专题11-电磁场和电磁波
电磁场和电磁波
2.将下图所示的带电的平行板电容器C的两个极板用 绝缘工具缓缓拉大板间距离的过程中,在电容器周围 空间 A.会产生变化的磁场 B.会产生稳定的磁场 C.不产生磁场 D.会产生振荡的磁场 [误解]认为只有电流的周围存在磁场,电容器中没有 电流通过,周围就不存在磁场。实际上,本题应根据 麦克斯韦电磁场理论来分析:由于对电容器充电后没 有断开电源,电容器两极板间电势差不变,根据 可知Q与d成反比。故当缓慢拉 大电容器两极板间的距离时, 电容器内部的电场作非均匀变化, 在它周围产生变化的磁场,选项(A)正确。
t
则电场力做功NeE应该等于电子的 动能EK,所以有N= EK/Ee,带入数 据可得N=2.8×105周。
2.电磁波 变化的电场和磁场从产生的区域由近及远地向周围 空间传播开去,就形成了电磁波。 有效地发射电磁波的条件是:⑴频率足够高(单位 时间内辐射出的能量P∝f 4);⑵形成开放电路(把 电场和磁场分散到尽可能大的空间离里去)。 电磁波是横波。E与B的方向彼此垂直,而且都跟波 的传播方向垂直,因此电磁波是横波。电磁波的传播 不需要靠别的物质作介质,在真空中也能传播。在真 空中的波速为c=3.0×108m/s。 3.电磁波的应用 要知道广播、电视、雷达、无线通信等都是电磁波 的具体应用。
3.如图1所示的是一个水平放置的玻璃环形小槽,槽内 光滑、槽的宽度和深度处处相同。现将一直径略小于 槽宽的带正电的小球放入槽内,让小球获一初速度v0 在槽内开始运动,与此同时,有一变化的磁场竖直向 下穿过小槽外径所包围的面积,磁感应强度的大小随 时间成正比增大,设小球运动过程中带电量不变,那 么 A.小球受到的向心力大小不变 B.小球受到的向心力大小增加 C.磁场力对小球做功 D.小球受到的磁场力不断增加 [误解] 因为磁场力对带电小球不做功,所以小球的速 度大小不变。由于小球运动的半径又不变,则小球受 到的向心力不变,选(A)。 [正确解答] 选(B),(D)。
电磁场和电磁波的基本概念
电磁场和电磁波的基本概念探究电磁场和电磁波的基本概念电磁场和电磁波是近代物理学中的重要概念,被广泛应用于通讯、能源等方面。
本文将就这两个概念进行探究和讨论。
一、电磁场的概念电磁场是由电荷和电流所产生的物理场,具有电场和磁场两个组成部分。
电场是由电荷产生的力场,磁场则是由电流产生的力场。
电磁场在空间中存在一个电磁能量密度,当电荷和电流在电磁场中发生作用时,将会相互产生影响,这种相互作用称为电磁相互作用。
电磁场的强度大小可以通过电场强度和磁感应强度来表示。
电场强度指在某一点上所受到的电场力的大小,磁感应强度则是在某一点上所受到磁场力的大小。
电磁场符合麦克斯韦方程组,这是电磁场的基本公式,用于描述电磁场中电荷和电流的运动规律。
二、电磁波的概念电磁波是由振动的电场和磁场所组成的波动现象,传播速度为光速。
电磁波包括无线电波、微波、太阳光等,而不同类型的电磁波之间的唯一差别在于它们的频率和波长。
电磁波可以由指定振动的电荷所产生,它们在传播过程中并不需要媒质来传递。
由于电磁波的传播特性,它们能够被用于不同的应用,例如通讯、成像等。
电磁波可以被描述为横波,这意味着电磁场在垂直于波传播方向的方向上振动。
在电磁波穿过介质时,它的速度和频率可能发生改变,这称为折射和反射。
三、电磁场和电磁波的联系在麦克斯韦方程组中,电磁场的本质被认为是一个相互联系的整体,其中电场和磁场之间存在耦合关系。
这种耦合关系反映在电磁波中,在电场振动时,磁场也会随之振动,反之亦然。
电磁波的传播速度是由电磁场的性质所决定的,因此,电磁波也可以被看作是一种电磁场的传播形式。
在电磁波传播过程中,电场和磁场以波动的形式相互作用,电磁波的特点是具有传递能量的作用。
结束语总结来看,电磁场和电磁波是现代物理学中的核心概念,对于现代的通讯和能源技术有着极为深远的影响。
在学习电磁学的过程中,对电磁场和电磁波的深入探究不仅能加深对它们的理解,还可以更好地应用到实际问题中。
电磁场和电磁波PPT课件
四、氧化物
2、制法: 原理 HNO3+Cu-Cu(NO3)2+NOx↑+H2O 药品 浓稀硝酸、铜 装置 固液(加热) 收集 尾气吸收
五、含氧酸
硝酸 1、结构: 2、物理性质:无色易挥发液体易溶于水 3、化学性质:
不稳定性 酸性 强氧化性 与有机物反应
五、含氧酸
CO2 H2O NO2 H3PO4 NO2
上一页 下一页
例4:下列说法错误的是( ) A.雷达是利用无线电波来测定物体位置的无线电装置 B.电磁波遇到障碍物要发生反射,雷达就是利用电磁 波的这个特性工作的 C.雷达用的是中波波段的无线电波 D.雷达每次发射无线电波的时间约为10-7s
上一页 下一页
氮族元素
元素及其化合物之四
目的 根据氮族元素在周期表的位置及结构特点,掌握该
二、单质
磷(红磷、白磷) 1、分子结构: 2、物理性质: 3、化学性质:
4P+5O2=2P2O5 P2O5+H2O(冷)=2HPO3(偏磷酸剧毒) P2O5+3H2O(热)=2H3PO4(无毒) 2P+3Cl2=2PCl3 2P+5Cl2=2PCl5
二、单质
隔绝空气 416℃ 冷却 白磷----→红磷----→升华---→白磷
N四2O 、NO氧N2化O3 物NO2(N2O4) N2O5 P4O6 P4O10
1、性质:
NO
N2
