对称轴为1x =,故选(B )。

浅议高中数学中抽象函数问题的解法

浅议高中数学中抽象函数问题的解法

浅议高中数学中抽象函数问题的解法本文从多个方面介绍了数学抽象函数的应用,特别是从平移的角度说明了抽象函数的对称问题,并就典型例题加以分析解答,对学生的常见错误进行了剖析。

抽象函数的有关内容一直是学生学习的一个难点,关于抽象函数题目类型较多,形式灵活多变,考查内容无论从深度和广度,给人耳目一新的感受,现就其中几个主要问题加以分类解析。

一、求抽象函数的定义域1. 若已知函数f [g(x)]的定义域为x∈(a,b),求函数f(x)。

解决这类问题的方法是:利用a例1. 已知函数f(x+1)的定义域是[-2,3],求y=f(x)的定义域。

解:因为函数f(x+1)的定义域是[-2,3],所以-2≤x≤3所以-1≤x+1≤4,因此y=f(x)的定义域是[-1,4]2. 若已知函数f(x)的定义域为x∈(a,b),求f [g(x)]函数的定义域。

解决这类问题的方法是:a例2. 已知函数f(x)的定义域为(0,1],求函数g(x)=f(x+a)+f(x-a)(-解:因为函数f(x)的定义域为(0,1]所以0由于-所以不等式组(∈)的解为-a即g(x)=f(x+a)+f(x-a)(-二、抽象函数的周期性和奇偶性1. 抽象函数的周期性例3. 定义在R上的函数f(x)满足f(x)=-f(x+2),且当x∈(-1,1]时,f(x)=x2+2x,求当x∈(3,5]时,f(x)的解析式。

解:∈f(x+4)=f(x+2+2)=-f(x+2)=f(x)∈f(x)是以4为周期的周期函数设x∈(3,5]时,则-1∈f(x)=f(x-4)=(x+4)2+2(x-4)=x2-6x+8(3评注:若对函数f(x)定义域内的任意,恒有下列条件之一成立(以下式子分母不为零,a≠0)①f(x+a)=-f(x) ②f(x+a)= ③f(x+a)=-④f(x+a)=- ⑤f(x+a)=- ⑥f(x+a)=f(x-a)则函数f(x)是以2a为周期的周期函数①2. 抽象函数的奇偶性奇、偶函数的定义是判断函数奇偶性的主要依据,有时为了便于判断函数的奇偶性,也往往需要先将函数进行化简,或运用定义的等价形式,但对于抽象函数的奇偶性的判断主要是用赋值法,构造出定义的形式。

如何解答抽象函数问题

如何解答抽象函数问题

解题宝典抽象函数问题的难度一般不大.常见的抽象函数问题有求抽象函数的值域,求抽象函数的定义域,判断抽象函数的周期性、单调性、奇偶性等.下面结合实例,谈一谈三类常见的抽象函数问题的解法.一、求抽象函数的值域求抽象函数的值域问题,往往要求根据已知关系式和定义域来求函数的值域.解答此类问题,需对已知关系式进行赋值,以便根据函数单调性的定义,判断出函数的单调性,然后根据函数的单调性求得函数在定义域内的最值,即可确定函数的值域.若定义域包含了多个单调区间,则需在每个区间内讨论函数的单调性,再比较各个区间上的最大、最小值,即可解题.例1.若对任意实数x ,y 都有f ()x +y =f ()x +f ()y ,当x >0时恒有f ()x >0,且f ()-1=-2,求函数f ()x 在区间[]-2,1上的值域.解:令x 1=y ,x 2=x +y ,可得x 2-x 1>0,∵f ()x 2-f ()x 1=f ()()x 2-x 1+x 1-f ()x 1=f ()x 2-x 1+f ()x 1-f ()x 1>0,∴f ()x 1<f ()x 2,可得f ()x 在R 上单调递增,∴当x ∈[]-2,1时,f ()-2≤f ()x ≤f ()1,∵f ()-2=f ()-1-1=f ()-1+f ()-1=-4,f ()1=f ()-1+2=f ()-1+f ()2=f ()-1+f ()1+f ()1=2,∴f ()x 在区间[]-2,1上的值域为[]-4,2.解答本题,需对已知关系式f ()x +y =f ()x +f ()y 进行赋值,令x 1=y ,x 2=x +y ,通过等量代换判断出f ()x 2-f ()x 1的符号,便可判断出函数f ()x 的单调性.再根据函数的单调性,即可求得抽象函数的值域.二、抽象函数的单调性问题抽象函数的单调性问题通常要求根据已知关系式或函数的性质判断函数的单调性,求得函数的单调区间.解答此类问题,需灵活运用单调性的定义.解题的基本思路为:①在定义域内任选两个数x 1、x 2,且使x 1<x 2,②结合已知条件,化简f ()x 2-f ()x 1或f ()x 2f ()x 1,并将其与0、1比较,③得出结论.若f ()x 2>f ()x 1,则函数在定义域上单调递增;若f ()x 2<f ()x 1,则函数f ()x 单调递减.例2.已知对任意x ∈R ,恒有f ()x >0,当x >0时,f ()x >1.对任意x ,y ∈R ,均有f ()x +y =f ()x f ()y ,试证明:f ()x 在R 上单调递增.分析:我们需先设出x 1,x 2,然后通过等量代换,判断出f ()x 2f ()x 1与1的大小关系,以便根据函数单调性的定义证明抽象函数f ()x 在R 上单调递增.证明:令x 1<x 2,则f ()x 2>0,f ()x 1>0,x 2-x 1>0,f ()x 2f ()x 1=f ()x 2-x 1+x 1f ()x 1=f ()x 2-x 1f ()x 1f ()x 1=f ()x 2-x 1>1,所以f ()x 2>f ()x 1,故函数f ()x 在R 上单调递增.三、抽象函数的奇偶性问题对于抽象函数的奇偶性问题,通常需根据奇偶函数的定义来求解.在解题时,要首先对已知关系式进行赋值,如令x =0、1、-1、-x 等,并将其代入式子中,以便判断出f ()-x 与f ()x 之间的关系.若f ()-x =f ()x ,则函数为偶函数;若f ()-x =-f ()x ,则该函数为奇函数.例3.若函数f ()x ,g ()x 的定义域为R ,对于任意x ,y ∈R ,均有f (x +y )+f ()x -y =2f ()x f ()y ,且f ()0≠0,试判断函数f ()x 的奇偶性.解:令x =y =0,由f (x +y )+f ()x -y =2f ()x f ()y 可得2f 2()0=2f ()0,因为f ()0≠0,所以f ()0=1,令x =0,可得f ()0+y +f ()0-y =2f ()0f ()y =2f ()y ,则f ()y =f ()-y ,故函数f ()x 为偶函数.要判断出函数的奇偶性,需令x =y =0,通过多次赋值,才能判断出f ()-x 与f ()x 之间的关系.总之,抽象函数是一类较为特殊的函数,它没有具体的解析式和图象,因而在解答抽象函数问题时,需重点研究已知关系式和抽象函数的性质,从中找到解题的突破口.(作者单位:云南省曲靖市会泽县实验高级中学)方琼41。

