24.3 .1 正多边形和圆优质课教案完美版
人教版九年级数学上册教案:24.3正多边形和圆课堂优秀教学案例
3.结合学生的课堂表现、作业完成情况和小组合作情况,进行全面评价,关注学生的知识掌握、能力发展和情Байду номын сангаас态度。
四、教学内容与过程
(一)导入新课
1.利用图片展示正多边形的实际应用场景,如足球、蜂窝等,引发学生对正多边形的兴趣,激发学生的学习动机。
2.创设问题情境,如“为什么足球是正二十面体?”、“蜂窝为什么是正六边形?”等,引导学生思考正多边形的特征和性质。
3.小组合作:本节课鼓励学生进行小组合作学习和讨论,培养了学生的团队合作意识和沟通能力。通过小组合作,学生能够共同解决问题,分享自己的学习和研究成果,提高了学生的表达能力和批判性思维。
4.反思与评价:本节课在课堂结束前,引导学生进行自我反思,总结自己在课堂上的学习情况和收获。同时,设置了不同难度的题目,让学生在课后进行巩固练习。通过这种方式,学生能够及时巩固所学知识,提高自我认知和自我评价能力。
3.在解决问题的过程中,引导学生总结正多边形的性质和规律,提高学生的数学思维能力和逻辑推理能力。
(三)小组合作
1.将学生分成小组,鼓励学生进行合作学习和讨论,培养学生的团队合作意识和沟通能力。
2.设计小组合作任务,如:“观察并描述正多边形的性质”、“制作正多边形的模型”等,让学生在实践中掌握正多边形的知识。
3.利用多媒体课件展示正多边形的动态变化,让学生直观感受正多边形的魅力,引发学生的探究欲望。
(二)问题导向
1.设计一系列问题,引导学生逐步深入探究正多边形的定义、性质和与圆的关系。如:“正多边形有什么特点?”,“正多边形的边数与圆有什么关系?”,“如何判断一个多边形是正多边形?”等。
人教版七年级数学上册24.3正多边形和圆优秀教学案例
1.将学生分成小组,每组选择一个正多边形进行研究,分工合作,共同探索正多边形的性质。
2.鼓励小组成员之间积极交流、讨论,培养学生的团队合作能力和沟通能力。
3.各小组汇报自己的研究成果,其他小组进行评价和提问,促进学生之间的互动和思考。
(四Байду номын сангаас反思与评价
1.引导学生对自己在探究过程中的思考、操作和交流进行反思,培养学生自我评价和自我改进的能力。
3.鼓励小组成员之间积极交流、讨论,培养学生的团队合作能力和沟通能力。
(四)总结归纳
1.各小组汇报自己的研究成果,教师引导学生进行总结和归纳,得出正多边形的性质和规律。
2.强调正多边形与圆的关系,引导学生理解圆是正多边形的一种特殊情况。
3.总结正多边形的作图方法,并提醒学生在实际应用中注意圆心角和半径的选取。
4.反思与评价提高学生自我认知:本节课鼓励学生对自己在探究过程中的思考、操作和交流进行反思,培养学生的自我评价和自我改进的能力。教师对学生的探究过程和结果进行评价,关注学生的知识掌握、能力发展和情感态度,给予积极的反馈和指导。
5.教学内容与过程详细且具有逻辑性:本节课的教学内容与过程设计得非常详细,从导入新课到讲授新知,再到学生小组讨论、总结归纳和作业小结,每一个环节都紧密结合,具有很强的逻辑性。这样的设计有助于学生更好地理解和掌握正多边形的性质和作图方法,提高学生的学习效果。
(二)过程与方法
1.通过观察、分析和操作,让学生经历正多边形性质的探索过程,培养学生的观察能力和分析能力。
2.利用几何画图软件或手工工具,进行正多边形的作图实践,提高学生的动手操作能力。
3.引导学生运用类比、归纳等数学方法,探索正多边形与圆的关系,培养学生的逻辑思维能力。
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计
人教版九年级数学上册《第二十四章圆24.3正多边形和圆》教学设计一. 教材分析人教版九年级数学上册《第二十四章圆24.3正多边形和圆》的内容包括正多边形的定义、性质和圆的定义、性质。
本章节的目的是让学生理解正多边形和圆的关系,掌握正多边形的计算方法,以及了解圆的性质和应用。
本节课的教学内容是24.3正多边形和圆,主要包括正多边形的定义、性质和圆的定义、性质。
二. 学情分析九年级的学生已经掌握了基本的代数和几何知识,对于图形的理解和计算能力有一定的基础。
但是,对于正多边形和圆的关系,以及圆的性质和应用可能还存在一定的困难。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,自主探索正多边形和圆的性质,提高他们的空间想象能力和思维能力。
三. 教学目标1.知识与技能:使学生掌握正多边形的定义、性质,理解圆的定义、性质,能够运用正多边形和圆的知识解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的空间想象能力和思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:正多边形的定义、性质,圆的定义、性质。
2.难点:正多边形和圆的关系,圆的性质和应用。
五. 教学方法1.情境教学法:通过实物、图片、几何画板等直观教具,引导学生观察、操作、思考,激发学生的学习兴趣。
2.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
3.合作学习法:学生进行小组讨论,培养学生的团队合作意识和交流能力。
4.归纳总结法:引导学生通过总结归纳,形成系统的知识结构。
六. 教学准备1.教学课件:制作精美的课件,包括图片、几何画板等直观教具。
2.教学素材:准备相关的实物、图片等教学素材。
3.教学用具:准备黑板、粉笔、直尺、圆规等教学用具。
七. 教学过程1.导入(5分钟)利用实物、图片等教学素材,引导学生观察正多边形和圆的实例,激发学生的学习兴趣。
24.3 正多边形和圆(1)教案
24.3 正多边形和圆(1)教案教学目标:1.了解正多边形与圆的关系,了解正多边形的中心、半径、边心距、中心角等概念.2.在经历探索正多边形与圆的关系过程中,学会运用圆的有关知识解决问题,并能运用正多边形的知识解决圆的有关计算问题.教学重点与难点:重点:探索正多边形与圆的关系,了解正多边形的有关概念,并能进行计算难点:探索正多边形与圆的关系.教学过程:一、图片欣赏,激发兴趣我们知道,各边相等,各角也相等的多边形是正多边形。
