基本不等式教学设计方案

合集下载

基本不等式教案范文

基本不等式教案范文

基本不等式教案范文一、教学目标1.知识与技能目标a.掌握基本不等式的定义和基本性质;b.掌握不等式的加减乘除性质;c.能够解决基本不等式的证明和计算问题。

2.过程与方法目标a.通过例题引导学生发现不等式的性质;b.引导学生进行探究性学习,提高独立解决问题的能力;c.培养学生的逻辑思维和推理能力。

3.情感态度目标a.培养学生的数学思维和抽象思维能力;b.培养学生的合作意识和团队精神;c.培养学生的实际问题解决能力。

二、教学重点1.不等式的加减和乘除性质;2.不等式的证明和计算方法。

三、教学难点1.不等式的证明方法;2.复杂不等式的解决方法。

四、教学方法1.探究教学法:通过解决例题引导学生发现不等式的性质;2.讲授教学法:通过讲解和示范的方式,介绍不等式的性质和解决方法;3.案例分析法:通过分析实际问题的案例,引导学生解决不等式问题。

五、教学过程1.引入a.导入问题:小明计划购买一款手机,他想知道自己有多少钱可以花在手机上。

请问该怎样计算?b.引导学生讨论,并给予提示,引出不等式的概念。

2.探究不等式的性质a.通过解决一些简单的例题,让学生发现不等式的性质。

b.给出以下几个例题:(1)若a>b,b>0,则a+b>b;(2)若a > b,b > 0,则ab > b;(3)若a>b,b>0,则a/b>1c.让学生在小组内讨论,并找出规律。

d.分组展示结果,学生进行交流与讨论。

e.教师总结不等式的加减和乘除性质。

3.不等式证明a.讲解不等式证明的一般方法,包括逆否命题法、反证法等。

b.通过案例讲解不等式证明的具体步骤和技巧。

c.给出以下例题:(1)证明:若a>b,b>0,则a+b>0。

(2)证明:对于任意实数x,都有x>-1c.引导学生运用之前学到的证明方法进行解答,然后进行讨论。

4.解决不等式问题a.讲解不等式的解决方法,包括绝对值法、区间法等。

基本不等式教学设计

基本不等式教学设计

基本不等式教学设计1. 引言在数学学科中,不等式是一种重要的数学概念,它在解决实际问题和推理论证中起着重要作用。

基本不等式是初中数学教学中的重要内容之一,它涉及到一些数学基本概念的运用和数学思维的发展。

本文将围绕基本不等式的教学设计展开,旨在帮助教师更好地教授这一概念。

2. 教学目标通过本课的学习,学生应能够:- 理解基本不等式的定义和性质;- 能够应用基本不等式解决实际问题;- 发展数学思维和推理能力。

3. 教学内容基本不等式的教学主要包括以下内容:- 不等式的意义和定义- 不等式的性质和基本运算- 不等式的解集和图像表示- 不等式在实际问题中的应用4. 教学步骤4.1 引入不等式的概念通过解决问题,引导学生发现不等式的概念,并通过例题引导学生理解不等式的定义。

4.2 不等式的性质和基本运算在引入不等式的基本性质和运算规则时,通过一些简单的例子让学生感受到这些性质和规则的重要性和实用性。

4.3 不等式的解集和图像表示通过一些实例,引导学生理解不等式的解集和图像表示,通过绘制不等式的图像加深学生对不等式解集的认识。

4.4 不等式在实际问题中的应用通过一些实际问题,引导学生应用所学的基本不等式解决问题,培养学生将数学理论应用于实际问题的能力。

5. 教学方法和手段5.1 启发式教学法在引入不等式的概念和性质时,采用启发式教学法,通过问题引导学生主动思考和发现,激发学生的学习兴趣和求知欲。

5.2 案例分析法在不等式的解集和图像表示环节,引入一些实例和案例,通过具体的问题激发学生对不等式解集和图像的认知和理解。

5.3 活动导向教学法在不等式的应用环节,设计一些小组或个人活动,让学生结合具体的问题进行讨论和解决,培养学生的合作和分析问题的能力。

6. 教学评价通过以下几种方式对学生进行评价:- 口头回答问题:针对不等式的定义、性质和运算规则,检查学生的掌握程度。

- 书面作业:布置一些练习题,检查学生对不等式的应用能力。

基本不等式教学设计(多篇)

基本不等式教学设计(多篇)

基本不等式教学设计(多篇)第1篇:基本不等式教学设计基本不等式一、教学设计理念:注重学生自主、合作、探究学习,用新课程理念打造新的教学模式.二、教学设计思路: 1.教学目标确定这节课的目标定位分为三个层面:第一层面:知识与技能层面,①了解两个正数的算术平均数和几何平均数的概念;②要创设几何和代数两个方面的背景,从数形结合的高度让学生了解基本不等式;③引导学生从不同角度去证明基本不等式;④用基本不等式来证明一些简单不等式.第二层面:过程与方法,通过掌握公式的结构特点,适当运用公式的变形,能够提高学生分析问题和解决问题的能力,加强学生的实践能力,渗透数学的思想方法.第三层面:情感、态度与价值观,①通过具体问题的解决,让学生去感受日常生活中存在大量的不等关系,鼓励学生用数学观点进行归纳,抽象,使学生感受到数学美,走进数学,培养学生严谨的数学学习习惯和良好的思维方式;②通过问题的解决,激发学生探究精神和科学态度,同时去感受数学的运用性,体会数学的奥妙,数学的简洁美,激发学生学习数学的兴趣.2.教学过程本节课我设计了五个环节:第一个环节:创设情境,引入新课.我设计了两个情境:一个是天平测量的问题,另一个是让学生动手操作折纸试验,从不同的角度体验和理解基本不等式,让学生能够体会数学与生活紧密联系,激发学生学习兴趣,为后面学习作铺垫.第二个环节:探究交流,发现规律.我在问题的情境中,让学生带着不同的数据去比较几何平均数和算术平均数的大小,并通过小组折纸试验,通过这样合作交流的方式让学生初步感受到几何平均数和算术平均数之间的大小关系.第三个环节:启发引导、形成结论.本节课的重要任务就是对基本不等式进行严格的证明,包括了比较法,综合法和分析法,而学生对作差比较法是比较熟悉的,综合法和分析法的过程要加强引导,并组织学生去探究这两种方法之间的关系,并规范证明过程,为今后学习证明方法打下基础.第四个环节:训练小结,巩固深化.学习基本不等式最终的目的体现在它的运用上,首先在例题选择上,注重让学生充分认识和间的关系,给出一般的结论,在练习中我选择了题组形式,目的是与让学生强化对基本不等式成立条件包括等号成立的条件.第五个环节:研究拓展,提高能力.我设计了一道关于例题的变式题,目的是让学生感受到,通过适当的变形将其化为例题中出现的形式,体现化归的思想,最后设计三道思考题,两道进一步巩固化归思想及应用基本不等式的条件,一道需要分类讨论,让学有余力的学生提供更好展示自己能力的机会,得到进一步提高.最后我通过问题式的小结,让学生自行归纳我们这节课当中学到的知识,特别是最后一问中,让学生去总结在使用基本不等式的时候要注意哪些条件.虽然我没有点出“一正二定三相等”这样的结论,但已潜移默化为我们下一节课使用基本不等式求最值问题作了铺垫,起到承前启后的作用.三、本节课重点重点:应用数形结合的思想和日常生活中例子理解基本不等式,并从不同的角度探索不等式的证明过程.难点:灵活使用化归思想把问题转化为运用基本不等式,以及基本不等式成立条件中包括等号成立的条件.在这一节中的主要任务就是让学生从不同的角度去探索基本不等式的证明过程,包括它的成立条件,在这一节课中我的总体想法是通过互动,发现规律,直接猜想,指定验证,得出结论,最后灵活运用这个结论来解决问题.四、本节课亮点:1.积极引导学生自主探究问题,解决问题.2.灵活运用转化与化归的思想.3.实现课堂三大转变:①变教学生学会知识为指导学生会学知识;②变重视结论的记忆为重视学生获取结论的体验和感悟;③变模仿式学习为探究式学习.4.课堂小结采取问题式小结给学生留下满口香.导入新课探究:上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客,你能在这个图中找出一些相等关系或不等关系吗??(教师用投影仪给出第24届国际数学家大会的会标,并介绍此会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客.通过直观情景导入有利于吸引学生的注意力,激发学生的学习热情,并增强学生的爱国主义热情)?? 推进新课师同学们能在这个图中找出一些相等关系或不等关系吗?如何找??【三维目标】:一、知识与技能1.能够运用基本不等式解决生活中的应用问题2.进一步掌握用基本不等式求函数的最值问题;3.审清题意,综合运用函数关系、不等式知识解决一些实际问题.4.能综合运用函数关系,不等式知识解决一些实际问题.二、过程与方法本节课是基本不等式应用举例的延伸。