高中数学专题:抽象函数常见题型解法

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。

由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。

一、定义域问题例1. 已知函数)(2x f 的定义域是[1,2],求f (x )的定义域。

例2. 已知函数)(x f 的定义域是]21[,-,求函数)]3([log 21x f -的定义域。

二、求值问题例 3. 已知定义域为+R 的函数f (x ),同时满足下列条件:①51)6(1)2(==f f ,;②)()()(y f x f y x f +=⋅,求f (3),f (9)的值。

三、值域问题例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。

解:令0==y x ,得2)]0([)0(f f =,即有0)0(=f 或1)0(=f 。

若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。

由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有)]2([)2()2()22()(2≥==+=xf x f x f x x f x f下面来证明,对任意0)(≠∈x f R x ,设存在Rx ∈0,使得)(0=x f ,则)()()()0(0000=-=-=x f x f x x f f这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。

四、解析式问题例5. 设对满足10≠≠x x ,的所有实数x ,函数)(x f 满足x x x f x f +=-+1)1()(,求f (x )的解析式。

高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。

对考查学生的创新精神、实践能力和运用数学的能力,有着十分重要的作用。

化抽象为具体,联想类比思维都有助于问题的思考和解决。

一、数形结合使抽象函数具体一般地讲,抽象函数的图象为示意图居多,有的示意图可能只能根据题意作出n 个孤立的点,但通过示意图却使抽象变形象化,有利于观察、对比、减少推理、减小计算量等好处。

例1、设奇函数()f x 的定义域为[5,5]-,若当x (]5,0∈时,()f x 是增函数且f(2)=o 求不等式x ()0f x <的解。

分析:f(x)的图像如图所示 x>0时2<x 5≤ x<0时-2<x 0≤例2、已知函数f (x )对一切实数x 都有f (2+x )= f (2-x ),如果方程f (x )=0恰好有4个不同的实根,求这些实根之和。

分析:由f (2+x )=f (2-x )知直线x=2是函数图象的对称轴,又f (x )=0有四根,现从 大到小依次设为x 1、x 2、x 3、x 4,则x 1与x 4,x 2与x 3均关于x=2对称, ∴x 1+x 4= x 2+x 3=2×2=4, ∴x 1+x 2+x 3+x 4=8。

