弹塑性力学题库
(完整)弹塑性力学简答题
弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。
2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。
3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。
110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。
5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。
6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。
固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。
从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。
应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。
连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。
弹塑性力学习题集_很全有答案_
ε x = a 0 + a1 ( x 2 + y 2 ) + x 4 + y 4 , ε y = b0 + b1 ( x 2 + y 2 ) + x 4 + y 4 , γ xy = c 0 + c1 xy ( x 2 + y 2 + c 2 ), ε z = γ zx = γ yz = 0.
试求式中各系数之间应满足的关系式。 2—38* 试求对应于零应变状态( ε ij = 0 )的位移分量。
(2) J 3 = I 3 + (4) J 2 = (6)
1 2 3 I1 I 2 + I1 ; 3 27
1 S ij S ij ; 2
∂J 2 = S ij . ∂σ ij
1 S ik S km S mi 。 3 2—22* 试证在坐标变换时, I 1 为一个不变量。要求:(a) 以普通展开式证明; (b) 用 张量计算证明。 5 3 8 2—23 已知下列应力状态: σ ij = 3 0 3 MPa ,试求八面体单元的正应力 σ 8 与剪 8 3 11
题 2—41 图
题 2—42 图
第三章 弹性变形·塑性变形·本构方程
试证明在弹性变形时,关于一点的应力状态,下式成立。 1 (1) γ 8 = τ 8 ; (2) σ = kε (设ν = 0.5 ) G 3—2* 试以等值拉压应力状态与纯剪切应力状态的关系, 由应变能公式证明 G、 E、 ν之 间的关系为: 1 G= 2(1 + ν ) 1 1 3—3* 证明:如泊松比ν = ,则 G = E , λ → ∞ , k → ∞ , e = 0 ,并说明此时上述 2 3 各弹性常数的物理意义。 3—4* 如设材料屈服的原因是形状改变比能(畸形能)达到某一极值时发生,试根据 单向拉伸应力状态和纯剪切应力状态确定屈服极限 σ s 与 τ s 的关系。 3—5 试依据物体单向拉伸侧向不会膨胀,三向受拉体积不会缩小的体积应变规律来 1 证明泊松比ν 的上下限为: 0 < ν < 。 2 2 3—6* 试由物体三向等值压缩的应力状态来推证:K = λ + G 的关系, 并验证是否与 3 E K= 符合。 3(1 − 2v) 3—7 已知钢材弹性常数 E1 = 210Gpa,v1 = 0.3, 橡皮的弹性常数 E 2 =5MPa,v 2 = 0.47, 试比较它们的体积弹性常数(设 K1 为钢材,K2 为橡皮的体积弹性模量) 。 3—8 有一处于二向拉伸应力状态下的微分体( σ 1 ≠ 0, σ 2 ≠ 0, σ 3 = 0 ) ,其主应变
弹塑性力学习题集_很全有答案_
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
2—39* 若位移分量 u i 和 u i′ 所对应的应变相同,试说明这两组位移有何差别? 2—40* 试导出平面问题的平面应变状态( ε x = γ zx = γ zy = 0 )的应变分量的不变量及
