人教版七年级数学(下册)第八章_二元一次方程组教案
最新人教版七年级数学下册 第八章 《消元——解二元一次方程组》教案
《消元——解二元一次方程组》教案2江西师大附中荣齐辉教学设计说明:本课以贴近学生生活实际的问题为情境,引导学生分别列二元一次方程组和一元一次方程解决问题,通过观察、对比,发现二元一次方程组和一元一次方程的联系,思考如何将二元一次方程组转化为一元一次方程,实现消元,渗透化归的数学思想.通过丰富的例题和问题,使学生熟练掌握二元一次方程组的解法,并能运用二元一次方程组解决一些实际问题,体会方程思想.(1)教材分析二元一次方程组是在《一元一次方程》的基础之上学习的,它是解决含有两个未知数的问题的有力工具,同时,二元一次方程组也是解决后续一些问题的基础,其解法将为解决这些问题提供运算的工具,如用待定系数法求一次函数解析式,在平面直角坐标系中求两条直线的交点等.解二元一次方程组就是要通过代入法和加减法把“二元”化归为“一元”,这也是解三元(多元)一次方程组的基本思路,是通法.(2)学情分析学生的知识技能基础:学生已学过一元一次方程的解法,经历过由具体问题抽象出一元一次方程的过程,具备了学习二元一次方程的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多观察、对比、发现的学习程,具有了一定的发现式学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标1.用代入法、加减法解二元一次方程组.2.了解解二元一次方程组时的“消元思想”,“化未知为已知”的化归思想.3.会用二元一次方程组解决实际问题.4.在列方程组的建模过程中,强化方程的模型思想,培养学生列方程解决实际问题的意识和能力.教学重点、难点重点:会用代入法和加减法解简单的二元一次方程组,会用二元一次方程组解决简单的实际问题,体会消元思想和方程思想.难点:理解“二元”向“一元”的转化,掌握代入法和加减法解二元一次方程组的一般步骤.课时设计四课时.教学策略本节课主要通过创设问题情境,引导学生观察迁移、采用发现法、探究法、练习法为辅的教学方法.教学过程一、创设问题情境,引入课题问题1 篮球联赛中每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.某队10场比赛中得到16分,那么这个队胜、负场数应分别是多少?你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:设胜x 场,负y 场.根据题意,得⎩⎨⎧=+=+16210y x y x ,教师引出本节课内容:这是我们在引言中探讨的问题,我们在上节课列出了方程组,并通过列表找公共解的方法得到了这个方程组的解⎩⎨⎧==46y x ,显然这样的方法需要一个个尝试,有些麻烦,不好操作,所以我们这节课就来探究如何解二元一次方程组.教师追问(1):这个实际问题能用一元一次方程求解吗?师生活动:学生回答:设胜x 场,则负)10(x -场.根据题意,得16)10(2=-+x x . 教师追问(2):对比方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个方把二元一次方程组转化为一元一次方程,先求出一个未知数,再求出另一个未知数.教师总结:这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想程.【设计意图】用引言中的问题引入本节课内容,先列二元一次方程组,再列一元一次方程,对比方程和方程组,发现方程组的解法.二、探究新知问题2 对于二元一次方程组10 216 x y x y ⎧+=⎨+=⎩①②你能写出求x 的过程吗? 师生活动:学生回答:由①,得x y -=10.③把③代入②,得16)10(2=-+x x .解得6=x【设计意图】通过解具体的方程明确消元的过程.教师追问:把③代入①可以吗?师生活动:学生把③代入①,观察结果.【设计意图】由于方程③是由方程①得到的,它只能代入方程②,不能代入方程①,让学生实际操作,得到恒等式,更好地认识这一点.问题3 怎样求y 的值?师生活动:学生回答:把6=x 代入③,得4=y .教师追问(1):代入①或②可不可以?哪种方法更简便?师生活动:学生回答:代入③更简便.教师追问(2):你能写出这个方程组的解,并给出问题的答案吗?师生活动:学生回答:这个方程组的解是⎩⎨⎧==46y x ,这个队胜6场,负4场. 【设计意图】让学生考虑求另一个未知数的过程,并思考如何让优化解法.