评注:一般地,若函数f (x )满足f (a+x )=f (a-x ),则直线x=a 是函数图象的对称轴, 利用对称性,数形结合,可使抽象函数问题迎刃而解。

二、利用单调性定义使问题具体加上函数符号f 即为“穿”,去掉函数符号f 即为“脱”。

对于有些抽象函数,可根据函数的单调性,实现对函数符号的“穿脱”,以达到简化的目的。

例3已知f(x)是定义在(0,)上的增函数,且f(yx)=f(x)-f(y),若f(6)=1,解不等式。

f(x+5)- f(x1)<2 分析:由f(6)=1,f(y x )=f(x)-f(y)得:f(636)=f(36)-f(6),所以f(36)=2。

例析抽象函数问题的求解策略

例析抽象函数问题的求解策略

例析抽象函数问题的求解策略上海市吴淞中学贺明荣(200940)近年来,经常在高考、高考模拟以及竞赛中出现与抽象函数有关的试题。

一般地,抽象函数是指:没有给出具体的函数解析式,只是给出函数所具有的某些性质的函数。

这类试题往往概念抽象、隐蔽性强、灵活性大、综合程度高,因此,学生常常感到难以掌握,教师也常为如何适时处理它等问题而苦恼。

现本文主要介绍求解抽象函数问题的常见方法,供参考。

1、合理递推例1:函数f具有下列性质:f(x)+f(x-1) =x2如果f(19)=94,那么f(94)除以1000的余数是多少?解: 由f(x)+ f(x-1)=x2得f(x)=x2- f(x-1)又f(19)=94,∴f(20)=202–f(19) ,f(21)=212–f(20)= 212 - 202 +f(19),依次类推,可得f(94)=942–932+922–912+…+222-212+202–f(19)=94+93+92+91+ …+22+21+202-f(19)= 错误!×74+400–94=4561,所以,余数为561.评注:当f(x)是定义在自然数集N上的函数时,可根据题中所给函数方程,通过取特殊值得到关于f(n)的递推关系,然后根据递推关系进一步求解.2、适当赋值例2、设函数y=f(x)(x∈R且x ≠0),对任意实数x1 、x2满足f(x1)+ f(x2)= f(x1·x2).(1)求证:f(1)=f(-1)=0;(2) 求证:y=f(x)为偶函数;(3) 已知y=f(x)在(0,+∞)上为增函数,解不等式f(x)+f( x-12)<0.证明:(1)令x1 =x2=1, 得f(1)+f(1)=f(1·1)∴f(1)=0 ;令x1 =x2= -1,得f(-1)+f(-1)=f〔(-1)·(-1)〕= f(1)=0 , ∴f(-1)=0 .(2) 令x1=x2 = x ,得2f(x)=f(x2);令x1 =x2 = -x ,得2f(-x)=f(x2);∴f(-x)=f(x) ,即y=f(x)为偶函数.(3)f(x)+f( x -\f(1,2))<0, 即f〔x ·(x -错误!)〕<f(1), 或f〔x·(x -错误!)〕<f(-1) ,由(2)和y=f(x)在(0,+∞)上为增函数,可得0<x·(x -错误!)<1 或-1<x·(x-12)<0解得错误!<x<错误!且x≠0, 错误!.评注: 对于抽象函数,根据函数的概念和性质,通过观察与分析,将一般量赋予特殊值,以简化函数,从而达到转化为要解决的问题的目的.3、巧妙换元例3、 设f(x)的定义域为{x ∣x≠0,且x≠1},满足f(x)+f (\f(x-1,x ))=1+x , (1) 求f(x) .解: 令x =y-1y(y≠0,y≠1),并将y 换成x, 得f(错误!)+f (错误!)=1+错误! , (2) 再令(1)中x =\f(1,1-y ) (y≠0,y≠1),将y 换成x,得 f(错误!)+f(x)=1+错误! ,(3) 由(1)+(3)-(2) , 得2f(x)=(1+x )+(1+错误!)-(1+错误!), 即f(x)=错误!,易验证 f(x)= 1+x 2-x 32x(1-x)满足方程(1) .评注: 根据题目结构特点及欲证的结论,将题中的某些量替换成所需要的量(注意:应使函数的定义域不发生改变,有时还需要作几次相应的替换),得到一个或几个方程,然后设法从中求其解.4、利用函数性质例4、已知定义在R 上的函数f(x)满足(1)对于任意x ,y∈R都有f(x+y)=f (x)+f(y) ;(2)当x>0时,f(x)<0,且f(1)= - 2 ,求f(x)在〔-3 , 3〕上的最大值和最小值.解:任取-3≤x 1<x 2≤3 ,由条件(1)得f (x2)=f 〔(x 2-x 1)+x 1〕= f(x2-x1)+f(x 1),∴ f(x 2)- f(x 1) = f(x 2-x 1) , ∵ x2 - x1 >0 ,由条件(2)得 f(x2-x1) <0 , ∴ f (x 2) <f(x 1) , ∴ f(x)在〔-3 , 3〕上 单调递减.在(1)中令x =y =0,得f(0+0)=f(0)+f(0) , ∴ f(0)=0再令x =-y , 得f(x -x)=f (x)+f (-x) , ∴ f(-x)= -f(x) , 从而f(x)为奇函数,因此,f(x)在〔-3 , 3〕上的最大值为f(-3)=--f(3)=-f(1+2)=-f(1)-f(2)= -f(1) -f (1) -f(1)= -3f(1)=6最小值为 f (3)= -f (-3)= -6 .评注: 根据题目所给的条件,往往需要探求函数是否还具有哪些特殊的性质,比如,函数的单调性、奇偶性、周期性等等,本题是运用函数的性质得到解答的一个典型,它将奇偶性和单调性有机地结合起来,而函数的单调性是解决最值问题和有关不等式问题的常用性质。

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。

抽象函数问题既是教学中的难点,又是近几年来高考的热点。

本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。

解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。

高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略

高中数学解题方法系列:函数问题中抽象函数的4种策略抽象函数是指没有给出函数的具体解析式,但给出了函数满足的一部分性质或运算法则的函数问题。

对考查学生的创新精神、实践能力和运用数学的能力,有着十分重要的作用。

化抽象为具体,联想类比思维都有助于问题的思考和解决。

一、数形结合使抽象函数具体一般地讲,抽象函数的图象为示意图居多,有的示意图可能只能根据题意作出n 个孤立的点,但通过示意图却使抽象变形象化,有利于观察、对比、减少推理、减小计算量等好处。