主应变的表达式。 2—41* 已知如题 2—41 图所示的棱柱形杆在自重作用下的应变分量为: γz νγz εz = , εx =εy = − ; γ xy = γ yz = γ zx = 0; E E 试求位移分量,式中 γ 为杆件单位体积重量,E、ν 为材料的弹性常数。
题 2—41 图
题 2—42 图
弹塑性力学历年考题(杨整理)
i, j x, y, z ,展开其中的 xy 。 (5 分)
三、 以图示平面应力问题为例,列出边界条件,叙述半逆解法的解题步骤。 (15 分) 。
四、 解释图示受内压 p 作用的组合厚壁筒(半径上的过盈量为 )的弹性极限载荷为何比 单层厚壁筒大。 (25 分)
五、 说明为何扭转问题可以进行薄膜比拟。计算边长为 a 的正方形截面,材料剪切屈服强 度为 s 的柱体扭转塑性极限扭矩。 (15 分) 六、 解释为何在用最小总势能原理和里兹法求解图示梁的挠度时,可以设位移函数 (15 分) w a1x 2 (l x) a2 x 2 (l 2 x 2 ) ... 取一项近似计算梁的挠度。
Ar 2 ( ) r 2 sin cos r 2 cos 2 tan ( A为常数)
能满足图示楔形悬臂梁问题的边界条件。并利用这个应力函数确定任一点的应力分量。
四、已知两端封闭的薄壁圆筒,半径为 R,壁厚为 t。圆筒由理想塑性材料制成,其屈服极 限为 s 。薄壁圆筒因受内压而屈服,试确定: (1)屈服时,薄壁筒承受的内压 p; (2) 塑性应力增量之比。 (20 分) 五、求解狭长矩形截面柱形杆的扭转问题:求应力分量和单位长度的扭转角。 (16 分) 六、试用能量法求解图示悬臂梁的挠度曲线。 (提示:设挠度函数为 y A1 cos 其中 A 为待定系数)
2 A r 2 4 sin cos 2(cos 2 sin 2 ) tan 2
2 2 A r 2 sin 2 2 sin cos ) tan r
满足协调方程:
4 (
应力分量:
弹塑性力学习题集
第二章应力
第四章本构关系
讨论:
s
σ3
h 3
h s
ε2
时,s 44h 本构方程为:
ε
σE =时,s )
1()
(111E
E
E E s s s -+=-+=σεεεσσs
εs
σ3
h 3
h
P
三杆均处于弹3
h 3h
P
03
h 3h
P
3
h 3
h
P
在弹塑性阶段,1杆虽然进入塑性状态,但由于其余两杆仍处于弹性阶段,1杆的塑性变形受到限制,整个桁架的变形仍限制在弹性变形的量级,这个阶段可称为约束的塑性变形阶段.在塑性阶段,三杆都进入塑性状态,桁架的变形大于弹性变形量
级.一般说来,所有的弹塑性结构在外力的作用下,都会有这样三个变形的阶段.
3
h 3
h
P
扭和内压作用,有应力分量
求:
比例从零开
多大时开始进入屈服?z ϕϕτ3=(2)开始屈服后,继续给以应力增量,满足0
=d γMises :
屈服准则为
21=z f σz z ϕϕτσσ32==代入上式得到屈服后,增量本构关系为:
z
z
z z d E G d d σστσλϕ898=
=
第五章 弹塑性力学问题的提法
第六章弹塑性平面问题
试求其应力分量。
图6.7 局部受均布载荷简支粱
的增大而迅速衰减。
工程弹塑性力学题库及答案
,而应变
,试证明当体积不变
证毕!
5.3 对于线性弹塑性随动强化模型,若 (1)、已知给定应力路径为 (2)、已知给定应变路径为
,试求 ,求对应的应变值。 ,求对应的应力值。
(1)解:①、 , ;②、
,
③、 ,
;④、
,
⑤、 ,
(2)解:①、 , ;②、
,
③、 ,
;
④、
,
⑤、 ,
5.4 在拉伸试验中,伸长率为
Mises 屈服条件:
故有
6.5 试用 Lode 应力参数 表达 Mises 屈服条件。 解:由定义:
即 Mises 屈服条件为 将上式代入,得:
即:
6.6 物体中某点的应力状态为
,该物体在单向拉伸
时
,试用 Mises 和 Tresca 屈服条件分别判断该点是处于弹性
状态还是塑性状态,如主应力方向均作相反的改变(即同值异号),则对被 研究点所处状态的判断有无变化? 解:(1)Mises 屈服条件判断
6.8证明下列等式: (1)、 证明:(1)、右边
(2)、
=左边
证毕!
(2)、
证毕!
6.9 设 、 、 为应力偏量,试证明用应力偏量表示 Mises 屈服条件时,其形式为
,提示:
证明:Mises 屈服条件:
,
,
又 又
证毕!