基本不等式(第1课时)教学设计

基本不等式(第1课时)教学设计

第二章一元二次函数、方程和不等式2.2 基本不等式(第1课时)教学设计一、教材分析《基本不等式》在数学第一册第二章第2节,本节课的内容是基本不等式的形式以及推导和证明过程。

本章一直在研究不等式的相关问题,对于本节课的知识点有了很好的铺垫作用。

同时本节课的内容也是之后基本不等式应用的必要基础。

二、教学目标与核心素养课程目标1.掌握基本不等式的形式以及推导过程,会用基本不等式解决简单问题。

2.经历基本不等式的推导与证明过程,提升逻辑推理能力。

3.在猜想论证的过程中,体会数学的严谨性。

数学学科素养1.数学抽象:基本不等式的形式以及推导过程;2.逻辑推理:基本不等式的证明;3.数学运算:利用基本不等式求最值4.数据分析:利用基本不等式解决实际问题;5.数学建模:利用函数的思想和基本不等式解决实际问题,提升学生的逻辑推理能力。

重点:基本不等式的形成以及推导过程和利用基本不等式求最值;难点:基本不等式的推导以及证明过程.三、教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

四、教学工具:多媒体,交互式电子白板。

五、教学过程(一)引言师:前面我们类比等式的性质研究了不等式的性质及其证明和应用,今天我们来学习一个具体的不等式—基本不等式。

(插入中小学智慧平台)师:我门知道,乘法公式在代数式的运算中有着重要的作用,是否也存在一些不等式,在解军决不等问题时,有着与乘法公式类似的重要作用呢?下面我们就来共同研究这个问题。

其实在不等式里,数学家们也总结了一大堆常用的公式。

今天,我们就来学习最简单,也最常出现的一个不等式,叫作基本不等式。

(展示中小学智慧平台学习任务单)(二)新课探究1、引出基本不等式师:什么是基本不等式呢?大家先来看一个在小学时就学过的一条几何性质:在一组周长相等的矩形形中,正方形的面积最大。

比如,一个长方形的边长为分别为5和3,正方形的边长为4,它们的周长都是16,此时它们的面积呢?S长=15,S正=16。

2.2 基本不等式【单元教学设计】(刘迪生) -高中数学新教材必修第一册小单元教学+专家指导(视频+

2.2 基本不等式【单元教学设计】(刘迪生) -高中数学新教材必修第一册小单元教学+专家指导(视频+

2.2 基本不等式【单元教学设计】(刘迪生) -高中数学新教材必修第一册小单元教学+专家指导(视频+教案)【教学目标】1. 了解基本不等式在解决实际问题中的应用。

2. 理解基本不等式的概念和性质,掌握基本不等式的证明方法及应用。

3. 能够灵活运用基本不等式解决实际问题。

【教学重点】掌握基本不等式的概念和性质。

【教学难点】基本不等式的证明方法及应用。

【教学过程】1. 导入(5分钟)教师可通过提问、小测验等方式,复习学生们曾学过的不等式知识,如:“你们学过什么不等式?不等式的应用有哪些?”然后,引入本单元的学习主题:“我们今天要学习一种非常重要的不等式——基本不等式。

”2. 讲授(40分钟)1)什么是基本不等式?首先,教师可用“两个数的和大于它们的平均数,两个数的积不小于它们的平方根”的口诀,向学生介绍基本不等式。

然后,结合实际例子,解释一下基本不等式的含义和形式。

2)基本不等式的证明推导基本不等式的证明方法,是本单元的难点和重点。

教师给出证明步骤,解释每一步的逻辑关系,帮助学生理解。

3)基本不等式的应用基本不等式是解决实际问题中的重要工具。

教师可通过讲解例题,帮助学生了解基本不等式在实际应用中的作用。

3. 活动(30分钟)1)分组讨论教师让学生分小组,让他们在小组内商讨如何应用基本不等式解决问题,并将解题思路和过程汇报给全班。

2)课堂展示教师选择一些组进行课堂展示,让全班学生了解不同的解题思路和方法,从而深入掌握基本不等式的应用。

4. 总结(5分钟)教师对基本不等式的概念、证明和应用进行总结,温习本节课的知识点。

并告诉学生“为了提高复习效率,请在课后将本节课的重点内容进行笔记总结。

”【教学方法】1. 结合实际,解释抽象概念。

2. 通过小组讨论和课堂展示,激发学生学习兴趣,提高课堂互动性。

3. 采用探究性学习法,鼓励学生在实践中学习和探索。

【教学媒体】1. 教案。

2. 显示器。

3. 黑板、粉笔。

【教学评价】1. 能够准确理解基本不等式的概念和性质。

基本不等式课程设计

基本不等式课程设计

基本不等式课程设计一、教学目标本节课的教学目标是让学生掌握基本不等式的概念、性质和应用,能够运用基本不等式解决一些简单的问题。

具体目标如下:1.了解基本不等式的定义和性质。

2.掌握基本不等式的证明方法。

3.理解基本不等式在实际问题中的应用。

4.能够运用基本不等式解决一些简单的问题。

5.能够运用基本不等式进行不等式的证明。

情感态度价值观目标:1.培养学生的逻辑思维能力。

2.培养学生的数学美感。

二、教学内容本节课的教学内容主要包括基本不等式的定义、性质和应用。

具体内容如下:1.基本不等式的定义:介绍基本不等式的定义,解释其含义和作用。

2.基本不等式的性质:讲解基本不等式的性质,包括对称性、单调性等。

3.基本不等式的应用:介绍基本不等式在实际问题中的应用,如求最值、证明不等式等。

三、教学方法为了激发学生的学习兴趣和主动性,本节课将采用多种教学方法:1.讲授法:教师通过讲解基本不等式的定义、性质和应用,引导学生理解并掌握知识。

2.讨论法:教师学生进行小组讨论,让学生通过互动交流,加深对基本不等式的理解。

3.案例分析法:教师通过举例子,让学生运用基本不等式解决实际问题,巩固知识。

四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:为学生提供《数学课本》等相关教材,作为学习的基本依据。