日常生活中,我们经常能看到正多边形形状的物体,利用正多边形,我们也可以得到许多美丽的图案。
提出问题:(1)你还能再举出一些这样的例子吗?(2)这些美丽的图案是怎样画出来的呢?二、动手操作,探求新知问题1:给你一个圆,你能把这个圆周四等分吗?(学生动手尝试,并要求讲出画图的方法)问题2:你能把一个圆周五等分吗?请说出你的画法。
归纳:要把一个圆周进行等分,只要把圆心角进行等分就可以了。
一般地,要把一个圆周n等分,只要把圆周角n等分即可,每一个圆心角的度数是360n。
问题3:顺次连结圆周上的四等分点,得到的是不是正方形呢?顺次连结圆周上的五等分点,得到的是不是正五边形呢?顺次连结圆周上的n等分点,得到的是不是正多边形呢?(证明过程可以由学生讨论后完成,教师适当点拨)以下是正五边形的证明过程:可见,正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正五边形,这个圆就是这个正五边形的外接圆。
【定义】正多边形与圆的有关概念:我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。
三、例题讲解例:有一个亭子,如图,它的地基是半径为4m的正六边形,求地基的周长和面积(精确到0.1m2)。
四、课堂小结1、正多边形的有关概念2、正三角形、正方形、正六边形的半径、边长、边心距之间的关系3、正n边形的中心角的度数,中心角与每一个外角的关系以及每一个内角的读数。
初中数学《正多边形和圆》第一课时 教案
____,它的内角和为______;
(4)如果一个正多边形的一个外角等于一个内角
的三分之二,则这个正多边形的边数n=____;
(5)正六边形的边长为1,则它的半径为_____,面积为________;
(6)同圆的内接正三角形、正方形、正六边形的边长之比为________________;
二、探究新知
什么叫正多边形? 各边相等,各角相等的多边形.
什么是正多形的边心距、半径?
正多边形的边有什么性质、角有什么性质?
什么叫正多边形的中心角?
正n边形的中心角度数如何计算?
正n边形的一个外角度数如何计算?
【例】有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积(结果保留小数点后一位).
(7)正三角形的高∶半径∶边心距为_________;
(8)边长为1的正六边形的内切圆的面积是____.
四、课堂小结(抽小组小结:小组内1人小结,其余同学补充)
1.本节课你有哪些收获?正多边形与圆有什么关系?
2.还有没解决的问题吗?本节课学习了哪些与正多边形有关的概念?在解决有关的计算问题时,关键是什么?
正n边形的n条半径、n条边心距将正n边形分割成全等直角三角形的个数是多少?
每个直角三角形都由正多边形的哪些元素组成?
三、小组学生探究练习
(1)正n边形的半径和边心距把正n边形分成___个全等的直角三角形;
(2)正三角形的半径为R,则边长为_____,边心距为______,面积为________.若正三角形边长为a,则半径为______;
4.素养:通过探究正多边形在生活中的实际应用,增强对生活的热爱
重点难点
重点:正多边形的有关概念,特殊正多边形的有关计算;
人教版数学九年级上册第24章圆24.3正多边形和圆优秀教学案例
3.总结本节课的学习方法,如观察、操作、探究、合作等。
4.布置课后作业,巩固所学知识。
(五)作业小结
1.教师发放课后作业,要求学生运用所学知识解决实际问题。
2.提醒学生在完成作业过程中注意审题、仔细计算、规范书写。
3.鼓励学生遇到问题时互相讨论、请教教师,提高解题能力。 Nhomakorabea五、案例亮点
1.生活情境的创设:本节课通过展示生活中的正多边形实例,让学生感受到了数学与生活的紧密联系,激发了学生的学习兴趣。这种情境的创设,不仅让学生在课堂上保持高度的热情,而且有助于提高学生的应用能力,使他们在解决实际问题时能够自然而然地想到运用所学知识。
1.教师展示一系列生活中常见的正多边形图片,如正方形、正三角形、正六边形等,引导学生关注正多边形的美感及其在生活中的应用。
2.提问:“同学们,你们能找出这些图片中的共同特征吗?这些图形有什么特别之处?”让学生思考并回答。
3.总结:正多边形具有对称性、边长相等、内角相等等特征。这些特征使得正多边形在生活中的应用非常广泛。
4.最后提问:“如何用圆规和直尺绘制正多边形?请同学们尝试绘制一个正六边形。”激发学生的动手操作欲望。
(三)小组合作
1.将学生分成若干小组,每组选定一个正多边形进行研究。
2.给出研究任务:“请同学们探究你们所选的正多边形的性质,并尝试用数学语言表达。”
3.组织小组讨论,鼓励学生发表自己的观点,培养学生的合作精神和团队意识。
本节课的教学策略旨在激发学生的学习兴趣,培养学生的探究能力和合作精神。通过情景创设、问题导向、小组合作和反思与评价等环节,引导学生主动参与课堂,提高学生的数学素养。同时,关注学生的情感态度与价值观的培养,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。
人教版数学九年级上册24.3.1《正多边形和圆》说课稿
人教版数学九年级上册24.3.1《正多边形和圆》说课稿一. 教材分析《正多边形和圆》是人教版数学九年级上册第24章第3节的内容。
本节课主要介绍正多边形的定义、性质以及与圆的关系。
通过学习,使学生能够理解正多边形的概念,掌握正多边形的性质,并能够运用这些性质解决实际问题。
教材通过丰富的图片和实例,引发学生的兴趣,引导学生探究正多边形与圆的内在联系,培养学生的空间想象能力和逻辑思维能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对图形的认识和理解有一定的基础。
但是,对于正多边形的定义和性质,以及与圆的关系,可能还比较陌生。
因此,在教学过程中,需要注重引导学生从已有的知识出发,探究新知识,激发学生的学习兴趣,帮助学生建立知识体系。