第七章 塑性本构关系
7.1 塑性全量理论的成立条件: 解:(1)应力主方向与应变主方向是重合的,即应力 Mohr 圆与应变 Mohr 圆相 似,应力 Load 参数 和应变 Load 参数 相等,而且在整个加载过程中主方向
力为多大,并求此时塑性应变增量的比。
解:设扭转剪应力 入 Mises 屈服条件,得
(完整版)弹塑性力学习题题库加答案
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
弹塑性力学部分习题及答案
厚壁筒应力问题
要点一
总结词
厚壁筒应力问题主要考察了弹塑性力学中厚壁筒结构的应 力分析和变形计算。
要点二
详细描述
厚壁筒应力问题涉及到厚壁筒结构在受到内压、外压或其 他复杂载荷作用时的应力分布和变形情况。在解题过程中 ,需要运用弹塑性力学的相关理论,如应力分析、应变分 析等,来求解结构的应力分布和变形情况。同时,还需要 考虑厚壁筒结构的特殊性,如不同材料的组合、多层结构 等,对结构应力和变形的影响。
02
弹塑性力学基础知识
应力和应变
基本概念
详细描述:应力和应变是弹塑性力学中的基本概念。应力表示物体内部相邻部分之间的相互作用力,而应变则表示物体在应 力作用下的变形程度。
屈服条件与应力-应变关系
屈服准则与流动法则
详细描述:屈服条件决定了材料在应力作用下的屈服点,是判断材料是否进入塑性状态的重要依据。 应力-应变关系则描述了材料在受力过程中应力与应变的变化规律。
弹塑性力学特点
弹塑性力学具有广泛的应用背景,涉及到众多工程领域,如结构工程、机械工 程、航空航天等。它既适用于脆性材料,也适用于塑性材料,并考虑了材料的 非线性特性。
弹塑性力学的基本假设
连续性假设
小变形假设
假设固体内部是连续的,没有空隙或 裂纹。
假设物体在外力作用下发生的变形是 微小的,不会影响物体内部应力分布。
弹塑性力学部分习题及答 案
• 弹塑性力学概述 • 弹塑性力学基础知识 • 弹塑性力学典型习题解析 • 弹塑性力学部分习题的定义与特点
弹塑性力学的定义
弹塑性力学是一门研究固体在受到外力作用时,其内部应力、应变和位移之间 关系的学科。它主要关注材料在受力过程中发生的弹性变形和塑性变形。
哈工大弹塑性力学考试题库
1、何谓应力张量?若应力张量已知,如何确定应力偏张量、球张量?应力偏张量、球张量有何含义?2、何谓主平面和主应力?何谓应力张量不变量?3、什么是平面应力问题?什么是平面应变问题?4、如果一点的应力状态一定,当坐标系改变时,主应力的大小是否改变?主剪应力呢?5、何谓名义应变与真实应变?在什么情况下,两者的差异很小?6、何谓名义应力?何谓真实应力?7、为什么应力球张量只会引起材料的体积变化,不会使材料产生形状变化?8、什么是塑性变形体积不变条件?9、材料发生弹性变形时,其应力-应变关系有何种特征?10、弹性力学问题求解的主要方法有几种?简述位移法求解弹性力学问题的基本步骤。
11、利用应力法求解弹性力学问题时,是否需要利用变形协调方程?为什么?12、弹性力学问题求解的主要方法有几种?利用位移法求解弹性力学问题时,是否需要利用变形协调方程?为什么?13、平面应变情况下,物体内质点位移有何特点?14、何谓平衡微分方程?其本质意义是什么?15、压缩类变形只能在至少有一个压应力作用下才能发生,这种说法对吗?为什么?16、要使物体产生伸长变形,至少应有一个主应力是拉应力,这种说法对吗?为什么?17、何谓理想刚塑性材料模型?其应力-应变关系有何特征?18、什么是平面应力问题?弹性变形条件下,平面应力问题中主应力为0的方向的正应变是否也为0?为什么?(老师从这又起头后80道题)19、从材料屈服进入塑性状态的角度而言,同种材料挤压变形(三向压应力状态)与拉拔变形(一向拉二向压应力状态),哪个工艺所需的载荷大一些?20、屈服准则的实验验证方法,主要有哪两种实验?(提示:两种实验均采用薄壁圆管试验)21、对直径相同,高度尺寸不同的圆柱体工件在相同工艺条件下进行镦锻变形时影响变形载荷的主要因素是什么?22、为什么与平砧镦粗相比,“V”型凸砧镦粗时,可减少工件的鼓肚现象?23、塑性变形的应力应变顺序对应的规律理论基础是什么?适用范围是什么?24、按照塑性变形的应力应变顺序对应的规律,当中间主应力与平均应力相等时,材料塑性变形属于哪种类型?25、塑性力学问题的解析求解方法主要有哪几种?26、采用常用的解析方法求解塑性力学问题,能解决什么问题?有什么工程应用价值?27、在利用切块法求解塑性力学问题,应用屈服准则时,要做什么样的近似处理?28、简答主应力法求解塑性问题的要点29、何谓滑移线?30、何谓滑移线法?31、滑移线场有何特点?32、严格地讲,滑移线法求解塑性力学问题,只适用于平面应变问题,为什么?33、表示塑性变形应力-应变关系的全量理论,其适用条件是什么?34、塑性变形应力-应变关系的理论有几种?35、何谓塑形变形的增量理论?36、何谓塑性变形的全量理论?