2.参考书:提供一些数学参考书,供学生课后拓展学习。

3.多媒体资料:制作课件、视频等多媒体资料,帮助学生直观理解基本不等式的性质和应用。

4.实验设备:准备一些实验设备,如白板、黑板等,方便教师进行演示和讲解。

五、教学评估为了全面、客观、公正地评估学生的学习成果,本节课的评估方式包括以下几个方面:1.平时表现:通过观察学生在课堂上的参与程度、提问回答、小组讨论等表现,评估学生的学习态度和理解程度。

2.作业:布置与本节课内容相关的作业,评估学生对基本不等式的掌握情况和应用能力。

3.考试:安排一次考试,测试学生对基本不等式的概念、性质和应用的掌握程度。

基本不等式的教学设计一等奖4篇

基本不等式的教学设计一等奖4篇

第4篇教学设计一、素质教育目标(一)知识教学点1.使学生理解掌握不等式的三条基本性质,尤其是不等式的基本性质3.2.灵活运用不等式的基本性质进行不等式形.(二)能力训练点培养学生运用类比方法观察、分析、解决问题的能力及归纳总结概括的能力.(三)德育渗透点培养学生积极主动的参与意识和勇敢尝试、探索的精神.(四)美育渗透点通过不等式基本性质的学习,渗透不等式所具有的内在同解变形的数学美,激发学生探究数学美的兴趣与激情,从而陶治学生的数学情操,数学教案-不等式和它的基本性质教学设计方案(二)。

二、学法引导1.教学方法:观察法、探究法、尝试指导法、讨论法.2.学生学法:通过观察、分析、讨论,引导学生归纳小结出不等式的三条基本性质,从具体下升到理论,再由理论指导具体的练习,从而强化学生对知识的理解与掌握.三、重点·难点·疑点及解决办法(一)重点掌握不等式的三条基本性质,尤其是不等式的基本性质3.(二)难点正确应用不等式的三条基本性质进行不等式变形.(三)疑点弄不清“不等号方向不变”与“所得结果仍是不等式”之间的关系是学生学习的疑点.(四)解决办法讲清“不等式的基本性质”与“等式的基本性质”之间的区别与联系是教好本节内容的关键.四、课时安排一课时五、教具学具准备投影仪或电脑、自制胶片.六、师生互动活动设计1.通过设计的一组比较大小问题,让学生观察并归纳出不等式的三条基本性质.2.通过教师的讲解及学生的质疑,让学生在与等式性质的对比中更加深入、准确地理解不等式的三条基本性质.3.通过教师的板书及学生的互动练习,体现出以学生为主体,教师为主导的教学模式能更好地对学生实施素质教育.七、教学步骤(一)明确目标本节课主要学习不等式的三条基本性质并能熟练地加以应用.(二)整体感知通过具体的事例观察并归纳出不等式的三条基本性质,再反复比较三条性质的异同,从而寻找出在实际应用某条性质时应注意的使用条件,同时注意将不等式的三条基本性质与等式的基本性质1、2进行比较:相同点为不管是对等式还是不等式,都可以在它的两边同加(或减)同一个数或同一个整式.不同点是对于等式来说,在等式的两边乘以(或除以)同一个正数(或同一个负数)的情况下等式仍然对立.但对于不等式来说,却不一样,在用同一个正数去乘(或除)不等式两边时,不等号方向不变;而在用同一个负数去乘(或除)不等式两边时,不等号要改变方向.这是在不等式变形时应特别注意的地方.(三)教学过程1.创设情境,复习引入什么是等式?等式的基本性质是什么?学生活动:独立思考,指名回答.教师活动:注意强调等式两边都乘以或除以(除数不为0)同一个数,所得结果仍是等式.请同学们继续观察习题:(1)用“>”或“<”填空.①7+3____4+3 ②7+(-3)____4+(-3)③7×3____4×3 ④7×(-3)____4×(-3)(2)上述不等式中哪题的不等号与7>4一致?学生活动:观察思考,两个(或几个)学生回答问题,由其他学生判断正误.【教法说明】设置上述习题是为了温故而知新,为学习本节内容提供必要的知识准备.不等式有哪些基本性质呢?研究时要与等式的性质进行对比,大家知道,等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式(实质是移项法则),请同学们观察①②题,并猜想出不等式的性质.学生活动:观察思考,猜想出不等式的性质.教师活动:及时纠正学生叙述中出现的问题,特别强调指出:“仍是不等式”包括两种情况,说法不确切,一定要改为“不等号的方向不变或者不等号的方向改变.”师生活动:师生共同叙述不等式的性质,同时教师板书.不等式基本性质1 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.对比等式两边都乘(或除以)同一个数的性质(强调所乘的数可正、可负、也可为0)请大家思考,不等式类似的性质会怎样?学生活动:观察③④题,并将题中的3换成5,-3换成一5,按题的要求再做一遍,并猜想讨论出结论.【教法说明】观察时,引导学生注意不等号的.方向,用彩色粉笔标出来,并设疑“原因何在?”两边都乘(或除以)同一个负数呢?0呢?为什么?师生活动:由学生概括总结不等式的其他性质,同时教师板书.不等式基本性质2 不等式两边都乘(或除以)同一个正数,不等号的方向不变.不等式基本性质3 不等式两边都乘(或除以)同一个负数,不等号的方向改变.师生活动:将不等式-2<6两边都加上7,-9,两边都乘3,-3试一试,进一步验证上面得出的三条结论.学生活动:看课本第57~58页有关不等式性质的叙述,理解字句并默记.强调:要特别注意不等式基本性质3.实质:不等式的三条基本性质实质上是对不等式两边进行“+”、“-”、“×”、“÷”四则运算,当进行“+”、“-”法时,不等号方向不变;当乘(或除以)同一个正数时,不等号方向不变;只有当乘(或除以)同一个负数时,不等号的方向才改变.不等式的基本性质与等式的基本性质有哪些区别、联系?学生活动:思考、同桌讨论.归纳:只有乘(或除以)负数时不同,此外都类似.下面尝试用数学式子表示不等式的三条基本性质.①若,则,;②若,且,则,;③若,且,则,.师生活动:学生思考出答案,教师订正,并强调不等式性质3的应用.注意:不等式除了上述性质外,还有以下性质:①若,则.②若,且,则,这些先不要向学生说明.2.尝试反馈,巩固知识请学生先根据自己的理解,解答下面习题.例1 根据不等式的基本性质,把下列不等式化成或的形式.(1)(2)(3)(4)学生活动:学生独立思考完成,然后一个(或几个)学生回答结果.教师板书(1)(2)题解题过程.(3)(4)题由学生在练习本上完成,指定两个学生板演,然后师生共同判断板演是否正确.解:(l)根据不等式基本性质1,不等式的两边都加上2,不等号的方向不变.所以(2)根据不等式基本性质1,两边都减去,得(3)根据不等式基本性质2,两边都乘以2,得(4)根据不等式基本性质3,两边都除以-4得【教法说明】解题时要引导学生与解一元一次方程的思路进行对比,并将原题与或对照,看用哪条性质能达到题目要求,要强调每步的理论依据,尤其要注意不等式基本性质3与基本性质2的区别,解题时书写要规范.例2 设,用“<”或“>”填空.(1)(2)(3)学生活动:在练习本上完成例2,由3个学生板演完成后,其他学生判断板演是否正确,最后与书中正确解题格式对照.解:(1)因为,两边都减去3,由不等式性质1,得(2)因为,且2>0,由不等式性质2,得(3)因为,且-4<0,由不等式性质3,得教师活动:巡视辅导,了解学生作题的实际情况,及时给予纠正或鼓励.注意问题:例2(3)是根据不等式性质3,不等号方向应改变.这是学生做题时易出错误之处.【教法说明】要让学生明白推理要有依据,以后作类似的练习时,都写出根据,逐步培养学生的逻辑思维能力.3.变式训练,培养能力(1)用“>”或“<”在横线上填空,并在题后括号内填写理由.(不等式基本性质1,2,3分别用A、B、C表示.)①∵∴()②∵∴()③∵∴()④∵∴()⑤∵∴⑥∵∴()学生活动:此练习以学生抢答方式完成,目的是训练学生思维能力,表达能力,烘托学习气氛.答案:①(A)②(B)③(C)④(C)⑤(C)⑥(A)【教法说明】做此练习题时,应启发学生将所做习题与题中已知条件进行对比,观察它们是应用不等式的哪条性质,是怎样由已知变形得到的.注意应用不等式性质3时,不等号要改变方向.(2)单项选择:①由得到的条件是()A.B.C.D.②由由得到的条件是()A.B.C.D.③由得到的条件是()A.B.C.D.是任意有理数④若,则下列各式中错误的是()A.B.C.D.师生活动:教师选出答案,学生判断正误并说明理由.答案:①A ②D ③C ④D(3)判断正误,正确的打“√”,错误的打“×”①∵∴( ) ②∵∴( )③∵∴( ) ④若,则∴,( )学生活动:一名学生说出答案,其他学生判断正误.答案:①√②×③√④×【教法说明】以多种形式处理习题可以激发学生学习热情,提高课堂效率;(2)练习第③④题易出错,教师应讲清楚.(四)总结、扩展1.本节重点:(1)掌握不等式的三条基本性质,尤其是性质3.(2)能正确应用性质对不等式进行变形.2.注意事项:(1)要反复对比不等式性质与等式性质的异同点.(2)当不等式两边同乘(或除以)同一个数时,一定要看清是正数还是负数,对于未给定范围的字母,应分情况讨论.3.考点剖析:不等式的基本性质是历届中考中的重要考点,常见题型是选择题和填空题.八、布置作业(一)必做题:P61 A组4,5.(二)选做题:P62 B组1,2,3.参考答案(一)4.(1)(2)(3)(4)5.(1)(2)(3)(4)(5)(6)(二)1.(1)(2)(3)2.(1)(2)(3)(4)3.(1)(2)(3)九、板书设计6.1 不等式和它的基本性质(二)一、不等式的基本性质1.不等式两边都加上或减去同一个数或同一个整式,不等号的方向不变.若,则,.2.不等式两边都乘(或除以)同一个正数,不等号方向不变,若,,则.3.不等式两边都乘(或除以)同一个负数,不等号方向改变,若,,则.二、应用例1 解(1)(2)(3)(4)例2 解(1)(2)(3)三、小结注意不等式性质3的应用.四、背景知识与课外阅读盒子里有红、白、黑三种球,若白球的个数不少于黑球的一半,且不多于红球的,又白球和黑球的和至少是55,问盒中红球的个数最少是多少个?第5篇教学设计初二下册数学16.1.2分式的基本性质说课稿设计16.1.2《分式的基本性质》说课稿今天我说课的内容是《分式的基本性质》。

