2015年中考数学模拟试卷2
中考数学模拟试卷精选汇编:一元二次方程及其应用附答案
一元二次方程及其应用一.选择题1.(2015·江苏高邮·一模).能说明命题“关于x 的一元二次方程x 2+mx +4=0,当m <-2时必有实数解”是假命题的一个反例为A. m =﹣4B. m =﹣3C. m =﹣2D. m =4 答案:B2.(2015·江苏常州·一模)已知一元二次方程062=−−c x x 有一个根为2,则另一个根为A .2B .3C .4D .-8答案:C3. (2015·吉林长春·二模)答案:A4.(2015·江苏江阴青阳片·期中)设一元二次方程(x ﹣1)(x ﹣2)=m (m >0)的两实根分别为α、β,且α<β,则α,β满足( ▲ )A .1<α<β<2B .1<α<2<βC .α<1<β<2D .α<1且β>2答案:D5.(2015·安庆·一摸)已知βα、是一元二次方程x 2-2x -3=0的两个根,则βα+的值是( ) A.2 B.-2 C.3 D.-3 答案: A ;6. (2015·合肥市蜀山区调研试卷)方程0)3(2=+x x 的根的情况是: A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根D.没有实数根答案:A7.(2015·广东高要市·一模)若1x ,2x 是一元二次方程016102=++x x 的两个根,则21x x +的值是( ▲ ) A . ﹣10B . 10C . ﹣16D . 16答案:A8.(2015•山东潍坊•第二学期期中)若关于x 的一元二次方程2(1)5m x x −++23m m −20+= 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .0答案:B ;9.(2015•山东潍坊广文中学、文华国际学校•一模)若关于x 的一元二次方程x 2+(k +3)x +2=0的一个根是2−,则另一个根是( )A .2B .1C .1−D .0答案:C ;10.(2015·网上阅卷适应性测试)已知关于x 的一元二次方程2210mx x +−=有两个不相等的实数根,则m 的取值范围是( ▲ ).A .1m <−B .1m >C .1m <且0m ≠D .1m >−且0m ≠答案:D11.(2015·山东省枣庄市齐村中学二模)已知关于x 的一元二次方程(a -1)x 2-2x +1=0有两个不相等的实数根,则a 的取值范围是( ) A .a >2 B .a <2 C .a <2且a ≠1 D .a <-2答案:C12.( 2015·呼和浩特市初三年级质量普查调研)方程2650x x +−=的左边配成完全平方后所得方程为( )A .2(3)14x += B. 2(3)14x −= C. 2(6)41x += D .2(3)4x += .答案:A13.(2015·辽宁盘锦市一模)一款手机连续两次降价,由原来的1299元降到688元,设平均每次降价的百分率为 x,则列方程为A.688(1+x )2=1299B. 1299(1+x )2=688C. 688(1-x )2=1299D. 1299(1-x )2=688答案:D14.(2015·山东省济南市商河县一模)某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为A.100)1(1442=−xB.144)1(1002=−xC.100)1(1442=+xD.144)1(1002=+x 答案:D15.(2015.河北博野中考模拟)一元二次方程x 2﹣4x +5=0的根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根 答案:D16.(2015·广东中山·4月调研)已知关于x 的一元二次方程220x x a +−=有两个相等的实数根,则a 的值是( )A .4B .4−C .1D .1− 答案:D17.(2015·江苏南京溧水区·一模)一元二次方程2x 2-3x -5=0的两个实数根分别为1x 、2x ,则1x +2x 的值为( ▲ ) A .25 B .-25C .-32D .32答案: D18.(2015·江苏扬州宝应县·一模)已知关于x 的一元二次方程22x m x −= 有两个不相等的实数根,则m 的取值范围是A .m >-1B .m <-2C .m ≥0D .m <0 答案: A19.(2015·无锡市宜兴市洑东中学·一模)根据下列表格中的对应值,•判断方程ax 2+bx +c =0(a ≠0,a ,b ,c 为常数)的根的个数是( )A .0B .1C .2D .1或2 答案:A二.填空题1. (2015·湖南岳阳·调研)如果关于x 的方程23mx =有两个实数根,那么m 的取值范围是 ; 答案:0m >2.(2015·江苏江阴青阳片·期中)已知方程032=+−k x x 有两个相等的实数根,则k =▲ . 答案:k =49 3.(2015·江苏江阴要塞片·一模)若关于x 的一元二次方程kx 2+2(k +1)x +k -1=0有两个实数根,则k 的取值范围是 ▲ . 答案:k ≥﹣且k ≠04. (2015·安徽省蚌埠市经济开发·二摸)已知关天x 的一元二次方程2(1)10m x x −++=有实数根,则m 的取值范围是 . 答案:54m ≤且1m ≠ 5.(2015·广东广州·二模)已知错误!未找到引用源。
2015中考数学模拟试题含答案(精选5套)
2015年中考数学模拟试卷(一)一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第11题图)(第7题图)A. 3B. 23C.23D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分) 3121--+x x≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌(第21题图)(第23题图)(第24题图)凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2015年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ=21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400+ = 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m n m ++-n m n +)·mn m 22- …………2分(第26题图)=nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分= 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2015年中考数学模拟考试卷(二)含答案
2015年中考数学模拟考试卷(二)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.-15的倒数是( )A.5 B.-5 C.15D.-152.下列运算正确的是( )A.3a-2a=1 B.x8-x4=x2C.()222-=-=-2 D.-(2x2y)3=-8x6y33.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.如图,直线l1∥l2,则∠a为( )A.150°B.140°C.130°D.120°5.一个多边形的每个内角均为140°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形6.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD=3,BD=5,DC=2,则DE的长等于( )A.152B.103C.65D.567.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分8.下列图中阴影部分的面积与算式2131242-⎛⎫-++⎪⎝⎭的结果相同的是( )9.在平面直角坐标系中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有( )A.1个B.2个C.3个D.4个10.对于正数x,规定f(x)=1xx+,例如f(3)=33134=+=,f(13)=1131413=+,计算f12014⎛⎫⎪⎝⎭+f12013⎛⎫⎪⎝⎭+f12012⎛⎫⎪⎝⎭+…+f13⎛⎫⎪⎝⎭+ f12⎛⎫⎪⎝⎭+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)的结果是( )A.2013 B.2013.5 C.2014 D.2014.5二、填空题(本大题共8小题,每小题3分,共24分)11.人的眼睛可以看见的红光的波长是0.000077 cm,请把这个数用科学记数法表示,其结果是_______cm.12.函数y=23xyx+=-中自变量x的取值范围是_______.13.分解因式:a3-2a2b+ab2=_______.14.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_______m.15.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的对应点B'的横坐标是2,则点B的横坐标是_______.16.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于_______.17.已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则y=-abx2+(a+b)x的顶点坐标为_______.18.如图,图①为一个长方体,AD=AB=10,AE=6,M为所在棱的中点,图②为图①的表面展开图,则图②中△BCM的面积为_______.三、解答题(本大题共11小题,共76分) 19.(本题满分5分)计算:()()32cos60332π-︒--+---20.(本题满分5分)先化简()222211121a a a a a a +-÷++--+,然后a 在-1、1、2三个数中任选一个合适的数代入求值.21.(本题满分5分)求不等式组()3112323x x x ⎧+>-⎪⎨-+≥⎪⎩的整数解.22.(本题满分6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2 km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1km/h ,参考数据:3≈1.73, sin76°≈0.97,cos76°0.24,tan76°≈4.01)23.(本题满分6分)如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分6分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本题满分7分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某果园组织30辆汽车装运A、B、C三种水果共84 t到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的汽车辆数不超过装运的A、C两种水果的汽车辆数之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并直接写出自变量x的取值范围;(2)设此次外销活动的利润为Q(百元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.26.(本题满分8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=23,求NQ的长.27.(本题满分8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A.B两点,与双曲线y=kx(x>0)交于点D,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为12.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.28.(本题满分10分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA =2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,求OG的长;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与线段AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29.(本题满分10分)企业的工业废料处理有两种方式:一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业去年每月的工业废料均为120 t,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(t)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的工业废料y2(t)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a ≠0),其图像如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x-5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图像,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1—10 BDCDC BCBDB11.7.7×10-512.x>313.a(a-b)214.615.-2.516.6.517.(3,92)18.50或8019.1 2720.31aa+-原式=5.21.-2<x≤32-1,0,1.22.(1)3km (2)40.6 km/h23.(1)略(2)点O在∠BAC的角平分线上24.(1)200(人).(2)60(人).(3)1 625.(1)92≤x≤10,且x为整数.(2)Q=-14x+636,此时应这样安排:A种水果用5辆车,B种水果用14辆车,C种水果用11辆车.26.(1)略(2)NQ=3.27.(1)k=12.(2)y=4 3 x28.(1)y=-56x2+136x+1.(2)1.(3)存在三个满足条件的点Q,即Q(2,2)或Q(1,73)或Q(125,75).29.y1=120x(1≤x≤6,且x取整数).y2=x2-30(7≤x≤12,且x取整数).(2)去年5月份用于污水处理的费用最多,最多费用是16800元.(3)50.。
2015年中考数学模拟试卷
2015年中考数学模拟试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相对应的位置上.1.﹣的倒数是()A.B.C.﹣D.﹣考点:倒数.分析:乘积是1的两数互为倒数,结合选项进行判断即可.解答:解:﹣的倒数为﹣.故选D.点评:本题考查了倒数的定义,属于基础题,注意掌握乘积是1的两数互为倒数.2.下列计算正确的是()A.a2+a2=a4B.(a2)3=a5C.a5•a2=a7D.2a2﹣a2=2考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:根据合并同类项的法则,幂的乘方的性质,同底数幂的乘法的性质,对各选项分析判断后利用排除法求解.解答:解:A、应为a2+a2=2a2,故本选项错误,正确;B、应为(a2)3=a6,故本选项错误;C、a5•a2=a7,故本选项正确;D、应为2a2﹣a2=a2,故本选项错误.故选C.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,理清指数的变化是解题的关键.3.已知一组数据10,8,9,2,5,那么这组数据的极差是()A.1B.2 C.5D.8考点:极差.分析:根据极差的定义解答,即用10减去2即可.解答:解:数据10,8,9,2,5的极差是10﹣2=8.故选D.点评:本题考查了极差的知识,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.4.下面与是同类二次根式的是()A.B.C.D.2﹣1考点:同类二次根式.专题:常规题型.分析:根据同类二次根式的定义,先将各选项化为最简二次根式,再看被开方数是否相同即可.解答:解:A、与被开方数相同,是同类二次根式;B、=2,与被开方数相同,是同类二次根式;C、=与不是同类二次根式;D、2﹣1不是最简二次根式,故本选项错误.故选A和B.点评:此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.5.化简的结果是()C.D.A.B.﹣考点:分式的加减法.分析:先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.解答:解:原式=,=,=.∴A答案正确.故选A.点评:本题考查了数学整体思想的运用,分式的通分和分式的约分的运用,解答的过程中注意符号的运用及平方差公式的运用.6.如果相切两圆的半径分别为2cm和3cm,那么两圆的圆心距是()A.1cm B.5cm C.3cm D.1cm或5cm考点:圆与圆的位置关系.分析:已知两圆的半径,分两种情况:①当两圆外切时;②当两圆内切时;即可求得两圆的圆心距.解答:解:∵两圆半径分别为2cm和3cm∴当两圆外切时,圆心距为2+3=5cm;当两圆内切时,圆心距为3﹣2=1cm.故选D.点评:本题考查了两圆相切的性质,以及两圆的半径与圆心距的关系,注意有两种情况.7.二次函数y=﹣x2+bx+c,若b+c=0,则它的图象一定过点()A.(﹣1,1)B.(1,﹣1)C.