三. 说教学目标1.知识与技能:理解正多边形的定义,掌握正多边形的性质,了解正多边形与圆的关系。
2.过程与方法:通过观察、分析、归纳等方法,探究正多边形的性质,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学的美。
四. 说教学重难点1.教学重点:正多边形的定义,正多边形的性质。
2.教学难点:正多边形与圆的关系,正多边形的性质在实际问题中的应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、启发式教学法、合作学习法等,引导学生主动探究,积极参与课堂活动。
2.教学手段:利用多媒体课件、实物模型、几何画板等,直观展示正多边形的性质和与圆的关系,提高学生的学习兴趣。
六. 说教学过程1.导入:通过展示一些生活中的正多边形图片,如足球、骰子等,引导学生关注正多边形,激发学生的学习兴趣。
2.探究正多边形的定义和性质:学生分组讨论,每组找出正多边形的定义和性质,最后进行汇报和交流。
3.揭示正多边形与圆的关系:引导学生观察正多边形的特点,引导学生发现正多边形可以看作圆的内接多边形,从而得出正多边形与圆的关系。
九年级数学: 24.3 正多边形和圆教案
24.3正多边形和圆教案一、【教材分析】1.通过正多边形性质的教学培养学生的探索、推理、归纳、迁移等能力;2.通过正多边形有关概念的教学培养学生的阅读理解能力.二、【教学流程】边形是中心对称图形,其对称中心是正多边形对应顶点的连线交点.自主探究问题一、如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,正六边形ABCDEF,连结AD、CF交于一点,以O为圆心,OA为半径作圆,那么肯定B、C、D、E、F都在这个圆上.问题二、我们以圆内接正六边形为例证明.如图所示的圆,把⊙O分成相等的6段弧,依次连接各分点得到六边ABCDEF,下面证明,它是正六边形.问题三总结和归纳问题1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.教师提出问题学生相互讨论思考1.如何画这个图形的外接圆?2.圆与正多边形顶点以及位置关系是怎么样的?3.如何利用圆画正多形:作相等的弧外接圆与内接圆的区别和联系?在教师和和学生的探讨中解决问题:在动手操作与实践中认识问题对问题的一种升华认识对问题的梳理认识尝试应用1.已知正六边形ABCDEF,如图所示,其外接圆的半径是a,求正六边形的周长和面积.2.利用正多边形的概念和性质来画正多边形,利用手中的工具画一个边长为3cm的正五边形(1)画法(2)步骤3. 巩固训练教材P106 练习1、2、3 P108 探究题、练习.教师提出问题学生独立思考解答并板书师生探讨分析:要画正五边形,首先要画一个圆,然后对圆五等分,因此,应该先求边长为3的正五边形的半径可选做,学生独立完成一种成果的展示探讨正多边形的画法补偿提高1.在直径为AB的半圆内,划出一块三角形区域,如图所示,使三角形的一边为AB,顶点C在半圆圆周上,其它两边分别为6和8,现要建造一个内接于△ABC的矩形水池DEFN,其中D、E在AB上,如图24-94的设计方案是使AC=8,BC=6.(1)求△ABC的边AB上的高h.(2)设DN=x,且h DN NFh AB-=,当x取何值时,水池DEFN的面积最大?(3)实际施工时,发现在AB上距B点1.85的M处有一棵大树,问:这棵大树是否位于最大矩形水池的边上?如果在,为了保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开大树.让学生课堂讨论分析:要求矩形的面积最大,先要列出面积表达式,再考虑最值的求法,初中阶段,尤其现学的知识,应用配方法求最值.(3)的设计要有新意,应用圆的对称性就能圆满解决此题对不同能力学生的升华认识_h_F_D_E_C_B_A_N_GFDECBAOM解:(1)由AB ·CG =AC ·BC 得h=8610AC BC AB ⨯=g =4.8(2)当x =2.4时,S DEFN 最大(3)当S DEFN 最大时,x =2.4,此时,F 为BC 中点,在Rt △FEB 中,EF =2.4,BF =3. ∴BE =22223 2.4DE EF -=-=1.8 ∵BM =1.85,∴BM >EB ,即大树必位于欲修建的水池边上,应重新设计方案. ∵当x =2.4时,DE =5∴AD =3.2,由圆的对称性知满足条件的另一设计方案,如图所示:小结:三、【板书设计】24.3 正多边形和圆1.一个正多边形的外接圆的圆心叫做这个多边形的中心.2. 外接圆的半径叫做正多边形的半径.3. 正多边形每一边所对的圆心角叫做正多边形的中心角.4. 中心到正多边形的一边的距离叫做正多边形的边心距.四、【教后反思】《正多边形与圆》这一节的教学目标是:让学生能将正多边形的有关计算问题转化为解直角三角形的问题来解决;会用量角器或尺规等分圆、画出正多边形.通过学习使学生能认识到事物之间是普遍联系的,事物之间是可以相互转化的,并培养和训练学生的综合运用知识能力和解决实际问题的能力,渗透数形结合的思想和方法.。
24.3 正多边形和圆教学设计