基本不等式教案

基本不等式教案

基本不等式教案一、教学目标1、知识与技能目标(1)学生能够理解基本不等式的内容及其证明过程。

(2)掌握运用基本不等式求最值的方法和条件。

2、过程与方法目标(1)通过对基本不等式的探究,培养学生观察、分析、归纳和逻辑推理的能力。

(2)引导学生运用基本不等式解决实际问题,提高学生的数学应用意识和能力。

3、情感态度与价值观目标(1)让学生感受数学的简洁美和应用价值,激发学生学习数学的兴趣。

(2)培养学生严谨的治学态度和勇于探索的精神。

二、教学重难点1、教学重点(1)基本不等式的内容及证明。

(2)运用基本不等式求最值的方法和条件。

2、教学难点(1)基本不等式的证明。

(2)运用基本不等式求最值时条件的判断和正确应用。

三、教学方法讲授法、探究法、练习法四、教学过程(一)导入新课通过实际生活中的问题引入,比如:某工厂要建造一个面积为 100 平方米的矩形仓库,仓库的一边靠墙,墙长 16 米,问怎样建造才能使所用材料最省?(二)新课讲授1、基本不等式的推导对于任意两个正实数 a,b,有\(a + b \geq 2\sqrt{ab}\),当且仅当 a = b 时,等号成立。

证明:\\begin{align}(a b)^2&\geq 0\\a^2 2ab + b^2&\geq 0\\a^2 + 2ab + b^2&\geq 4ab\\(a + b)^2&\geq 4ab\\a + b&\geq 2\sqrt{ab}\end{align}\当且仅当\(a b = 0\),即\(a = b\)时,等号成立。

2、基本不等式的几何解释以直角三角形为例,直角边为 a,b,斜边为 c,那么\(c =\sqrt{a^2 + b^2}\)。

对于基本不等式\(a + b \geq 2\sqrt{ab}\),可以看作是以 a,b 为直角边的直角三角形的斜边长大于等于以\(\sqrt{ab}\)为边长的正方形的对角线长。