(﹣1,﹣1)D.(1,1)考点:二次函数图象与系数的关系.分析:分析解析式与方程可知:x=1时可得到b+c的形式,再根据x=1时y的值进行求解.解答:解:∵当x=1时,∴y=﹣x2+bx+c=﹣1+b+c即b+c=y+1,又∵b+c=0,∴x=1时y=﹣1,故它的图象一定过点(1,﹣1).故选B.点评:解决此题的关键是根据b+c=0的形式巧妙整理方程,运用技巧不但可以提高速度,还能提高准确率.8.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到吴江儿童福利院看望孤儿.如果分给每位儿童4盒牛奶,那么剩下28盒牛奶;如果分给每位儿童5盒牛奶,那么最后一位儿童分不到5盒,但至少能有2盒.则这个儿童福利院的儿童最少有()A.28人B.29人C.30人D.31人考点:一元一次不等式组的应用.专题:应用题.分析:首先设这个儿童福利院的儿童有x人,则有牛奶(4x+28)盒,根据关键语句“如果分给每位儿童5盒牛奶,那么最后一位儿童分得的牛奶不足5盒,但至少2盒”可得不等式组,解出不等式组后再找出符合条件的整数.解答:解:设这个儿童福利院的儿童有x人,则有牛奶(4x+28)盒,依题意得:,解得:28<x≤31,∵x为整数,∴x最少为29,即这个儿童福利院的儿童最少有29人.故选B.点评:此题主要考查了一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,列出不等式组,难度一般.9.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )A . 15B . 25C . 55D . 1225考点: 规律型:图形的变化类.专题: 压轴题.分析: 图1中求出1、3、6、10,…,第n 个图中点的个数是1+2+3+…+n ,即;图2中1、4、9、16,…,第n 个图中点的个数是n 2.然后把下列数分别代入,若解出的n 是正整数,则说明符合条件就是所求.解答: 解:根据题意得:三角形数的第n 个图中点的个数为;正方形数第n 个图中点的个数为n 2,A 、令=15,解得n 1=5,n 2=﹣6(不合题意,舍去);再令n 2=15,n=±(不合题意,都舍去);不符合条件,错误;B 、令=25,解得n 1=(都不合题意,舍去);再令n 2=25,n=±5;不符合条件,错误;C 、显然55不是平方数,不符合条件,错误;D 、令=1225,解得n 1=49,n 2=﹣50(不合题意,舍去);再令n 2=1225,n 1=35,n2=﹣35(不合题意,舍去),符合条件,正确.故选D .点评: 主要考查了学生通过特例分析从而归纳总结出一般结论的能力.10.如图,已知直线l 1∥l 2∥l 3∥l 4∥l 5,相邻两条平行直线间的距离相等且为1,如果四边形ABCD 的四个顶点在平行直线上,∠BAD=90°且AB=3AD ,DC ⊥l 4,则四边形ABCD 的面积是( )A . 9B . 14C .D .考点: 相似三角形的判定与性质;平行线之间的距离;勾股定理.分析: 首先延长DC 交l 5于点F ,延长CD 交l 1于点E ,作点B 作BH ⊥l 1于点H ,连接BD ,易证得△BAH ∽△ADE ,然后由相似三角形的对应边成比例,求得AH ,AE 的长,由勾股定理求得AD 与AB 的长,然后由S 四边形ABCD =S △ABD +S △BCD ,即可求得答案. 解答: 解:延长DC 交l 5于点F ,延长CD 交l 1于点E ,作点B 作BH ⊥l 1于点H ,连接BD ,∵DC ⊥l 4,l 1∥l 2∥l 3∥l 4∥l 5,∴DC ⊥l 1,DC ⊥l 5,∴∠BHA=∠DEA=90°,∴∠ABH+∠BAH=90°,∵∠BAD=90°,∴∠BAH+∠DAE=90°,∴∠ABH=∠DAE ,∴△BAH ∽△ADE ,∴==,∵AB=3AD ,BH=4,DE=1,∴AE=,AH=3,∴BF=HE=AH+AE=3+=,在Rt △ADE 中,AD===,∴AB=3AD=5,∴S四边形ABCD =S△ABD+S△BCD=AB•AD+CD•BF=×5×+×2×=.故选D.点评:本题考查的是相似三角形的判定与性质、勾股定理以及四边形的面积问题.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.二、填空题:本大题共8小题,每小题3分,共24分,把答案填在答题卡相对应的位置上11.函数中,自变量x的取值范围是x≥3 .考点:函数自变量的取值范围.分析:根据二次根式有意义的条件是a≥0,即可求解.解答:解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.点评:本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.的平方根是±2 .考点:算术平方根;平方根.分析:首先根据算术平方根的定义求出的值,再根据平方根的定义即可求解.解答:解:∵=4,4的平方根是±2,∴的平方根是±2.故答案为:±2.点评:此题主要考查了算术平方根和平方根的定义.本题容易出现的错误是把的平方根认为是16的平方根而得出±4的错误结果.13.因式分解:x2﹣2xy+y2= (x﹣y)2.考点:因式分解-运用公式法.专题:计算题.分析:根据完全平方公式直接解答即可.解答: 解:原式=(x ﹣y )2. 故答案为(x ﹣y )2.点评: 本题考查了因式分解﹣﹣运用公式法,熟悉因式分解是解题的关键.14.一个扇形半径30cm ,圆心角120°,用它作一个圆锥的侧面,则圆锥底面半径为 10cm .考点: 圆锥的计算.专题: 计算题.分析: 求出扇形的弧长,此弧长即为圆锥底面圆的周长,据此即可求出圆锥底面半径. 解答: 解:扇形弧长为=20πcm ;设圆锥的底面圆半径为r ,则r==10cm . 故答案为:10cm . 点评: 本题考查了圆锥的计算,要明确,扇形的弧长即为其围成圆锥的底面圆周长.15. 3+的整数部分是a ,3﹣的小数部分是b ,则a+b 等于 6﹣ .考点: 估算无理数的大小. 分析: 先对估算出大小,从而求出3+的整数部分a ,设3﹣的整数部分为m ,则3﹣的小数部分b=3﹣﹣m ,再将a 、b 的值代入,计算即可.解答: 解:∵1<<2,∴4<3+<5,∴3+的整数部分a=4;∵1<<2,∴﹣2<﹣<﹣1,∴1<3﹣<2,设3﹣的整数部分为m ,则m=1,∴3﹣的小数部分b=3﹣﹣m=2﹣,∴a+b=4+2﹣=6﹣.故答案为6﹣.点评: 本题主要考查了无理数大小的估算,能够正确估算出3﹣的大小是解决此题的关键.16.如图,已知二次函数y 1=ax 2+bx+c 与一次函数y 2=kx+m 的图象相交于A (﹣1,2)、B (4,1)两点,则关于x 的不等式ax 2+bx+c >kx+m 的解集是 x <﹣1或x >4 .考点:二次函数与不等式(组).分析:根据图象写出抛物线在直线上方部分的x的取值范围即可.解答:解:∵两函数图象相交于A(﹣1,2)、B(4,1)两点,∴不等式ax2+bx+c>kx+m的解集是x<﹣1或x>4.故答案为:x<﹣1或x>4.点评:本题考查了二次函数与不等式的关系,主要利用了数形结合的思想.17.如图,射线OA、BA分别表示甲、乙两人骑自行车运动过程的一次函数的图象,图中s、t分别表示行驶距离和时间,则这两人骑自行车的速度相差 4 km/h.考点:一次函数的应用.专题:压轴题.分析:根据图中信息找出甲,乙两人行驶的路程和时间,进而求出速度即可.解答:解:根据图象可得:∵甲行驶距离为100千米时,行驶时间为5小时,乙行驶距离为80千米时,行驶时间为5小时,∴甲的速度是:100÷5=20(千米/时);乙的速度是:80÷5=16(千米/时);故这两人骑自行车的速度相差:20﹣16=4(千米/时);故答案为:4.点评:此题主要考查了一次函数的应用,根据已知得出甲乙行驶的路程与时间是解题关键.18.如图,抛物线y=ax2+bx+c与x轴相交于点B(﹣3,0),C(1,0),与y轴相交于点4(0,﹣3),O为坐标原点.点M为y轴上的动点,当点M运动到使∠OMC+∠OAC=∠ABC时,AM的长度为1或5 .考点:二次函数综合题.专题:综合题.分析:在OA上截取ON=OC=1,分类讨论,①M在y轴上半轴上,②M在y轴下半轴上,利用外角的知识及∠OMC+∠OAC=∠ABC,证明△CAN∽△M1AC,△CNA∽△M2AC,继而可分别求出AM的长度.解答:解:连接AB,AC,∵OB=OA=3,∴∠ABO=∠BAO=45°,在OA上截取ON=OC=1,则∠ONC=∠OCN=45°,在Rt△OAC中,AC==,在Rt△ONC中,NC==,①当M在y轴上半轴上时,∠ONC=∠OAC+∠NAC=45°,∵∠ABC=∠OMC+∠OAC=45°,∴∠OMC=∠NAC,又∵∠CAN=∠M1AC(同一个角),∴△CAN∽△M1AC,∴=,即=,解得:AM1=5.②当M在y轴下半轴上时,∠ONC=∠OM2C+∠NCM2=45°,∵∠ABC=∠OM2C+∠OAC=45°,∴∠OAC=∠NCM2,又∵∠CNA=∠M2NC(同一个角),∴△CNA∽△M2AC,∴=,即=,解得:NM2=1,故AM2=OA﹣ON﹣NM2=1.综上可得AM的长度为1或5.故答案为:1或5.点评:本题考查了二次函数的综合,解答本题的关键是分类讨论点M的位置,利用相似三角形的性质:对应边成比例求出有关线段的长度,有一定难度.三、解答题:本大题共11小题,共76分,把解答过程写在答题卡相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔19.计算:|﹣2|﹣(﹣2)﹣2﹣.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:预案技能书第一项利用负数的绝对值等于它的相反数计算,第二项利用负指数幂法则计算,最后一项利用零指数幂法则计算,即可得到结果.解答:解:原式=2﹣﹣1=.点评:此题考查了实数的运算,涉及的知识有:绝对值的代数意义,零指数、负指数幂法则,熟练掌握法则是解本题的关键.20.解方程:﹣﹣3=0.考点:换元法解分式方程.专题:计算题.分析:将看做一个整体,左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个方程,求出方程的解得到x的值,经检验即可得到分式方程的解.解答: 解:分解因式得:(+1)(+3)=0,可得:+1=0或+3=0, 解得:x=1或x=3,经检验都是分式方程的解.点评: 此题考查了换元法解分式方程,解题的关键是将看做一个整体.21.先化简,再求值:(a+b )(a ﹣b )﹣(a ﹣b )2,其中a=,b=.考点: 整式的混合运算—化简求值.专题: 计算题. 分析: 原式第一项利用平方差公式化简,第二项利用完全平方公式展开,去括号合并得到最简结果,将a 与b 的值代入计算即可求出值.解答: 解:原式=a 2﹣b 2﹣a 2+2ab ﹣b 2=2ab ﹣2b 2,当a=,b=时,原式=2××﹣2×()2=2﹣4.点评: 此题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握公式及法则是解本题的关键.22.关于x 的一元二次方程(k ﹣2)x 2﹣2(k ﹣1)x+k+1=0有两个不同的实数根是x l 和x 2.(1)求k 的取值范围;(2)当k=﹣2时,求4x 12+6x 2的值.考点: 根的判别式;一元二次方程的定义;根与系数的关系.专题: 计算题.分析: (1)根据一元二次方程的定义和根的判别式的意义得到k ﹣2≠0且△=4(k ﹣1)2﹣4(k ﹣2)(k+1)>0,然后解两个不等式得到它们的公共部分即可;(2)先把k=﹣2代入原方程得到4x 2﹣6x+1=0,根据根与系数的关系得x l +x 2=,x l •x 2=,由于x l 是原方程的解,则4x 12﹣6x 1+1=0,即4x 12=6x 1﹣1,所以4x 12+6x 2=6x 1﹣1+6x 2=6(x 1+x 2)﹣1,然后利用整体思想计算即可.解答: 解:(1)根据题意得k ﹣2≠0且△=4(k ﹣1)2﹣4(k ﹣2)(k+1)>0,解得k <3且k ≠0;(2)当k=﹣2时,方程变形为4x 2﹣6x+1=0,则x l +x 2=,x l •x 2=,∵x l 是原方程的解,∴4x 12﹣6x 1+1=0,∴4x 12=6x 1﹣1,∴4x 12+6x 2=6x 1﹣1+6x 2=6(x 1+x 2)﹣1=6×﹣1=8.点评: 本题考查了一元二次方程ax 2+bx+c=0(a ≠0)的根的判别式△=b 2﹣4ac :当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义和根与系数的关系.23.如图,△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥BC 交AC 于E ,若AD :DB=4:5,AC=9.(1)求DE 的长.(2)若∠ADE=∠EDC ,求AD 的长.考点: 相似三角形的判定与性质;平行线分线段成比例.分析: (1)根据平行线分线段成比例的知识求出AE ,EC ,然后判断ED=EC ,即可得出答案;(2)证明△AED ∽△ADC ,利用对应边成比例的知识,可求出AD .解答: 解:(1)∵DE ∥BC ,∴==,又∵AC=9,∴AE=4,EC=5,∵CD 平分∠ACB 交AB 于D ,∴∠ACD=∠DCB ,又∵DE ∥BC ,∴∠EDC=∠DCB ,∴∠ACD=∠EDC ,∴DE=EC=5.(2)∵∠ADE=∠EDC,∠EDC=∠ACD,∴∠ADE=∠ACD,∴△AED∽△ADC,∴=,即AD2=AE×AC=4×9=36,∴AD=6.点评:本题考查了相似三角形的判定与性质,解答本题的关键是掌握平行线的性质及相似三角形的性质:对应边成比例,难度一般.24.在一个不透明的布袋中装有相同的三个小球,其上面分别标注数字1、2、3、,现从中任意摸出一个小球,将其上面的数字作为点M的横坐标;将球放回袋中搅匀,再从中任意摸出一个小球,将其上面的数字作为点M的纵坐标.(1)写出点M坐标的所有可能的结果;(2)求点M在直线y=x上的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:(1)首先根据题意列出表格,然后根据表格即可求得点M坐标的所有可能的结果;(2)由点M在直线y=x上的有3种情况,利用概率公式求解,即可求得答案.解答:解:(1)列表得:1 2 31 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)则点M坐标的所有可能的结果有九个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).(2)∵点M在直线y=x上的有:(1,1)、(2,2)、(3,3),∴P(点M在直线y=x上)==.点评:此题考查了列表法或树状图法求概率的知识.此题难度不大,注意列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.25.冬至是一年中太阳光照射最少的日子,如果此时楼房最低层能采到阳光,一年四季整座楼均能受到阳光照射,所以冬至是选房买房时确定阳光照射的最好时机.吴江某居民小区有一朝向为正南方向的居民楼.该居民楼的一楼是高为5米的小区超市,超市以上是居民住房,现计划在该楼前面24米处盖一栋新楼,已知吴江地区冬至正午的阳光与水平线夹角大约为30°.(参考数据在≈1.414,≈1.732)(1)中午时,若要使得超市采光不受影响,则新楼的高度不能超过多少米?(结果保留整数)(2)若新建的大楼高18米,则中午时,超市以上的居民住房采光是否受影响,为什么?考点:解直角三角形的应用.分析:(1)连接AC,在Rt△ABC中,利用锐角三角函数表示出线段AB的长,然后保留整数即可求得楼高的范围.(2)首先过点E作BC平行线角AB与点F.在Rt△AFG中,利用正切函数求得GF 的长,即为使得超市采光不受影响,两楼应至少相距的米数.解答:解:(1)连接AC,在Rt△ABC中,∵tan30°=∴AB=24×=8=8×1.732=13.856当楼高AB超过13.856时,光线照到C点的上方,超市采光受影响,又结果需要保留整数,所以楼高不超过13米;(2)设居民楼底与超市顶端交界点为E,过点E作BC平行线角AB与点F,设过新楼顶的光线交直线EF与点G,则AF=18﹣15=13,在Rt△AFG中,FG==22.517,∵FG<FE=24∴超市以上的居民住房采光不受影响.点评:此题考查了三角函数的基本概念,主要是正切概念及运算,关键把实际问题转化为数学问题加以计算.26.如图,已知在△ABC中,AB=AC,D是△ABC外接圆劣弧AC上的点(不与A,C重合),延长BD至E.(1)求证:AD的延长线平分∠CDE;(2)若∠BAC=30°,且△ABC底边BC边上高为1,求△ABC外接圆的周长.考点:圆周角定理;勾股定理;垂径定理.分析:(1)要证明AD的延长线平分∠CDE,即证明∠EDF=∠CDF,转化为证明∠ADB=∠CDF,再根据A,B,C,D四点共圆的性质,和等腰三角形角之间的关系即可得到.(2)求△ABC外接圆的面积,只需解出圆半径,故作等腰三角形底边上的垂直平分线即过圆心,再连接OC,根据角之间的关系在三角形内即可求得圆半径,可得到外接圆面积.解答:(1)证明:如图,设F为AD延长线上一点,∵A,B,C,D四点共圆,∴∠CDF=∠ABC,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠ADB=∠CDF,∵∠ADB=∠EDF(对顶角相等),∴∠EDF=∠CDF,即AD的延长线平分∠CDE.(2)解:设O为外接圆圆心,连接AO比延长交BC于H,连接OC,∵AB=AC,∴=,∴AH⊥BC,∴∠OAC=∠OAB=∠BAC=×30°=15°,∴∠COH=2∠OAC=30°,设圆半径为r,则OH=OC•cos30°=r,∵△ABC中BC边上的高为1,∴AH=OA+OH=r+r=1,解得:r=2(2﹣),∴△ABC的外接圆的面积为:4π(2﹣).