例1、设奇函数()f x 的定义域为[5,5]-,若当x (]5,0∈时,()f x 是增函数且f(2)=o 求不等式x ()0f x <的解。

分析:f(x)的图像如图所示 x>0时2<x 5≤ x<0时-2<x 0≤例2、已知函数f (x )对一切实数x 都有f (2+x )= f (2-x ),如果方程f (x )=0恰好有4个不同的实根,求这些实根之和。

分析:由f (2+x )=f (2-x )知直线x=2是函数图象的对称轴,又f (x )=0有四根,现从 大到小依次设为x 1、x 2、x 3、x 4,则x 1与x 4,x 2与x 3均关于x=2对称, ∴x 1+x 4= x 2+x 3=2×2=4, ∴x 1+x 2+x 3+x 4=8。

评注:一般地,若函数f (x )满足f (a+x )=f (a-x ),则直线x=a 是函数图象的对称轴, 利用对称性,数形结合,可使抽象函数问题迎刃而解。

二、利用单调性定义使问题具体加上函数符号f 即为“穿”,去掉函数符号f 即为“脱”。

对于有些抽象函数,可根据函数的单调性,实现对函数符号的“穿脱”,以达到简化的目的。

例3已知f(x)是定义在(0,)上的增函数,且f(yx)=f(x)-f(y),若f(6)=1,解不等式。

f(x+5)- f(x1)<2 分析:由f(6)=1,f(y x )=f(x)-f(y)得:f(636)=f(36)-f(6),所以f(36)=2。

抽象函数的常见解法

抽象函数的常见解法

抽象函数的常见解法兴义八中李明生抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。

因此,这类问题在高中数学的各类考试中经常出现。

下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。

这类问题经常出现,要认真理解其解题的要领和方法。

例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。

分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。

解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +n各式相加得:f(n) = 1+2+3+…+n = n(n+1)2∴ f(x) = x(x+1)2例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R, y∈R,且f(0)≠0,求证:f(x)是偶函数。

分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。

证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)求证:当x > 0时, f( 1x) = -f(x)分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·1x)可求得。

求解抽象函数问题的思路

求解抽象函数问题的思路

探索探索与与研研究究抽象函数是函数中的重要知识.这类函数通常没有具体的解析式,因而抽象函数问题具有较强的抽象性.那么如何求解抽象函数问题呢?下面重点谈一谈三类抽象函数问题的解法.一、求抽象函数的值由于抽象函数没有具体的解析式,所以在求抽象函数的值时,通常需根据函数的关系式、某个点的坐标,以及抽象函数的性质:单调性、周期性、奇偶性来求函数的值.同时要关注一些特殊点,如零点、原点、对称点等的值,以找到更多的条件,顺利获得相应的函数值.例1.已知f(x)的定义域为R,f(x+2)=1-f(x)1+f(x),f(-2)=1-3,则f(2006)=().A.2-3B.1-3C.2+3D.1+3解:∵f(x+4)=f()()x+2+2=1+1+f(x)1-f(x)1-1+f(x)1-f(x)=-1f(x),且f(x+8)=f()()x+4+4=1-11f(x)=f(x),∴函数f(x)为周期函数,且周期为8,∴f(2006)=f(8×250+6)=f(6)=f(-2+8)=f(-2)=1-3.∴本题的答案为B项.解答此题,需从已知的函数关系式入手,通过恒等变换,求得函数的周期.然后根据已知点的坐标和函数的周期性求函数的值.二、求抽象函数的定义域函数的定义域往往受函数的对应法则、自变量影响,要求抽象函数的定义域,需先明确函数的对应法则以及自变量.通常可通过变换函数的自变量,利用函数的单调性、周期性、奇偶性来进行等量代换,从而求得抽象函数的定义域.例2.已知函数f(x)的定义域为[0,3],求函数f(3x+2)的定义域.解:因为函数f(x)的定义域为[0,3],所以0≤x≤3,则0≤3x+2≤3,解得-23≤x≤13,故函数f(3x+2)的定义域为[-23,13].解答本题,关键要明确f(x)中的x与f(3x+2)的3x+2的意义相同,那么二者的取值范围一致,据此建立不等式,解该不等式即可求出函数的定义域.三、抽象函数的奇偶性问题对抽象函数的奇偶性问题,通常要先根据已知的函数关系式,函数的单调性、周期性来选择合适的值进行赋值、代换;再根据奇函数、偶函数的定义判断出函数的奇偶性.一般地,若f(-x)=-f(x)成立,则该函数为奇函数;若f(-x)=f(x)成立,则该函数为偶函数.赋值法是解答抽象函数问题的基本方法之一.例3.若函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是单调递增的.如果实数t满足f(ln t)+fæèöøln1t≤2f(1),那么t的取值范围是______.解:由于函数f(x)是定义在R上的偶函数,所以f(ln t)=fæèöøln1t,由f(ln t)+fæèöøln1t≤2f(1),得f(ln t)≤f(1).又函数f(x)在区间[0,+∞)上是单调递增的,所以|ln t|≤1,即-1≤ln t≤1,故1e≤t≤e.由于已知函数为偶函数,所以可以先根据偶函数的定义判断出f(ln t)与fæèöøln1t的关系;然后根据已知关系式判断出f(ln t)与f(1)的大小关系,进而根据函数单调性的定义判断出函数的单调性,建立关于t的不等式,求得问题的答案.例4.若定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x+4)为偶函数,则().A.f(2)>f(3)B.f(2)=f(6)C.f(3)=f(5)D.f(3)>f(6)解:∵y=f(x+4)为偶函数,∴f(-x+4)=f(x+4),∴y=f(x)的图象关于直线x=4对称,∴f(2)=f(6),f(3)=f(5).又y=f(x)在(4,+∞)上为减函数,∴f(5)>f(6),所以f(3)>f(6).故本题的答案为BCD.解答本题,需灵活运用抽象函数的单调性、奇偶性、对称性,并根据选项中的数值对函数进行赋值,才能顺利得到正确的答案.由此可见,解答抽象函数问题,关键在于研究已知关系式和函数的性质,必要时需对函数进行赋值,以得到更多的条件,为解题提供更多的依据.(作者单位:江苏省滨海中学)王颖53Copyright©博看网. All Rights Reserved.。