教学设计2:2.2 第1课时 基本不等式

教学设计2:2.2 第1课时 基本不等式

2.2 第1课时 基本不等式教学目标1.掌握基本不等式及推导过程.2.能熟练运用基本不等式比较两实数的大小.3.能初步运用基本不等式进行证明和求最值.教学过程知识点一 重要不等式及证明如果a ,b ∈R ,那么a 2+b 2≥2ab (当且仅当a =b 时取“=”).请证明此结论. 证明 ∵a 2+b 2-2ab =(a -b )2≥0,∴a 2+b 2≥2ab ,当且仅当a =b 时取“=”.知识点二 基本不等式1.内容:ab ≤a +b 2,其中a ≥0,b ≥0,当且仅当a =b 时,等号成立. 2.证明:∵a +b -2ab =(a )2+(b )2-2a ·b=(a -b )2≥0.∴a +b ≥2ab . ∴ab ≤a +b 2,当且仅当a =b 时,等号成立. 知识点三 基本不等式的常用推论1.ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).2.b a +a b≥2 (a ,b 同号). 3.当ab >0时,b a +a b≥2; 当ab <0时,b a +a b≤-2. 4.a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).教学案例题型一 利用基本不等式比较大小例1 设0<a <b ,则下列不等式中正确的是( )A .a <b <ab <a +b 2B .a <ab <a +b 2<bC .a <ab <b <a +b 2D.ab <a <a +b 2<b 【答案】B 【解析】方法一 ∵0<a <b ,∴a <a +b 2<b ,排除A 、C 两项.又ab -a =a (b -a )>0,即ab >a ,排除D 项,故选B.方法二 取a =2,b =8,则ab =4,a +b 2=5,所以a <ab <a +b 2<b . 反思与感悟 若给定的代数式中既有“和式”又有“积式”,这便是应用基本不等式的题眼,可考虑是否利用基本不等式解决;在应用基本不等式时一定要注意是否满足条件,即a >0,b >0,同时注意能否取等号.跟踪训练1 若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 【答案】D【解析】对于A ,应该为a 2+b 2≥2ab ,漏等号,故A 错误;对于B ,当a <0,b <0时,ab >0,但a +b <2ab ,故B 不成立;对于C ,当a <0,b <0时,ab >0,故C 不成立;对于D ,∵ab >0,则b a >0且a b >0,∴b a +a b ≥2b a ·a b = 2.当且仅当b a =a b,即a =b 时,取“=”,故D 正确. 题型二 用基本不等式证明不等式例2 已知a ,b ,c 为正数,且a +b +c =1,证明:1a +1b +1c≥9. 证明 1a +1b +1c =a +b +c a +a +b +c b +a +b +c c =3+(b a +a b )+(c a +a c )+(c b +b c) ≥3+2+2+2=9.当且仅当a =b =c =13时,等号成立. 反思与感悟 在利用基本不等式证明的过程中,常需要把数、式合理地拆成两项或多项或恒等地变形配凑成适当的数、式,以便于利用基本不等式.跟踪训练2 已知a ,b ,c 为正数,且a +b +c =1,证明:(1-a )(1-b )(1-c )≥8abc .证明 (1-a )(1-b )(1-c )=(b +c )(a +c )(a +b )≥2bc ·2ac ·2ab =8abc .当且仅当b =c =a =13时,等号成立. 题型三 利用基本不等式直接求最值例3 已知x >0,y >0,且x +y =8,则(1+x )·(1+y )的最大值为( )A .16B .25C .9D .36【答案】B【解析】因为x >0,y >0,且x +y =8,所以(1+x )(1+y )=1+x +y +xy =9+xy ≤9+⎝⎛⎭⎫x +y 22=9+42=25, 因此当且仅当x =y =4时,(1+x )·(1+y )取最大值25.跟踪训练3 下列等式中最小值为4的是( )A .y =x +4xB .y =2t +1tC .y =4t +1t(t >0) D .y =t +1t 【答案】C【解析】A 中x =-1时,y =-5<4,B 中t =-1时,y =-3<4,C 中y =4t +1t ≥24t ·1t =4,当且仅当t =12时等号成立,D 中t =-1时,y =-2<4.故选C. 当堂检测1.若0<a <1,0<b <1,且a ≠b ,则a +b,2ab ,2ab ,a 2+b 2中最大的一个是( )A .a 2+b 2B .2abC .2abD .a +b 【答案】D【解析】∵0<a <1,0<b <1,a ≠b ,∴a +b >2ab ,a 2+b 2>2ab .∴四个数中最大的应从a +b ,a 2+b 2中选择.而a 2+b 2-(a +b )=a (a -1)+b (b -1).又∵0<a <1,0<b <1,∴a (a -1)<0,b (b -1)<0,∴a 2+b 2-(a +b )<0,即a 2+b 2<a +b ,∴a +b 最大.故选D.2.设a 、b 是实数,且a +b =3,则2a +2b 的最小值是( )A .6B .42C .2 6D .8【答案】B【解析】∵a +b =3,∴2a +2b ≥22a ·2b =22a +b =28=4 2.3.不等式a 2+4≥4a 中,等号成立的条件为________.【答案】a =2【解析】令a 2+4=4a ,则a 2-4a +4=0,∴a =2.4.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg a +b 2,则它们的大小关系是________. 【答案】R >Q >P【解析】∵a >b >1,∴lg a >lg b >0,∴Q >P ,又Q =12(lg a +lg b )=12lg ab =lg ab <lg a +b 2=R , ∴R >Q >P .课堂小结1.两个不等式a 2+b 2≥2ab 与a +b 2≥ab 都是带有等号的不等式,对于“当且仅当…时,取‘=’”这句话的含义要有正确的理解.一方面:当a =b 时,a +b 2=ab ;另一方面:当a +b 2=ab 时,也有a =b .2.由基本不等式变形得到的常见的结论(1)ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ); (2)ab ≤a +b 2≤ a 2+b 22 (a ,b ∈R +); (3)b a +a b≥2(a ,b 同号); (4)(a +b )⎝⎛⎭⎫1a +1b ≥4(a ,b ∈R +); (5)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).。

高中数学基本不等式教案设计(优秀3篇)

高中数学基本不等式教案设计(优秀3篇)

基本不等式是主要应用于求某些函数的最值及证明的不等式。

其表述为:两个正实数的算术平均数大于或等于它们的几何平均数。

这次白话文为您整理了高中数学基本不等式教案设计(优秀3篇),如果能帮助到您,小编的一切努力都是值得的。

高中数学教学设计篇一教学目标1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题3、培养学生观察、归纳能力。

教学重点1、等差数列的概念;2、等差数列的通项公式教学难点等差数列“等差”特点的理解、把握和应用教具准备投影片1张教学过程(I)复习回顾师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。

这两个公式从不同的角度反映数列的特点,下面看一些例子。

(放投影片)(Ⅱ)讲授新课师:看这些数列有什么共同的特点?1,2,3,4,5,6;①10,8,6,4,2,…;②生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)对于数列②—2n(n≥1)(n≥2)对于数列③(n≥1)(n≥2)共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。

具有这种特点的数列,我们把它叫做等差数。

一、定义:等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,—2……二、等差数列的通项公式师:等差数列定义是由一数列相邻两项之间关系而得。

若一等差数列的首项是,公差是d,则据其定义可得:若将这n—1个等式相加,则可得:即:即:即:……由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)数列②:(n≥1)数列③:(n≥1)由上述关系还可得:即:则:=如:三、例题讲解例1:(1)求等差数列8,5,2…的第20项(2)—401是不是等差数列—5,—9,—13…的项?如果是,是第几项?解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得—401=—5—4(n—1)成立解之得n=100,即—401是这个数列的第100项。

基本不等式概念教学设计

基本不等式概念教学设计

基本不等式概念教学设计一、教学目标:1. 理解基本不等式的概念和含义。

2. 能够根据不等式的形式进行识别、推导和求解。

3. 掌握基本不等式中常见的数学符号和操作。

二、教学内容:1. 不等式的定义和基本性质。

2. 不等式中的常见符号和操作。

3. 不等式的推导和求解方法。

三、教学过程:第一步:导入1. 引入概念:“大于”、“小于”和“不等于”的区别和联系。

2. 提问学生:“7大于5”、“5小于7”、“3不等于4”中哪个是不等式,为什么?3. 解释不等式的定义和基本性质:不等式是数之间的大小关系,通过不同的符号来表示。