点评:此题主要考查圆内接多边形的性质、圆周角定理、等腰三角形的性质以及三角形的外接圆的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.27.某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,其余资金用于在毕业晚会上给43位同学每人购买一件纪念品,纪念品为文化衫或相册.已知每件文化衫比每本相册贵6元,用202元恰好可以买到3件文化衫和5本相册.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有几种购买文化衫和相册的方案?哪种方案用于布置毕业晚会会场的资金更充足?考点:一元一次不等式组的应用;二元一次方程组的应用.分析:(1)通过理解题意可知本题存在两个等量关系,即每件文化衫比每本相册贵6元,用202元恰好可以买到2件文件衫和5本相册.根据这两个等量关系可列出方程组.(2)本题存在两个不等量关系,即设购买文化衫a件,购买相册(43﹣a)本,则1050≤29a+23(43﹣a)≤1065,根据a为正整数,解出不等式再进行比较即可.解答:解:(1)设每件文化衫和每本相册的价格分别为x元和y元,则,解得:.答:每件文化衫和每本相册的价格分别为29元和23元.(2)设购买文化衫a 件,购买相册(43﹣a )本,且某班级到毕业时共结余经费1350元,班委会决定拿出不少于285元但不超过300元的资金布置毕业晚会会场,则:1050≤29a+23(43﹣a )≤1065,解得≤a ≤,因为t 为正整数,所以a=11,12,即有2种方案:第一种方案:购买文化衫11件,相册32本; 第二种方案:购买文化衫12件,相册31本;因为文化衫比相册贵,所以第一种方案布置毕业晚会会场的资金更充足.点评: 此题主要考查了二元一次方程组的应用以及不等式组的应用,利用不等式解决,另外要注意,同实际相联系的题目,需考虑字母的实际意义,从而确定具体的取值.再进行比较即可知道方案用于布置毕业晚会会场的资金更充足.28.如图所示,点B 坐标为(18,0),点A 坐标为(18,6),动点P 从点O 开始沿OB 以每秒3个单位长度的速度向点B 移动,动点Q 从点B 开始沿BA 以每秒1个单位长度的速度向点A 移动.如果P 、Q 分别从O 、B 同时出发,用t (秒)表示移动的时间(0<t ≤6),那么,(1)当t= 3或5.4 时,以点P 、B 、Q 为顶点的三角形与△AOB 相似;(2)若设四边形OPQA 的面积为y ,试写出y 与t 的函数关系式,并求出t 取何值时,四边形OPQA 的面积最小?(3)在y 轴上是否存在点E ,使点P 、Q 在移动过程中,以B 、Q 、E 、P 为顶点的四边形的面积是一个常数,请求出点E 的坐标;若不存在,请说明理由.考点: 相似形综合题.分析: (1)讨论:当∠BPQ=∠BOA ,即PQ ∥OA ,由相似三角形:Rt △QPB ∽Rt △AOB ,的对应边成比例求得t=3;当∠BPQ=∠A ,则Rt △BPQ ∽Rt △BAO ,由相似三角形的对应边成比例知=,即=,即可得到t=5.4;(2)利用y=S △OAB ﹣S △BPQ =×18×6﹣×(18﹣3t )t ,然后利用配方法求得该二次函数的最值,即求出t 取何值时,四边形OPQA 的面积最小;(3)当点E 在y 轴正半轴时,利用以B 、Q 、E 、P 为顶点的四边形的面积=梯形BQEO的面积﹣△OPE 的面积,用t 与m 表示出来为(t+m )×18﹣×3t ×m=(9﹣m )t+9m ,当t 的系数为0时即可得到m 的值;当点E 在y 轴负半轴时,S=S △EPB +S △PBQ =(18﹣3t )(﹣m )﹣(18﹣3t )t=﹣t 2+mt+9t ﹣9m .此时不存在m 的值,使S 的值为常数.解答: 解:∵点B 坐标为(18,0),点A 坐标为(18,6),∴BO=18,AB=6,AB ⊥0B .(1)当∠BPQ=∠BOA ,即PQ ∥OA ,Rt △QPB ∽Rt △AOB ,则=,即=,解得t=3;当∠BPQ=∠A ,则Rt △BPQ ∽Rt △BAO ,∴=,即=,∴t=5.4.所以当t=3秒或5.4秒时,以点P 、Q 、B 为顶点的三角形与△AOB 相似.(2)y=S △OAB ﹣S △BPQ =×18×6﹣×(18﹣3t )t=(t ﹣3)2+,即y=(t﹣3)2+. 则当t=3,四边形OPQA 的面积最小;(3)存在.理由如下:设以B 、Q 、E 、P 为顶点的四边形面积是S ,E (0,m ).①如图1,当E 在y 轴的正半轴上时,则S=S 梯形BQEO ﹣S △OPE =(t+m )×18﹣×3t ×m=(9﹣m )t+9m .故当9﹣m=0,即m=6时,S=54是一个定值;②如图2,当点E 在y 轴的正半轴上时,则S=S △EPB +S △PBQ =(18﹣3t )(﹣m )﹣(18﹣3t )t=﹣t 2+mt+9t ﹣9m .此时不存在m 的值,使S 的值为常数.综上所述,点E 的坐标(0,6)使点P 、Q 在移动过程中,以B 、Q 、E 、P 为顶点的四边形的面积是一个常数.故答案为:3或5.4.点评:本题考查了三角形相似的判定与性质:两组对应角相等的三角形相似;相似三角形的对应边的比相等.也考查了分类讨论思想的运用以及三角形的面积公式.29.如图,直线y=kx+b交x轴于点A(﹣1,0),交y轴于点B(0,4),过A、B两点的抛物线交x轴于另一点C.(1)直线的解析式为y=4x+4 ;(2)在该抛物线的对称轴上有一点动P,连接PA、PB,若测得PA+PB的最小值为5,求此抛物线的解析式及点P的坐标;(3)在(2)条件下,在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)将点A、B的坐标代入直线解析式,求出k、b的值,继而得出直线的解析式;(2)连接BC,则BC与对称轴的交点即是P点的位置,根据PA+PB的最小值为5,可求出OC,利用待定系数法可求出抛物线解析式,直线BC解析式,也可得出点P 的坐标;(3)设存在这样的点Q,其坐标为(1,y),然后分三种情况讨论,①QA=QB,②BA=BQ,③AB=AQ,分别求出y的值后即可得出点Q坐标.解答:解:(1)将点A(﹣1,0),点B(0,4)代入直线y=kx+b得:,解得:,故直线解析式为y=4x+4.(2)∵点A、点C关于抛物线的对称轴对称,故PA+PB的最小值为线段BC的长,∴BC=5,在Rt△BOC中,BC=5,BO=4,∴OC==3,即点C的坐标为(3,0),设抛物线的解析式为y=a(x+1)(x﹣3),将点B(0,4)代入得:a=﹣,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+x+4.设直线BC的解析式为y=mx+n,将点B(0,4),点C(3,0)代入可得:,解得:,故直线BC的解析式为:y=﹣x+4,又∵抛物线的对称轴为x=1,∴点P的坐标为(1,).(3)存在这样的点Q,使△ABQ为等腰三角形.设Q(1,y),①当QA=QB时,则有12+(y﹣4)2=(﹣1﹣1)2+y2,解得:y=,即Q(1,);②当BA=BQ时,易知Q(1,0),Q(1,8)(不合题意,舍去);③当AB=AQ时,Q(1,)或Q(1,﹣).所以满足条件的Q有四个:Q(1,),Q(1,0),Q(1,)或Q(1,﹣).点评:本题考查了二次函数的综合题,涉及了待定系数法求一次函数解析式、轴对称求最短路径及等腰三角形的知识,难点在第三问,解答本题的关键是分类讨论,不要漏解.。
2015年中考数学模拟试卷
2015年中考数学模拟试卷全卷满分150分,考试时间120分钟姓名: 得分:一、选择题(共10小题,每小题3分,共30分) 1.-3的倒数是( )A .3B .-3C .13 D .13-2.第八届中国(深圳)文博会以总成交额143 300 000 000 元再创新高,将数143 300 000 000 用科学记数法表示为( )A .1.433×1010B .1.433×1011C .1.433×1012D .0.1433×10123.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( ) A .50,20 B .50,30 C .50,50 D .135,504.从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是12,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 5.下列各运算中,错误的个数是( )① 01333-+=- ②= ③ 235(2)8a a = ④ 844a a a -÷=- A .1B .2C .3D .46.下列图形中,中心对称图形的是【 】A B C D7.函数y =x -2+31-x 中自变量x 的取值范围是 A .x ≤2 B .x =3 C .x <2且x ≠3 D .x ≤2且x ≠38.如图,A 、B 、C 、D 为⊙O 的四等分点,动点P 从圆心O 出发,沿O — C — D — O 路线作匀速运动。
设运动时间为t (s ),∠APB=y°,则下列图象中表示y 与t 之间函数关系最恰当的是( ).9.如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( )A .15°B .30°C .45°D .60°10.如图,⊙O 的半径为2,点A 的坐标为(2,32),直线AB 为⊙O 的切线,B 为切点.则B 点的OPDCBA AB CDA .⎪⎪⎭⎫ ⎝⎛-5823, B .()13,- C .⎪⎭⎫ ⎝⎛-5954, D .()31,-(第10题) (第14题)二、填空题(共8小题,每小题4分,共32分) 11.分解因式:=-23ab a .12.已知正方形ABCD 的对角线AC=,则正方形ABCD 的周长为 .13.前几天,孙老师的羽绒服被一个铁钉划了一个呈直角三角形的一个口子,经测量三角形两边长分别为1cm 和3cm ,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小值为 。
黄冈市2015年中考模拟试题数学A卷附答案(2)
黄冈市2015年中考模拟试题数学B 卷(考试时间120分钟 满分120分)一、选择题(每题3分,满分24分)1.12-的倒数是( )A. 2-B.12C. 2D. 12-2.下列运算正确的是( )A.= B. 235()a a = C. 4354a a a -= D. 222347a a a +=3.图中几何体的主视图是( )4.为了响应中央号召,我市今年加大财政支农力度,全市农业支出累计达到235 000 000元,其中235000000用科学记数法可表示为( )A.2.35×107B. 2.35×108C.2.35×109D. 0.235×1095. 下列图形中,既是轴对称图形,又是中心对称图形的是( )A B C D6.如图,AB 是⊙O 的直径,AD 是⊙O 的切线,点C 在⊙O 上,BC//OD ,AB=2,OD=3,则BC 的长为( )A. 23B. 32C.D.7.如图所示,平面直角坐标系中,已知三点A (-1,0),B (2,0),C (0,1),若以A 、B 、C 、D 为顶点的四边形是平行四边形,则D 点的坐标不可能是( )A.(3,1)B.(-3,1)C.(1,3)D.(1,-1)8.如图,△P1OA 1,△P 2A 1A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1,A 1A 2都在x 轴上,则点A 2的坐标是( )A. 2,0)B. 2,0)C.D.二、解答题(每小题3 分,共24 分)9.分解因式32a ab -= .10.如果关于x 的一元二次方程260x x c -+=(c 是常数)没有实数根,那么c 的取值范围是 . 11.在△ABC 中,点D 、E 分别在AB 、AC 上,∠ADE=∠C ,如果AD=3,△ADE 的面积为9,四边形BDEC 的面积为16,则AC 的长为 . 12.设220,4a b a b ab <<+=,则a ba b+-的值等于 . 13.母线长为4,底面圆的直径为2的圆锥的侧面积是 . 14.如图,△ABC 中,∠C=90°,∠BAC=30°,将△ABC 绕点C旋转,使点D 落在AB 上,连接AE ,则sin AED ∠= . 15.已知四条直线3,1;31y kx y y x =+===-和所围成的四边形的面积是8,则k = . 16.如图2所示,已知正方形ABCD 的边长为4,E 是BC 边上的一个动点,AE ⊥EF ,EF 交DC 于点F ,设BE=x ,FC=y ,则当点E 从点B 运动到点C 时,y 关于x 的函数图象是 (填序号) 三、解答下列各题(共9 小题,共72 分)17. (本题6分)解不等式组3(2)41213x x xx --≤⎧⎪+⎨>-⎪⎩ ,并把它的解集在数轴上表示出来.18. (本题6分)如图,正方形ABCD 中,O 是对角线AC 、BD 的交点,过点O 作OE ⊥OF ,分别交AB 、BC 于E 、F.(1)求证△OEF 是等腰直角三角形. (2)若AE=4,CF=3,求EF 的长.19. (本题6分)育才学校八(1)班学生举行1分钟篮球投篮比赛,该班同学投篮投中情况部分统计如图所①② 第11题图 第14题图示:(1)求该班的总人数;(2)请将条形图补充完整,并写出投篮投中个数的众数; (3)该班在1分钟投篮比赛中平均每人投中多少个?20. (本题6分)有时我们可以看到这样的转盘游戏:如图所示,你只要出1元钱就可以随意地转动转盘,转盘停止时指针落在哪个区域,你就按照这个区域所示的数字相应地顺时针跳过几格,然后按照下图所示的说明确定你的资金是多少.例如,当指针指向“2”区域时候,你就向前跳过两个格到“5”,按奖金说明,“5”所示的资金为0.2元,你就可以得0.2元.请问这个游戏公平吗?能否用你所学的知识揭示其中的秘密?21. (本题6分)菜农张大叔今年承包了10亩蔬菜地种植甲、乙两种蔬菜,已知1-5月份张大叔种植的甲、乙两种蔬菜共获利13800元,其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元,求甲、乙两种蔬菜各种植多少亩?22. (本题8分)如图,AB 为⊙O 的直径,弦CD ⊥AB 于点M ,过点B 作BE//CD ,交AC 的延长线于点E ,连接BC.(1)求证:BE 为⊙O 的切线. (2)若CD=6,1tan 2BCD ∠=,求⊙O 的直径.23. (本题8分)某街道两旁正在安装漂亮的路灯,经查看路灯图纸,小红发现该路灯的设计可以看作是“相切两圆”的一部分,部分数据如图所示:⊙O 1、⊙O 2相切于点C ,CD 切⊙O 1于点C ,A 、B为路灯灯泡.已知∠AO 1O 2=∠BO 2°、C三点距地面MN 的距离分别为, 请根据以上图文信息,求(1)⊙O 1、⊙O 2的半径分别多 少cm ?(2)把A、B两个灯泡看作两个点,求线段AB的长.24.(本题12分)黄冈市某高新企业制定工龄工资标准时充分考虑员工对企业发展的贡献,同时提高员工的积极性、控制员工的流动率,对具有中职以上学历员工制定如下的工龄工资方案。
2015年陕西省西安市中考数学模拟试卷(二)
2015年陕西省西安市中考数学模拟试卷(二)一、选择题(共10小题,每小题3分,计30分)1.(3分)﹣的倒数是()A.3 B.C.﹣3 D.±2.(3分)如图,由6个相同的小正方体搭成的立体图形,若由图①变到图②,不改变的是()A.主视图B.左视图C.俯视图D.左视图和俯视图3.(3分)计算(﹣3a3)2的结果是()A.﹣3a6B.3a6C.﹣9a6D.9a64.(3分)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°5.(3分)某外贸公司要出口一批食品罐头,标准质量为每听450克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10,则这10听罐头质量的众数为()A.460 B.455 C.450 D.06.(3分)如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣b B.a2<ab C.ab<b2D.a2<b27.(3分)△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:28.(3分)点A(m2+1,y A)在正比例函数y=﹣2x的图象上,则()A.y A>0 B.y A<0 C.y A≤﹣2 D.y A≥﹣29.(3分)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ADE=AB2.A.1个B.2个C.3个D.4个10.(3分)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x …0 1 2 3 4 …y … 4 1 0 1 4 …点A(x1,y1)、B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2二、填空题(共4小题,每小题3分,计18分)11.(3分)分解因式:4x2﹣16y2=.12.(3分)请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面内,将长度为6的线段AB绕它的中点M,按逆时针方向旋转60°,则线段AB 扫过的面积为.B.用科学计算器计算:sin42.5°=(精确到0.01).13.(3分)在平面直角坐标系中,若一条平行于x轴的直线l分别交双曲线y=﹣和y=于A,B两点,P是x轴上的任意一点,则△ABP的面积等于.14.(3分)在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值=.三、解答题(共11题,78分)15.(8分)(1)先化简,再求值:(x+2)2+x(2﹣x),其中x=.(2)解分式方程:.16.(4分)解不等式组:,并把不等式组的解集在数轴上表示出来.17.