例析求解抽象函数问题的几种途径

例析求解抽象函数问题的几种途径

解题宝典抽象函数问题对同学们的抽象思维能力和分析能力有较高的要求.抽象函数问题中往往不会给出具体的函数解析式,要求我们根据已知条件求函数的单调区间、最值、定义域,解函数不等式.下面结合实例,谈一谈解答抽象函数问题的几种途径.一、利用函数的单调性对于一些有关抽象函数的值域、单调区间、函数不等式、单调性问题,通常需根据函数单调性的定义判断出函数的单调性,进一步利用函数的单调性解题.在利用函数的单调性解题时,往往要先根据题意确定函数的定义域,判断抽象函数的单调性和单调区间,再根据函数的单调性建立关系式.例1.函数f()x是定义在R上的奇函数,且满足以下两个条件:①对任意x、y∈R,都有f()x+y=f()x+f()y;②当x>0时,f()x<0,且f()1=-2.则函数f()x在区间[]-3,3上的值域为_____.解:设x1,x2∈[]-3,3,且x1>x2,则f()x1-f()x2=f()x1+f()-x2=f()x1-x2<0,所以f()x1<f()x2,则函数f()x在区间[]-3,3上是减函数,所以f()x max=f()-3=-f()3=-f()1+2=-f()1-f()1+1=-3f()1=6,f()x min=f()3=-f()-3=-6,即函数f()x在区间[]-3,3上的值域为[]-6,6.我们根据函数单调性的定义,先令x1,x2∈[]-3,3,x1>x2;然后将f()x1-f()x2,判断出差式的符号,即可判断出函数的单调性;再根据函数在[]-3,3上的单调性确定函数的最值点,即可解题.对于闭区间上的函数最值问题,通常要重点关注区间端点值,由函数的单调性可知函数的最值往往在区间端点处取得.例2.已知函数f()x对于任意正数a,b都有f()ab=f()a⋅f()b,且f()0=1,当x>1时,f()x>1,若f()x⋅f()5-x>1,求x的取值范围.解:令x1,x2∈()0,+∞,x1<x2,则f()x2f()x1=f()x2x1⋅x1f()x1=f()x2x1f()x1f()x1=f()x2x1,因为x2x1>1,所以f()x2f()x1=f()x2x1>1,f()x2>f()x1,可知函数f()x在()0,+∞上单调递增,因为f()ab=f()a f()b,所以不等式f()x f()5-x>1等价于f()x()5-x>f()0,可得x()5-x>0,解得0<x<5,故x的取值范围为()0,5.首先将f()x1、f()x2作商,即可根据函数单调性的定义判断出抽象函数在()0,+∞上的单调性;然后利用函数的单调性去掉f()x()5-x>f()0中函数符号“f”,将不等式转化为常规不等式,即可通过解不等式求得问题的答案.解函数不等式,通常要将不等式中的自变量转化到同一单调区间内,才能根据函数的单调性将问题转化为常规不等式问题.二、换元对于含有复杂式子、复合函数的抽象函数问题,往39往要采用换元法求解.即将复杂的式子、复合函数中的某一部分式子用一个新元替换,即可将函数简化,根据函数的性质、定义域求得问题的答案.例3.已知函数y =f ()2x 的定义域为[]-1,1,求函数y =f ()x +3的定义域.解:由函数y =f ()2x 的定义域为[]-1,1,可知-1≤x ≤1,∴-2≤2x ≤2,设t =2x ,∴y =f ()t 的定义域为[]-2,2,令t =x +3,可得-2≤x +3≤2,解得-5≤x ≤-1,∴函数y =f ()x +3的定义域为[]-5,-1.函数y =f ()2x 、y =f ()x +3均为复合函数,而y =f ()2x 中的2x ,y =f ()x +3中的x +3均与y =f ()x 中的x 的意义相同,于是令t =x +3,并将t 替换2x ,通过等量代换,求得函数y =f ()x +3的定义域.三、数形结合数形结合法是解答函数问题的重要思想方法.在解答抽象函数问题时,我们可以先根据已知条件确定抽象函数的周期性、单调性、奇偶性、对称性;然后画出相应的函数图象,以明确函数图象的变化趋势,尤其要关注函数的最高点、最低点、单调区间、对称轴、对称中心、周期;再建立新的关系式,即可求得问题的答案.例4.已知f ()x 在R 上是奇函数,在区间[]0,2上单调递增,且f ()x -4=-f ()x .若方程f ()x =m ()m >0在区间[]-8,8上有四个不相等的根x 1、x 2、x 3、x 4,求x 1+x 2+x 3+x 4的值.图1解:∵f ()x 在R 上是奇函数且满足f ()x -4=-f ()x ,∴f ()x -4=f ()-x ,f ()4-x =f ()x ,∴函数的对称轴为直线x =±2,且f ()0=0,∵f ()x -4=-f ()x ,∴f ()x -8=f ()x ,∴函数的周期为8,∵函数f ()x 在区间[]0,2上单调递增,∴函数f ()x 在区间[]-2,2上单调递增,令x 1<x 2<x 3<x 4,根据图象的对称性可知x 1+x 2=-12,x 3+x 4=4,∴x 1+x 2+x 3+x 4=-12+4=-8.解答本题,需先根据已知条件确定函数的对称轴、周期以及单调性;然后画出f ()x 的大致图象,即可通过研究图象的变化情况,确定f ()x 与函数y =m 在区间[]-8,8上的4个交点的位置;再结合图象的对称性,求出x 1+x 2+x 3+x 4的值.例5.设函数f ()x 满足f ()2+x =f ()2-x ,f ()x 在[)2,+∞上是减函数,若f ()3x -1>f ()x +3,则x 的取值范围是_________.解:由题意知f ()x 的图象关于直线x =2对称,∵f ()x 在[)2,+∞上是减函数,∴f ()x 在()-∞,2上是增函数,其图象如图2所示.图2∵f ()3x -1>f ()x +3,可知点()3x -1,0到点()2,0的距离比点()x +3,0到点()2,0的距离小,∴||()3x -1-2<||()x +3-2,将不等式两边的式子平方并化简得:2x 2-5x -2<0,解得:12<x <2,∴x 的取值范围为()12,2.首先根据已知关系式确定函数的对称轴x =2和函数的单调性,即可画出函数的图象;然后结合图象,比较出点()3x -1,0和点()x +3,0到点()2,0的距离的大小关系,进而得到新不等式,通过解不等式得到x 的取值范围.解答抽象函数的问题方法很多,同学们只需根据已知条件和解题需求,进行赋值、换元、画图,灵活运用函数的性质,选择合适的方法,即可快速获得问题的答案.(作者单位:安徽省临泉第一中学)解题宝典40。