第二步:展示基本不等式的常见符号和操作1. 展示基本不等式的符号:大于(>)、小于(<)、大于等于(≥)、小于等于(≤)。

2. 解释符号的含义和用法。

3. 将符号和数字混合使用,让学生进行判断和比较。

第三步:不等式的推导和求解方法1. 引入不等式的推导和求解方法,强调与方程式的不同之处。

2. 列举一个简单的例子,引导学生观察和思考。

3. 解答学生提出的问题,如何通过加减乘除等操作来推导和求解不等式。

第四步:巩固和拓展1. 给出更多的不等式例子,让学生在小组内进行讨论和解答。

2. 定期提问学生,检查他们对基本不等式概念的掌握程度。

3. 练习不等式的推导和求解,包括一元和多元不等式。

四、教学评估:1. 通过课堂参与和问答,检查学生对基本不等式概念的理解。

2. 布置作业,要求学生完成一定量的不等式推导和求解题目。

3. 定期进行小测验,评估学生的学习进展。

五、教学延伸:1. 引导学生进一步探索复杂的不等式问题,如绝对值不等式和分式不等式。

2. 引入应用问题,让学生将不等式与实际问题联系起来,培养解决实际问题的能力。

六、教学总结:通过本次教学设计,学生可以全面理解基本不等式的概念和含义,并能灵活运用不等式的符号和操作进行推导和求解。

通过多样化的教学手段和评估方式,提高学生对基本不等式概念的掌握程度,并培养其解决实际问题的能力。

基本不等式教案

基本不等式教案

基本不等式教案一、教学目标1. 让学生理解基本不等式的概念和性质。

2. 培养学生运用基本不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维和推理能力的培养。

二、教学内容1. 基本不等式的定义和性质2. 基本不等式的证明方法3. 基本不等式在实际问题中的应用三、教学重点与难点1. 基本不等式的概念和性质的理解2. 基本不等式的证明方法的掌握3. 基本不等式在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解基本不等式的概念和性质。

2. 采用证明法,培养学生掌握基本不等式的证明方法。

3. 采用案例分析法,让学生学会运用基本不等式解决实际问题。

五、教学准备1. 教学PPT2. 教学案例及练习题3. 笔记本和文具【课堂导入】(教师通过引入实际问题或生活实例,引发学生对基本不等式的兴趣,激发学生的学习动机。

)【新课讲解】1. 基本不等式的定义与性质(1)教师讲解基本不等式的定义,解释其意义。

(2)引导学生理解基本不等式的性质,并通过示例进行说明。

2. 基本不等式的证明方法(1)教师讲解基本不等式的证明方法,如综合法、分析法等。

(2)引导学生通过示例掌握基本不等式的证明过程。

【案例分析】1. 教师呈现案例,引导学生运用基本不等式解决实际问题。

2. 学生分组讨论,分享解题思路和答案。

【课堂练习】1. 教师布置练习题,学生独立完成。

2. 教师选取部分学生答案进行点评和讲解。

2. 学生分享自己的学习收获和感悟。

【课后作业】1. 教师布置课后作业,巩固课堂所学知识。

2. 学生独立完成作业,巩固知识点。

六、教学评价1. 通过课堂讲解、案例分析和课后作业,评估学生对基本不等式的理解和掌握程度。

2. 观察学生在解决问题时的思维过程和方法,评价其逻辑思维和推理能力。

3. 收集学生反馈意见,了解教学效果,以便进行教学改进。

七、教学拓展1. 引导学生进一步学习其他不等式,如均值不等式、柯西不等式等。

2. 探讨基本不等式在数学竞赛和实际应用中的重要作用。

高中数学必修五《基本不等式》优秀教学设计

高中数学必修五《基本不等式》优秀教学设计

高中数学必修五《基本不等式》优秀教学设计教学设计一:引入1.创设情境:通过一道问题引入基本不等式的概念和应用。

举例:小明身上有一百元,他想买一双运动鞋,价格在70-90元之间,小明想要尽可能地省钱买到心仪的鞋子。

你认为小明至少要花多少钱才能买到合适的鞋子呢?2.学生思考:让学生自由思考并讨论这个问题。

引导学生思考900的平方根是多少,以及小明至少要花多少钱。

3.引出不等式:根据学生的思考和讨论,引出基本不等式的概念,即a²≥b²。

4.学习目标:通过本节课学习,学生将了解基本不等式的定义、性质和应用。

教学设计二:知识讲授1.基本概念:通过讲解和举例,引导学生了解基本不等式的定义、性质以及运用。

2.性质讲解:依次讲解基本不等式的反身性、传递性和加法性质,并通过实际例子进行说明。

3.运用设计:设计一道问题给学生解答,让他们应用基本不等式的性质来解决问题。

问题:若a>b,b>c,c>d,d>e,e>f,求证:a²>f²。

4.板书总结:总结基本不等式的定义、性质和应用,让学生掌握基本概念和方法。

教学设计三:巩固练习1.分组讨论:将学生分成小组,让他们自行解决以下问题。

问题1:若a>b,b>c,c>0,求证:a+c>b。

问题2:若a>b,b>0,求证:a>0。

问题3:若a>0,b>0,c>0,求证:bc>0。

2.小组展示:每个小组选择一道题目进行展示,并说明解题过程和思路。

3.教师点评:对学生的解题过程和答案进行点评和评价,纠正错误理解和方法。

教学设计四:拓展应用1.实际应用:举例一些实际生活中与不等式相关的问题,并引导学生将其转化为数学问题进行求解。

例1:小明今年的身高是x cm,比去年增加了10%,求去年的身高最多是多少。

例2:商品经过n次打折后的价格为x元,每次打折都是打折前的80%,求运算中所有x的最小值。

基本不等式教学设计(通用8篇)

基本不等式教学设计(通用8篇)

基本不等式教学设计基本不等式教学设计(通用8篇)作为一名专为他人授业解惑的人民教师,时常要开展教学设计的准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。

教学设计应该怎么写才好呢?以下是小编为大家收集的基本不等式教学设计(通用8篇),仅供参考,希望能够帮助到大家。

基本不等式教学设计1教材分析本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解决一些简单的求最值问题;理解算数平均数与几何平均数的概念,学会构造条件使用基本不等式;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几何解释→应用(最值的求法、实际问题的解决)的过程呈现。

启动观察、分析、归纳、总结、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法,通过运用多媒体的教学手段,引领学生主动探索基本不等式性质,体会学习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