(5分)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5 12 0.121 30 0.31.5 x 0.42 18 y合计m 1(1)统计表中的x=,y=;(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.18.(6分)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.19.(6分)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20.(6分)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E 点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)21.(6分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.22.(7分)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.23.(8分)已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.24.(10分)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.25.(12分)如图,在直角梯形AOBC中,AC∥OB,且OB=6,AC=5,OA=4.(1)直接写出B、C两点的坐标;(2)以O、A、B、C中的三点为顶点可组成哪几个不同的三角形?(3)是否在边AC和BC(含端点)上分别存在点M和点N,使得△MON的面积最大时,它的周长还最短?若存在,请说明理由,并求出这时点M、N的坐标;若不存在,为什么?2015年陕西省西安市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每小题3分,计30分)1.(3分)(2015•西安模拟)﹣的倒数是()A.3 B.C.﹣3 D.±【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:﹣的倒数是﹣3.故选:C.【点评】本题考查了倒数,乘积为1的两个数互为倒数.2.(3分)(2015•罗平县二模)如图,由6个相同的小正方体搭成的立体图形,若由图①变到图②,不改变的是()A.主视图B.左视图C.俯视图D.左视图和俯视图【分析】根据主视图是从物体的正面看得到的视图,俯视图是从上面看得到的图形,左视图是左边看得到的图形,可得答案.【解答】解:主视图都是第一层三个正方形,第二层左边一个正方形,故A正确;故选:A.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.(3分)(2015•西安模拟)计算(﹣3a3)2的结果是()A.﹣3a6B.3a6C.﹣9a6D.9a6【分析】根据积的乘方和幂的乘方法则进行计算即可.【解答】解:(﹣3a3)2=9a6,故选D.【点评】本题考查了对积的乘方和幂的乘方法则的应用,主要考查学生运用法则进行计算的能力,注意:①积的乘方,把积的每个因式分别乘方,再把所得的幂相乘,②幂的乘方,底数不变,指数相乘.4.(3分)(2011•内江)如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.58°C.68°D.60°【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.【解答】解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:B.【点评】主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.5.(3分)(2015•西安模拟)某外贸公司要出口一批食品罐头,标准质量为每听450克,现抽取10听样品进行检测,它们的质量与标准质量的差值(单位:克)如下:﹣10,+5,0,+5,0,0,﹣5,0,+5,+10,则这10听罐头质量的众数为()A.460 B.455 C.450 D.0【分析】根据众数的概念求解.【解答】解:由题意得,质量与标准质量的差值众数为0,则众数为:450+0=450.故选C.【点评】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.6.(3分)(2015•西安模拟)如果a<b,那么下列不等式中一定正确的是()A.a﹣2b<﹣b B.a2<ab C.ab<b2D.a2<b2【分析】利用不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、a<b两边同时减2b,不等号的方向不变可得a﹣2b<﹣b,故此选项正确;B、a<b两边同时乘以a,应说明a>0才得a2<ab,故此选项错误;C、a<b两边同时乘以b,应说明b>0才得a b<b2,故此选项错误;D、a<b两边同时乘以相同的数,故此选项错误;故选:A.【点评】此题主要考查了不等式的基本性质,关键是要注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.7.(3分)(2015•芜湖三模)△ABC的三边AB,BC,CA的长分别为6cm,4cm,4cm,P 为三边角平分线的交点,则△ABP,△BCP,△ACP的面积比等于()A.1:1:1 B.2:2:3 C.2:3:2 D.3:2:2【分析】根据角平分线上的点到角的两边距离相等可得点P到△ABC三边的距离相等,然后根据等高的三角形的面积的比等于底边的比解答.【解答】解:∵P为三边角平分线的交点,∴点P到△ABC三边的距离相等,∵AB,BC,CA的长分别为6cm,4cm,4cm,∴△ABP,△BCP,△ACP的面积比=6:4:4=3:2:2.故选D.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,等高的三角形的面积的比等于底边的比,熟记性质并判断出点P到△ABC三边的距离相等是解题的关键.8.(3分)(2015•西安模拟)点A(m2+1,y A)在正比例函数y=﹣2x的图象上,则()A.y A>0 B.y A<0 C.y A≤﹣2 D.y A≥﹣2【分析】把A点坐标代入y=﹣2x得到y A=﹣2m2﹣2,然后利用非负数的性质易得y A≤﹣2.【解答】解:∵A(m2+1,y A)在正比例函数y=﹣2x的图象上,∴y A=﹣2(m2+1)=﹣2m2﹣2,∵﹣2m2≤0,∴﹣2m2﹣2≤﹣2,即y A≤﹣2.故选C.【点评】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b);直线上任意一点的坐标都满足函数关系式y=kx+b.9.(3分)(2015•西安模拟)如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ADE=AB2.A.1个B.2个C.3个D.4个【分析】由条件可判定△ABD为等边三角形,可得出DE⊥AB、BF⊥AD,可求得∠FGE,可判断①;由条件可证得△DCG≌△BCG,可判断②;在△BDF和△CGB中可得出BD≠CG,可判断③;由等边三角形的面积可知S△ABD=AB2可判断④.可得出答案.【解答】解:∵四边形ABCD为菱形,∴AD=AB,且∠A=60°,∴△ABD为等边三角形,又∵E、F分别是AB、AD的中点,∴DE⊥AB,BF⊥AD,∴∠GFA=∠GEA=90°,∴∠BGD=∠FGE=360°﹣∠A﹣∠GFA﹣∠GEA=120°,∴①正确;∵四边形ABCD为菱形,∴AB∥CD,AD∥BC,∴∠CDG=∠CBG=90°,在Rt△CDG和Rt△CBG中,,∴Rt△CDG≌Rt△CBG(HL),∴DG=BG,∠DCG=∠BCG=∠DCB=30°,∴DG=BG=CG,∴DG+BG=CG,∴②正确;在Rt△BDF中,BD为斜边,在Rt△CGB中,CG为斜边,且BD=BC,在Rt△CGB中,显然CG>BC,即CG>BD,∴△BDF和△CGB不可能全等,∴③不正确;∵△ABD为等边三角形,∴S△ABD=AB2,∴S△ADE=S△ABD=AB2,∴④不正确;综上可知正确的只有两个,故选B.【点评】本题主要考查菱形的性质及等边三角形的性质,熟练掌握菱形的四边相等、对边平行及等边三角形的性质是解题的关键.10.(3分)(2011•济宁)已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:x …0 1 2 3 4 …y … 4 1 0 1 4 …点A(x1,y1)、B(x2,y2)在函数的图象上,则当1<x1<2,3<x2<4时,y1与y2的大小关系正确的是()A.y1>y2B.y1<y2C.y1≥y2D.y1≤y2【分析】由表格可知,当1<x<2时,0<y<1,当3<x<4时,1<y<4,由此可判断y1与y2的大小.【解答】解:∵当1<x<2时,函数值y小于1,当3<x<4时,函数值y大于1,∴y1<y2.故选B.【点评】本题考查了二次函数图象上点的坐标特点.关键是由表格判断自变量取值范围内,函数值的大小.二、填空题(共4小题,每小题3分,计18分)11.(3分)(2015•西安模拟)分解因式:4x2﹣16y2=4(x+2y)(x﹣2y).【分析】首先提取公因式4,进而利用平方差公式分解因式得出即可.【解答】解:4x2﹣16y2=4(x2﹣4y2)=4(x+2y)(x﹣2y).故答案为:4(x+2y)(x﹣2y).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练掌握乘法公式是解题关键.12.(3分)(2015•西安模拟)请从以下两个小题中任选一个作答,若多选,则按所选的第一题计分.A.在平面内,将长度为6的线段AB绕它的中点M,按逆时针方向旋转60°,则线段AB 扫过的面积为3.B.用科学计算器计算:sin42.5°=24.03(精确到0.01).【分析】A.线段AB扫过的面积是:半径是3,圆心角是60°的扇形的面积的2倍,利用扇形的面积公式即可求解.B.根据计算器的应用,对计算器给出的结果四舍五入可得答案.【解答】解:A.半径是3,圆心角是60°的扇形的面积是:=π,则线段AB扫过的面积是2×π=3π.故答案是:3π.B.sin42.5°≈3.60×0.676=2.44.故答案为2.44.【点评】本题考查了扇形的面积公式,正确理解公式是关键.13.(3分)(2012•宿迁)在平面直角坐标系中,若一条平行于x轴的直线l分别交双曲线y=﹣和y=于A,B两点,P是x轴上的任意一点,则△ABP的面积等于4.【分析】根据题意画出图形,分别过点A、B作AC⊥x轴,BD⊥x轴,由点A、B分别在双曲线y=﹣和y=上可知S矩形ACOE=6,S矩形BEOD=2,故S矩形ACDB=S矩形ACOE+S矩形BEOD=6+2=8,故AB•AC=8,再由S△ABP=AB•AC即可得出结论.【解答】解:如图所示:分别过点A、B作AC⊥x轴,BD⊥x轴,∵点A、B分别在双曲线y=﹣和y=上,∴S矩形ACOE=6,S矩形BEOD=2,∴S矩形ACDB=S矩形ACOE+S矩形BEOD=6+2=8,即AB•AC=8,∴S△ABP=AB•AC=×8=4.故答案为:4.【点评】本题考查的是反比例函数系数k的几何意义,根据题意画出图形,利用数形结合求解是解答此题的关键.14.(3分)(2015•西安模拟)在Rt△ABC中,∠BAC=30°,斜边AB=2,动点P在AB 边上,动点Q在AC边上,且∠CPQ=90°,则线段CQ长的最小值=2.【分析】以CQ为直径作⊙O,当⊙O与AB边相切动点P时,CQ最短,根据切线的性质求得OP⊥AB,进而根据已知求得△POQ为等边三角形,得出∠APQ=30°,设PQ=OQ=OP=OC=r,3r=AC=cos30°•AB=×=3,从而求得CQ的最小值为2.【解答】解:以CQ为直径作⊙O,当⊙O与AB边相切动点P时,CQ最短,∴OP⊥AB,∵∠ACB=90°,∠A=30°,∴∠POA=60°,∵OP=OQ,∴△POQ为等边三角形,∴∠POQ=60°,∴∠APQ=30°,∴设PQ=OQ=AP=OC=r,3r=AC=cos30°•AB=×=3,∴CQ=2,∴CQ的最小值为2.故答案为2.【点评】本题考查了切线的性质,圆周角定理,解直角三角形函数等,熟练掌握性质定理是解题的关键.三、解答题(共11题,78分)15.(8分)(2015•西安模拟)(1)先化简,再求值:(x+2)2+x(2﹣x),其中x=.(2)解分式方程:.【分析】(1)先算乘法,再合并同类项即可;(2)先去分母得出整式方程,求出方程的解,最后检验即可.【解答】解:(1)(x+2)2+x(2﹣x)=x2+4x+4+2x﹣x2=6x+4,当x=时,原式=6×+4=6;(2)方程两边都乘以(x+2)(x﹣2)得:2x(x﹣2)﹣3(x+2)=2(x+2)(x﹣2),解得:x=,检验:把x=代入(x+2)(x﹣2)≠0,所以,原方程的解为x=.【点评】本题考查了整式的混合运算和求值,解分式方程的应用,(1)小题主要考查学生的化简能力和计算能力,解(2)小题的关键是把分式方程转化成整式方程,难度适中.16.(4分)(2014•遵义)解不等式组:,并把不等式组的解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【解答】解:由①得,x≥﹣1,由②得,x<4,故此不等式组的解集为:﹣1≤x<4.在数轴上表示为:.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.(5分)(2015•济南模拟)在济南市开展的“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动.为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制成不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5 12 0.121 30 0.31.5 x 0.42 18 y合计m 1(1)统计表中的x=40,y=0.18;(2)被调查同学劳动时间的中位数是 1.5时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.【分析】(1)首先根据劳动时间是0.5小时的有12人,频率是0.12即可求得总数,然后根据频率的计算公式求得x、y的值;(2)根据中位数的定义,即大小处于中间位置的数即可作出判断;(3)根据(1)的结果即可完成;(4)利用加权平均数公式即可求解.【解答】解:(1)调查的总人数是12÷0.12=100(人),则x=100×0.4=40(人),y==0.18;(2)被调查同学劳动时间的中位数是1.5小时;(3);(4)所有被调查同学的平均劳动时间是:=1.32(小时).【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(6分)(2014•苏州)如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数.【分析】(1)由旋转的性质可得:CD=CE,再根据同角的余角相等可证明∠BCD=∠FCE,再根据全等三角形的判定方法即可证明△BCD≌△FCE;(2)由(1)可知:△BCD≌△FCE,所以∠BDC=∠E,易求∠E=90°,进而可求出∠BDC 的度数.【解答】(1)证明:∵将线段CD绕点C按顺时针方向旋转90°后得CE,∴CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠BCD=90°﹣∠ACD=∠FCE,在△BCD和△FCE中,,∴△BCD≌△FCE(SAS).(2)解:由(1)可知△BCD≌△FCE,∴∠BDC=∠E,∠BCD=∠FCE,∴∠DCE=∠DCA+∠FCE=∠DCA+∠BCD=∠ACB=90°,∵EF∥CD,∴∠E=180°﹣∠DCE=90°,∴∠BDC=90°.【点评】本题考查了全等三角形的判定和性质、同角的余角相等、旋转的性质、平行线的性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.19.(6分)(2014•梅州)已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.【分析】(1)将x=1代入方程x2+ax+a﹣2=0得到a的值,再根据根与系数的关系求出另一根;(2)写出根的判别式,配方后得到完全平方式,进行解答.【解答】解:(1)将x=1代入方程x2+ax+a﹣2=0得,1+a+a﹣2=0,解得,a=;方程为x2+x﹣=0,即2x2+x﹣3=0,设另一根为x1,则1•x1=﹣,x1=﹣.(2)∵△=a2﹣4(a﹣2)=a2﹣4a+8=a2﹣4a+4+4=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根.【点评】本题考查了根的判别式和根与系数的关系,要记牢公式,灵活运用.20.(6分)(2014•黔东南州)黔东南州某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D 测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)【分析】过点A作AM⊥EF于M,过点C作CN⊥EF于N,则MN=0.25m.由小明站在B 点测得旗杆顶端E点的仰角为45°,可得△AEM是等腰直角三角形,继而得出得出AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m.在Rt△CEN中,由tan∠ECN==,代入CN、EN解方程求出x的值,继而可求得旗杆的高EF.【解答】解:过点A作AM⊥EF于M,过点C作CN⊥EF于N,∴MN=0.25m,∵∠EAM=45°,∴AM=ME,设AM=ME=xm,则CN=(x+6)m,EN=(x﹣0.25)m,∵∠ECN=30°,∴tan∠ECN===,解得:x≈8.8,则EF=EM+MF≈8.8+1.5=10.3(m).