适用范围是什么?37、当物体分别在三向压应力和三向拉应力作用下发生塑性变形,其第一、第三主应变在性质上有无区别?38、无模胀球过程中,在球壳厚度不变的情况下,直径大的球壳容易胀形还是直径小的球壳容易胀形?(所需内压力P的大小)39、镦粗过程中,直径一定的坯料,高度大时所需载荷大,还是高度小时所需载荷大?40、塑性变形过程,应力与全量应变是否存在定量的规律性对应关系?41、塑性变形时,应力与全量应变是否存在线性关系?42、弹性变形时,应力—应变关系具有什么特点?43、固体现实应力空间中,为什么塑性变形区的空间在主应力空间等倾线负方向越来越大(即材料断裂罩呈钟罩形状)?44、简述圆柱体在平砧间镦粗变形过程发生鼓肚的原因。
(完整word版)弹塑性力学试卷
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
弹塑性力学习题集_很全有答案_
σ y = cx + dy − γy , τ xy = − dx − ay ,其它应力分量为零。试根据
直边及斜边上的边界条件,确定常数 a、b、c、d。 2—16* 已知矩形截面高为 h, 宽为 b 的梁受弯曲时的正 My 12 M 应力 σ z = = y, 试求当非纯弯时横截面上的剪应力公 J bh 3 式。 (利用弹塑性力学平衡微分方程)
题 2—15 图
12 6 0 2—17 已知一点处的应力张量为: σ ij = 6 10 0 MPa ,试求该点的最大主应力及 0 0 0 其主方向。 2—18* 在物体中某一点 σ x = σ y = σ z = τ xy = 0 ,试以 τ yz 和 τ zx 表示主应力。
3—1
为 ε 1 = 1.7 × 10 −4 , ε 2 = 0.4 × 10 −4 。已知ν = 0.3,试求主应变 ε 3 。
3—9 如题 4—9 图示尺寸为 1×1×1cm 的铝方块,无间隙地嵌入——有槽的钢块中。 设钢块不变形,试求:在压力 P = 6KN 的作用下铝块内一点应力状态的三个主应力及主应 变,铝的弹性常数 E=70Gpa,ν = 0.33。 3—10* 直径 D = 40mm 的铝圆柱体, 无间隙地放入厚度为 δ = 2mm 的钢套中, 圆柱受
v = b0 + b1 x + b2 y + b3 z w = c 0 + c1 x + c 2 y + c3 z
式中 a 0 L , a1 L , a 2 L 为常数,试证各点的应变分量为常数。 2—29 设已知下列位移,试求指定点的应变状态。
(1) u = (3x 2 + 20) × 10 −2 , v = (4 yx) × 10 −2 ,在(0,2)点处。 (2) u = (6 x 2 + 15) × 10 −2 , v = (8 zy ) × 10 −2 , w = (3z 2 − 2 xy) × 10 −2 ,在(1,3,4)点处。 2—30 试证在平面问题中下式成立: εx + εy =ε′ x + ε′ y
(完整版)弹塑性力学习题题库加答案.docx
第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。
己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。
解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。
x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。
弹塑性力学部分习题及答案
解
根据梁的弯曲变形公式,y = Fx/L(L - x),其中y为挠度,F 为力,L为梁的长度。代入题目给定的数据,得y = (frac{300 times (4 - x)}{8})。当x = 2时,y = (frac{300 times (4 - 2)}{8}) = 75mm。
习题三答案及解析
解析
和变形情况。
04
弹塑性力学弹塑性力学的基本假设。
答案
弹塑性力学的基本假设包括连续性假设、均匀性假设、各向同性假设和非线性假设。连 续性假设认为物质是连续的,没有空隙;均匀性假设认为物质的性质在各个位置都是相 同的;各向同性假设认为物质的性质在不同方向上都是相同的;非线性假设认为弹塑性
习题二答案及解析
01 02 03 04
解析
选择题主要考察基本概念的理解,如能量守恒定律、牛顿第二定律等 。
填空题涉及简单的力学计算,如力的合成与分解、牛顿第二定律的应 用等。