基本不等式课程设计

基本不等式课程设计

基本不等式课程设计一、课程目标知识目标:1. 学生能理解并掌握基本不等式的概念,包括算术平均数-几何平均数不等式、均值不等式等。

2. 学生能够运用基本不等式解决实际问题,解释生活中的不等关系。

3. 学生掌握不等式的证明方法,能合理解释不等式成立的数学原理。

技能目标:1. 学生能够准确地运用符号语言表达不等式,并能在数轴上表示出来。

2. 学生通过具体案例,培养观察、分析、解决问题的能力,提高逻辑推理和数学证明技巧。

3. 学生能够运用基本不等式进行简单的数学建模,解决实际问题。

情感态度价值观目标:1. 学生培养对数学的兴趣,特别是对不等式的学习产生积极情感。

2. 学生在学习过程中,发展合作精神,学会分享解题思路和成果。

3. 学生通过不等式的学习,认识到数学的严谨性和应用的广泛性,增强解决实际问题的自信心。

课程性质分析:本课程属于高中数学范畴,以理论学习和实际应用相结合,着重培养学生的逻辑思维能力和解决实际问题的能力。

学生特点分析:高中生具有较强的逻辑推理能力和抽象思维能力,能够理解并应用不等式解决复杂问题。

教学要求:教学应结合学生特点,通过案例导入、理论讲解、互动讨论和实际应用,帮助学生达成课程目标,确保学生在理解不等式的基础上,能够灵活运用并解决实际问题。

二、教学内容1. 引言:通过生活中的实例引入不等式的概念,让学生感知不等式在现实中的应用。

- 教材章节:第一章 不等式与不等式组2. 算术平均数-几何平均数不等式(AM-GM不等式):- 定义、性质、证明和应用- 教材章节:1.2 算术平均数与几何平均数3. 均值不等式:- 包括算术平均数、几何平均数、调和平均数等- 教材章节:1.3 均值不等式及其应用4. 不等式的证明方法:- 比较法、分析法、综合法、反证法等- 教材章节:1.4 不等式的证明5. 不等式的应用:- 解决实际问题的数学建模- 教材章节:1.5 不等式的实际应用6. 综合练习与拓展:- 设计不同难度的习题,巩固所学知识- 拓展不等式在其他学科领域的应用教学内容安排与进度:第1课时:引言与不等式的概念第2课时:算术平均数-几何平均数不等式第3课时:均值不等式第4课时:不等式的证明方法第5课时:不等式的应用第6课时:综合练习与拓展教学内容确保科学性和系统性,结合教材章节,逐步引导学生掌握不等式的相关知识。

不等式的基本性质教学设计优秀

不等式的基本性质教学设计优秀

不等式的基本性质教学设计优秀不等式的基本性质教学设计优秀1【教学目标】1.通过具体情境让学生感受和体验现实世界和日常生活中存在着大量的不等关系,鼓励学生用数学观点进行观察、归纳、抽象,使学生感受数学、走进数学、改变学生的数学学习态度。

2.建立不等观念,并能用不等式或不等式组表示不等关系。

3.了解不等式或不等式组的实际背景。

4.能用不等式或不等式组解决简单的实际问题。

【重点难点】重点:1.通过具体的问题情景,让学生体会不等量关系存在的普遍性及研究的必要性。

2.用不等式或不等式组表示实际问题中的不等关系,并用不等式或不等式组研究含有简单的不等关系的问题。

3.理解不等式或不等式组对于刻画不等关系的意义和价值。

难点:1.用不等式或不等式组准确地表示不等关系。

2.用不等式或不等式组解决简单的含有不等关系的实际问题。

【方法手段】1.采用探究法,按照阅读、思考、交流、分析,抽象归纳出数学模型,从具体到抽象再从抽象到具体的方法进行启发式教学。

2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用。

3.设计教典型的现实问题,激发学生的学习兴趣和积极性。

【教学过程】教学环节教师活动学生活动设计意图导入新课日常生活中,同学们发现了哪些数量关系。

你能举出一些例子吗?实例 1.某天的天气预报报道,最高气温35℃,最低气温29℃。

实例2.若一个数是非负数,则这个数大于或等于零。

实例3.两点之间线段最短。

实例4.三角形两边之和大于第三边,两边之差小于第三边。

引导学生想生活中的例子和学过的数学中的例子。

在老师的引导下,学生肯定会迫不及待的能说出很多个例子来。

即活跃了课堂气氛,又激发了学生学习数学的兴趣。

推进新课同学们所举的这些例子联系了现实生活,又考虑到数学上常见的数量关系,非常好。

而且大家已经考虑到本节课的标题《不等关系与不等式》,所举的实例都是反映不等量的关系。

(下面利用电脑投影展示两个实例)实例5:限时40km/h的路标,指示司机在前方路段行使时,应使汽车的速度v不超过40km/h。

基本不等式说课稿

基本不等式说课稿

基本不等式说课稿(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、述职报告、演讲致辞、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, job reports, speeches, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!基本不等式说课稿基本不等式说课稿范文作为一无名无私奉献的教育工作者,常常要写一份优秀的说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。

基本不等式教案.doc

基本不等式教案.doc

基本不等式教案.doc【导言】基本不等式是初中数学学习过程中,最基础、最重要的不等式之一,也是初步奠定高中不等式学习基础的一个必修知识点。

本节课通过对相关知识的讲解和多种经典例题的讲解,让学生深刻理解基本不等式的意义及使用方法,并在实践中培养学生的基本不等式运用能力。

【学习目标】1.了解不等式的概念,掌握不等式的基本运算规则;3.通过多种实例练习,准确掌握基本不等式的运用方法和问题解决能力。

【教学重点】1.基本不等式的概念及证明;2.掌握基本不等式运用技巧。

如何通过实例练习提高学生的基本不等式运用技能。

讲述法、举例法、实践法。

本课程时间预计为2学时,具体难度和学生学习时间可以进行适当调整。

一、不等式的概念不等式是指两个数或两个代数式之间用不同于等于符号的关系式,数学中常用的不等于符号“<”、“>”及“≤”、“≥”。

二、不等式的基本运算规则1.当不等式两边同时乘或除以一个相同的正数时,不等号方向不变;举例:4x > 12,两边同除以一个正数4,则得到不等式x>3。

对于任意正整数n,有:(1+1/n)^n < e < (1+1/n)^(n+1)其中e≈2.718281828,这个数称为自然常数。

(1)证明左边不等式的方法:首先,我们要用数学归纳法证明引理k<(1+1/n)^n,k是正整数。

假设k<(1+1/n)^n成立,要证明(k+1)<(1+1/n)^(n+1)也成立。

①(1+1/n)^n<k+(1+1/n)接下来,我们用归纳法证明原命题(1+1/n)^n < e。

当n=1时显然成立,假设当n=k 时原命题成立,要证明当n=k+1时原命题也成立。

(1+1/n)^nе > (1+1/(n+1))^nе = (1+1/n) *[ (1+1/(n+1))^n ] < (1+1/n)е由于k<(1+1/n)^n,所以(1+1/n)^nе > kе,即(1+1/n)^n > k。

教学设计基本不等式教学设计

教学设计基本不等式教学设计

教学设计基本不等式教学设计引言:基本不等式是数学中重要的一部分,其在数论、代数、几何等多个领域中都有广泛的应用。

掌握基本不等式对于学生的数学素养和解题能力的培养是至关重要的。

因此,在教学中如何合理设计基本不等式的教学内容和教学方法是十分关键的。

本文将探讨基本不等式的教学设计,以提高学生的理解能力和应用能力。

一、教学目标1. 理解基本不等式的概念和性质;2. 掌握基本不等式的解法和证明方法;3. 能够运用基本不等式解决实际问题;4. 培养学生的逻辑思维和分析问题的能力。

二、教学内容1. 基本不等式的定义和基本性质;2. 基本不等式的证明方法;3. 基本不等式的应用。

三、教学方法1. 归纳法教学法:通过对一些特殊情况的观察和总结,引导学生发现基本不等式的规律和性质;2. 比较法教学法:通过对不等式的比较和大小关系的分析,帮助学生理解不等式的含义和解题思路;3. 实例法教学法:通过具体实例的分析和解决,培养学生运用基本不等式解决实际问题的能力;4. 讨论法教学法:通过学生之间的讨论和合作,促进学生之间的思想交流和合作学习。