问题4 你能总结出上述解法的基本步骤吗?其中,哪一步是最关键的步骤?师生活动:教师引导学生总结:变、代、求、写,学生回答:“代入”是最关键的步骤,教师总结:这种方法叫做代入消元法,简称代入法.【设计意图】使学生明确代入法解二元一次方程组的基本步骤,并明确关键步骤是“代入”,将二元一次方程组转化为一元一次方程.问题5 是否有办法得到关于y 的一元一次方程?师生活动:学生具体操作.【设计意图】 让学生尝试不同的代入消元方法,并为后面学生选择简单的代入方法作铺垫.三、应用新知例 用代入法解方程组⎩⎨⎧=-=-14833y x y x师生活动:学生写出用代入法解这个方程组的过程,教师巡视,个别点拨.【设计意图】使学生熟悉代入法解二元一次方程组的步骤,巩固新知.四、加深认识练习 用代入法解下列二元一次方程组:(1)⎩⎨⎧=+=+15253t s t s (2)⎩⎨⎧=-=+33651643y x y x 师生活动:学生写出代入法解这些方程组的过程.【设计意图】本题需要先分析方程组的结构特征,再选择适当的解法,通过此练习,使学生熟练掌握用代入法解二元一次方程组.五、学以致用例 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g ),两种产品的销售数量(按瓶计算)的比为 ,某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶两种产品各多少瓶?师生活动:教师引导学生列出二元一次方程组,学生写出解这个方程组的过程. 教师追问:上述解方程组的过程能用一个框图表示出来吗?师生活动:教师与学生一起尝试用下列框图表示解方程组的过程:【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用代入5:2法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识.并通过框图形式形象地表示代入法解二元一次方程组的过程,使学生加深理解.六、再探新知问题4 前面我们用代入法求出了方程组10 216 x y x y ⎧+=⎨+=⎩①② 的解,这个方程组的两个方程中,y 的系数有什么关系?你能利用这种关系发现新的消元方法吗?师生活动:学生回答:这两个方程中y 的系数相等,②-①可消去未知数y ,得6=x . 把6=x 代入 ①得,4=y所以这个方程组的解为⎩⎨⎧==46y x .教师追问:①-②也能消去未知数y ,求得x 吗?师生活动:学生具体操作,发现求得的解跟上面相同.【设计意图】让学生发现除代入法以外的其它消元方法:通过两个方程相减实现消元.问题5 联系上面的解法,想一想怎样解方程组⎩⎨⎧=-=+.81015,8.2103y x y x 师生活动:学生回答:由于这两个方程中y 的系数相反,将两个方程相加,可消去未知数y ,求得x ,进而求得y .教师总结:当两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.【设计意图】让学生再次发现新的消元方法:通过两方程相加实现消元,并总结出加减消元法.七、应用新知例 用加减法解方程组⎩⎨⎧=-=+33651643y x y x问题6 上述方程组能直接通过加减消元吗?为什么?师生活动:学生回答:不能,因为同一未知数的系数既不相等也不相反.教师追问:那该怎样变形才能实现消元?师生活动:可以在方程两边同时乘适当的数,使同一未知数的系数相等或相反,再通过将两个方程相加或相减,实现消元.【设计意图】让学生掌握加减消元法的基本步骤,加深对加减法的认识.八、巩固提高练习 用加减法解下列方程组:(1)⎩⎨⎧-=-=+12392y x y x (2)⎩⎨⎧=+=+15432525y x y x 【设计意图】让学生熟练掌握加减消元法解二元一次方程组的步骤,巩固提高.九、学以致用例 2台大收割机和5台小收割机工作2小时收割小麦3.6公顷;3台大收割机和2台小收割机工作5小时收割小麦8公顷.1台大收割机和1台小收割机工作1小时各收割小麦多少公顷?【设计意图】这是一个实际问题,需要先根据题意设两个未知数,列二元一次方程组,再用加减法解这个方程组,体现应用方程组分析、解决实际问题的全过程,增强学生的应用意识,同时加深和巩固对加减法解二元一次方程组的认识.十、归纳总结回顾本节课的学习过程,并回答以下问题:(1)代入法和加减法解二元一次方程组有哪些步骤?(2)解二元一次方程组的基本思路是什么?(3)在探究解法的过程中用到了什么思想方法?你还有哪些收获?