计算题要求应用能量守恒定律和牛顿第二定律进行计算,需要掌握基 本的力学原理和公式。
习题三答案及解析
01
答案
02
选择题
03
1. A
2. 解
根据牛顿第二定律,F = ma,其中F为力,m为质量,a 为加速度。代入题目给定的数据,得a = (frac{400}{5}) = 80m/s(}^{2})。再根据运动学公式s = ut + (frac{1}{2})at(}^{2}),得s = 10 × 2 + (frac{1}{2} times 80 times (2)^2) = 108m。
04
计算题要求应用胡克定律和动量守恒定律进行计算,需要掌握基本的 力学原理和公式。
习题二答案及解析
弹塑性力学习题集(有图)
弹塑性⼒学习题集(有图)·弹塑性⼒学习题集$殷绥域李同林编!…中国地质⼤学·⼒学教研室⼆○○三年九⽉⽬录—弹塑性⼒学习题 (1)第⼆章应⼒理论.应变理论 (1)第三章弹性变形.塑性变形.本构⽅程 (6)第四章弹塑性⼒学基础理论的建⽴及基本解法 (8)第五章平⾯问题的直⾓坐标解答 (9)第六章平⾯问题的极坐标解答 (11)第七章柱体的扭转 (13)(第⼋章弹性⼒学问题⼀般解.空间轴对称问题 (14)第九章* 加载曲⾯.材料稳定性假设.塑性势能理论 (15)第⼗章弹性⼒学变分法及近似解法 (16)第⼗⼀章* 塑性⼒学极限分析定理与塑性分析 (18)第⼗⼆章* 平⾯应变问题的滑移线场理论解 (19)附录⼀张量概念及其基本运算.下标记号法.求和约定 (21)习题参考答案及解题提⽰ (22){前⾔弹塑性⼒学是⼀门理论性较强的技术基础课程,它与许多⼯程技术问题都有着⼗分密切地联系。
应⽤这门课程的知识,能较真实地反映出物体受载时其内部的应⼒和应变的分布规律,能为⼯程结构和构件的设计提供可靠的理论依据,因⽽受到⼯程类各专业的重视。
《弹塑性⼒学习题集》是专为《弹塑性⼒学》(中国地质⼤学李同林、殷绥域编,研究⽣教学⽤书。
)教材的教学使⽤⽽编写的配套教材。
本习题集紧扣教材内容,选编了170余道习题。
作者期望通过不同类型习题的训练能有助于读者理解和掌握弹塑性⼒学的基本概念、基础理论和基本技能,并培养和提⾼其分析问题和解决问题的能⼒。
鉴于弹塑性⼒学课程理论性强、内容抽象、解题困难等特点,本书对所编习题均给出了参考答案,并对难度较⼤的习题给出了解题提⽰或解答。
…编者2003年9⽉%弹塑性⼒学习题第⼆章应⼒理论·应变理论~2—1 试⽤材料⼒学公式计算:直径为1cm 的圆杆,在轴向拉⼒P = 10KN 的作⽤下杆横截⾯上的正应⼒σ及与横截⾯夹⾓?=30α的斜截⾯上的总应⼒αP 、正应⼒ασ和剪应⼒ατ,并按弹塑性⼒学应⼒符号规则说明其不同点。
弹塑性力学(工学专业工程硕士研究生)复习题
复习题一、选择题01.受力物体内一点处于空间应力状态(根据oxyz 坐标系),一般确定一点应力状态需( )独立的应力分量。
A .18个;B .9个;C .6个;D .2个;02.一点应力状态的最大(最小)剪应力作用截面上的正应力,其大小( )。
A .一般不等于零;B .等于极大值;C .等于极小值;D .必定等于零 ;03.一点应力状态主应力作用截面和主剪应力作用截面间的夹角为( )。
A .π/2;B .π/4;C .π/6;D .π;04.正八面体单元微截面上的正应力σ8为:( )。
A .零;B .任意值;C .平均应力;D .极值;05.从应力的基本概念上讲,应力本质上是( )。
A .集中力;B .分布力;C .外力;D .内力;06.若研究物体的变形,必须分析物体内各点的( )。
A .线位移;B .角位移;C .刚性位移;D .变形位移;07.若物体内有位移u 、v 、w (u 、v 、w 分别为物体内一点位置坐标的函数),则该物体( )。
A .一定产生变形;B .不一定产生变形;C .不可能产生变形;D .一定有平动位移;08.弹塑性力学中的几何方程一般是指联系( )的关系式。
A .应力分量与应变分量;B .面力分量与应力分量;C .应变分量与位移分量;D .位移分量和体力分量;09.当受力物体内一点的应变状态确定后,一般情况下该点必有且只有三个主应变。
求解主应变的方程可得出三个根。
这三个根一定是( )。
A .实数根;B .实根或虚根;C .大于零的根;D .小于零的根;10.固体材料受力产生了塑性变形。
此变形过程( )。
A .必定要消耗能量;B .必定是可逆的过程;C .不一定要消耗能量;D .材料必定会强化;11.理想弹塑性模型, 这一力学模型抓住了( )的主要特征。
A .脆性材料;B .金属材料;C .岩土材料;D .韧性材料;12.幂强化力学模型的数学表达式为σ=A εn ,当指数n=1时,该力学模型即为( )。