答:旗杆的高EF为10.3m.【点评】本题考查了解直角三角形的问题.该题是一个比较常规的解直角三角形问题,建立模型比较简单,但求解过程中涉及到根式和小数,算起来麻烦一些.21.(6分)(2014•南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.【分析】(1)将点C、点A的坐标代入一次函数解析式可得k、b的值,将点A的坐标代入反比例函数解析式可得m的值,继而可得两函数解析式;(2)寻找满足使一次函数图象在反比例函数图象下面的x的取值范围.【解答】解:(1)将点(2,5)、(0,7)代入一次函数解析式可得:,解得:.∴一次函数解析式为:y=﹣x+7;将点(2,5)代入反比例函数解析式:5=,∴m=10,∴反比例函数解析式为:y=.(2)由题意,得:,解得:或,∴点B的坐标为(5,2),由图象得:当0<x<2或x>5时,y1<y2.【点评】本题考查了反比例函数与一次函数的交点问题,解答本题的关键是联立解析式,求出交点坐标.22.(7分)(2009•陕西)甲、乙两同学用一副扑克牌中牌面数字分别是:3,4,5,6的4张牌做抽数学游戏.游戏规则是:将这4张牌的正面全部朝下,洗匀,从中随机抽取一张,抽得的数作为十位上的数字,然后,将所抽的牌放回,正面全部朝下、洗匀,再从中随机抽取一张,抽得的数作为个位上的数字,这样就得到一个两位数.若这个两位数小于45,则甲获胜,否则乙获胜.你认为这个游戏公平吗?请运用概率知识说明理由.【分析】游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:这个游戏不公平,游戏所有可能出现的结果如下表:3 4 5 6第二次第一次3 33 34 35 364 43 44 45 465 53 54 55 566 63 64 65 66表中共有16种等可能结果,小于45的两位数共有6种.(5分)∴P(甲获胜)=,P(乙获胜)=.(7分)∵,∴这个游戏不公平.(8分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)(2014•凉山州)已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.【分析】(1)连结OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中根据三角形内角和定理可知∠ACO+∠CAO+∠AOC=180°,由圆周角定理可知∠AOC=2∠PBC,故可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论;(2)先根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即可得出结论.【解答】(1)证明:连结OC,OA,∵OC=OA,∴∠ACO=∠CAO,∵PC是⊙O的切线,C为切点,∴PC⊥OC,∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°,∴∠ACO+∠PBC=90°,∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC;(2)解:∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB,∴=,∴PC2=PA•PB,∵PA=3,PB=5,∴PC==.【点评】本题考查的是切线的性质,根据题意作出辅助线,构造出圆心角是解答此题的关键.24.(10分)(2015•西安模拟)如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B (4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由.【分析】(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx+2,再根据过A,B两点,即可得出结果;(2)由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.由相似关系求出点E的坐标.【解答】解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y=ax2+bx+2.将A(﹣1,0),B(4,0)代入,得,解得,∴抛物线的解析式为:y=﹣x2+x+2.(2)存在.由图象可知,以A、B为直角顶点的△ABE不存在,所以△ABE只可能是以点E为直角顶点的三角形.在Rt△BOC中,OC=2,OB=4,∴BC==2.在Rt△BOC中,设BC边上的高为h,则×2h=×2×4,∴h=.∵△BEA∽△COB,设E点坐标为(x,y),∴=,∴y=±2将y=2代入抛物线y=﹣x2+x+2,得x1=0,x2=3.当y=﹣2时,不合题意舍去.∴E点坐标为(0,2),(3,2).【点评】本题考查了二次函数的综合题,涉及相似三角形的性质的运用,勾股定理的运用,解题的关键是正确求出函数的解析式.25.(12分)(2015•西安模拟)如图,在直角梯形AOBC中,AC∥OB,且OB=6,AC=5,OA=4.(1)直接写出B、C两点的坐标;(2)以O、A、B、C中的三点为顶点可组成哪几个不同的三角形?(3)是否在边AC和BC(含端点)上分别存在点M和点N,使得△MON的面积最大时,它的周长还最短?若存在,请说明理由,并求出这时点M、N的坐标;若不存在,为什么?【分析】(1)由OB=6,点B在x轴,得到B点的坐标,根据AC∥OB,AC=5,得到点C 的坐标;(2)根据不在同一直线的三点能组成一个三角形,得到以O、A、B、C中的三点为顶点可组成4个不同的三角形;(3)过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG+MP•GN,因为QN、MP同时取得最大值是OB、OA,所以M应该和A重合,从而求得M的坐标.【解答】解:(1)∵OB=6,OA=4,∴B(6,0)∵AC∥OB,AC=5,∴C(5,4);(2)以O、A、B、C中的三点为顶点可组成的三角形为△AOB△AOC△BOC△ABC四个不同的三角形;(3)如图,过点M作MP∥OA,交ON于点P,过点N作NQ∥OB,分别交OA、MP于两点Q、G,则S△MON=S△OMP+S△NMP=MP•QG +MP•GN,∵MP≤OA,QN≤OB,∴当点N与点B重合,M在AC上运动时,QN,MP同时取得最大值BO,OA,∴△MON的面积=OA•OB,∴M点与A点重合,∴M(0,4),△MON的周长=10+,当△OMN是等腰三角形时,点N与B重合,则OM=MN,∴M(3,4),∴△MON的面积=OA•OB,∴△MON的周长=16<10+,∴存在点M和点N,使得△MON的面积最大时,它的周长还最短,M(3,4).【点评】本题考查了直角梯形的性质,坐标和图形的性质,轴对称的性质,不在同一直线的三点能组成一个三角形等知识点,作出辅助线是本题的关键.第21页(共21页)。
2015年中考数学模拟试题(2)含答案
2015年中考数学模拟试题(2)(考试时间100分钟,本卷满分120分)2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡.14个小题,每小题3分,共42分)B. 13-C. 13D .3x ﹢2的值为—3,则 x 等于 B . —1 C . —5 D. 5 5a = B. a a a =÷45 C. 44a a a =⋅ D .632)(ab ab = 1)班同学举行“奥运在我心中”演讲比赛.第三小组的六名: 9.1, 9.3, 9.5, 9.2, 9.4, B. 9.2 C. 9.3 D. 9.51+2的积为有理数的是B . 2+1 C. -1-2 D. 2=3x ﹢2的图像不经过B . 第二象限 C. 第三象限 D. 第四象限、B 、C 均在⊙O 上,∠ABO =55O ,则∠BCA=B. 45oC. 50oD. 70o4和10,则此三角形第三边的长可能是B. 6C. 11D. 16 50台机器,现在生产600台机器所需时450台机器所需时间相同.设原计划平均每天生产x 台机器,则可列方程为A. 错误!未找到引用源。
60045050x x =+B. 60045050x x =-C. 60045050x x=+ D.60045050x x=- 11. 甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是A .16B .14C .13 D .1212. 如图3,直线m n ∥,︒∠1=55,︒∠2=45,则∠3的度数为A .80︒B .90︒C .100︒D .110︒13. 如图,E 是□ABCD 的边AD 的中点,CE 与BA 的延长线交于点F ,若∠FCD =∠D ,则下列结论不成立...的是 A .AD =CF B .BF =CF C .AF =CD D .DE =EF14. 如图5,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C ′处,交AD 于E ,AD =8,AB =4,则DE 的长为A. 3B. 4C. 5D. 6二、填空题(本大题满分16分,每小题4分)15. 分解因式:a 3 —a =________________. 16. 在反比例函数1m y x -=的图象的每一条曲线上,y 都随x 的增大而减小,则m的取值范围是__________. 17. 如图6,等腰梯形ABCD 中,AD ∥BC ,AB ∥DE ,BC=8,AB =5 ,AD =5,则△CDE 的周长是_______.B .CD . C 2 A P B D 图7 60° AE B C D 图6 A B CD E C ′ 图5 3m n 2 1m ∥,∠1=55,∠2=45,∠380︒F D E C B A 图3 图418. 如图7,等边△ABC 的边长为3,点P 为BC 上一点,且BP =1,点D 为AC 上一点,若∠APD =60°,则CD 的长为 . 三、解答题(本大题满分62分) 19.(满分10分)计算:(1-2|+113-⎛⎫⎪⎝⎭+ (-1)2011. (2)2(3)2a a a ++-()20.(满分9分)海南省历史悠久,人杰地灵,史称琼崖,为了了解学生对家乡历史文化名人的知晓情况,某校对部分的学生进行了随机抽样调查,并将调查结果绘制成如图所示的统计图(部分).根据统计图中的信息,回答下列问题.(1)补充条形统计图完整; (2)在扇形统计图中,“了解很少”所在扇形的圆心角是_________度;(3)若全校共有学生2400人,那么该校约有多少名学生“基本了解”海南省的历史文化名人?21.(满分8分) 受气候等因素的影响,今年某些农产品的价格有所上涨. 李大叔在承包的10亩地里所种植的甲、乙两种蔬菜共获利13800元.其中甲种蔬菜每亩获利1200元,乙种蔬菜每亩获利1500元.则甲、乙两种蔬菜各种植了多少亩?22. (满分8分)如图8,在Rt △ABC 中,∠ACB=90°, 已知CD ⊥AB ,BC=1. (1)如果∠BCD=30°,求AC ; (2)如果tan ∠BCD=31,求CD.23.(满分13分)如图9,在正方形ABCD 中,E 是CD 上一点,DF ⊥BE 交BE 的延长线于点G ,交BC 的延长线于点F .(1)求证:△BCE ≌△DCF .(2)若∠DBE =∠CBE ,求证BD =BF .(3)在(2)的条件下,求CE :ED 的值.24. (满分14分)如图10,在平面直角坐标系中,二次函数2=++y x bx c 的图象与x 轴交于A 、B 两点,B 点的坐标为(3,0),与y 轴交于(03)C -,点,点P 是直线BC 下方抛物线上的动点.(1)求这个二次函数表达式;(2)连接PO ,PC ,并将△POC 沿y 轴对折,得到四边形POP C ',那么是否存在点P ,使四边形POP C '为菱形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)当点P 运动到什么位置时,四边形ABPC的面积最大?求出此时P 点的坐标和四边形ABPC 的最大面积.﹪不了解 了解很少 了解程很了基本了解 如图ACD 图9 A B C DEFG模拟试卷(2)参考答案:一、DCBBB ADACC CCBC二、15. a (a ﹢1)(a ﹣1) 16. 1m < 17. 15 18.32 三、19.(1)解:原式=3+2+3-1 (2)解:原式=22692a a a a +++- =7 =89a +20.解:(1)5÷10﹪=50,50﹣25﹣5﹣5=15(人),作图(略).(2)180(3)(人)720515255152400=+++⨯ ∴“基本了解”的学生720人. 21.解:(1)∵CD ⊥AB ∴ ∠BDC =90°∵∠DCB =30° ∴∠B =60° 在Rt △ACB 中,∠ACB =90°∴tan60°=BC AC……………………………4分∴AC =3…………………5分 (2)在Rt △BDC 中, tan ∠BCD =31=CD BD 设BD =k ,则CD =k 3 由勾股定理得:()22213=+k k ………………………6分 解得:1010101021-==k k ,(不合题意,舍去)∴1010=k …………………8分 ∴CD =10103 .………………………9分22. 解:设甲、乙两种蔬菜的种植面积分别为x 、y 亩,依题意可得:⎩⎨⎧=+=+138001*********y x y x 解这个方程组得⎩⎨⎧==64y x 答:(略)23解:(1)证明∵四边形ABCD 是正方形, ∴BC =DC ,∠BCE =∠DCF =90o ,………………(2分)∴∠CBE ﹢∠BEC =90o ,又∵BG ⊥DF , ∴∠CBE ﹢∠F =90o ∴∠BEC =∠F ,∴△BCE ≌△DCF ……………………(4分)(2)证明:∵BG ⊥DF∴∠BGD =∠BGF ……………………(6分) 又∵BG=BG ,∠DBG ∠FBG , ∴△DBG ≌△FBG ,∴BD=BF ; ……………………(8分)(3)解:延长AD 、BG 交于点H . ∵BD=BF ,BG ⊥DF ……………(10分) ∴∠DBG ∠FBG ,∵AD ∥BC ,∴∠H =∠FBG ,∴∠DB H =∠H ,∴DB=DH ,∵AH ∥BC ,∴△BCE ~△HDE ,……………(12分)∴CE :DE =BC :DH ,∴CE :DE =BC :DB .∵四边形ABCD 是正方形,∴BC :BD=2:1.∴CE :DE=2:1, ∴CE :DE 的值为22.……………(13分) 24. 解:(1)将B 、C 两点的坐标代入2=++y x bx c 得 3=9=3b c c +-⎧⎨-⎩,解得=2=3b c -⎧⎨-⎩.所以二次函数的表达式为:2=23y x x --.……………(4分)(2)假设抛物线上存在点P ,使得四边形POP C '为菱形. 设P 点坐标为(x ,223x x --) ……………(5分) 连接PP '交CO 于点E . ∵四边形POP C '为菱形, ∴ PC=PO ;PE ⊥CO .∴OE=EC=32,∴P 点的纵坐标为32-,……………(7分) 即223x x --=32-, 解得1222==22x x +. 即存在这样的点,此时P 点的坐标为(22,32-)……………(9分) 3)过点P 作y 轴的平行线与BC 交于点Q ,与OB 交于点F ,AC B DA B C D E F G H设P (x ,223x x --). ……………(10分) 由223x x --=0得点A 坐标为(-1,0).又已知点B 和点C 的坐标, 从而直线BC 的解析式为y=x -3. Q 点的坐标为(x ,x -3),则AB=4,CO=3,BO=3,PQ=23x x -+. ∴S 四边形ABPC =S △ABC + S △BPQ + S △CPQ =12AB·CO +12PQ·BF +12PQ·FO =12AB·CO +12PQ·(BF +FO ) = 12AB·CO +12PQ·BO=12×4×3+12(23x x -+)×3 =239622x x -++=23375()228x --+ . .……………(13分) 当x=32时,四边形ABPC 的面积最大.此时P 点的坐标为(32,154-),四边形ABPC 的最大面积为758. ……………(14分)。
2015年中考数学模拟试卷及答案(含答题纸)
9.反比例函数 y=
k (k≠0 )的图象经过两点 A(x1 ,y1 ), B(x2 ,y 2) ,当 x 1 <x 2 <0 x
时,y 1 > y2 。则一次函数 y=-2x+k 不经过的象限是( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
10.如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 G,点 F 是 CD 上一点,且满足
PQ 的值 AQ
(2)连接 CM,设动点 P 的横坐标为 t。当 t 为何值时,△APQ 与△CMN 相似? (三)图 2 中,点 E 在 Y 轴上满足∠OAE=30°。 (二)中的直线 PQ 交 AE 于点 F,将∠ OAE 沿直线 PQ 翻折,点 A 落在射线 AO 上的点 G 处。当△EFG 是直角三角形时,试确定 点 Q 的坐标。
图1
图2
参考简答 一.选择题 ABBCC DCDCC 二.填空题 11.x≤3 12.6 13.16π 15.76 16.(1)(2)(3) 三.解答题 17.3 18.化简得
14。100,50
2 x(x 1) 。X 只能取 2,原式= 3 x 1
19.(1)略 (5 分) (2)矩形 (5 分) 20.(1)50, 5 次, 图中 5 次有 16 人图略 (2)112 (3)
2015 年中考数学模拟试卷
广办武元中学 一、选择题(每小题 3 分,共 30 分) 1.-3 的相反数是( ) A. 3 B.-3 C.胡启
1 3
D.