24.3 正多边形和圆正多边形和圆是在学习了三角形、四边形、多边形以及圆的相关知识后的内容,是前一阶段知识的运用和提高.正多边形是一种特殊的多边形,它有一些类似于圆的特性.研究正多边形和圆的关系,掌握有关正多边形的计算是进一步学习数学及其它学科的重要基础.本课时注意培养学生观察、猜想、推理和迁移的能力以及具体到抽象,亲身体验知识的发生与发展的过程.利用正多边形和圆的位置关系,把形的问题转化成了数的问题,体现了数形结合的思想.【情景导入】(1)我国古代数学家刘徽,在公元三世纪用“割圆术”求得π的近似值为15750≈3.14,祖冲之在公元五世纪又进一步求得π的值在3.141 592 6与3.141 592 7之间,现代利用电子计算机,已有人把π的值算到小数点后几十万位.它是从圆内接正六边形开始,逐步计算所得的结果.(2)你知道正多边形和圆有什么关系吗?给你一个圆,怎样作出一个正多边形?圆中依次出现几段相等的弧?【说明与建议】 说明:通过对“割圆术”的导入,激发学生的学习兴趣和探究新知的欲望,还能让学生对古代数学的伟大成就有所了解,增强爱国热情.建议:研究正多边形和圆的时候,可以让学生回顾在同圆或等圆中,等弧所对的弦相等,所对的圆周角相等这两个结论.【复习导入】(1)观察下图中的等边三角形、正方形、正五边形、正六边形,你能说出这些图形的各自特征吗?(2)回顾:等边三角形和正方形的边、角各有什么性质? (3)正多边形的定义是什么?正多边形和圆有什么关系?【说明与建议】 说明:通过对等边三角形、正方形的回顾,加强新旧知识之间的联系,类比旧知识的学习方法、数学思想来学习新知识.建议:为了明确正多边形的概念,可以请同学们举自己在日常生活中见过的正多边形的例子(正三角形、正方形、正六边形……).命题角度1 与正多边形有关的计算1.(河池中考)如图,在正六边形ABCDEF 中,AC =23,则它的边长是(D)A .1B. 2C. 3D .22.(广元中考)如图,⊙O 是正五边形ABCDE 的外接圆,点P 是AE ︵的一点,则∠CPD 的度数是(B)A .30°B .36°C .45°D .72°3.(德阳中考)已知圆内接正三角形的面积为3,则该圆的内接正六边形的边心距是(B) A .2B .1C. 3D.324.(广州中考)已知圆的半径是23,则该圆的内接正六边形的面积是(C) A .3 3B .9 3C .18 3D .36 3命题角度2 画正多边形5.(兰州中考)如图,已知⊙O ,用尺规作⊙O 的内接正四边形ABCD.(写出结论,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔描黑)解:如图所示,四边形ABCD 即为所求作.关于圆周率π我们知道,圆的周长C =2πR.但是,你知道公式中的π值是怎样算出来的吗?实际上π=C2R ,式中圆的周长C 是可以用圆内接正多边形的周长p n 来近似代替的.如图,当圆内接正n 边形的边数不断地成倍增大时,它的周长p n 就不断地增大,并会越来越接近于圆的周长C ,于是p n 2R 的值越来越接近C2R的值.如果半径为R 的圆内接正n 边形的边长为a n ,可以求得它的内接正2n 边形的边长这个公式叫倍边公式,利用它就可以算出半径为R 的圆内接正2n 、4n 、8n 、…边形的边长,进而可计算p 2n 2R 、p 4n 2R 、p 8n 2R 、…,这些值就越来越接近于圆的周长与直径的比值C2R ,这个数就是圆周率π.π的精确值是一个无限不循环小数,就是说,π是一个无理数.π=3.141 592 653 589 793…,应用时根据实际需要,取π的近似值.我国古代数学家刘徽,在公元三世纪用“割圆术”求得π的近似值为15750=3.14,祖冲之在公元五世纪又进一步求得π的值在3.141 592 6与3.141 592 7之间,是当时世界上最先进的成就.现代利用电子计算机,已有人把π的值算到小数点后几十万位.下表是从圆内接正六边形开始,逐步计算所得的结果.由于C2R=π,所以C =2πR.另外,根据正n 边形的面积S n =12r n p n ,当边数n 无限增大时,r n 趋近于R ,p n 趋近于C ,所以圆的面积S =12RC =12R ·2πR =πR 2.我国许多数学家对圆周率的研究做出过很大贡献.在公元前一世纪的《周髀算经》里,已谈到“周三径一”,称之为古率.西汉末年,刘歆定圆周率为3.1547,后人称做歆率.三国时魏刘徽(公元263年),始创“割圆求周”的方法,他从圆内接正六边形算起,算到正192边形,他取3.14或15750作为圆周率,我们称3.14为徽率.到南朝祖冲之(公元429~500年)求得圆周率在3.141 592 6~3.141 592 7之间,把π=355113叫做密率,π=227叫做约率,后人称之为祖率,他所得的结果,精确到了七位小数,在当时世界上是最好的结果.【探究新知】问题1:针对【课堂引入】的问题进行探究.师生活动:教师演示作图,并引导学生从正多边形的定义入手来证明,让学生观察、分析,教师指导学生完成证明过程. 教师在学生思考、交流的基础上板书证明过程: 如图,∵AB ︵=BC ︵=CD ︵=DE ︵=EA ︵,∴AB =BC =CD =DE =EA ,BAD ︵=CAE ︵=3AB ︵. ∴∠C =∠D.同理可证:∠A =∠B =∠C =∠D =∠E , ∴五边形ABCDE 是正五边形. ∵点A ,B ,C ,D ,E 在⊙O 上, ∴五边形ABCDE 是圆内接正五边形.问题2:如果将圆n 等分,依次连接各等分点得到一个n 边形,这个n 边形一定是正n 边形吗?师生活动:学生思考,小组内交流、讨论,教师根据学生回答进行总结.教师重点关注:学生能否按照证明圆内接正五边形的方法证明圆内接正n 边形.问题3:各边相等的圆内接多边形是正多边形吗?各角相等的圆内接多边形呢?请说明理由.师生活动:学生讨论,思考回答,教师进行总结讲解.活动一:教师演示课件,给出正多边形的中心、半径、中心角、边心距等概念(如图).教师提出问题:(1)正多边形的中心角怎么计算?(2)边长a ,半径R ,边心距r 之间有什么关系? (3)正多边形的面积如何计算?师生活动:学生在教师的引导下,结合图形,得到结论: 正n 边形的中心角等于360°n ,边长a ,半径R 和边心距r 的关系为(a 2)2+r 2=R 2. 活动二:提出问题:如何把一个圆n 等分呢?师生活动:学生小组内讨论,如果把360°的圆心角n 等分,那么弧也被n 等分,即可得到正多边形. 教师引导分析:①正方形的中心角为90°,说明相邻两条半径互相垂直;②正六边形的中心角为60°,说明相邻半径和边构成的三角形是等边三角形.面积.例2 利用手中的工具求作一个边长为3 cm 的正六边形.师生活动:学生先独立解决问题,然后小组内讨论,教师鼓励学生勇于探索实践,上讲台演示,教师要重点关注学生的解题过程.图1 图2解:方法一:如图1,以3 cm 为半径作一个⊙O ,用量角器画一个等于360°÷6=60°的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,即可得到正六边形. 