【设计意图】让学生总结本节课的主要内容,提炼思想方法.十一、布置作业课本习题教学反思1.应用意识贯穿始终:从问题的提出,到最后的练习,多出环节以实际问题为背景,为解决问题的需要而学习,最后回归到用新知识解决实际问题,既解决了为什么要学习二元一次方程组的解法的问题,同时,由于目标明确具体,学生探究时容易把握方向,在一定程度上分解了难点,提高了学生学习的兴趣.2.循序渐进原则的运用:学生对消元思想的理解很难一步到位,所以采用结合具体问题逐步渗透、感悟,然后提炼升华的方式学习,类似地,对二元一次方程组的解法,经历了从特殊到一般,从简单到复杂的循环上升过程,学生对数学思想的理解随之加深.。
七年级数学下第八章教案(新人教版)[
(四) 总结反思,拓展升华
归纳 二元一次方程定义:
二元一次方程组定义:
二元一次方程组的解的定义:
(五) 课堂跟踪反馈
夯实基础
1.方程 2x 3y 5, xy 3, x 3 1,3x y 2z 0,x2 y 6 中是二元一次方程的有( ) A.1 个 B.2 个 C.3 个 y D.4 个
(三) 应用迁移,巩固提高
例 1 在方程 2x 3y 6 中,(1)用含 x 的代数式表示 y ;(2)用含 y 的代数式表示 x 。
[点拨]本题要求学生把二元一次方程化为用意个未知数的代数式表示另一个未知数的形式,为今后的代入 消元打下基础。
解:(1) y 2 x 2 ;(2) x 3 3 y
1
自主探索 学生自学课本,教师适当加以指导,可以用二元一次方程来解决。
在上述问题中,我们可以设出来年感个未知数,列出二元一次方程组,设胜的场数是 x 场,负的场数是
D. 二元一次方程组一定有解
4.已知代数式 x2 bx c ,当 x 1时,它的值是 2;当 x 1时,它的值是 8,则 b、c 的值是
()
A. b 3, c 4 B. b 3, c 4 C. b 2, c 5 D. b 2, c 5
5.给出两个问题:(1)两数之和为 6,求这两个数?(2)两个房间共住 6 人,每个房间各住几人?这两
设有 x 只鸡,有 y 只兔,根据题意得:
x y 35 2x 4y 94
1. 针对学生列出的这两个方程,引入二元一次方程和二元一次方程组
2. 二元一次方程、二元一次方程组的解
探究 满足 x y 35的值有哪些?请填入表中:
x
…
y
…
教师:那么什么是二元一次方程组的解呢? 学生讨论达成共识:二元一次方程组的解必须同时满足方程组中的两个方程。即:既是方程①的解又是 方程②的解. 教师:二元一次方程的两个方程的公共解叫做这个二元一次方程组的解。
8.2消元-解二元一次方程组(1)-人教版七年级数学下册教案
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《消元-解二元一次方程组(1)》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决两个未知数的问题?”(如购物时计算总价和数量)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二元一次方程组的奥秘。
4.培养学生的合作交流意识,通过小组讨论和问题解决,提高团队协作能力和表达沟通技巧。
三、教学难点与重点
1.教学重点
-理解二元一次方程组的定义及构成,能够正确列出方程组。
-掌握代入法解二元一次方程组的具体步骤,并能熟练运用。
-学会使用加减法(消元法)解二元一次方程组,并能应用于实际问题。
-通过解二元一次方程组,培养学生的数学建模和逻辑推理能力。
五、教学反思
在今天的教学中,我尝试了通过实际问题引入二元一次方程组的概念,让学生们感受到数学与生活的紧密联系。我发现,这种方法能够激发学生的兴趣,使他们更愿意投入到学习中。但在教学过程中,我也注意到几个需要改进的地方。
首先,关于代入法和消元法的讲解,虽然我尽力通过举例和逐步引导让学生理解,但从学生的反馈来看,部分同学仍然对这两个方法的具体操作步骤感到困惑。在今后的教学中,我需要更加细化讲解,可以设计更多有针对性的练习题,让学生在实践中掌握这两个方法。
其次,在学生小组讨论环节,我发现有些同学在讨论中不够积极,可能是因为他们对讨论主题不够了解,或者是对二元一次方程组的应用场景感到陌生。为了提高学生的参与度,我可以在下次课前,提前给出一些与生活相关的案例,让学生有更多的时间去思考和准备。
人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例
(五)作业小结