NaNO2
NO2
SO3 NO I2 NO KOH
N2O4
HNO3
四、氧化物
2NO+O2=2NO2 3NO2+H2O=2HNO3+NO
4NO+3O2+2H2O=4HNO3 4NO2+O2+2H2O=4HNO3 6NOx+4xNH3=(3+2x)N2+6xH2O(催化剂) NO2+NO+2NaOH=2NaNO2+H2O NO2+SO2=NO+SO3 NO2+2KI+H2O=NO+2KOH+I2
《电磁场和电磁波》 讲义
《电磁场和电磁波》讲义一、什么是电磁场在我们生活的这个世界里,电磁场无处不在。
从你手中的手机发出的信号,到照亮房间的灯光,再到地球上的闪电,都与电磁场有着密切的关系。
那么,究竟什么是电磁场呢?简单来说,电磁场是由带电粒子的运动产生的一种物理场。
电荷的存在会在其周围产生电场,而当电荷运动起来,比如电流在导线中流动时,就会产生磁场。
电场和磁场总是相互关联、相互依存的,它们共同构成了电磁场。
想象一下,一个静止的电荷会在周围空间产生一个静电场,这个电场的强度会随着距离电荷的远近而变化。
当这个电荷开始运动,比如在导线中形成电流时,就会产生一个磁场,这个磁场的方向可以通过右手定则来判断。
电磁场具有能量和动量,它能够传递电磁力,对处于其中的带电粒子产生作用。
电磁场的性质和行为可以用麦克斯韦方程组来描述,这是一组非常重要的数学方程,它们统一了电学和磁学的现象。
二、电磁波的产生既然电磁场是由带电粒子的运动产生的,那么电磁波又是如何产生的呢?当一个带电粒子加速运动时,它周围的电磁场就会发生变化。
这种变化的电磁场会以波的形式向周围空间传播,这就是电磁波。
举个例子,一个电子在天线中来回振动,就会产生变化的电流。
这个变化的电流会导致周围的电磁场不断变化,从而产生电磁波并向外辐射。
电磁波的频率取决于带电粒子振动的频率。
电磁波的产生需要一个源,比如天线、振荡器等。
这些源能够提供能量,使得电磁场不断变化从而产生电磁波。
同时,电磁波的产生还需要一个传播介质,在真空中电磁波同样可以传播,这是因为真空中存在着电磁场的相互作用。
三、电磁波的特性电磁波具有许多独特的特性,这些特性使得它在现代科技中有着广泛的应用。
首先,电磁波是横波,这意味着它的电场和磁场的振动方向与波的传播方向垂直。
电磁波的电场和磁场在空间和时间上相互垂直,并且它们的振幅和相位之间存在着一定的关系。
其次,电磁波的传播速度是恒定的,在真空中,电磁波的传播速度约为 3×10^8 米/秒,这个速度通常被称为光速。
电磁场与电磁波知识点总结
电磁场与电磁波知识点总结电磁场知识点总结篇一电磁场知识点总结电磁场与电磁波在高考物理中属于非主干知识点,多以选择题的形式出现,题目难度较低,属于必得分题目,重点考察考生对基本概念的理解和掌握情况。
下面为大家简单总结一下高中阶段需要大家掌握的电磁场与电磁波相关知识点。
电磁场知识点总结一、电磁场麦克斯韦的电磁场理论:变化的电场产生磁场,变化的磁场产生电场。
理解:* 均匀变化的电场产生恒定磁场,非均匀变化的电场产生变化的磁场,振荡电场产生同频率振荡磁场* 均匀变化的磁场产生恒定电场,非均匀变化的磁场产生变化的电场,振荡磁场产生同频率振荡电场* 电与磁是一个统一的整体,统称为电磁场(麦克斯韦最杰出的贡献在于将物理学中电与磁两个相对独立的部分,有机的统一为一个整体,并成功预言了电磁波的存在)二、电磁波1、概念:电磁场由近及远的传播就形成了电磁波。
(赫兹用实验证实了电磁波的存在,并测出电磁波的波速)2、性质:* 电磁波的传播不需要介质,在真空中也可以传播* 电磁波是横波* 电磁波在真空中的传播速度为光速* 电磁波的波长=波速*周期3、电磁振荡LC振荡电路:由电感线圈与电容组成,在振荡过程中,q、I、E、B 均随时间周期性变化振荡周期:T = 2πsqrt[LC]4、电磁波的发射* 条件:足够高的振荡频率;电磁场必须分散到尽可能大的'空间* 调制:把要传送的低频信号加到高频电磁波上,使高频电磁波随信号而改变。
调制分两类:调幅与调频# 调幅:使高频电磁波的振幅随低频信号的改变而改变# 调频:使高频电磁波的频率随低频信号的改变而改变(电磁波发射时为什么需要调制?通常情况下我们需要传输的信号为低频信号,如声音,但低频信号没有足够高的频率,不利于电磁波发射,所以才将低频信号耦合到高频信号中去,便于电磁波发射,所以高频信号又称为“载波”)5、电磁波的接收* 电谐振:当接收电路的固有频率跟收到的电磁波频率相同时,接受电路中振荡电流最强(类似机械振动中的“共振”)。
《电磁场和电磁波》 讲义
《电磁场和电磁波》讲义一、引言在我们的日常生活中,电磁场和电磁波无处不在。
从手机通信到微波炉加热食物,从无线电广播到卫星导航,电磁场和电磁波的应用已经深入到我们生活的方方面面。
那么,什么是电磁场和电磁波?它们是如何产生、传播和相互作用的?这就是我们在本讲义中要探讨的内容。
二、电磁场的基本概念电磁场是由电荷和电流产生的一种物理场。
电场是由电荷产生的,它描述了电荷之间的相互作用力;磁场是由电流产生的,它描述了电流之间以及电流与磁铁之间的相互作用力。
当电荷和电流随时间变化时,电场和磁场也会随之变化,并且相互关联,形成了电磁场。
电场的强度用电场强度 E 来表示,单位是伏特每米(V/m)。
电场强度的方向是正电荷在该点所受电场力的方向。
磁场的强度用磁感应强度 B 来表示,单位是特斯拉(T)。