1 3
)
2.不等式 3X-5<1 的解集在数轴上表示是( A B D ) . C.
C 3. 如图所示的几何体的俯视图是( A. B.
D.
第 3 题图
经典2015年中考数学模拟试题
2015年中考数学模拟试题数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至4页,第Ⅱ卷5至12页,满分120分.考试时间120分钟.第Ⅰ卷(选择题 共42分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考生号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试卷上. 3. 考试结束,将本试卷和答题卡一并收回.一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给的4个选项中,只有一项是符合题目要求的. 1. 2-的绝对值是( ) A .12-B .2C .12D .2- 2.玉树地震后,某市人民献爱心为玉树捐人民币:203000000元,这个数用科学记数法表示为 ( )A .92.0310⨯ B .62.0310⨯ C .720.310⨯ D .82.0310⨯3.函数3-=x y 中,自变量x 的取值范围是 ( )A .x >3B .x ≥3C .x >-3D .x ≥-3 4. 下列运算中,正确的是( )A .x 3·x 3=x 6B .3x 2+2x 3=5x 2C .(x 2)3=x 5D .(x+y 2)2=x 2+y 4 5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D. 6.若|2|20x y y -++=,则xy 的值为( ) A .2 B . 8 C .5D .6-7.右图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,那么这个几何体的主视图是( )第13题A B C D8.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是 ( ) A .BC =2BE B .∠A =∠EDA C .BC =2AD D .BD ⊥AC9.如图,在梯形ABCD 中,AB ∥CD ,AD =BC ,对角线AC ⊥BD ,垂足为O .若CD =3,AB =5,则AC 的长为 ( ) A .24 B .4 C .33 D .5210.如图是两个可以自由转动的转盘,每个转盘被分成两个扇形,同时转动两个转盘,转盘停止后,指针所指区域内的数字之和为4的概率是 ( ) A .21 B .31 C .41D .5111. 把分式方程12121=----xx x 的两边同时乘以(x-2), 约去分母,得 ( ) A .1-(1-x)=1 B .1+(1-x)=1 C .1-(1-x)=x-2 D .1+(1-x)=x-2 12. 下列命题中的假命题是( )A .一组对边平行且相等的四边形是平行四边形B .一组对边相等且有一个角是直角的四边形是矩形C. 一组邻边相等的平行四边形是菱形 D .一组邻边相等的矩形是正方形13.如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A =,BE=2,则tan ∠DBE 的值是( ) A .12B .52 C. 2 D .5514.如图,在矩形ABCD中,AB=4,BC=6,当直角三角板MPN的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是()第Ⅱ卷(非选择题 共78分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上. 2.答卷前将密封线内的项目及座号填写清楚.二、填空题(本大题共5小题,每小题3分,共15分)把答案填在题中横线上. 15. 分解因式:34x x -= . 16.不等式组23010x x -<⎧⎨+≥⎩的整数解为 .17.如图,在△ABC 中,90︒=∠BAC 2==AC AB ,以AB 为直径的圆交BC 于D ,则图中阴影部分的面积为 . 第17题图18. 如图,D 、E 两点分别在AC 、AB 上,且DE 与BC 不平行,请填上一个你认为合适的条件: ,使得△ADE ∽△ABC.19. 如图,ABC ∆中,︒=∠90ACB ,︒=∠30B ,1=AC ,过点C 作AB CD ⊥1于1D ,过1D 作BC D D ⊥21于2D ,过2D 作AB D D ⊥32于3D ,这样继续作下去,……,线段1+n n D D 等于(n 为正整数) .A BC D E 2 1 (第18题图) (第19题图) C A CB 1D 2D4D6D 5D 3D ABCD.O三、开动脑筋,你一定能做对!(本大题共3小题,6+7+7=20分) 20.化简2111x x x x⎛⎫-÷ ⎪--⎝⎭,并选择你最喜欢的数代入求值.21.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.22.如图,已知E、F分别是□ABCD的边BC、AD上的点,且BE=DF.(1) 求证:四边形AECF是平行四边形;(2) 若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.F ED CB A四、认真思考,你一定能成功!(本大题共2小题,9+10=19分)23.如图,A是⊙O外一点,B是⊙O上一点,AO•的延长线交⊙O于点C,连结BC,∠C=22.5°,∠A=45°。
安徽省合肥XX中学中考数学模拟试卷(二)及答案解析
安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。
2015届中考二模数学试题含答案
第二学期第二次模拟题九 年 级 数 学说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数为( ▲ ) A .21-B .21C .2D .12.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( ▲ )A .0. 000124B .0.0124C .一0.00124D .0.00124 3.如图是一个几何体的三视图,则这个几何体的形状是( ▲ ).A .圆柱B .圆锥C .圆台D .长方体4.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ▲ )A .等边三角形B .矩形C .菱形D .正方形5.直线2y x =-不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 6.下列计算正确的是( ▲ )A .532a a a =+ B .1234)(a a =C .632a a a =⋅D .326a a a =÷7.不等式421->+x x 的解集是( ▲ ) A .5<x B .5>x C .1<xD .1>x8.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC交CD 于D ,∠BEC=100°,则∠D 的度数是( ▲ ) A .100° B .80° C .60° D .50°9.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ▲ )第8题图A . AD⌒ =BD ⌒ B .AF=BF C .OF=CF D .∠DBC=90° 10.若x y ,为实数,且30x +=,则2014⎪⎭⎫ ⎝⎛x y 的值为( ▲ )A .1B . 1-C . 2D . 2-二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.若一个多边形外角和与内角和相等,则这个多边形是 ▲ . 12.分式方程312=+x x的解是 ▲ . 13.如图,DE 是△ABC 的中位线,若BC 的长是10cm ,则DE 的长是 ▲ .14.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 ▲ .15.若关于x 的一元二次方程022=-+k x x 没有实数根,则k 的取值范围是 ▲.16.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点. 若四边形EFDC 与矩形ABCD 相似,则AD = ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:011134-⎛⎫⎛⎫︒+ ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a19.如图,在Rt △ABC 中,∠C =90°.(1)根据要求用尺规作图:过点C 作斜边AB 边上的高CD ,垂足为D(不写作法,只保留作图痕迹); (2)证明:△CAD ∽△BCD第16题图第9题图E ABCD 第13题图四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,求旗杆的高度?21.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是31. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).22.某种仪器由1种A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图, 抛物线c bx x y ++=221与x 轴交于A (-4,0) 和B(1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q 点,当P 点运动到什么位置时,线段PQ 的长最大,并求此时P 点的坐标.24.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC . (1)求证:AB =AC ;(2)若AD =4, cos ∠ABF =54,求DE 的长.25.如图,在平面直角坐标系xoy 中,抛物线c bx ax y ++=2交y 轴于点C (0,4), 对称轴2=x 与x 轴交于点D ,顶点M 的纵坐标为6. (1)求该抛物线的解析式;(2)设点P (x ,y )是第一象限内该抛物线上的一个动点,△PCD 的面积为S ,求S 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,若经过点P 的直线PE 与y 轴交于点E ,是否存在以O 、P 、E 为顶点的三角形与△OPD 全等?若存在,请求出直线PE 的解析式;若不存在,请说明理由.九年级数学第二次模拟题参考答案和评分标准一、ADBDC BADCA二、11、四边形 12、3-=x 13、5 cm 14、2 15、1-<k 16 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解:原式=11242+⨯+ ······················· 4分 =6 ·························· 6分18.解:原式=22144a a a -+++ ···················· 3分=54+a ························· 4分当43-=a 时,原式=54+a =5)43(4+-⨯=2 ············ 6分 19.(1)正确尺规作图. ························ 3分(2)证明:∵Rt △ABC 中,CD 是斜边AB 边上的高,∴∠ADC =∠BDC =90°, ················· 4分 ∴∠ACD +∠A =∠ACD +∠BCD =90°,∴∠A =∠BCD , ····················· 5分 ∴△CAD ∽△BCD , ····················· 6分 四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:在Rt △BDC 中, ∵∠BDC=45°, ∴DC=BC=3米, ························· 3分 在Rt △ADC 中, ∵∠ADC=60°,∴AC=DCtan60° ························· 5分=3× (米). ························ 6分 答:旗杆的高度为3米 ························ 7分 21.解:(1)设红球有x 个,根据题意得,31111=++x ······················ 2分解得1=x ····················· 3分(2)根据题意画出树状图如下:一共有9种情况, ························· 5分 两次摸到的球颜色不同的有6种情况, ·················· 6分 所以,P (两次摸到的球颜色不同)3296==··············· 7分 22.解:设安排x 人生产A 部件,安排y 人生产B 部件,由题意,得 ······· 1分⎩⎨⎧==+y x y x 600100016··························· 4分 解得:⎩⎨⎧==106y x ···························· 6分答:设安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B部件配套. ···························· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数c bx x y ++=221与x 轴交于(4,0)A -、(1,0)B 两点可得:⎪⎩⎪⎨⎧=++⨯=+--⨯012104)4(2122c b c b ················· 2分解得: ⎪⎩⎪⎨⎧-==223c b 故所求二次函数的解析式为223212-+=x x y . ·· 3分 (2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). ····· 4分若设直线AC 的解析式为b kx y +=,则有⎩⎨⎧+-=+=-b k b 4002 解得:⎪⎩⎪⎨⎧-=-=221b k故直线AC 的解析式为221--=x y . ·············· 5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, ············· 6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点, 则Q 点的坐标为(1,2)2a a --.则有: )22321()221(2-+---=a a a PQ =a a 2212-- ····················· 7分=2)2(212++-a ················· 8分当2-=a 时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3) ·· 9分24.(1)证明:连接BD , ························· 1分 由AD ⊥AB 可知BD 必过点O ···················· 2分∵BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB ········· 3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB ················· 4分 又∠ACB =∠ADB ,∴∠ABC =∠ACB ,∴AB =AC ············ 5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BD AD ,∴BD =ADB AD ∠cos =ABFAD∠cos =544=5 ···· 6分∴AB =3 ·························· 7分 在Rt △ABE 中,∠BAE=90º Cos ∠ABE =BE AB ,∴BE =ABE AB∠cos =543=415∴AE =223)415(-=49················· 8分∴DE =AD -AE =4-49=47·················· 9分25.解:(1)由题意得:顶点M 坐标为(2,6). ············ 1分设抛物线解析式为:6)2(2+-=x a y ∵点C (0,4)在抛物线上,∴644+=a 解得21-=a ···················· 2分 ∴抛物线的解析式为:6)2(212+--=x y =42212++-x x ····· 3分(2)如答图1,过点P 作PE ⊥x 轴于点E∵ P (x ,y ),且点P 在第一象限, ∴PE=y ,OE=x ,∴DE=OE﹣OD=2-x ·························· 4分 S=S 梯形PEOC ﹣S △COD ﹣S △PDE=y x x y ⋅--⨯⨯-⋅+)2(214221)4(21 42-+=x y将42212++-=x x y 代入上式得:S=x x 4212+- ············ 5分 在抛物线解析式42212++-=x x y 中,令0=y ,即422102++-=x x ,解得322±=x设抛物线与x 轴交于点A 、B ,则B (322+,0), ∴3220+<<x∴S 关于x 的函数关系式为:S=x x 4212+-(3220+<<x ). ····· 6分 (3)存在.若以O 、P 、E 为顶点的三角形与△OPD 全等,可能有以下情形: (I )OD=OP .由图象可知,OP 最小值为4,即OP≠OD,故此种情形不存在. ······· 7分 (II )OD=OE .若点E 在y 轴正半轴上,如答图2所示: 此时△OPD ≌△OPE , ∴∠OPD=∠OPE ,即点P 在第一象限的角平分线上, ∴直线PE 的解析式为:221+=x y 若点E 在y 轴负半轴上,易知此种情形下,两个三角形不可能全等, 故不存在. ······························ 8分(III )OD=PE . ∵OD=2, ∴第一象限内对称轴右侧的点到y 轴的距离均大于2,则点P 只能位于对称轴左侧或与顶点M 重合. 若点P 位于第一象限内抛物线对称轴的左侧,易知△OPE 为钝角三角形, 而△OPD 为锐角三角形,则不可能全等; 若点P 与点M 重合,如答图3所示,此时△OPD ≌OPE ,四边形PDOE 为矩形, ∴直线PE 的解析式为:6=y综上所述,存在以O 、P 、E 为顶点的三角形与△OPD 全等, 直线PE 的解析式为221+=x y 或6=y . ················ 9分。