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法

抽象函数问题求解的几种常用求法抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数。

如函数的定义域、解析递推式、特定点的函数值、特定的运算性质等。

它是高中数学函数部分的难点,由于抽象函数没有具体的解析式作为载体,因此理解起来比较困难,那么怎样求解抽象函数问题呢?以下介绍几种解抽象函数问题的方法。

一. 特殊化方法1. 在求函数解析式或研究函数性质时,一般用“代换”的方法,如将x 换成x -或将x 换成1x 等。

2. 在求函数值时,可用特殊值(如0或1或-1)“代入” 例1.已知()f x 满足()123363f x f x x ⎛⎫+=⎪⎝⎭,求()f x 的解析式。

解:先令3u x =,解出3u x =,于是有:()1232f u f u u ⎛⎫+= ⎪⎝⎭-----------①再以1u代替u 得:()1223f f u u u ⎛⎫+=⎪⎝⎭------------②联立①、②式解方程组,并消去1f u ⎛⎫⎪⎝⎭,解得()6455u f u u=-即所求解析式为:()6455x f x x=-例2. 若对一切自然数a 、b 都有()()()f a b f a f b ab +=++且()11f =,求()f x 的解析式。

解:利用特殊值法 令1a =,等式变为:()()()()111f b f f b b f b b+=++=++,即:()()11f b f b b +-=+,注意到上式是一个关于自然数b 的递推关系式,令1b =, 有()()2111f f -=+2b =,有()()3221f f -=+1b n =-,有()()()111f n f n n --=-+将以上1n -条等式左右两边分别相加,得:()()()()1123111f n f n n -=++++-+⨯-即:()()()1123111f n n n =+++++-+⨯-()11232n n n -=++++=即所求解析式为:()()12x x f x -=二. 函数性质法函数的特征是通过其性质(如奇偶性、单调性、周期性、对称性、特殊点等)反应出来的,抽象函数也是如此。