四、教学步骤1. 引入基本不等式概念:通过一个生活中的例子引入基本不等式的概念,激发学生的学习兴趣和探索欲望;2. 基本不等式的性质介绍:讲解基本不等式的定义和基本性质,并通过一些简单的例子加深学生的理解;3. 基本不等式的推导和证明:引导学生通过归纳法或其他方法,推导出基本不等式的一般形式,并给出证明过程;4. 基本不等式的应用:给出一些基本不等式的应用题,并结合实际问题进行讲解和解决;5. 课堂练习和总结:提供一些练习题供学生巩固所学知识,然后进行课堂总结和讨论,梳理基本不等式的重要概念和解题方法。

五、教学评价1. 课堂表现评价:评估学生对基本不等式概念、性质和解题方法的掌握程度;2. 作业评价:评估学生对基本不等式应用题的解决能力;3. 实际问题评价:评估学生使用基本不等式解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4.1基本不等式
教材分析
本节课是在系统的学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。

要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。

基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的好素材,所以基本不等式应重点研究。

教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。

通过本节学习体会数学来源于生活,提高学习数学的乐趣。

课程目标分析
依据《新课程标准》对《不等式》学段的目标要求和学生的实际情况,特确定如下目标:
1、知识与能力目标:理解掌握基本不等式,并能运用基本不等式解
决一些简单的求最值问题;理解算数平均数与几
何平均数的概念,学会构造条件使用基本不等
式;培养学生探究能力以及分析问题解决问题的
能力。

2、过程与方法目标:按照创设情景,提出问题→剖析归纳证明→几
何解释→应用(最值的求法、实际问题的解决)
的过程呈现。

启动观察、分析、归纳、总结、抽
象概括等思维活动,培养学生的思维能力,体会
数学概念的学习方法,通过运用多媒体的教学手
段,引领学生主动探索基本不等式性质,体会学
习数学规律的方法,体验成功的乐趣。

3、情感与态度目标:通过问题情境的设置,使学生认识到数学是从
实际中来,培养学生用数学的眼光看世界,通过
数学思维认知世界,从而培养学生善于思考、勤
于动手的良好品质。

教学重、难点分析
重点:应用数形结合的思想理解基本不等式,并从不同角度探索基本
不等式
2b
a a
b +
≤的证明过程及应用。

难点:1、基本不等式成立时的三个限制条件(简称一正、二定、三相等);
2、利用基本不等式求解实际问题中的最大值和最小值。

教法分析
本节课采用观察——感知——抽象——归纳——探究;启发诱导、讲练结合的教学方法,以学生为主体,以基本不等式为主线,从实际问题出发,放手让学生探究思索。

以现代信息技术多媒体课件作为教学辅助手段,加深学生对基本不等式的理解。

教学准备
多媒体课件、板书
教学过程
教学过程设计以问题为中心,以探究解决问题的方法为主线展开。

这种安排强调过程,符合学生的认知规律,使数学教学过程成为学生对知识的再创造、再发现的过程,从而培养学生的创新意识。

具体过程安排如下:
一、 创设情景,提出问题;
设计意图:数学教育必须基于学生的“数
学现实”,现实情境问题是数学教学的平台,
数学教师的任务之一就是帮助学生构造数学
现实,并在此基础上发展他们的数学现实.基
于此,设置如下情境:
上图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?
本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式ab b a 222≥+。

在此基础上,引导学生认识基本不等式。

二、抽象归纳:
一般地,对于任意实数a,b ,有ab b a 222≥+,当且仅当a =b 时,等号成立。

[问] 你能给出它的证明吗?
学生在黑板上板书。

特别地,当a>0,b>0时,在不等式ab b a 222≥+中,以a 、b 分别代替a 、b ,得到什么?
设计依据:类比是学习数学的一种重要方法,此环节不仅让学生理解了基本不等式不等式的来源,突破了重点和难点,而且感受了其中的函数思想,为今后学习奠定基础.
答案: ),(02
>+≤
b a b a ab 。

【归纳总结】
如果a,b 都是正数,那么2b a ab +≤
,当且仅当a=b 时,等号成立。

我们称此不等式为基本不等式。

其中
2b a +称为a,b 的算术平均数,ab 称为a,b 的几何平均数。

三、理解升华:
1、文字语言叙述:
两个正数的算术平均数不小于它们的几何平均数。

2、联想数列的知识理解基本不等式
已知a,b 是正数,A 是a,b 的等差中项,G 是a,b 的正的等比中项,A 与G 有无确定的大小关系?
两个正数的等差中项不小于它们正的等比中项。

3、符号语言叙述:
若0,0>>b a ,则有2b a ab +≤,当且仅当a=b 时,2
b a ab +=。

[问] 怎样理解“当且仅当”?(学生小组讨论,交流看法,师生总结)
“当且仅当a=b 时,等号成立”的含义是:
当a=b 时,取等号,即2b a ab b a +=
⇒=; 仅当a=b 时,取等号,即b a b a ab =⇒+=
2。

4、探究基本不等式证明方法:
[问] 如何证明基本不等式?
(意图在于引领学生从感性认识基本不等式到理性证明,实现从感性认识到理性认识的升华,前面是从几何图形中的面积关系获得不等式的,下面用代数的思想,利用不等式的性质直接推导这个不等式。


方法一:作差比较或由0)(2≥-b a 展开证明。

方法二:分析法(完成课本填空)
设计依据:课本是学生了解世界的窗口和工具,所以,课本必须成为学生赖以学会学习的文本.在教学中要让学生学会认真看书、用心思考,养成讲讲议议、动手动笔、仔细观察、用心体会的好习惯,真正学会读“数学书”。

要证ab b a ≥+2
① 只要证≥+b a ②
要证②,只要证-+b a 0≥ ③
要证③,只要证0)(2≥- ④
显然, ④是成立的。

当且仅当a=b 时, ④中的等号成立 。

点评:证明方法叫做分析法,实际上是寻找结论的充分条件,执果索因的一种思维方法.
5、探究基本不等式的几何意义:借助初中阶段学生熟知的几何图形,引导学生探究不等式
)0,(2>+≤b a b a ab 的几何解释,通过数形结合,赋予不等式
)0,(2>+≤b a b a ab 几何直观。

进一步领悟不等式中等号成立的条件。

如图:AB 是圆的直径,点C 是AB 上一点,CD ⊥AB ,AC=a,CB=b ,
ab CD =
几何解释实质可认为是:在同一半圆中,半径不小于半弦(直径是最长的弦);或者认为是,直角三角形斜边的一半不小于斜边上的高。

四、探究归纳
例1:把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?
例2:把18写成两个正数的和,当这两个正数取什么值时,它们的
积最大?
结论:
若两正数的乘积为定值,则当且仅当两数相等时,它们的和有最小值; 若两正数的和为定值,则当且仅当两数相等时,它们的乘积有最大值。

简记为:“一正、二定、三相等”。

五、领悟练习:
公式应用
(1)若x
,x x 10+>的最小值为________,此时._________=x (1) 若a>0,b>0,且a+b=2,则ab 的最大值为_______,此时
a =_____,
b =_____。

六、反思总结,整合新知:
设计意图:通过反思、归纳,培养概括能力;帮助学生总结经验教训,巩固知识技能,提高认知水平.
老师根据情况完善如下:
一个不等式:若0,0>>b a ,则有2
b a ab +≤
,当且仅当a=b 时,2b a ab +=。

两种思想:数形结合思想、归纳类比思想。

三个注意:基本不等式求函数的最大(小)值是注意:“一正二定三相等”
七、布置作业:。

相关文档
最新文档