磁感应强度的方向可以用右手螺旋定则来确定。
三、电磁波的产生电磁波是由时变的电场和磁场相互激发而产生的。
当电荷做加速运动或者电流随时间变化时,就会产生电磁波。
例如,一个振荡的电荷会在周围空间产生交变的电场和磁场,从而形成电磁波向远处传播。
最常见的电磁波产生方式是通过天线。
天线中的电流在来回振荡时,会向周围空间辐射电磁波。
不同频率的振荡电流会产生不同频率的电磁波。
四、电磁波的传播电磁波在真空中以光速传播,速度约为3×10^8 米每秒。
在介质中,电磁波的传播速度会变慢,并且与介质的性质有关。
电磁波的传播不需要介质,可以在真空中传播。
这与机械波(如声波)需要介质来传播是不同的。
电磁波在传播过程中,电场和磁场相互垂直,并且都垂直于电磁波的传播方向,形成了横波。
电磁波具有波动性和粒子性。
从波动性的角度来看,电磁波具有波长、频率和波速等特征。
波长是相邻两个波峰或波谷之间的距离,频率是单位时间内电磁波振动的次数,波速等于波长乘以频率。
从粒子性的角度来看,电磁波可以看作是由一个个光子组成的,光子具有能量和动量。
五、电磁波的频谱电磁波的频谱非常广泛,按照频率从低到高可以分为无线电波、微波、红外线、可见光、紫外线、X 射线和伽马射线等。
《电磁场和电磁波》 讲义
《电磁场和电磁波》讲义一、什么是电磁场在我们生活的世界中,电磁场是一种无处不在但又常常被我们忽视的存在。
简单来说,电磁场是由带电物体产生的一种物理场。
当电荷静止时,会产生静电场;当电荷运动时,就会产生磁场。
而当电荷的运动状态发生变化时,电场和磁场也会相互影响、相互作用,从而形成了电磁场。
想象一下,一个电子在空间中移动,它的周围就会产生一个变化的电场,同时这个变化的电场又会产生一个磁场,如此循环往复,就形成了电磁场。
电磁场具有能量和动量,它能够传递电磁力。
我们日常使用的各种电器设备,比如手机、电视、电脑等,都是通过电磁场来实现信号的传输和能量的传递。
二、电磁波的产生既然有了电磁场,那么电磁波又是怎么产生的呢?电磁波的产生通常是由于电荷的加速运动。
比如,在一个天线中,电流迅速地变化,导致电荷加速运动,从而产生了电磁波。
电磁波的产生过程可以类比为在池塘中扔一块石头,产生的涟漪会向四周扩散。
电荷的加速运动就像石头入水,产生的电磁波就像扩散的涟漪。
不同的电荷加速运动方式会产生不同频率和波长的电磁波。
从无线电波到微波,从红外线到可见光,从紫外线到 X 射线和伽马射线,它们都是电磁波的不同表现形式。
三、电磁波的性质电磁波具有一些重要的性质。
首先,电磁波是横波,这意味着它的电场和磁场振动方向与波的传播方向垂直。
其次,电磁波在真空中的传播速度是恒定的,大约为3×10⁸米/秒,这个速度被称为光速。
电磁波的频率和波长之间存在着一个简单的关系:速度等于频率乘以波长。
这意味着,频率越高,波长就越短;频率越低,波长就越长。
另外,电磁波具有能量,其能量大小与电磁波的频率有关,频率越高,能量越大。
四、电磁波的应用电磁波在我们的生活中有着广泛的应用。
无线电广播和电视就是利用无线电波来传输声音和图像信号。
手机通信则依靠微波频段的电磁波。
红外线在遥控器、夜视仪等设备中发挥着重要作用。
可见光让我们能够看到这个五彩斑斓的世界。
《电磁场和电磁波》 讲义
《电磁场和电磁波》讲义一、什么是电磁场在我们生活的世界中,电磁场是一种无处不在但又常常被我们忽略的存在。
简单来说,电磁场就是由带电粒子的运动所产生的一种物理场。
想象一下,当一个电子在空间中移动时,它的周围就会产生一个电场。
这个电场会对周围的其他带电粒子产生力的作用。
与此同时,如果这个电子在移动的过程中还在不断地改变速度,那么就会产生磁场。
电场和磁场就像是一对好兄弟,它们总是同时出现,相互关联,并且相互影响。
这种相互作用的结果就是我们所说的电磁场。
电磁场的强度和方向可以用数学上的向量来描述。
电场强度用 E 表示,磁场强度用 B 表示。
它们的大小和方向会随着带电粒子的运动状态以及空间位置的变化而变化。
二、电磁场的特性电磁场具有一些非常重要的特性。
首先,电磁场可以在空间中传播。
这就像我们扔一块石头到水里,会产生一圈圈的水波向外扩散一样,电磁场也能以电磁波的形式在空间中传播能量和信息。
其次,电磁场遵循一定的规律。
比如,库仑定律描述了两个静止点电荷之间的电场力作用;安培定律则描述了电流与磁场之间的关系。
再者,电磁场具有能量。
当电磁场发生变化时,能量会在电场和磁场之间相互转换。
这也是电磁波能够传播的一个重要原因。
三、电磁波的产生电磁波的产生通常需要一个源,比如一个加速运动的电荷或者一个变化的电流。
以天线为例,当电流在天线中快速变化时,就会产生迅速变化的电磁场,并向周围空间发射出去,形成电磁波。
另外,原子内部的电子在不同能级之间跃迁时,也会释放出电磁波。
这种电磁波的频率和能量与电子跃迁的能级差有关。
四、电磁波的性质电磁波具有波动性和粒子性双重性质。
从波动性的角度来看,电磁波和其他波一样,具有波长、频率、振幅等特征。
波长是相邻两个波峰或波谷之间的距离;频率则是单位时间内波振动的次数;振幅表示波的能量大小。
电磁波的频率范围非常广泛,从极低频率的无线电波到高频率的伽马射线。
不同频率的电磁波在性质和应用上有着很大的差异。
电磁场和电磁波
电磁场和电磁波是物理学中的两个基本概念。
电磁场和电磁波有什么区别?