抽象函数问题的类型及其解法

抽象函数问题的类型及其解法
f b f a ∴f ( a + b ) = f [ a - ( - b) ] = ( = f - b) f ( a) ・ f ( b) , x x ∴f ( x ) = f ( + ) = f 2 2 f
2
f ( a)
( )
例5 设 f ( x ) 是定义在 [ - 1 , 1 ] 上的奇 函数 , 且对任意 a 、 b ∈[ - 1 , 1 ] , 当 a + b ≠ 0
1 ∴ 数列 { f ( n ) } 是首项为 , 公差为 0 . 5 2 的等差数列 , ∴f ( 2005) = 1002 . 5 .
例2 设 f ( x ) 的定义域为 [ 0 , 1 ] a ∈( 0 , 1) 且 f ( 0) = 0 , f ( 1) = 1 , 对 所 有 x ≤y 有
2
对称 , 特别地 , 当 f ( a + x ) =
f ( a - x ) 时 f ( x ) 的图象关于 x = a 对称 . ( 自
单调性 , 任取 x1 、 x 2 ∈[ - 1 , 1 ] , 当 x1 < x 2 时 , f ( x1 ) - f ( x 2 ) = f ( x1 ) + f ( - x2 ) = f ( x 1 ) + f ( - x 2) ( x 1 - x2 ) < 0 . 即 f ( x 1 ) < x 1 + ( - x 2)
f ( a ) + f ( b) 时, 都 有: a+ b
x
> 0, 解 不 等 式
2

x
2
=
x
1 f x2
1 <f x. 4
2
> 0.

抽象函数问题有关解法

抽象函数问题有关解法

抽象函数问题有关解法一、解析式问题:1.换元法:例1:已知 ()211xf x x =++,求()f x .2.凑配法:例2:已知3311()f x x xx +=+,求()f x3.待定系数法:例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .4.利用函数性质法:例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x .例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x .5、方程组法:例 6.已知1()+2()1f x f x x=+,求()f x 的表达式二、求值问题例7. 已知定义域为R +的函数()f x ,同时满足下列条件:①1(2)1,(6)5f f ==;②(.)().()f x y f x f y =,求(3),(9)f f 的值。

三、定义域问题例8. 已知函数2()f 的定义域是[1,2],求()f x 的定义域。

例9. 已知函数()f x 的定义域是[1,2]-,求函数(3)12[]log x f -的定义域。

四、值域问题例10. 设函数()f x 定义于实数集上,对于任意实数,x y ,()()()f x y f x f y +=总成立,且存在12x x ≠,使得12()()f x f x ≠,求函数()f x 的值域。

五、判断函数的奇偶性:例11已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。

六、单调性问题例12. 设()f x 定义于实数集上,当0x >时,()1f x >,且对于任意实数,x y 有()()()f x y f x f y +=,七、解抽象不等式(确定参数的取值范围)例13:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有 给 出 函数 的具 体 解 析 式 , 给 出 了 函 数 满 足 的 一 部 分 性 质 但 或 运 算 法 则 的 函数 . 象 函 数 是 高 中数 学 函 数 部 分 的 难 点 . 抽 由于 这 类 试 题 既 能 全 面地 考 查 学 生 对 函数 概 念 及 性 质 的 理 解 , 能考查学 生的推理论证能力 , 也 同时 , 能 综 合 考 查 学 生 又
在 _x )= ( 厂 y , )+ ( ) , ( , ) 中 令 =Y=3 得 , ,


)+

)= j , _ 一)= .
^ 2
() 1 ( 2)
f 9 3 + ( )=2 () ) 厂3 .
)+

又 — ) 一 ) 所 不 式 化 = 2, 给 等 可 为 _ l 故

解 () 1令 =Y=1得 1 =2( )故 1 =0 , ) ,1 , ) . ( ) Y , 厂 1 = ) , ) , 2令 = 得 () + ( =0

例 1 已 知 函 数 f( 满 足 条 件 :( + ( )= , ) , )
则 fx ( )= .
的 的取 值 范 围.
分 析 因为 对 于 任 意 , 0 + 。 都 有 f x )=厂 )+ Y∈( , o) (y - ( f y , ( ) 用 赋 值 法 解决 . ()故 1可
数学学习与研究
2 1 . 0 04
佰 已 知 f o 0 2 ( )= 1 ( 。一b f a 一b 2 )= ( ) ( a—b+ 1 , ) 求_ ) 厂 . ( 解 令 0=0 则 一 ) ,0 一b 一 , b = ( ) (b+1 =b 一6+1 ) ,
再令 一 , 得 厂 = + +1 b= 即 ( ) . 三、 利用 函数 的性 质 求 解 1 利 用 函数 的 单 调 性 .

对 于 ( ) 欲 化 去 函 数 符 号 “ ’ 应 用 单 调 性 , 应 把 3, 厂须 故 不 等 式 两 端 变 形 为 f x )>f x) 形 式 , 键 利 用 已知 条 ( ( 的 关
件 了 ) 1 2化 为 函数 值 的形 式 . 1 =- 把
对 数 学符 号 语 言 的 理 解 和 接 受 能 力 , 往 也 是 高 考 考 查 的 重 往 点. 文 通 过 几 个 实 例 来 研 究 其 求 解 策 略 . 本 以供 参 考 . 直 接 利 用 给 出 函 数 的 对 称 性 求 解
故,÷ ) ) ( = .
任 取 l 2 0, 。) 且 l 2 , E( + 。 , < ,
分析 出
由 于 难 以 判 断 fx 是 何 种 类 型 函 数 , 不 可 先 设 () 故
) 表 达 式 , 如 果 把 条 件 中 的 换 成 __ 即 得 - ) 的 但 l, _ 厂 ( +
单化 、 体化 , 具 最终 获解 .
有fx+Y = ( + Y , 当 >0时 ( ) , ) ) 又
) <0且, 2 =一 . () 1
试 问 函数 厂 ) 区间 [ 6 6 上是 否 存在 最大 值 与 最小 值 ?若 ( 在 一 ,3 存 在 , 出最 大 值 , 小值 、 不 存 在 , 说 明理 由. 求 最 若 请
fx + () 一2 9 , xx一2 ]≥- 9 , )≥ )即 ( ) 厂 ) (
f > 0,
() 1 ×2一( ) 得 2,