方法二:如图2,以 3 cm 为半径作一个⊙O ,由于正六边形的半径等于边长,所以在圆上依次截取长度等于3 cm 的弦,就可以将圆六等分,顺次连接各等分点即可. 【变式训练】在半径为2 cm 的圆上,用量角器作出它的圆内接正七边形. 解:(1)作⊙O ,使r =2 cm ; (2)计算360°7≈51.4°;(3)用量角器在圆上画一个∠AOB =51.4°; (4)在圆上依次截取BC ︵=CD ︵=DE ︵=EF ︵=FG ︵=GA ︵=AB ︵;(5)依次连接AB ,BC ,…,GA ,则七边形ABCDEFG 为所作正七边形.4.如图,正方形的边长为1 dm ,剪去四个角后成为一个正八边形.求这个正八边形的边长和面积.解:设正八边形的边长为x ,则被剪掉小直角三角形的直角边为22x , 由题意,得x +2·22x =1, 解得x =2-1.所以小直角三角形的直角边为22(2-1)=1-22. 所以正八边形的面积为12-4×12×(1-22)2=1-2×(32-2)=22-2.答:这个正八边形的边长为(2-1)dm ,面积为(22-2)dm 2.。
部编版人教初中数学九年级上册《24.3 正多边形和圆 教学设计》最新精品优秀完美实用教案
前言:
该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)
24.3 正多边形和圆
教学目标
1. 了解正多边形和圆的有关概念;理解并掌握正多边形半径、中心角、边心距、边长之间的关系,会应用正多边形和圆的有关知识解决实际问题。
2. 通过正多边形与圆的关系的教学培养学生观察、猜想、推理、迁移的能力。
3. 通过探究正多边形在生活中的实际应用,增强对生活的热爱。
重点:1.正多边形的有关概念,特殊正多边形的有关计算。
2.掌握圆内接正多边形的半径、边心距、边长三者之间的联系。
难点:1.正多边形的半径、中心角、边心距、边长之间关系的正确理解与计算。
2.会作圆和正多边形的辅助性,构造直角三角形,运用勾股定理。
课前准备
师:多媒体课件、圆形纸片生:直尺、圆规、圆形纸片
教学过程
一、复习回顾,引入新课
问题1:观察下面多边形,找出它们的边、角有什么特点?(幻灯3)
问题2:观看大屏幕上这些美丽的图案,都是在日常生活中我们经常能看到的.
你能从这些图案中找出正多边形来吗? (幻灯4)
【教学备注】
【设计意图】让
学生观察、归纳
出正多边形的
特点。
部编版人教初中数学九年级上册《24.3 正多边形和圆 教学设计》最新精品优秀完美实用教案
前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)24.3 正多边形和圆教学内容1.正多边形和圆的有关概念:正多边形的外接圆,正多边形的中心,•正多边形的半径,正多边形的中心角,正多边形的边心距.2.在正多边形和圆中,圆的半径、边长、边心距中心角之间的等量关系.3.正多边形的画法.教学目标了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.重难点、关键1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、•边长之间的关系.2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、•弦心距、边长之间的关系.教学过程一、复习引入请同学们口答下面两个问题.1.什么叫正多边形?2.从你身边举出两三个正多边形的实例,正多边形具有轴对称、•中心对称吗?其对称轴有几条,对称中心是哪一点?老师点评:1.各边相等,各角也相等的多边形是正多边形.2.实例略.正多边形是轴对称图形,对称轴有无数多条;•正多边形是中11 心对称图形,其对称中心是正多边形对应顶点的连线交点.二、探索新知如果我们以正多边形对应顶点的交点作为圆心,过点到顶点的连线为半径,能够作一个圆,很明显,这个正多边形的各个顶点都在这个圆上,如图,•正六边形ABCDEF ,连结AD 、CF交于一点,以O 为圆心,OA 为半径作圆,那么肯定B 、C 、•D 、E 、F 都在这个圆上.因此,正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.我们以圆内接正六边形为例证明.如图所示的圆,把⊙O•分成相等的6•段弧,依次连接各分点得到六边ABCDEF ,下面证明,它是正六边形.∵AB=BC=CD=DE=EF∴AB=BC=CD=DE=EF又∴∠A=12BCF=12(BC+CD+DE+EF )=2BC ∠B=12CDA=12(CD+DE+EF+FA )=2CD ∴∠A=∠B同理可证:∠B=∠C=∠D=∠E=∠F=∠A又六边形ABCDEF 的顶点都在⊙O 上∴根据正多边形的定义,各边相等、各角相等、六边形ABCDEF 是⊙O 的内接正六边形,⊙O 是正六边形ABCDEF 的外接圆.为了今后学习和应用的方便,•我们把一个正多边形的外接圆的圆心叫做这个多边形的中心.外接圆的半径叫做正多边形的半径.正多边形每一边所对的圆心角叫做正多边形的中心角.中心到正多边形的一边的距离叫做正多边形的边心距.例1.已知正六边形ABCDEF ,如图所示,其外接圆的半径是a ,•求正六边形的周长和面积.分析:要求正六边形的周长,只要求AB 的长,已知D E B O M。
人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计
人教版九年级数学上册24.3.1《正多边形和圆(1)》教学设计一. 教材分析《正多边形和圆》是人教版九年级数学上册第24章第三节的第一课时内容,主要介绍了正多边形的定义、性质以及与圆的关系。
本节课的内容是学生对几何图形学习的进一步深化,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
教材通过生活中的实例引入正多边形和圆的概念,让学生感受数学与生活的紧密联系,激发学生的学习兴趣。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对图形的认识有一定的深度。