电磁场
一般来说,电磁场是指彼此相关的交变电场和磁场。
电磁场是带电粒子运动产生的一种物理场。
在电磁场中,磁场的任何变化都会产生电场,而电场的任何变化也会产生磁场。
这种交变电磁场不仅可以存在于电荷,电流或导体周围,还可以在空间中传播。
电磁场可以看作是电场和磁场之间的联系。
电场由电荷产生,运动电荷产生磁场。
什么是电磁波
电磁场的传播构成电磁波。
也称为电磁辐射,例如,我们常见的电磁波是无线电波,微波,红外线,可见光,紫外线,X射线,r射线。
这些都是电磁波,但是这些电磁波的波长不同。
其中,无线电波的波长最长,而R射线的波长最短。
此外,人眼可以接收的电磁波波长通常在380至780 nm之间,这就是我们通常所说的可见光。
一般而言,只要物体本身的温度大于绝对零(即负273.15℃),除暗物质外,还会
发射电磁波。
但是,没有物体的温度低于-273.15℃,因此可以说我们周围的物体发出电磁波。
电磁波以光速传播。
谁首先发现电磁波?历史上,电磁波最初是由詹姆斯·麦克斯韦(James Maxwell)在1865年预测的,然后在1887年至1888年由德国物理学家海因里希·赫兹(Heinrich Hertz)确认的。
拓展:
《电磁场与电磁波第四版》是2006年01月由高等教育出版社出版的书籍,作者是谢处方、饶克谨。
本书可供普通高等学校电子信息、通信工程、信息工程等专业作为电磁场与电磁波课程的教材使用,也可供工程技术人员参考。
电磁场与电磁波ppt完美版课件
探究一
探究二
随堂检测
画龙点睛变化的磁场周围产生电场,与是否有闭合电路存在无关。
2.对麦克斯韦电磁场理论的理解
探究一
探究二
随堂检测
实例引导例1根据麦克斯韦电磁场理论,下列说法正确的是( )A.有电场的空间一定存在磁场,有磁场的空间也一定能产生电场B.在变化的电场周围一定产生变化的磁场,在变化的磁场周围一定产生变化的电场C.均匀变化的电场周围一定产生均匀变化的磁场D.周期性变化的磁场周围空间一定产生周期性变化的电场解析:根据麦克斯韦电磁场理论,只有变化的电场才能产生磁场,均匀变化的电场产生恒定的磁场,非均匀变化的电场产生变化识
自我检测
1.正误判断。(1)电磁波也能产生干涉、衍射现象。( )答案:√(2)电磁波的传播不需要介质,可以在真空中传播。答案:√2.探究讨论。为什么电磁波是横波?答案:根据麦克斯韦电磁场理论,电磁波在真空中传播时,它的电场强度和磁感应强度是相互垂直的,且二者均与波的传播方向垂直。因此,电磁波是横波。
探究一
探究二
随堂检测
规律方法理解麦克斯韦的电磁场理论的关键掌握四个关键词:“恒定的”“均匀变化的”“非均匀变化的”“周期性变化的(即振荡的)”,这些都是对时间来说的,是时间的函数。
探究一
探究二
随堂检测
变式训练1如图所示的四种电场中,哪一种能产生电磁波( )
解析:由麦克斯韦电磁场理论,当空间出现恒定的电场时(如A图),由于它不激发磁场,故无电磁波产生;当出现均匀变化的电场时(如B、C图),会激发出磁场,但磁场恒定,不会激发出电场,故也不会产生电磁波;只有振荡的电场(即周期性变化的电场)(如D图),才会激发出振荡的磁场,振荡的磁场又激发出振荡的电场……如此周而复始,便会形成电磁波。答案:D
《电磁场和电磁波》 讲义
《电磁场和电磁波》讲义一、什么是电磁场在我们生活的这个世界里,电磁场是一种看不见、摸不着,但却无处不在的“神秘力量”。
简单来说,电磁场就是由带电物体产生的一种物理场。
当电荷静止时,它只产生电场;而当电荷运动时,就会同时产生电场和磁场。
电场和磁场相互关联、相互作用,形成了电磁场。
想象一下,一个带电荷的小球,它周围的空间就存在着电场。
如果这个小球开始移动,那么它就像一个奔跑的运动员,在身后留下了磁场的“足迹”。
电场的强度可以用电场强度这个物理量来描述,它告诉我们电场对电荷的作用力有多大。
而磁场的强度则用磁感应强度来表示,反映了磁场对运动电荷或电流的作用能力。
二、电磁波的产生既然有了电磁场,那么电磁波又是怎么来的呢?当带电粒子加速运动时,它产生的电磁场就会发生变化。
这种变化的电磁场会在空间中传播出去,就形成了电磁波。
比如说,一个电子在天线中来回振荡,就会不断地产生变化的电磁场,从而发射出电磁波。
电磁波的产生需要有一个源,这个源可以是一个振荡的电路、一个原子的跃迁,甚至是宇宙中的天体活动。
三、电磁波的特性电磁波具有很多独特的特性。
首先,电磁波是横波,也就是说它的振动方向与传播方向垂直。
这就像一根绳子上下抖动,而波却沿着水平方向传播一样。
其次,电磁波在真空中的传播速度是恒定的,约为3×10^8 米每秒,这个速度被称为光速。
电磁波的频率和波长是两个重要的参数。
频率是指电磁波在单位时间内振动的次数,而波长则是电磁波在一个周期内传播的距离。
它们之间存在着一个简单的关系:速度=频率×波长。
不同频率的电磁波具有不同的性质和用途。
例如,无线电波可以用于通信和广播,微波可以用于加热食物,红外线可以用于遥控和热成像,可见光让我们看到五彩斑斓的世界,紫外线可以杀菌消毒,X 射线可以用于医学成像,伽马射线则在核物理和天文学中有重要应用。
四、电磁波的传播电磁波可以在不同的介质中传播,包括真空、空气、水、玻璃等等。
大学物理讲义电磁场与电磁波PPT课件
S
(
j0
D) t
d
S
(11.12)
12 首 页 上 页 下 页退 出
在一般情况下,电介质中的电流主要是位移电流, 传导电流可忽略不计;而在导体中主要是传导电流, 位移电流可忽略不计. 在超高频电流情况下,导体内的传导电流和位移电 流均起作用,不可忽略.