2015年中考数学模拟卷二
1一、选择:1.27的立方根是( )A .3 B .-3 C .9 D .-93.如图1是一个几何休的实物图,则其主视图是2、现给出四个命题:①等边三角形既是轴对称图形,又是中心对称图形;②相似三角形的面积比等于它们的相似比;③菱形的面积等于两条对角线的积;④三角形的三个内角中至少有一内角不小于600。
其中不正确的命题的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个13 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( ). A . (4 cm B . 9 cm C . D .cm2.双曲线y =2k -1x的图象经过第二、四象限,则k 的取值范围是 ____3.如图,观察每一个图中黑色正六边形的排列规律,则第10个图中黑色正六边形有个.(5分)例6、(综合法)在直角梯形ABCD 中,AD BC ∥,90ABC AB BC E ∠==°,,为AB 边上一点,15BCE ∠=°,且AE AD =.连接DE 交对角线AC 于H ,连接BH .下列结论: ①ACD ACE △≌△;②CDE △为等边三角形;③2EH BE =; ④EDC EHC S AHS CH=△△. 其中结论正确的是( ) A .只有①② B .只有①②④C .只有③④D .①②③④5、从2、3、4、5这四个数中,任取两个数()p q p q ≠和,构成函数2y px y x q =-=+和,并使这两个函数图象的交点在直线2x =的右侧,则这样的有序数对()p q ,共有( )A .12对B .6对C .5对D .3对16、如图,正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则DOAO等于( ) A .352 B .31 C .32 D .21 17、如图,有一长为4cm ,宽为3cm 的长方形木板在桌面上做无滑动的翻滚(顺时针方向),木板上的顶点A 的位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板边沿A 2C 与桌面成30°角,则点A 翻滚到A 2位置时,共走过的路径长为( ) A .10cm B .3.5πcm C .4.5πcm D .2.5πcm18、如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A ´处,若∠A ´BC =20°,则∠A ´BD 的度数为( ). (A )15° (B )20° (C ) 25° (D )30°19、明明骑自行车去上学时,经过一段先上坡后下坡的路,在这段路上所走的路程s(单位:千米)与时间t(单位:分)之间的函数关系如图所示。
2015年中考模拟(二) 数学试卷附答案
2015年中考模拟(二) 数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-) 圆锥的侧面积公式:S =πr l (其中S 是侧面积,r 是底面半径,l 是母线长)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各几何体中,主视图是圆的是( )2.如图,已知Rt △ABC 边长分别为1,2,3,则下列三角函数表示正确的是( )A .sinA =23B .cosA =36C .tanA =2D .tanA =223.已知圆的面积为7π,估计该圆的半径r 所在范围正确的是( )A .1<r <2B .2<r <3C .3<r <4D .4<r <54.若反比例函数图象经过二次函数742+-=x x y 的顶点,则这个反比例函数的解析式为( )A .x y 6=B .xy 6-= C .x y 14= D .x y 2-= 5.如图,已知直线a ∥b ,同时与∠POQ 的两边相交,则下列结论中错误的是( )A .∠3+∠4=180°B .∠2+∠5>180°C .∠1+∠6<180°D .∠2+∠7=180°6.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是( )A .2.4B .6C .6.8D .7.57.若不等式组⎪⎩⎪⎨⎧-+≤+<+132211x x a x 的解是x <a -1,则实数a 的取值范围是( ) A .a ≤-6 B .a ≤-5 C .a ≤-4 D .a <-48.如图是某市11月1日至10日的空气质量指数折线图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月7日中的某一天到达该市旅游,到达的当天作为第一天连续停留4天.则此人在该市停留期间恰好有两天空气质量优良的概率是( )A .72B .73C .52D .94 9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长. 下列关于这个方程的解和△ABC 形状判断的结论错误的是( )A .如果x =-1是方程的根,则△ABC 是等腰三角形;B .如果方程有两个相等的实数根,则△ABC 是直角三角形;C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1;D .如果方程无实数解,则△ABC 是锐角三角形.10.已知□ABCD 中,AD =2AB ,F 是BC 的中点,作AE ⊥CD ,垂足E 在线段CD 上,连结EF 、AF ,下列结论:①2∠BAF =∠BAD ;②EF=AF ;③S △ABF ≤S △AEF ;④∠BFE =3∠CEF.中一定成立的是( )A .①②④B .①③C .②③④D .①②③④二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000 048为 ;(2)计算+-2)3(3)2(-= .12.(1)已知53=b a ,则=+bb a ; (2)若两个相似三角形面积之比为1︰2,则它们的周长之比为 .13.已知五月某一天,7个区(市)的日平均气温(单位℃)是20.1, 19.5, 20.2, 19.8,20.1,21.3,18.9 ,则这7个区(市)气温的众数是 ;中位数是 .14.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A 、B 、C 、D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为23232-=x y ,则图中CD 的长为 . 15.若函数k x k x k y ++++=)1()2(2的图象与x 轴只有一个交点,那么k的值为 .16.如图,PQ 为⊙O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在⊙O 的上半圆运动(含P 、Q 两点),连结AB ,设∠AOB =α.有以下结论:①当线段AB 所在的直线与⊙O 相切时,AB =3;②当线段AB 与⊙O 只有一个公共点A 点时,α的范围是0°≤α≤60°;③当△OAB 是等腰三角形时,tan α=215; ④当线段AB 与⊙O 有两个公共点A 、M 时,若AO ⊥PM ,则AB =6.其中正确结论的编号是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分)如图是某企业近五年的产值年增长率折线统计图和年产值条形统计图(不完整).(1)员工甲看了统计图说2013年的产值比2012年少,请你判断他的说法是否正确(不必说理);(2)补全条形统计图(条形图和数字都要补上);(3)求这5年平均年产值是多少万元.18.(本小题8分)填空和计算:(1)给出下列代数式:21,xx 212+,21+x ,5-x ,122-x ,22+-x x ,其中有 个是分式; 请你从上述代数式中取出一个分式为 ,对于所取的分式:①当x 时分式有意义;②当x =2时,分式的值为 .(2)已知223-=x ,223+=y ,求代数式226y xy x ++的值.19.(本小题8分)(1)尺规作图:以线段a 为斜边,b 为直角边作直角三角形(不写画法,保留痕迹);(2)将所作直角三角形绕一条直角边所在直线旋转一周,设a =5,b =3,求所得几何体的表面积.20.(本小题10分)如图,已知点A (1,4),点B (6,32)是一次函数b kx y +=图象与反比例函数)0(>=m xm y 图象的交点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数的值小于反比例函数的值?(2)求一次函数解析式及m 的值;(3)设P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB面积相等,求点P 坐标.21.(本小题10分)如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,AB =AD =6,∠BAD =60°:(1)证明:BC =CD ;并求BC 的长;(2)设点E 、F 分别是AB 、AD 边上的中点,连结EF 、EC 、FC ,求△CEF 三边的长和cos ∠ECF 的值.22.(本小题12分)如图,面积为8cm 2的正方形OABC 的边OA ,OC 在坐标轴上,点P 从点O 出发,以每秒1个单位长度的速度沿x 轴向点C 运动;同时点Q 从C 点出发以相同的速度沿x 轴的正方向运动,规定P 点到达点C 时,点Q 也停止运动,过点Q 作平行于y 轴的直线l .连结AP ,过P 作AP 的垂线交l 于点D ,连结AD ,AD 交BC 于点E.设点P 运动的时间为t 秒.(1)计算和推理得出以下结论(直接填空):①点B 的坐标为 ;②在点P 的运动过程中,总与△AOP 全等的三角形是 ; ③用含t 的代数式表示点D 的坐标为 ;④∠PAD = 度;(2)当△APD 面积为5 cm 2时,求t 的值;(3)当AP =AE 时,求t 的值(可省略证明过程,写出必要的数量关系列式求解).23.(本小题12分)如图,直线42+=x y 与x 轴、y 轴相交于B 、C 两点,抛物线c ax ax y +-=32过点B 、C ,且与x 轴另一个交点为A ,过点C 作x 轴的平行线l ,交抛物线于点G .(1)求抛物线的解析式以及点A 、点G 的坐标;(2)设直线m x =交x 轴于点E (m >0),且同时交直线AC 于点M ,交l 于点F ,交抛物线于点P ,请用含m 的代数式表示FM 的长、PF 的长;(3)当以P 、C 、F 为顶点的三角形与△MEA 相似时,求出m 的值.2015中考二模数学答案一.选择题(每小题3分) CCBAD CCBDD二.填空题 (每小题4分) 11.(1)4.8×10-5 ;(2)1 ; 12.(1)58;(2)1︰2; 13.20.1;20.1 ;14.25; 15.3323±-或-2; 16.①②④17.(6分) (1)不正确--------------------------------------------1分(2)补全条形统计图、数字500、 900---------3分(3)784(万元)------------------------------------2分18.(8分)(1) 3 ;取出一个分式为(xx 212+,122-x ,22+-x x 之一),①分别(对应)x ≠0;x ≠±1;x ≠-2时分式有意义;②当x =2时,分式的值为(对应)45;32;0 (共4分,每空1分)(2)原式=xy y x 4)(2++=(+-223223+)2+4(⨯-223223+)=3+4 ×41=4-------4分,直接代值硬算不扣分;如果算错了,但能化为 xy y x 4)(2++或xy y x 8)(2+-得1分19.(8分)(1)尺规作图(略)---------------------------------------------------4分(2) 分类,分别绕不同的直角边:① 24π;②36π ---------4分(各2分)20.(10分)(1)一次函数的值小于反比例函数的值时x 取范围是0<x <1或6<x <7--------------------2分(2)待定系数法得到:31432+-=x y --------------------------2分, m =4 ----------------------2分 (3)设P (x ,31432+-x ), S △PCA =)314324(121-+⨯⨯x ----1分,S △PDB =)6(3221x -⨯⨯-----1分 解得P (37,27)-------------------------------------------------------------------------------------2分 21.(10分)(1) 连结AC ,在△ABC 和△ADC 中,∠B =∠D =90°,AB =AD ,AC =AC ,∴△ABC ≌△ADC (HL )-------------2分 ;∴BC =CD , -----------------1分∵△ABC ≌△ADC ,∴∠CAB =30°,AB =6,∴BC =32 -----------2分(2) ∵∠BAD =60°,AE =AF =3,∴EF =3,--------------------------------1分EC =FC ==+22)32(321 ---------------------------------------------------2分作EG ⊥CF ,设CG =x ,则 212-x 2=EG 2=32-2)21(x - 解得x =142111------------1分∴cos ∠ECF =142111/21=1411------------------------------------------------------------------------1分22.(12分)(1)①点B (22 ,22), 写(8,8)不扣分; ②与△AOP 全等的三角形是△PDQ ;③点D (22+t , t );④∠PAD =45度;-------------------------4分(每空1分)(2)∵PD =22QD PQ +=28t +,S △APD =21PD 2 =5, -----------2分∴8+t 2=10,∴t =2-------------------------------------------------2分(3)解法1:过D 作DG ⊥y 轴,则由三角形相似得GD AB EG BE = EG =t 222---------------1分;t 22222t =-t-----------1分; 解得t =4―22----------2分 解法2:当AP =AE 时,△AOP ≌△ABE (HL );连结PE ,作AG ⊥PE ,可得5个三角形全等,PC =EC =22―t ,∴PE =2OP ,∴PE =2PC =2(22―t )=4―2t -----------1分又PE =2OP =2 t--------------------------------------------1分∴4―2t =2 t ,解得t =4―22-----------------------2分(解题过程不必分析证明,只要数量关系正确即可。
2015年中考数学模拟考试试题和答案
2015年中考数学模拟数学试卷总分:120分 时间:120分钟一、选择题:(每小题3分,共36分)1、若分式52-x 有意义,则x 的取值范围是( ) A .5≠x B .5-≠x C .5>x D .5->x2、关于x 的一元二次方程0222=+-k x x 有实数根,则k 的取值范围是( ) A .21<k B.21≤k C.21>k . D.21≥k 3、下面与3是同类二次根式的是( )A.2B.12C.13-D.18 4、下列运算正确的是( )A.624a a a =⋅ B 23522=-b a b a C.523)(a a =- D.63329)3(b a ab =5、甲、乙两学生在军训打靶训练中,打靶的总次数相同,且所中环数的平均数也相同, 但乙的成绩比甲的成绩稳定,那么两者的方差的大小关系是( )。
A.22乙甲S S <B.22乙甲S S >C.22乙甲S S = D.不能确定6、如图,已知直线a ∥b,直线c 与a 、b 分别交于A 、B ,且1201=∠,则=∠2( ) A .60B .150C . 30D .1207、在Rt △ABC 中,∠C=90°,sinA=54,则cosB 的值等于( ) A .53 B. 54 C. 43 D. 55 8、下列图形中,既是轴对称图形又是中心对称图形的是( ) A . 等边三角形 B . 平行四边形 C . 正方形 D . 等腰梯形9、已知关于x 的一元二次方程02=+-c bx x 的两根分别为,2,121-==x x 则b 与c 的值分别为( )A .2,1=-=c bB .2,1-==c bC .2,1==c bD .2,1-=-=c b10、如图,小正方形的边长均为1,则图中三角形(阴影部分)与△ABC 相似的是( )。
11、如图,直线)0(>=t t x 与反比例函数xy x y 1,2-==的图象分别交于B 、C 两点,A 为y 轴上的任意一点,则∆ABC 的面积为( ) A .3 B .t 23 C .23D .不能确定12、如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB=a ,CG=b (a >b ).下列结论:①△BCG ≌△DCE ;②BG ⊥DE ;③CEGOGC DG =;④a b S S BCG EOF =∆∆.其中结论正确的个数是( )A . 4个B . 3个C . 2个D . 1个二、选择题:(每小题3分,共18分)13、因式分解:=-a a 43.14、某市棉花产量约378000吨,将378000用科学计数法表示应是______________吨. 15、已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m+n= . 16、如图,AB 是⊙O 的弦,OC ⊥AB 于C ,若cm AB 52=,cm OC 1=,则⊙O 的半径长为 。
2015年中考数学模拟试卷附答案
2015年中考数学模拟试卷说明:1.考试用时100 分钟.满分为 120 分。