但是,对于正多边形和圆的性质和关系,可能还比较陌生。
因此,在教学过程中,需要教师通过生动形象的实例和直观的图形,帮助学生理解和掌握正多边形和圆的概念和性质。
三. 教学目标1.了解正多边形的定义和性质,能够识别和判断正多边形。
2.理解圆的概念,掌握圆的性质。
3.掌握正多边形与圆的关系,能够运用正多边形和圆的知识解决实际问题。
四. 教学重难点1.重难点:正多边形的定义和性质,圆的概念和性质。
2.难点:正多边形与圆的关系的理解和运用。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索,激发学生的学习兴趣和积极性。
2.采用直观演示法,通过实物和图形的展示,帮助学生直观地理解和掌握正多边形和圆的概念和性质。
3.采用归纳总结法,通过总结和归纳,使学生对正多边形和圆的知识有一个系统的认识。
六. 教学准备1.准备相关的图形和图片,如正多边形和圆的实物图片,正多边形和圆的模型等。
2.准备相关的教学PPT,内容包括正多边形和圆的定义、性质和关系等。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾已学过的几何图形,如三角形、四边形等,激发学生的学习兴趣。
然后,展示一些生活中的实例,如五角星、车轮等,引导学生思考这些图形的共同特征。
2.呈现(10分钟)教师展示正多边形和圆的实物图片和模型,引导学生观察和描述正多边形和圆的特征。
然后,教师通过PPT呈现正多边形和圆的定义和性质,让学生初步了解和掌握。
人教版数学九年级上册24.3《正多边形和圆》教学设计
人教版数学九年级上册24.3《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人教版数学九年级上册第24.3节的内容。
本节内容是在学生已经掌握了圆的概念和性质的基础上进行学习的,主要让学生了解正多边形的定义、性质及其与圆的关系。
通过本节内容的学习,学生能够理解正多边形的对称性,掌握正多边形的计算方法,并为后续学习圆的周长、面积等知识打下基础。
二. 学情分析九年级的学生已经具备了一定的几何基础知识,对圆的概念和性质有一定的了解。
但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生。
因此,在教学过程中,需要引导学生通过观察、思考、探究,逐步理解正多边形的性质,并能够运用到实际问题中。
三. 教学目标1.知识与技能:让学生掌握正多边形的定义、性质及其与圆的关系,能够运用正多边形的性质解决实际问题。
2.过程与方法:通过观察、思考、探究,培养学生的几何思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:正多边形的定义、性质及其与圆的关系。
2.难点:正多边形的计算方法及其在实际问题中的应用。
五. 教学方法1.引导发现法:通过引导学生观察、思考、探究,发现正多边形的性质及其与圆的关系。
2.案例分析法:通过分析实际问题,让学生学会运用正多边形的性质解决实际问题。
3.小组合作学习:让学生在小组内进行讨论、交流,培养团队合作精神。
六. 教学准备1.教学课件:制作精美的教学课件,辅助讲解和展示。
2.教学素材:准备一些关于正多边形的实际问题,用于巩固和拓展。
3.教学工具:准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中常见的正多边形,如正方形、正三角形等,引导学生关注正多边形,激发学生的学习兴趣。
2.呈现(10分钟)介绍正多边形的定义和性质,引导学生通过观察、思考,发现正多边形的特点。
3.操练(10分钟)让学生分组讨论,分析一些实际问题,运用正多边形的性质解决问题。
人教版数学九年级上册24.3.1《正多边形和圆》教学设计
人教版数学九年级上册24.3.1《正多边形和圆》教学设计一. 教材分析《正多边形和圆》是人民教育出版社九年级上册数学教材第24章第三节的第一课时内容。
本节课的主要内容是让学生掌握正多边形的定义,了解正多边形与圆的关系,以及掌握正多边形的性质。
这一节课的内容是学生对几何图形学习的进一步拓展,对于培养学生的空间想象能力和抽象思维能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了多边形的基本概念,并对平面几何图形有了一定的了解。
同时,学生通过前面的学习,已经具备了一定的观察、思考、归纳和总结的能力。
但是,对于正多边形的定义和性质,以及与圆的关系,学生可能还比较陌生,需要通过本节课的学习来逐步理解和掌握。
三. 教学目标1.让学生了解正多边形的定义,掌握正多边形的性质。
2.让学生了解正多边形与圆的关系,能够运用正多边形的性质解决实际问题。
3.培养学生的空间想象能力和抽象思维能力,提高学生的数学素养。
四. 教学重难点1.正多边形的定义和性质。
2.正多边形与圆的关系。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、归纳和总结来掌握正多边形的定义和性质。
2.利用多媒体辅助教学,通过动画演示和图形展示,帮助学生直观地理解正多边形与圆的关系。
3.采用小组合作学习的方式,让学生在讨论和交流中提高对正多边形的理解和应用能力。
六. 教学准备1.多媒体教学设备。
2.正多边形的模型或图片。
3.圆的相关教学材料。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾多边形的基本概念,为新课的学习做好铺垫。
例如:“你们知道什么是多边形吗?多边形有哪些性质?”2.呈现(10分钟)展示正多边形的模型或图片,引导学生观察和思考正多边形的特征。
同时,通过提问方式引导学生了解正多边形与圆的关系。
例如:“你们观察到正多边形有哪些特征?它们与圆有什么联系?”3.操练(10分钟)让学生通过自主学习或小组合作学习的方式,总结正多边形的性质。
24.3 .2 正多边形和圆优质课教案完美版
发展学生作图 的能力,对学生 进行美的教育, 发展学生作图能 力,创新能力.