因为在电介质中D=ε0E+P,所以位移电流密度jD
s D d S q0
l E dl 0
(11.1)
(11.2)
3 首 页 上 页 下 页退 出
对于稳恒磁场,由毕奥—萨伐尔定律和场强叠加原 理,可以导出描述稳恒磁场性质的“高斯定理”和 安培环路定理
s BdS 0
l H dl I0
ቤተ መጻሕፍቲ ባይዱ
(11.3)
(11.4)
s BdS 0
4.磁场强度沿任意闭合曲线的线积分等于穿过以 该曲线为边界的曲面的全电流。
l H dl
I0
s
D t
d
S
19 首 页 上 页 下 页退 出
归纳起来,麦克斯韦方程组的积分形式为
s D d S q0
B
l E dl S t d S
t
具有电流密度的性质,麦克斯韦把它称做位移电流
密度jD
11 首 页 上 页 下 页退 出
即
dD j D dt
(11.10)
而把
dD dt
称为位移电流ID
ID
dD dt
d dt
DdS
S
D dS S t
S jD dS
电磁场与电磁波
电磁辐射的安全防护 措施:包括屏蔽、滤 波、接地等方法,以 降低电磁辐射的危害
电磁波的防护措施
滤波:使用滤波器,滤除有 害电磁波
屏蔽:使用金属材料或电磁 屏蔽材料,阻挡电磁波的传 播
接地:将设备外壳接地,减 少电磁波的辐射
距离:保持与电磁波源的距 离,减少电磁波的影响
电磁波的安全标准与法规
科研领域: 电磁波在科 学研究中的 应用,如天 文观测、粒 子加速器等
未来电磁波的发展趋势与挑战
发展趋势:高速、大容量、低功耗
发展趋势:集成化、小型化、智能 化
添加标题
添加标题
添加标题
添加标题
挑战:电磁波干扰、信息安全、电 磁兼容
挑战:电磁波传播、接收、处理技 术的突破
THANKS
汇报人:XX
伽马射线:波长小于0.01nm,具有极强的穿透力,能穿透人体组织,常用于放射治疗和核物理研究等。
4
电磁波的应用
通信技术
电磁波的发现 和应用:无线 电通信、电视 广播、卫星通
信等
通信技术的发 展历程:从模 拟通信到数字 通信,从有线 通信到无线通
信
通信技术的应 用领域:军事、 航天、医疗、 交通、教育等
医疗设备:利用电磁波进行无 创检测和治疗
电磁波与其他领域的交叉发展
通信领域: 电磁波在无 线通信中的 应用,如5G、 6G等
医疗领域: 电磁波在医 疗设备中的 应用,如微 波治疗、射 频消融等
军事领域: 电磁波在军 事装备中的 应用,如雷 达、电子战 等
环保领域: 电磁波在环 保监测中的 应用,如电 磁波污染监 测、电磁波 消毒等
电磁场与电磁波
XX,a click to unlimited possibilities
电磁场和电磁波PPT课件
3.电磁波的特点:
(1)电磁波中的电场和磁场互相垂直,并且与波的传 播方向垂直,即电磁波是横波.(见P243图) (2)电磁波可以在真空中传播,向周围空间传播电磁 能,在传播过程中,电磁波能发生反射 折射干涉和衍 射. (3)三个特征量的关系:v=λf
f由振荡电路决定. λ它与介质和波速有关.v它 与介质和频率有关,在真空中v=3.0 * 108 m/s
且与波的传播方向垂直,即电磁波是横波.(见P243图)
(2)电磁波可以在真空中传播,向周围空间传播电磁能,在传
播过程中,电磁波能发生反射 折射干涉和衍射.
(3)三个特征量的关系:v=λf. f由振荡电路决定. λ
它与介质和波速有关.v它与介质和频率有关,在真空中v=3.0
* 108 m/s
四.作业P240(3)(4) P244(1)(2)
无电流,有电场
若线圈被拿走,它所处的空间有电场吗?
有.(电场决定于场源,此时变化的磁场是场源)
第2页/共10页
2.变化的电场产生磁场
麦克斯韦根据电现象与磁现象的相似性和变化 的磁场产生的电场事实,提出大胆的假设:变 化的电场产生磁场,并且通过严密的理论推导 得以证明这一结论的正确性.
总结延伸: 均匀变化的电场(磁场)产生稳定的磁场(电场) 周期性变化的电场(磁场)产生周期性变化的磁场(电场)
第8页/共10页
第9页/共10页
再 见
感谢您的观看!
第10页/共10页
二电磁场 变化的电场和磁场总是相互联系的,形成一个不可 分离的统一的场,这就是电磁场.