1. 教师布置一些与本节课内容相关的作业,让学生巩固所学知识,提高他们的实践能力。解决问题的能力。
3. 教师对学生的作业进行认真批改,及时反馈,帮助他们改进学习方法,提高学习效果。
五、案例亮点
1. 生活情境导入:通过设置一个购物预算问题,让学生思考如何选择商品才能使得总费用不超过预算,从而引出二元一次方程组的概念。这种生活情境的导入方式能够激发学生的学习兴趣,使他们更加主动地参与到课堂学习中。
2. 实验现象导入:设计一个简单的实验,如在一个容器中加入不同颜色的水,让学生观察混合后的颜色变化,从而引导学生发现混合问题背后的二元一次方程组。这种实验现象的导入方式能够激发学生的探究欲望,使他们更加主动地参与到课堂学习中。
3. 讲授新知与实例分析相结合:在讲授消元法解二元一次方程组的基本步骤和技巧的同时,利用实例分析,让学生亲身体验消元法解题的过程,引导他们发现消元法的规律,提高他们的数学思维能力。
4. 小组合作学习:将学生分成若干小组,每组提供一道实际的消元问题,要求学生在小组内讨论、交流,共同解决问题。这种小组合作学习的方式能够培养学生的团队合作精神,提高他们的沟通能力,同时也能够使他们更好地理解和掌握消元法的应用。
人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例
一、案例背景
人教版七年级下册(新)第八章《8.2消元解二元一次方程组(第1课时)》优秀教学案例,是基于学生已掌握一元一次方程的解法,二元一次方程的基本概念,以及解二元一次方程的基本方法——代入法的基础上进行的。本节课的主要内容是引导学生学习消元法解二元一次方程组,通过实例分析,让学生掌握消元法的基本步骤和技巧,提高他们解决实际问题的能力。
人教版七年级数学 下册 第八章 8.1 二元一次方程组 教案(表格式)
教学设计定义2:把两个二元一次方程合在一起,就组成了一个二元一次方程组.探究活动:满足x +y=35的值有哪些? 教师启发: (1)若不考虑此方程与上面实际问题的联系,还可以取哪些值? (2)你能模仿一元一次方程解给二元一次方程的解下定义吗? (3)它与一元一次方程的解有什么区别?定义3:使二元一次方程两边相等的两个未知数的值,叫二元一次方程的解,记为目标导学二:二元一次方程组及其解的定义例2: 有下列方程组:①x +y =2;xy =1,②+y =1;1③;1④=7;y⑤x -y =1,x +π=3,其中二元一次方程组有( )A .1个B .2个C .3个D .4个解析:①方程组中第一个方程含未知数的项xy 的次数不是1;②方程组中第二个方程不是整式方程;③方程组中共有3个未知数.只有④⑤满足,其中⑤方程组中的π是常数.故选B.方法总结:识别一个方程组是否为二元一次方程组的方法:一看方程组中的方程是否都是整式方程;二看方程组中是不是只含两个未知数;三看含未知数的项的次数是不是都为1.例3:用库存化肥给麦田追肥,如果每亩施肥6公斤,就缺少200公斤,如果每亩施肥5公斤,就剩余300公斤,问有多少亩麦田?库存化肥有多少?分析:本题有两上未知数:麦田的亩数和库存化肥的数量。
相等关系:1、每亩施肥6公斤所需化肥量=库存化肥量+200公斤。
2、每亩施肥5公斤,所需化肥量=库存化肥量-300公斤 小组讨论,解答。
四、课堂总结我们学习二元一次方程和方程组,要结合一元一次方程来理解。
1、方程mx−2y=3x+4是关于x、y的二元一次方程,则m的值范围是( )A.m≠0 B.m≠−2 C.m≠3 D.m≠42、已知是方程3x-my=1的一个解,则m=__________。
3、已知方程,若x==6,则y=_____;若y=0,则x=_____;当x=____时,y=4.4、写出二元一次方程3x-5y=1的一个正整数解______.5、下列方程组中,是二元一次方程组的是()A、B、C、D、。
人教版初中数学教案7篇
人教版初中数学教案7篇教学内容:人教版七年级数学下册第八章二元一次方程组第2节P96页教学目标(1)根底学问与技能目标:会用代入消元法解简洁的二元一次方程组。
(2)过程与方法目标:经受探究代入消元法解二元一次方程的过程,理解代入消元法的根本思想所表达的化归思想方法。
(3)情感、态度与价值观目标:通过供应适当的情境资料,吸引学生的留意力,激发学生的学习兴趣;在合作争论中学会沟通与合作,培育良好的数学思想,逐步渗透类比、化归的意识。
教学重、难点关键教学重点:用代入消元法解二元一次方程组教学难点:探究如何用代入消元法解二元一次方程组,感受“消元”思想。