就是正五边形的内切圆. 教师提出问题后,学生 用同样的方法,可以作其它任意正多边形的外接圆与内切圆. 认真思考,并在笔记本 2.确定特殊正多边形的外接圆和内切圆的圆心的画法 上试着作图,再与同学 1 正方形:画对角线,交点就是圆心. ○ 进行交流. 教师提出问题后,让学 2 正六边形:分别以两个顶点为圆心,以边长为半径画弧, ○ 生认真思考后,设计出 在形内交于一点,该点就是圆心. 最美的图案,并用实物 3.问题: 任意正多边形的外接圆和内切圆的圆心的确定有怎样 投影展示自己的作品. 的普遍方法吗? 要求①尺规作图;②说 (三)应用 明画法;③指出作图依 1.折叠问题: 据;④学生独立完成. 1 怎样把一个正三角形纸片折叠一个最大的正六边形? ○ 教师巡视,对画的好的 (提示:对折;再折使 A、B、C 分别与 O 点重合即可) 学生给予表扬,对有问 题的学生给予指导. 2 能否把一个边长为 8 的正方形纸片折叠一个边长为 4 的正 ○ 问题进行强化,点拨方 六边形? 法,对于共性问题,做 (提示:可以.主要应用把一个直角三等分的原理. 好补教,对于好的做法, 对折成小正方形 ABCD; 对折小正方形 ABCD 的中线; 对折使 加以鼓励表扬.教师并 点 B 在小正方形 ABCD 的中线上(即 B’) ; 则 B、B’为正六 指导学生写出解答过 边形的两个顶点,这样可得满足条件的正六边形. ) 程,体会方法,总结规 2.方案设计: 律 某学校在教学楼前的圆形广场中,准备建造一个花园,并在花 让学生尝试归纳,总结, 园内分别种植牡丹、月季和杜鹃三种花卉。为了美观,种植要 发言,体会,反思,教 求如下: 师点评汇总 (1)种植 4 块面积相等的牡丹、4 块面积相等的月季和一块 杜鹃。 (面积相等必须由数学知识作保证) (2)花卉总面积等于广场面积 (3)花园边界只能种植牡丹花,杜鹃花种植在花园中间且与 牡丹花没有公共边.请你设计种植方案. 三、课堂训练 完成课本 107 页练习 四、小结归纳
正多边形和圆优秀教案
正多边形和圆【教学目标】1.了解正多边形的概念、正多边形和圆的关系,会判定一个正多边形是中心对称图形还是轴对称图形。
2.会通过等分圆心角的方法等分圆周,画出所需的正多边形。
3.能够用直尺和圆规作图,做出一些特殊的正多边形。
【教学重点】正多边形的概念及正多边形与圆的关系。
【教学难点】利用直尺与圆规作特殊的正多边形。
【教学过程】一、创设情境。
观察下列图形,你能说出这些图形的特征吗?二、新知探究。
(一)探索正多边形的概念。
1.观察生活中的一些图形,归纳它们的共同特征,引入正多边形的概念:各边相等、各角也相等的多边形叫做正多边形。
2.概念理解:(1)请同学们举例,自己在日常生活中见过的正多边形。
(正三角形、正方形、正六边形……)(2)矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?(3)正n边形的每个内角等于多少度?每个外角呢?(二)探索正多边形与圆的关系。
1.你能借助量角器,利用圆来画正三角形吗?正方形呢?正五边形呢?正六边形呢?……学会利用量角器等分圆周的方法画正多边形。
2.引入圆的内接正多边形、正多边形的外接圆、正多边形的中心的概念。
3.探索正多边形的对称性。
(1)图中的正多边形,哪些是轴对称图形?哪些是中心对称图形?哪些既是轴对称图形,又是中心对称图形?如是轴对称图形,画出它的对称轴;如是中心对称图形,找出它的对称中心。
(如果一个正多边形是中心对称图形,那么它的中心就是对称中心。
)(2)任何一个正多边形既是轴对称图形,又是中心对称图形吗?跟边数有何关系?4.探索用直尺和圆规做出正方形,正六多边形的方法。
(1)作正四边形:在圆中作两条互相垂直的直径,依次连结四个端点所得图形(然如何作正八边形?作正十六边形?……)(2)作正六边形:在圆中任作一条直径,再以两端点为圆心,相同的半径为半径作弧与圆相交,依次连结圆上的六个点所得图形(任何作正三角形?正十二边形?……)三、解决问题。
(一)填空题。
1.正n边形的内角和为________,每一个内角都等于________,每一个外角都等于________。
人教版数学九上24.3.1正多边形和圆实用教案
1.教学重点
-正多边形的定义:强调边数相等、角度相等、对边平行、对称轴与对边重合的特点,这是正多边形分类和性质研究的基础。
-正多边形的性质:内角和公式、外角和定理、对角线性质,这些性质是解决相关几何问题的关键。
-正多边形与圆的关系:中心角与半径的关系,圆内接正多边形的性质,这是理解正多边形与圆之间内在联系的核心。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用圆规和直尺绘制正多边形,观察正多边形与圆的关系。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“正多边形和圆在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了正多边形和圆的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对正多边形和圆的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《正多边形和圆》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否见过正多边形或圆形的组合图案?”(如地砖、风筝等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索正多边形和圆的奥秘。
人教初中数学《正多边形和圆 》教案 (公开课获奖)
正多边形和圆教学内容24.3 正多边形和圆〔1〕.教学目标1. 理解正多边形概念和性质,知道正多边形的中心、半径、中心角和边心距.2. 会画正多边形,了解依次连结圆的n等分点所得的多边形是正多边形,过圆的n等分点作圆的切线,以相邻切线的交点为顶点的多边形是正多边形.教学重点1. 正多边形的画法.2. 利用正多边形解决有关问题.教学难点对正n边形中泛指“n〞的理解.课时安排2课时.教案A第1课时教学内容24.3 正多边形和圆〔1〕.教学目标1.理解正多边形概念,知道正多边形的中心、半径、中心角和边心距.2.掌握正五边形的画法.3.利用正多边形解决有关问题.教学重点正五边形的画法.教学难点利用正多边形解决有关问题.教学过程一、导入新课同学们思考以下问题:1.等边三角形的边、角各有什么性质?2.正方形的边、角各有什么性质?3.等边三角形与正方形的边、角性质有什么共同点?〔各边相等、各角相等〕.各边相等,各角相等的多边形叫做正多边形.这就是我们今天学习的内容——正多边形和圆.二、新课教学1.正多边形在日常生活中的广泛应用.日常生活中,我们经常能看到正多边形形状的物体,利用正多边形,也可以得到许多美丽的图案.你还能举出一些这样的例子吗?2.认识正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形.等边三角形有三条边叫正三角形,正方形有四条边叫正四边形.问题1:矩形是正多边形吗?为什么?菱形是正多边形吗?