) =
j பைடு நூலகம்

点评
充 分 抓 住 已知 条 件 式 的 结 构 特 征 , 用 , 的 对 运 1
所以{ 2 0 一 > ,
解得 ≥ 1 / . +、i

例 3 已知 函 数f x 的定 义 域 是 ( , ) >1时 厂 > () 0+ , ( ) 0 且 x ) , ) ) , y =( + .
( ) 厂1 ; 1 求 ( )
( ) 明fx 在 定 义 域 上 是 增 函数 ; 2证 ()
() 3 如果 1 )=一 求满 足 不 等 式 1
分 析 因 为对 于 任 意 , ∈( 。,∞) 有 fx y = () Y 一 。+ 都 ( + ) , + y , 可 用 赋 值 法 解 决 函数 的奇 偶 性 , 对 于 条 件 “ >0 )故 又 当 时 , ) ” 解决 函数 的单 调 性 . <0 可 解 () 1 令 = Y=0 得 0 = O , , ) ) 故 0 :0 ) . 令 Y , f x ) , + ( ) , 0 =0 = 得 ( 一 = () l : ( ) . 厂 所 以 厂一 ) fx , ( ) 奇 函数 . ( =-( ) 即fx 是 设 l 2 , ER, 且 1 2贝 fx 一 ) . ) f x) < ,0 (2 I=厂 2 一 (1 ( . 因 2 l , (2 1<0 一 >0 由fx 一 ) , 故 fx) . ) 即 . 是 减 函数 , (: <厂 ,, 厂 ) ( ( 因此 . 在 [6 + j 厂 ) 一 ,6 上 (

酶 ●
解 题 技 巧 与 方法

戮・

◎赵 福 龙
( 东省 淄 博 第 四 中学 山
250 ) 5 10
我 们 在 学 习 函数 的 性 质 以 后 , 常 遇 到 一 类 题 目 , 有 经 没
解 析 式 , 没 有 图 像 , 是 给 出 函数 的部 分 性 质 或 运 算 法 则 , 也 只 去 讨 论 这 类 函数 的其 他 性 质 . 类 题 目往 往 给 同 学 们 带 来 一 这 定 困 惑 , 从 下 手 . 们 先 把 这 种 函数 称 为 抽 象 函数 , 无 我 即指 没

有最大值和最小值.
) - 一( 厂
) 2 ≥
最, 值 为f( )=f 4)+厂 2)=3( J 、 6 ( ( f 2)=一 3,
最 大 值为 厂一 ( 6)= 一厂6 =3 () . 通 过 前 几 个 实 例 ,不 难 发 现 对 于解 决 抽 象 函数 问 题 , 关 键 是 用 好 所 给 的 条件 和 运 算 法 则 , 紧 紧 围 绕 函 数 的单 调 性 、 奇 偶性 、 期 性 等 性 质 解 答 相 关 问 题 . 周
对 于 ( ) 证 明f x 是 单 调 增 函 数 , 定 义 证 明 , > 2要 () 用 时 ( ,> x) 应 充 分 应用 >1 ) f(2, 时 ) >0这 一 条 件 来 构 造
・ ・
) 厂 =( ‘
z =f 1) fx) ) ( x + (2・

>1 . ( 1) ,・ X) fx) ’・ >0 ・ 1 > (2・ . x f ・
) 为 一 个 整 量 , 际 上 得 到 了 这 两 作 实
个 量 的方 程 组 .
解 用 代 换 条 件 方 程 中 的 , / _ 得 (I)+ _
把它与原条件式联立 , 即得


) , =
( 由 , =1 = ( ,厂 ) 1 3 于 ( 一, })-3 故 ( =. ) }) 而 f) 3
) = , 把 )
2, 1
贝 : 一 (。 = : + ( ) 丝 ) U ) 厂 ) ) _ = 厂 , 由 于 X >1故 堕 ) , 而 _ ) , ) 2 , >0 从 厂 2 > (1 ( . 所 以 fx 在 ( , ) ( ) 0 + 上是 增 函数 .
1 一 2 ( )≥ 9.
称性求解.
二 、 值 法求 解 赋
因此 , 取 值 范 围 是 『 +、 1 ,。] 的 1 / 0 + 。 2 利 用 函 数 的 奇 偶 性 .
例 4 设 函 数 ) 的定 义 域 为 R, 于 任 意 的 实 数 , 对 Y都
此 类 题 解 法 依 据 是 : 果 一 个 函 数 关 系式 中 的 变 量 对 某 如 个 范 围 内 的一 切 都 成 立 ,则 该 范 围 内 的 某 些 特 殊 值 必 成 立 。 结 合 题 设 条 件 的 结 构 特 点 。 变 量 适 当取 值 , 而 使 问题 简 给 从
相关文档
最新文档