第3页/共10页
基础训练:
1.关于电磁场的理论,下面说法正确的是( D ) A.在电场的周围空间一定有磁场 B.任何变化的电场周围空间一定产生变化的磁场 C.均匀变化的电场(磁场)产生变化的磁场(电场) D.振荡电场周围产生的磁场也是振荡的 2.下列说法正确的是( ACD ) A.恒定电流能够在周围的空间产生稳定的磁场 B.稳定的电场在能够周围的空间产生稳定的磁场 C.均匀变化的电场能够在周围的空间产生稳定的磁场 D.周期性电场能够在周围的空间产生周期性变化的磁场
电磁场电磁波解读课件
电磁波的产生
总结词
描述电磁波的产生
详细描述
当电场和磁场在空间中以波动的形式传播时,就形成了电磁波。电磁波的产生需 要具备两个条件:变化的电场和变化的磁场。
电磁波的传播
总结词
描述电磁波的传播方式
详细描述
电磁波的传播不需要介质,可以在真空中传播。同时,电磁波在介质中传播时,其传播速度会受到介质的影响。
详细描述
目前,科研人员正在研究利用新型材料和结构,如光子晶体、 超材料等,产生具有特殊性质的新型电磁波,如高斯光束、 表面波等。这些新型电磁波在通信、传感、成像等领域具有 广泛的应用前景。
电磁波在新能源领域的应用
总结词
随着新能源技术的不断发展,电磁波将在新能源领域发挥重要作用。
详细描述
目前,电磁波已经在太阳能、风能等新能源领域得到广泛应用。通过利用电磁波的特性,可以实现高 效的光电转换、风力发电以及能源的无线传输等。此外,电磁波还可以用于能源的监测和管理,提高 能源利用效率。
电磁波是振荡的电场和磁场在 空间中以波的形式传播,具有 波长、频率和相位等波动特征。
电磁波在空间中传播时,其振 幅随传播距离的增加而减小, 同时其相位也会发生变化。
电磁波的传播速度与介质有关, 在真空中传播速度为光速。
电磁波的能量传
电磁波的能量传输是指电磁波在空间中传播时所携带的能量随传播距离的增加而减小。
02
电磁场与电磁波的性质
电磁场的物理性质
电磁场是由变化的电场和磁场相互激 发而形成的场,具有空间传播的特性。
电磁场具有波动性和粒子性两种表现 形式,波动性表现为电磁波的传播, 粒子性表现为光子或光子的集合。
电磁场具有能量、动量和电荷等物理 属性,对处于其中的电荷和电流产生 作用力。
《电磁场和电磁波》PPT课件
a
返回
演示4
二、电磁振荡的产生:
1、与电场能和磁场能有关的因素:
(1)与电场能有关的因素:
电场能
电场线密度 L 电场强度E
++++
CE
-- --
S
电容器极板间电压u
电容器带电量q a
5
(2)与磁场能有关的因素:
磁场能
磁感线密度 磁感强度B
线圈中电流 i
a
6
2、电磁振荡的产生过程:
q ↓ → u↓ → i ↓
o
t
u o
t
电场能
磁场能
o
t
o
a
t
演示一
演示二
12
3、电磁振荡:
在振荡电路产生振荡电流的过程 中,电容器极板上的电荷、通过线圈 的电流,以及跟电荷和电流相联系的 电场和磁场都发生周期性的变化,这 种现象叫电磁振荡。
a
13
4、电磁振荡与简谐运动的类比
电磁振荡
简谐运动
过程 特点
对应 的物 理量
规律
充电:加在电容器两端的电压 产生充电电流;线圈的电感阻碍充电 电流的突变。
LC振荡电路产生振荡电流的物理原因是 电容器的充放电作用和线圈的自感 作用;
LC振荡电路产生振荡电流的物理实质是 电场能和磁场能的周期性转换。
在解决振荡电路问题时,电场能与磁场能的交 替转化是解决问题的线索和关键;与电场能和磁场 能相关的各量的变化规律是解决问题的依据;q—t 和I-t 图线及其相互转化是解决问题的直观手段。
t=T/4
t=T/2 t=3T/4
t=T
电容器 带电量
电路中 电流
电场能
11电磁场和电磁波
互感磁能
W
1 2
L1I12
1 2
L2 I22
MI1I2
自感磁能
互感磁能
2、磁场的能量
螺线管特例: L n2V H nI B nI
W
1
LI 2
1 n2V (
B
)2
1
B2 V
1 BHV
2
2
n 2 2
磁场能量密度:单位体积中储存的磁场能量 wm
w W 1 B2 1 H 2 1 BH
V 2 2
位移电流和传导电流一样,都能激发磁场
传导电流 电荷的定向移动 通过电流产生焦耳热
位移电流 电场的变化 真空中无热效应
传导电流和位移电流在激发磁场上是等效.
B
l Ei dl S t dS
L Hd dl
D
dS
S t
B
D
t
t
Ei 左旋
右旋 H d
对称美
三、麦克斯韦方程组
1820年奥斯特 1831年法拉第
电 产生 磁 磁 产生 电
变化的磁场 激发 电场
? 变化的电场
磁场
11-1 位移电流 麦克斯韦方程组
一. 位移电流
1、电磁场的基本规律
对静电场
SD dS q0
L E dl 0
对变化的磁场
B
LE dl S t dS
对稳恒磁场
SB
dS
0
lH dl I0
2
任意磁场 dW wdV 1 BHdV 2
1 W V wdV V 2 BHdV
例 如图.求同轴传输线之磁能及自感系数
解 : H I B I dV 2rldr R2
2r
2r
电磁场和电磁波(与“电磁波”相关文档)共17张PPT
特点3:电磁波的传播速度等于波长和频率的乘积, 即
υ =λ·f
υ =C/n(介质的折射率)
第7页,共17页。
3)比较电磁波与机械波
电磁波
机械波
在真空或介质中均可传播 一定要有介质才
不
能传播
同 传播速度与介质和频率有 传播速度只由介
点 关(频率越高的电磁波在
质决定
同一种介质中的传播速度
调 包络线跟音频电流的变化规律完全一样, 中特心点频 2率:最电大磁,波频的率传变播化不的需周要期介与质音,频波信速号V取一决样于.传)播介质,任何频率的电磁波在真空中的传播速度都等于真空中的光速
传知播道速 电度磁与波介与质机和械频波率的有区关别(频率越高的电磁波在同一种介质中的传播速度越小)
制 振幅变化的周期与音频信号一样.) 检调波谐( :解使调接)收:电从路经产过生调电制谐的振高的频过振程荡.中(可“检通”出过调调制节信可号变的电过容程器.来实现)
变.(调频后的高频振荡信号的振幅不变, 调谐幅:使接高收频电振路荡产的生振电幅谐随振信的号过而程改.变(.可(通调过幅调后节的可高变频电振容荡器电来流实它现的)振幅包络线跟音频电流的变化规律完全一样,振幅变化的周期与音频信号一
在样真.空 )或介质中均可传播
但它的频率按音频电流的大小变化,在音 利变用化雷 的达磁可场以能探够测在飞周机围、空舰间艇产、生导电弹场以,及变其化他的军电事场目能标够;在周围空间产生磁场.