为什么?答复:矩形不是正多边形,因为边不一定相等.菱形不是正多边形,因为角不一定相等.问题2:圆内接多边形是什么样的多边形?生答:正多边形.3.正五边形的画法.正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.如图,把⊙O分成相等的5段弧,依次连接各分点得到五边形ABCDE.求证:五边形ABCDE是⊙O的内接正五边形.证明:∵=,∴AB=BC=CD=DE=EA,=3=.∴∠A=∠B.同理∠B=∠C=∠D=∠E.又五边形ABCDE的顶点都在⊙O上,∴五边形ABCDE是⊙O的内接正五边形,⊙O是正五边形ABCDE的外接圆.4.正多边形的有关概念.我们把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距〔如图〕.6.实例探究.例如图,有一个亭子,它的地基是半径为4 m的正六边形,求地基的周长和面积〔结果保存小数点后一位〕.教师引导学生分析、讨论,根据题意,画图,添加补充线,然后解答.具体过程见教材第106页.三、稳固练习教材第106页练习2、3.四、课堂小结今天学习了什么,有什么收获?五、布置作业习题24.3 第1、2题.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(b a a b b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD . 所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°. [师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.D CA BD CABDC A B在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3. 练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?DCAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,那么它的对称轴一定是〔 〕 A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是〔 〕 A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,那么其腰长为〔x+2〕cm ,根据题意,得 2〔x+2〕+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(y x x y x y +--+ (2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。
【精】 《正多边形和圆》精品教案
《正多边形和圆》精品教案课题24.3正多边形和圆单元第二十四章学科数学年级九年级上学习目标情感态度和价值观目标体验数学与生活的紧密相连,感受圆的对称美,正多边形与圆的和谐美,从而更加热爱生活,珍爱生命。
能力目标在探讨正多边形和圆的关系的学习过程中,体会到要善于发现问题,解决问题,发展学生的观察、比较、分析、概括及归纳的逻辑思维能力。
知识目标1.理解正多边形和圆的关系,知道把圆分成相等的一些弧,就可以得到这个圆的内接正多边形;2.理解正多边形的边长、半径、边心距和中心角等概念,会计算正多边形的边长、半径、边心距、中心角、周长和面积。
重点正多边形的有关计算问题。
难点正多边形的有关计算问题。
学法自主探索、合作交流、启发引导教法情景教学法、活动探究法;教学过程教学环节教师活动学生活动设计意图导入新课一、创设情境,导入新知1.观察图片,你能否看到正多边形?2.什么样的图形叫做正多边形?你能举出一些生活中这样的例子吗?多媒体出示图片,引导学生回答任务,引出课题。
通过联系实际、创设情境,提出问题,激发学生的学习兴趣。
讲授新课二、探究新知活动1,做一做:正多边形与圆有什么关系呢?等分圆周,就可以得到圆内接正多边形,这个圆叫做这个正多边形的外接圆.活动2:为什么等分圆周就能得到正多边形呢?认真思考、交流,充分发表自己的见解,并互相补充.我们现以正五边形为例进行证明.活动3:如何三等分圆周呢?思考、交流自己的见解,进行作图,方法不限.(1)度量法:①用量角器或30°角的三角板度量,使∠BAO=∠CAO=30°,如图:利用做一做的活动引导学生发现问题:为什么等分圆周就能得到正多边形呢?根据提出的问题,学生分组进行探究活动,最终解答问题。
展示问题,引导学生思考,并要求不同的方法解答,引导学生思考回答。
问题是数学的心脏,识学生思维和兴趣的开始。
通过这些问题,学生的思维从生活中走进数学,引发学生进一步的学习好奇心与探究意识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六边形的边长等于它的半径.
正n 边形 中心角 半径 边长 边心距 内角 等腰三角形 顶角
腰
底边
底边上的高
底角2倍
直角三角形
一锐角2倍 斜边 一直角边2倍 另一直角
边
另一锐角2倍 作正n 边形的半径,把正多边形划分为n 个全等的等腰三角形,再作边心距,把正多边形划分为2n 个全等的直角三角形.它们的
对应关系如下
2.等边△ABC 的边长为a ,求其内切圆的内接正方形DEFG 的面积. 分析:求等边三角形的内切圆的半径,就是转化为利用勾股定理求直角三角形的直角边.再利用勾股定理求出内接正方形DEFG 的边长,从而求面积.
三、课堂训练 完成课本105页练习 补充:
•1.已知⊙O•的周长等于6πcm ,•
求以它的半径为边长的正六边形
ABCDEF 的面积. 2.如图,正五边形ABCDE 的对角线AC 、BE 相交于M . 求证:四边形CDEM 是菱形;
四、小结归纳
1.正多边形的中心、半径、中心角、边心距有关概念,正多边形
和圆的关系. 2正多边形性质: ○1一个内角等于 ②中心角等于
③正多边形的中心角等于外角.
3.正多边形半径R 和边长a 、边心距r 之间的数量关系式
4.解决圆和正多边形的计算问题通常构造直角三角形,运用垂径定理和勾股定理来解决.
五、作业设计
复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习. 补充:如图,等边三角形ABC 内接于⊙O ,BD 为圆内
接正十二边形的一边, 求⊙O 的半径.
学生先自主探究,再合作交流,完成解题过程,教师适时引导,点拨.师生总结此类题的解题技巧旨在将正多边形问题转化为直角三角形问题.
学生独立练习,教师
巡回辅导,问题进行
强化,点拨方法,对于共性问题,做好补
教,对于好的做法,加以鼓励表扬.教师并指导学生写出解
答过程,体会方法,
总结规律. 然后集体交流评价
让学生尝试归纳,总结,发言,体会,反思,教师点评汇总
巩固本节课所学的内容.
归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯
巩固深化提高
2
222⎪
⎭
⎫
⎝⎛+=a r R ()n
n o
1802⋅-n
o
360
,
25=CD。