教学关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。
学生分析授课对象为少数民族地区的七年级学生,根底学问薄弱,特殊是对一元一次方程内容把握的不够透彻,再加上厌学现象严峻,团结协作的力量差,本节课设计了他们感兴趣的篮球竞赛和常用的消毒液作为题材来讨论二元一次方程组,既能调动他们的学习兴趣,又能解决本节课所涉及到的问题,为以后的进一步学习二元一次方程组做好铺垫。
教学内容分析:本节主要内容是在上节已熟悉二元一次方程(组)和二元一次方程(组)的解等概念的根底上,来学习解方程组的第一种方法——代入消元法。
并初步体会解二元一次方程组的根本思想“消元”。
二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学学问的一个回忆和提高,同时,也为后面的利用方程组来解决实际问题打下了根底。
通过实际问题中二元一次方程组的应用,进一步增加学生学习数学、用数学的意识,体会学数学的价值和意义。
初中阶段要把握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的挨次安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中稳固前面的学问,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
人教版数学七年级下册8.2消元—解二元一次方程组代入消元法教学设计
(5)拓展提高:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
3.教学评价:
(1)关注学生的学习过程,从学生的课堂表现、作业完成情况等方面,全面评价学生的学习效果。
(2)注重学生个体差异,针对不同学生的学习需求,给予有针对性的评价和指导。
(3)组织小组合作学习,让学生在讨论交流中,相互启发,共同解决难题。
2.教学过程:
(1)导入:通过回顾已学的二元一次方程组知识,为新课的学习做好铺垫。
(2)新课导入:以实际问题为背景,引导学生建立二元一次方程组,进而引出代入消元法。
(3)新课讲解:详细讲解代入消元法的步骤,结合具体例子进行演示,让学生体会代入消元法的解题过程。
3.评价反馈:对学生的练习成果进行评价,鼓励他们继续努力,提高解题能力。
(五)总结归纳
在这一阶段,我将带领学生进行以下总结归纳:
1.回顾本节课所学内容:让学生明确代入消元法的概念、步骤和应用。
2.强调代入消元法的注意事项:提醒学生在解题过程中应注意选择合适的方程进行代入,简化计算过程。
3.拓展思维:引导学生思考代入消元法的局限性,探讨其他解题方法,提高学生的思维品质。
2.演示代入消元法的解题过程:以导入新课中的问题为例,逐步演示代入消元法的解题过程,让学生理解并掌握该方法。
3.解释代入消元法的选择原则:告诉学生,在选择代入消元法时,应优先选择方程中未知数系数较小的那个方程进行求解,这样可以简化计算过程。
(三)学生小组讨论
在这一阶段,我将组织学生进行小组讨论:
1.分组讨论:将学生分成若干小组,让他们共同探讨代入消元法的解题过程和注意事项。
人教版数学七年级下册8.3《实际问题与二元一次方程组(1)》名师教案
第八章 二元一次方程组8.3.1实际问题与二元一次方程组(邓遥佳)一、教学目标1.核心素养通过学习二元一次方程组,培养学生的模型思想,运算能力、推理能力和应用意识.2.学习目标(1)能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组.(2)会列方程组解决同种条件并列类型的实际问题.3.学习重点用列方程组的方法解决实际问题.4.学习难点会找出简单的实际问题中的数量关系.二、教学设计(一)课前设计1.预习任务阅读教材P99,思考:用二元一次方程组解决实际问题的步骤是什么?如何找等量关系?如何理解同种条件并列类型?2.预习自测1.一条船从重庆到涪陵顺流航行,每小时行20km ;逆流航行,每小时行16km.求轮船在静水中的速度与水的流速.设轮船在静水中的速度与水流速度分别为x 、y ,则可列二元一次方程组( B )A.⎩⎨⎧=+=-2016y x y xB.⎩⎨⎧=-=+1620y x y xC.⎩⎨⎧=-=+y x y x 2016D.⎩⎨⎧=-=+yx y x 16202.2台大收割机和5台小收割机,两小时收割3.6公顷,3台大收割机和2台小收割机,5小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?