特检点波2 (:解电调磁)波:的从传经播过不调需制要的介高质频,振波荡速中V“检取”出决调于制传信播号介的质过,程任.何频率的电磁波在真空中的传播速度都等于真空中的光速 利传用播雷 速达度可与以介探质测和飞频机率、有舰关艇(、频导率弹越以高及的其电他磁军波事在目同标一;种介质中的传播速度越小) 传υ =播λ速·f,度两与者介都质是和周频期率性有的关,(都频是率传越播高能的量电的磁过波程在.同一种介质中的传播速度越小) 雷检达波: (是解利调用)无:线从电经波过来调测制定的物高体频位振置荡的中无“检线”出电调设制备信.号的过程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十一 电磁场与电磁波 光(1课时)一、光学1.光的折射:(1)定义:(2)光的折射定律: (3)在折射现象中光路也是可逆的。
2.折射率(1)折射率 (2)表达式:(3)折射率和光在介质中传播的速度有关,用c 表示真空中的光速,v 表示介质中的光速,则:vcn。
式中c= ,n 为介质折射率,光在介质中的速度______(填“大于”“等于”或“小于”)光在真空中的速度。
3.全反射(1)光疏介质和光密介质 (2)全反射现象:光从_______介质入射到_______介质的分界面上时,当入射角增大到一定程度时,光全部反射回_______介质,这一现象叫全反射现象。
(3)临界角:折射角等于________时的_______叫做临界角。
用C 表示,C= (4)发生全反射的条件:① ;② 。
(5)光导纤维:实际用的光导纤维是非常细的特质玻璃丝,直径只有几微米到一百微米之间,在内芯和外套的界面上发生全反射。
4.光的色散白光通过三棱镜后,出射光束变为红、橙、黄、绿、蓝、靛、紫七色光束。
由七色光组成的光带叫做光谱。
这种现象叫做光的色散。
色散的实质是由于各种色光在同一介质中传播的速率不同,或同一介质对不同色光的折射率不同而引起的。
5.光的干涉现象(1) 条件:(2)双缝干涉: 若双缝间距为d ,双缝屏到光屏的距离为L ,入射光波长为λ,则相邻明(暗)纹间距为 上述关系式给出了一种“测量光波长”的方法。
(3)薄膜干涉:由透明膜的前、后表面反射的相干光波叠加而形成的干涉现象。
利用薄膜干涉可以检验工件平面是否平整,还可以作为光学镜头上的增透膜。
6.光的衍射现象(1)现象:光绕过障碍物继续传播的现象。
(2)条件:从理论上讲衍射是无条件的,但需发生明显的衍射现象,其条件是障碍物(或孔)的尺寸与光波波长相比,接近光波长或小于光波长。
(3)单缝衍射:光通过单缝照射到屏上时,屏上将出现“有明有暗,明暗相间”的衍射条纹,与双缝干涉的干涉条纹不同的是:干涉条纹均匀分布,而衍射条纹的中央明纹较宽,较亮。
(4)泊松亮斑:光照射到不透光的小圆板上时,在圆板阴影中心处出现的衍射亮斑。
7.光的偏振现象(1)自然光与偏振光:沿着各个方向振动的强度 的光称自然光;只沿某一特定方向振动的光称偏振光。
(2)偏振现象:自然光经过某一偏振片(起偏器)A 后即变为偏振光;若再使光经过另一偏振片(检偏器)B 并逐渐转动偏振片B 使A 与B 的偏振化方向相互垂直,则光就完全不能透过偏振片B 。
这样的现象叫做光的偏振现象。
(3)意义:光的偏振现象充分表明光波是横波。
因为偏振现象是横波所特有的现象。
二、电磁波1.麦克斯韦电磁场理论的要点:(1)变化的磁(电)场所产生的电(磁)场取决于 。
具体地说,均匀变化的磁(电)场将产生恒定的电(磁)场,非均匀变化的磁(电)场将产生变化的电(磁)场,周期性变化的磁(电)场将产生周期相同的周期性变化的电(磁)场。
(2)变化的磁场和变化的电场互相联系着,形成一个不可分离的统一体——电磁场。
2.电磁波传播规律。
电磁波在真空(空气)中传播速度为 C=3×108m/s 其波长λ,频率f 与波速C 间的关系为 C=λf.【分类典型例题】题型一:折射定律及其应用解决这类问题需要注意: 通过做光路图挖掘几何关系,从而求解透明体的厚度以及光在透明体里运动的时间。
做光路图也是解此类题的关键所在。
【例1】 如图所示,一束光线以60°的入射角射到一水平放置的平面镜上,反射后在正上方与平面镜平行的光屏上留下一光点P 。
现将一块上下两面平行的透明体平放在平面镜上,如图中虚线所示,则进入透明体的光线经平面境反射后再从透明体的上表面射出,打在光屏上的光点P ′与原来相比向左平移了3.46cm ,已知透明体对光的折射率为3。
(1)作出后来的光路示意图,标出P ′ 位置; (2)透明体的厚度为多大?(3)光在透明体里运动的时间多长?[解析](1)光路示意图如图所示(注意出射光线平行,各处光线的箭头) (2)由sinα = n sin β , 得β=30°设透明体的厚度为d ,由题意及光路有 2 d tan60° ―2 d tan30° = △s 解得d =1.5cm(3)光在透明体里运动的速度v = nc光在透明体里运动的路程βcos 2ds =∴ 光在透明体里运动时间βcos 2c dnv s t ==231033105.1282⨯⨯⨯⨯⨯=-s = 2×10-10 s 【变式训练1】半径为R 的半圆形玻璃砖横截面如图所示,O 为圆心,光线a 沿半径方向射入玻璃砖后,恰在O 点发生全反射,已知∠aOM =45°,求:(1)玻璃砖的折射率n ;(2)另一条与a 平行的光线b 从最高点入射玻璃砖后,折射到MN 上的d 点,则这根光线能否从MN 射出?Od 为多少? 题型二:光的色散 全反射 解决这类问题需要注意:(1)色散的实质是由于各种色光在同一介质中传播的速率不同,或同一介质对不同色光的折射率不同而引起的。