2.所有作答必须在答题卡指定位置完成.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案;非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.在-2,-12,0,2四个数中,最大的数是( )A. -2B. -12 C. 0 D. 22.下列各数中,与3的积为有理数的是 ( ) A .2B .23C .32D .32-3.据统计,今年某市中考报名确认考生人数是96 200人,用科学记数法表示96 200为 ( ) A .49.6210⨯ B .50.96210⨯ C .59.6210⨯ D .396.210⨯ 4. 如图是某个几何体的三视图,则该几何体的形状是( ) A .长方体B .圆锥C .圆柱D .三棱柱 5.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9, 这5个数据的中位数是( ) A.6B .7C .8D . 96.如图,AB 是⊙O的直径,弦CD ⊥AB ,垂足为E, 如果AB =10,CD =8,那么线段OE 的长为( ) A.6 B.5C.4 D.3 7.下列式子正确的是( )A. x 6÷x 3=x 2B. (-1)1-=-1C.4m 2-=241mD.(a 2)4=a 68. 在平面直角坐标系内,点P(-2 ,3)关于原点的对称点Q 的坐标为 ( ) A .(2,-3) B .(2,3)C .(3,-2)D .(-2,-3)Q9.如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数( ) A .46° B .44°C .36°D .22° (第9题图) 10.某机械厂一月份生产零件50万个,三月份生产零件72万个,则该机械厂二、三月份生产零件数量的月平均增长率为 ( ) A. 2% B.5% C. 10% D.20%二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上)11.不等式9>-3x 的解集是 .12.分解因式:x(x-2) +1= . 13.有三辆车按1,2,3编号,甲和乙两人可任意选坐一辆车. 则两人同坐3号车的概率为 .14.如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,测得竹竿与旗杆的距离DB =12m ,且OD=6m ,则旗杆AB 的高为m .15.如图,A ,B 两点的坐标分别是A (1,B 0),则ABO ∆的面积是 .(第14题图) 16.用一个圆心角为150°,半径为2cm 的扇形作一个圆锥的侧面,则这个圆锥的底面圆的半径为cm .三、解答题(一)(本大题3小题,每小题6分,共18分) 17.计算: 0|2|(1--18.先化简,后求值:1)111(2-÷-+x xx ,其中x =-4. 19.在版面设计过程中,将一个半圆面三等分,请你用尺规作出图形,要求保留作图痕迹.A B四、解答题(二)(本大题3小题,每小题7分,共21分)20. 一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.21. 据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒. 问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)(第21题图)22. 小明家离学校2千米,平时骑自行车上学.这天自行车坏了,小明只好步行上学.已知小明骑自行车的速度是步行速度的4倍,结果比平时慢了20分钟到学校.求小明步行和骑自行车的速度各是多少?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.已知:如图,在ABCD 中,O 为对角线BD 的中点,过点O 的直线EF 分别交AD 、BC 于E 、F 两点,连结BE ,DF . (1)求证:△DOE ≌△BOF .(2)当∠DOE 等于多少度时,四边形BFDE 为菱形?请说明理由.24.如图,已知反比例函数y =kx (x >0,k 是常数)的图象经过点A(1,4),点B(m ,n),其中m >1,AM ⊥x 轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C. (1)求反比例函数的解析式; (2)求证:△ACB ∽△NOM ;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标及AB 所在直线的解析式. (第24题图) 25. 如图,抛物线c bx x y ++-=221与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3。
2015年中考数学模拟试卷(2)
2015年中考数学模拟试卷(2)一、精心选一选(本大题共8小题,每小题3分,满分24分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列实数中,属于无理数的是()A.-3B.3.14C.13D.32.若代数式x+4的值是2,则x等于()A.2B.-2C.6D.-63.下列运算正确的是()A.235B.222 (ab)abC.(2)1D.3226(2ab)2ab4.6月15日“父亲节”,小明送给父亲一个礼盒(如左图所示),该礼盒的主视图是()AABCDl 正面25.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为() BC1(第5题)mA.60B.45°C.40°D.30°6.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表甲乙丙丁所示.如果从这四位同学中,选出一位成绩较好且状态稳定的同平均数80858580 学参加全国数学联赛,那么应选()A.甲B.乙C.丙D.丁2的长方7.用一条长为40cm的绳子围成一个面积为acm 方差y42 www.xkb1.co425459形,a的值不.可.能.为()M A.20B.40C.100D.120m8.如图,双曲线y与直线ykxb相交于点M,N,x且点M的坐标为(1,3),点N的纵坐标为1.根据NOx图象信息可得关于x的方程mxkxb的解为()(第8题)A.3,1B.3,3C.1,1D.1,3 二、填空题(每小题3分,共21分)9.计算:3272=.10.不等式组3x60的所有整数解的和是. 42x>011.在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长1为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=25 0,则∠ACB的度数为.12.已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB的长为.13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是.14.如图,在菱形ABCD中,AB=1,∠DAB=60 0,把菱形ABCD绕点A顺时针旋转0得到菱形AB'C'D',其中点C的运动能路径为CC/,则图中阴影部分的面积30为.15.如图,矩形ABCD中,AD=5,AB=7.点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D /落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共8个,满分75分)16.(8分)先化简,再求值:22x1x122xxx,其中x=2-117.(9分)如图,CD是⊙O的直径,且CD=2cm,点P为CD的延长线上一点,过点P作⊙O的切线PA、PB,切点分别为点A、B.(1)连接AC,若∠APO=300,试证明△ACP是等腰三角形;(2)填空:A①当DP=cm时,四边形AOBD是菱形;②当DP=cm时,四边形AOBP是正方形.CODPB[来源学科网]18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.2课外体育锻炼情况“经常参加”课外体育锻炼的男生最喜欢的一种项目扇形统计图条形统计图 人数50 经常参加40 302733 20从不参加2015%10偶尔参加 45%球羽毛球篮球其它项目请根据以上信息解答 (1)课外体育锻炼情况扇形统计图中,“经常参加心角的; (2)请补全条形统计图; (3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人 数; (4)为请你判0.舰19.(9分)在中俄“海上联合—2014”反潜演习A 测C 的30A 正上方1000米的反潜直升机B 侧C 的68 0.试根据以上数据求C 离开海平面 000 的下潜深度.(结果保留整数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市2010年初中毕业生学业考试数 学 试 卷第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出的4个选项中,其中只有一个是正确的)1.-2的绝对值等于A .2B .-2C .12D .42.为保护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。
这个数据用科学记数法表示为(保留两个有效数字)A .58×103B .5.8×104C .5.9×104D .6.0×104 3.下列运算正确的是A .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 4.升旗时,旗子的高度h (米)与时间t (分)的函数图像大致为5.下列说法正确的是 A .“打开电视机,正在播世界杯足球赛”是必然事件B .“掷一枚硬币正面朝上的概率是12 ”表示每抛掷硬币2次就有1次正面朝上C .一组数据2,3,4,5,5,6的众数和中位数都是5D .甲组数据的方差S 甲2=0.24,乙组数据的方差S 甲2=0.03,则乙组数据比甲组数据稳定6.下列图形中,是.中心对称图形但不是..轴对称图形的是7.已知点P (a -1,a +2)在平面直角坐标系的第二象限内,则a 的取值范围在数轴上可表示为(阴影部分)ABC DAB C DABCD图18.观察下列算式,用你所发现的规律得出22010的末位数字是21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A .2 B .4 C .6 D .89.如图1,△ABC 中,AC =AD =BD ,∠DAC =80º,则∠B 的度数是 A .40º B .35º C .25º D .20º10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有“粽子”的图案,另外两张的正面印有“龙舟”的图案,现将它们背面朝上,洗均匀后排列在桌面,任意翻开两张,那么两张图案一样的概率是 A .13 B .12 C .23 D .3411.某单位向一所希望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,已知每个B 型包装箱比A 型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。
设B 型包装箱每个可以装x 件文具,根据题意列方程为A .1080x =1080x -15+12B .1080x =1080x -15-12C .1080x =1080x +15-12D .1080x =1080x +15+1212.如图2,点P (3a ,a )是反比例函y =kx(k >0)与⊙O 的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为A .y =3xB .y =5xC .y =10xD .y =12x第二部分 非选择题填空题(本题共4小题,每小题3分,共12分.)13.分解因式:4x 2-4=_______________.14.如图3,在□ABCD 中,AB =5,AD =8,DE 平分∠ADC ,则B E =_______________. 15.如图4,是一个由若干个相同的小正方体组成的几何体的主视图和俯视图,则能组成这个几何体的小正方体的个数最少..是____________个. 16.如图5,某渔船在海面上朝正东方向匀速航行,在A 处观测到灯塔M 在北偏东60º方向上,航行半小时后到达B 处,此时观测到灯塔M 在北偏东30º方向上,那么该船继续航行____________分钟可使渔船到达离灯塔距离最近的位置.ABM图5北北30º 60º 东图4主视图俯视图图3 E填空题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:( 13 )-2-2sin45º+ (π -3.14)0+ 1 2 8+(-1)3.18.(本题6分)先化简分式a 2-9a 2+6a +9 ÷a -3a 2+3a -a -a 2a 2-1,然后在0,1,2,3中选一个你认为合适的a 值,代入求值.19.(本题7分)低碳发展是今年深圳市政府工作报告提出的发展理念.近期,某区与某技术支持单位合作,组织策划了该区“低碳先锋行动”,开展低碳测量和排行活动.根据调查数据制作了频数分布直方图和扇形统计图,图6中从左到右各长方形的高度之比为2:(1)已知碳排放值5≤x <7(千克/平方米·月)的单位有16个,则此次行动调查了________个单位;(3分)(2)在图7中,碳排放值5≤x <7(千克/平方米·月)部分的圆心角为________度;(2分)(3)小明把图6中碳排放值1≤x <2的都看成1.5,碳排放值2≤x <3的都看成2.5,以此类推,若每个被检单位的建筑面积均为10000平方米,则按小明的办法,可估算碳排放值x ≥4(千克/平方米·月)的被检单位一个月的碳排放总值约为________________吨.(2分)20.(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90º,D 在AB 上.(1)求证:△AOB ≌△COD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分)(千克/平方米.月) 图6图7≤x < 33≤x21.(本题8分)儿童商场购进一批M 型服装,销售时标价为75元/件,按8折销售仍可获利50%.商场现决定对M 型服装开展促销活动,每件在8折的基础上再降价x 元销售,已知每天销售数量y (件)与降价x 元之间的函数关系为y =20+4x (x >0) (1)求M 型服装的进价;(3分)(2)求促销期间每天销售M 型服装所获得的利润W 的最大值.(5分)销售,已知每天销售数量与降价 22.(本题9分)如图9,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上,其中A (-2,0),B (-1, -3). (1)求抛物线的解析式;(3分)(2)点M 为y 轴上任意一点,当点M 到A 、B 两点的距离之和为最小时,求此时点M 的坐标;(2分)(3)在第(2)问的结论下,抛物线上的点P 使S △P AD =4S △ABM 成立,求点P 的坐标.(4分)23.(本题9分)如图10,以点M (-1,0)为圆心的圆与y 轴、x 轴分别交于点A 、B 、C 、D ,直线y =-33 x - 533与⊙M 相切于点H ,交x 轴于点E ,交y 轴于点F . (1)请直接写出OE 、⊙M 的半径r 、CH 的长;(3分)图9图8(2)如图11,弦HQ 交x 轴于点P ,且DP :PH =3:2,求cos ∠QHC 的值;(3分) (3)如图12,点K 为线段EC 上一动点(不与E 、C 重合),连接BK 交⊙M 于点T ,弦AT 交x 轴于点N .是否存在一个常数a ,始终满足MN ·MK =a ,如果存在,请求出a 的值;如果不存在,请说明理由.(3分)参 考 答 案第一部分:选择题1、A2、C3、 D4、B5、D6、A7、C8、B9、C 10、A 11、B 12、D第二部分:填空题:13、4(1)(1)x x +- 14、3 15、9 16、15 解答题:17、原式=191192-+⨯= 18、22(3)(3)(3)2(3)31a a a a a a a a a a a a +-+-=-=+=+--原式 当2a =时,原式=419、(1)、120;(2)、48︒;(3)32.1810⨯ 20、(1)证明:如右图1,1903,2903︒︒∠=-∠∠=-∠,图10图11图1212∴∠=∠又,OC OD OA OE ==,AOC BOD ∴∆≅∆(2)由AOC BOD ∆≅∆有:2AC BD ==,45CAO DBO ︒∠=∠=,90CAB ∴∠=︒,故CD =21、(1)、设进价为a 元,依题意有:(150)7580a +%=⨯%,解之得:40a =(元) (2)、依题意,215(204)(6040)4604004()6252W x x x x x =+--=-++=--+ 故当157.52x ==(元)时,625W =最大(元) 22、(1)、因为点A 、B 均在抛物线上,故点A 、B∴403a c a c +=⎧⎨+=-⎩ 解之得:14a c =⎧⎨=-⎩;故24y x =-为所求(2)如图2,连接BD ,交y 轴于点M ,则点M 就是所求作的点设BD 的解析式为y kx b =+,则有203k b k b +=⎧⎨-+=-⎩,12k b =⎧⎨=-⎩,故BD 的解析式为2y x =-;令0,x =则2y =-,故(0,2)M -(3)、如图3,连接AM ,BC 交y 轴于点N ,由(2)知,OM=OA=OD=2,90AMB ∠=︒ 易知BN=MN=1, 易求AM BM ==122ABMS=⨯=;设2(,4)P x x -, 依题意有:214422AD x -=⨯,即:2144422x ⨯-=⨯解之得:x =±0x =,故 符合条件的P 点有三个:123((0,4)P P P --23、(1)、如图4,OE =5,2r =,CH =2(2)、如图5,连接QC 、QD ,则90CQD ∠=︒,QHC ∠=易知CHPDQP ∆∆,故DP DQPH CH=, 322DQ =,3DQ =,由于4CD =, 3cos cos 4QD QHC QDC CD ∴∠=∠==;(3)、如图6,连接AK ,AM ,延长AM ,图2与圆交于点G ,连接TG ,则90GTA ∠=︒ 2490∴∠+∠=︒34∠=∠,2390︒∴∠+∠=由于390BKO ∠+∠=︒,故,BKO ∠而1BKO ∠=∠,故12∠=∠在AMK ∆和NMA ∆中,12∠=∠;∠故AMK NMA ∆;MN AMAM MK=; 即:24MN MK AM ==故存在常数a ,始终满足MN MK a = 常数4a =。