设1台大收割机和1台小收割机1小时收割小麦分别为x 、y ,则可列二元一次方程组( A )A.()()⎩⎨⎧=+=+82356.3522yxyxB.()()⎩⎨⎧=+=+82356.3252yxyxC.()()⎩⎨⎧=+=+83256.3522yxyxD.()()⎩⎨⎧=+=+82326.3525yxyx(二)课堂设计1.知识回顾(1)运用方程解决实际问题的关键:找等量关系;(2)用一元一次方程解决实际问题的步骤:1.设:设未知数2.列:列方程3.解:解方程4.验:双重方式检验解5.答:作答2.问题探究1.运输360t化肥,装载了6节火车车厢和15辆汽车;运输440t化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识点:二元一次方程组的应用】分析题目中都是以运输化肥这种方式并列呈现的问题.6节火车车厢和15辆汽车运输化肥360t作为一个等量关系;8节火车车厢和10辆汽车运输化肥440t作为一个等量关系.这样有两个等量关系即可列出二元一次方程组.设每节火车车厢与每辆汽车平均各装x吨和y吨化肥.小结:分析题干及条件的呈现方式,所求问题的条件以同一种方式并列呈现归之为同种条件并列.2.养牛场原有30头大牛和15头小牛,1天约用饲料675kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg.饲养员李大叔估计每头牛1天约需饲料18~20kg,每头小牛1天约需饲料7~8kg.你能通过计算检验他的估计吗?【知识点:二元一次方程组的应用】分析题目中都是以牛消耗饲料的量这种方式并列呈现的问题.30头大牛和15头小牛1天约用饲料675kg作为一个等量关系;购进12头大牛和5头小牛后牛的数量变为大牛42头、小牛20头1天约用饲料940kg作为第二个等量关系.这样有两个等量关系即可列出二元一次方程组.设每头大牛和每头小牛1天约需饲料分别为xkg、ykg.。
《二元一次方程组》教学设计
代入计算、
简化运算
PPT课件
=
教学过程
教学环节
教学内容
所用时间
教师活动
学生活动
设计意图
教学策略、方法
创设情境
篮球比赛
1分钟
出示幻灯片
观察
激起兴趣
问题导入
有哪些等量关系
8分钟
教师引导出示幻灯片
分组讨论
观察、猜想
探究新知
哪一组是方程组的解
10分钟
讲解例题、总结规律
合作交流
归纳总结
课
堂
教
学
流
程
图
(表)
情感、态度与价值观:
通过对二元一次方程组的概念的学习,感受数学与生活的联系,感受数学的乐趣。
教学重点
及解决措施
使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解。
教学难点
及解决措施
了解二元一次方程组的解的含义.这里困难在于从一个未知数值变成了两个未知数值,而且这两个未知数值合在一起,才算作二元一次方程组的解.用大括号来表示二元一次方程组的解,可以使学生从形式上克服理解的困难;而讲清问题中已含有两个互相联系着的未知数,把它们的值都写出来才是问题的解答.这是克服这一难点的关键所在。
多媒体环境下的教学设计
学科数学授课年级七年级
章节名称
二元一次方程组
计划学时
一
教材分析
《二元一次方程组》是人教版七年级数学下册第八章第一节的内容,本节内容的核心是二元一次方程组及其相关概念的理解,从教材编排来看,本节内容起着一个承上启下的作用,它是继一元一次方程之后出现的,为后面学习二元一次组的解法打下了基础。
初中数学教案:二元一次方程组【优秀8篇】
初中数学教案:二元一次方程组【优秀8篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!初中数学教案:二元一次方程组【优秀8篇】元一次方程组篇一第1课 5.1二元一次方程组(1)教学目的1、使学生二元一次方程、二元一次方程组的概念,会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式。
七年级下册数学第8章说课稿模板之消元——解二元一次方程组
书山有路勤为径,学海无涯苦作舟
七年级下册数学第8 章说课稿模板之消元——解二元
一次方程组
孩子们渴望知识的灌溉,所以接下来初中频道为大家推荐七年级下册数学第8 章说课稿,希望大家好好阅读哦。
一、教材分析
1.内容、地位、作用
代入消元法解二元一次方程组是人教版义务教育课程标准实验教科书七年级下册第八章《二元一次方程组》的重要内容。