光的频率越大,折射率越大。
红光折射率最小,紫光折射率最大。
(2)全反射的条件是,光从光密介质进入光疏介质,且入射角达到临界角。
【例2】某棱镜顶角θ=41.30°,一束白光以较大的入射角从棱镜的一个侧面射入,通过棱镜后从另一个侧面射出,在光屏上形成由红到紫的彩色光带如右图所示,当入射角i 逐B .紫光最先消失,最后只剩下黄光、橙光和红光C .红光最先消失,最后只剩下紫光、蓝光D .红光最先消失,最后只剩下紫光、蓝光和绿光 [解析]:屏上的彩色光带最上端为红色,最下端为紫色,当入射角i 减小时,光线在棱镜右侧面的入射角变大,因紫光临界角最小,所以紫光最先达到临界而发生全反射,故紫色最先在屏上消失,当入射角减小到i′=0时,仅剩下红光和橙光未达到临界角而射出,到达光屏,故选A 。
[变式训练2] 在一个圆形轻木塞的中心插上一根大头针,然后把它倒放在水面上,调节针插入的深度,使观察者不论在什么位置都刚好不能看到水下的大头针,如图所示,量出针露出的长度为d ,木塞的半径为r ,求水的折射率。
题型三:光的干涉、衍射、偏振解决这类问题需要注意:准确理解干涉现象的产生条件,产生明显衍射现象的条件。
【例3】能产生干涉现象的两束光是( ) A .频率相同、振幅相同的两束光 B .频率相同、相位差恒定的两束光 C .两只完全相同的灯光发出的光D .同一光源的两个发光部分发出的光 [解析]:只有频率相同、相差恒定、振动方向相同的光波,在它们相遇的空间里能够产生稳定的干涉,观察到稳定的干涉图样,所以应选B.[变式训练3]如图所示是双缝干涉实验装置,屏上O 点到双缝S 1、S 2的距离相等。
当用波长为0.75μm 的单色光照射时,P 是位于O 上方的第P二条亮纹位置,若换用波长为0.6μm的单色光做实验,P处是亮纹还是暗纹?在OP之间共有几条暗纹?题型四:电磁场与电磁波解决这类问题需要注意:准确把握麦克斯韦电磁场理论的基本内容.【例3】按照麦克斯韦的电磁场理论,以下说法中正确的是A.恒定的电场周围产生恒定的磁场,恒定的磁场周围产生恒定的电场B.变化的电场周围产生磁场,变化的磁场周围产生电场C.均匀变化的电场周围产生均匀变化的磁场,均匀变化的磁场周围产生均匀变化电场D.均匀变化的电场周围产生稳定的磁场,均匀变化的磁场周围产生稳定的电场[解析]:选B、D。
[变式训练4]如图所示,让白炽灯发出的光通过偏振片P和Q,以光的传播方向为轴旋转偏振片P和Q,可以看到透射光的强度会发生变化,这是光的偏振现象。
这个实验表A. 光是电磁波B. 光是一种横波C. 光是一种纵波D. 光是概率波【能力训练】1.下列关于电磁波的叙述中,正确的( ) A .电磁波是电磁场由发生区域向远处的传播 B .电磁波在任何介质中的传播速度均为3.00×108m/s C .电磁波由真空进入介质传播时,波长将变短 D .电磁波不能产生干涉、衍射现象2.下述关于电磁场的说法中正确的是( )A .只要空间某处有变化的电场或磁场,就会在其 周围产生电磁场,从而形成电磁波B .任何变化的电场周围一定有磁场C .振荡电场和振荡磁场交替产生,相互依存,形成不可分离的统一体,即电磁场D .电磁波的理论在先,实验证明在后 3.已知介质对某单色光的临界角为θ,则 A .该介质对单色光的折射率等于1sin θB .此单色光在该介质中的传播速度等于c sin θ(c 表示光在真空中的传播速度)C .此单色光在该介质中的波长是真空中波长的sin θ倍D .此单色光在该介质中的频率是真空中频率的sin θ倍4.某学生在观察双缝干涉现象的实验中,分别用红色、绿色、紫色三种单色光做实验,经同一干涉仪观察到如图所示的明显干涉条纹,那么甲、乙、丙依次表示的颜色是 ( ) A .红色 绿色 紫色 B .红色 紫色 绿色 C .紫色 绿色 红色 D .绿色 紫色 红色5.太阳光照射在平坦的大沙漠上,我们在沙漠中向前看去,发现前方某处射来亮光,好像太阳光从远处水面反射来的一样,我们认为前方有水,但走到该处仍是干燥的沙漠,这现象在夏天城市中太阳光照射沥青路面时也能观察到,对这种现象正确的解释是( ) A .越靠近地面空气的折射率越大 B .这是光的干涉形成的C .越靠近地面空气的折射率越小D .这是光的衍射形成的6.在一次观察光衍射的实验中,观察到如图所示的清晰的明暗相间的图样,那么障碍物应是(黑线为暗纹)A .很小的不透明的圆板B .很大的中间有大圆孔的不透明的圆板C .很大的不透明圆板D .很大的中间有小圆孔的不透明圆板7.有关偏振和偏振光的下列说法中正确的有 A .只有电磁波才能发生偏振,机械波不能发生偏振 B .只有横波能发生偏振,纵波不能发生偏振C .自然界不存在偏振光,自然光只有通过偏振片才能变为偏振光D .除了从光源直接发出的光以外,我们通常看到的绝大部分光都是偏振光8.某研究小组的同学根据所学的光学知识,设计了一个测量液体折射率的仪器。
如图所示,在一个圆盘上,过其圆心O 做两条互相垂直的直径BC 、EF 。
在半径OA 上,垂直盘面插上两枚大头针P 1、P 2并保持P 1、P 2位置不变,每次测量时让圆盘的下半部分竖直进入液体中,而且总使夜面与直径BC 相平,EF 作为界面的法线,而后在图中右上方区域观察P 1、P 2的像,并在圆周上插上大头针P 3,使P 3正好挡住P 1、P 2的像。
同学们通过计算,预先在圆周EC 部分刻好了折射率的值,这样只要根据P 3所插的位置,就可以直接读出液体折射率的值。