本章的知识是反映客观世界数量关系的有效模型,所以掌握其基本的解法,不仅能使学生理解并掌握方程思想、等量思想、转化思想、代入法等重要数学思想方法,从而初步培养学生的运算技能、应用意识,甚至对于提高分析并解决简单的实际问题有重要的意义。
2.教学目标
我认为教学目标是教学的出发点和归宿,所以依据《数学课程标准》以及新课改的要求,结合《二元一次方程组的解法》的教学重点和学生的实际,我确定了本节课的三维教学目标如下:
知识与能力:使学生了解代入消元法并能用代入消元法解简单的二元一次书中自有黄金屋,书中自有颜如玉。
人教版七年级下册数学《二元一次方程组的解法》表格式教案
教材:人教版七年级数学下册第八章《二元一次方程组解法1》第93至97页授课对象:初一(1)班执教者:工作单位:【课题】8.1至8.2 二元一次方程组解法第一课时【教材】人教版七年级数学下册第八章《二元一次方程组解法1》第93至97页【课时安排】1个课时.【教学对象】初一(1)班.【授课教师】【教材分析】本节课教学设计依托人教版七年级《数学》下册第八章8.2消元——二元一次方程组的解法,本节课让学生理解二元一次方程、二元一次方程组和它的解的含义,学会加减消元解二元一次方程组,以突出“消元”背后的算理。
【教学突破点】本节课的重点是如何将二元转化为一元,教学中引导学生思考,若要将二元化为一元,即消去一个未知数,用什么方法可消去一个未知数?引导学生观察两个未知数的系数,找出规律;因此,教学中引导学生思考将两个方程相加或相减的方法消去一个未知数,将方程组转化为学生已学过的方程来求解;由于如何正确用加减法消元是本节课的重点内容,所以教学中设计关于加减消元法化二元为一元的局部练习,突出本节课的核心内容。
【教学重点】掌握加减消元法解二元一次方程组的方法【教学难点】通过将两个方程相加或相减消去一个未知数,从而达到将方程组转化为一元一次方程求解的目的,那么是用加法?还是用减法?如何消?教学中,让学生先观察所给方程组,未知数的系数是相同还是互为相反数,然后决定用加法还是减法,同时提升到未知数的系数既不是相同也不是互为相反数时如何消元?【教学目标】1、理解二元一次方程、二元一次方程组和它的解的含义;2、体会“消元”思想,探索未知数系数相等或互相为相反数的二元一次方程组的解法,掌握用加减消元法解二元一次方程组的方法。
【教学过程设计】【板书设计】方程组的解法一、方程组概念三、练习投影二、例。
人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》
人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。
通过学习,学生能够解决实际问题,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。
二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。
同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。
三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。
2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。
2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。
4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。
六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。
2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。
8.1二元一次方程组教学设计人教版数学七年级下册
《8.1 二元一次方程组》教学设计教材分析二元一次方程组是第八章第一节的内容,在此之前,学生已学习了一元一次方程,这为过渡到本节的学习起着铺垫作用.本节内容主要学习和二元一次方程组有关的几个概念.本节内容既是前面知识的深化和应用,又是今后用二元一次方程组解决生活中的实际问题的准备知识,占据重要的地位,是学生新的方程建模的基础课,为今后学习一次函数以及其他学科(如:物理)的学习奠定基础,同时建模的思想方法对学生今后的发展有引导作用,因此本节课具有承上启下的作用.备课素材一、新知导入【情景导入】古老的“鸡兔同笼问题”“今有鸡兔同笼,上有三十五头,下有九十四足.问鸡、兔各几何?”方法一:算数方法把兔子都看成鸡,则多出94—35×2=24只脚,每只兔子比鸡多出两只脚,由此可先求出兔子有24÷2=12(只),进而求出鸡有35—12=23(只).方法二:列一元一次方程求解设有x只鸡,则有(35—x)只兔子.根据题意,得2x+4(35—x)=94.问题:上面的问题可以用一元一次方程来解,还有其他方法吗?【说明与建议】说明:以古老的数学名题引入,可以增强学生的民族自豪感,激发学生学习数学的兴趣.能用方法一来解的学生算术功底比较好,应给予高度赞赏.方法二既是对一元一次方程的复习与巩固,又为二元一次方程组的引出做好了铺垫.建议:教师利用课件出示问题,学生思考,自行解答,教师巡视.最后,在学生动手动脑的基础上,通过讨论给出各种解决方案.【置疑导入】播放多媒体:姚明和刘翔的合影照片.已知姚明比刘翔高37 cm,刘翔身高的2倍比姚明高152 cm,则他们的身高分别是多少?假设姚明的身高为x cm,刘翔的身高为y cm,你能得到怎样的方程?能列几个?【说明与建议】说明:由同学们熟悉的姚明和刘翔的身高,为新课的引入做准备,还可以调节气氛,给学生以轻松的感觉,以对话的形式再次引出方程问题,让学生再次经历建模的同时,以相对轻松的状态进入后面的学习.建议:引导学生回答问题,小组合作完成题目,教师参与并指导.二、命题热点命题角度1 认识二元一次方程(组) 1.下列方程中,为二元一次方程的是(D)A .2x +3=0B .3x -y =2zC .x 2=3D .2x -y =52.若关于x ,y 的方程7x |m|+(m -1)y =6是二元一次方程,则m 的值为(A) A .-1 B .0 C . 1 D .2 3.下列方程组中,是二元一次方程组的是(D)A.⎩⎨⎧3x -y =52y -z =6B.⎩⎨⎧x +3=1y =x 2C.⎩⎨⎧5x +2y =1xy =-1D.⎩⎨⎧x +y =2y -2x =4命题角度2 二元一次方程(组)的解4.在下列各组数中,是方程组⎩⎨⎧2x -3y =-8,x +2y =3的解的是(D)A.⎩⎨⎧x =2y =4B.⎩⎨⎧x =-3y =1C.⎩⎨⎧x =1y =1D.⎩⎨⎧x =-1y =25.已知⎩⎨⎧x =4,y =1是关于x ,y 的二元一次方程x -ay =3的一个解,则a 的值是1.命题角度3 建立二元一次方程(组)模型6.“今有50鹿进舍,小舍容4鹿,大舍容6鹿,需舍几何?(改编自《缉古算经》)”大意为:今有50只鹿进圈舍,小圈舍可以容纳4头鹿,大圈舍可以容纳6头鹿,若每个圈舍都住满,求所需圈舍的间数.设需要大圈舍x 间,小圈舍y 间,则列二元一次方程为6x +4y =50.7.某公司要购买办公桌,A 型办公桌每张500元,B 型办公桌每张300元,购买10张办公桌共花费4 200元.设购买A 型办公桌x 张,B 型办公桌y 张,则根据题意可列方程组为⎩⎨⎧x +y =10500x +300y =4 200.教学设计授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.方程2x-3=1是一元一次方程,其解是x=2,有1个解.2.下列方程中,解为x=4的方程是(C)A.x-1=4 B.4x=1C.4x-1=3x+3 D.2(x-1)=1师生活动:学生独立完成,班内统一答案.师生共同回顾一元一次方程及其解.通过简单的提问,帮助学生回顾一元一次方程,为学习新课做好准备.活动一:创设情境、导入新课【课堂引入】活动一:对话老牛喘着气吃力地说:“累死我了!”小马说:“你还累?这么大的个,才比我多驮了2个.”老牛气喘吁吁地说:“哼,我从你背上拿来1个,我的包裹数就是你的2倍!”小马天真而不信地说:“真的?”它们各驮了多少包裹呢?设老牛驮了x个包裹,小马驮了y个包裹,你能得到怎样的方程?能列几个?问题1:老牛驮的包裹数比小马驮的多2个,由此你能得到怎样的方程?问题2:若老牛从小马背上拿来1个包裹,老牛的包裹数就是小马的包裹数的2倍,由此你又能得到怎样的方程?活动二:多媒体展示公园门票问题,学生认真观看图片,部分学生开始在练习本上计算.设他们中有x个成人,y个儿童,由此你能得到怎样的方程?根据学生的生活实际和认知实际,创设具体的问题情境,让学生经历建模的同时,调节心情,以相对轻松的状态进入后面的学习.活动二:【探究新知】习,抓住二元一次A.⎩⎪⎨⎪⎧x =4y =3B.⎩⎪⎨⎪⎧x =3y =6C.⎩⎪⎨⎪⎧x =2y =4D.⎩⎪⎨⎪⎧x =4y =2 例5 某旅店一共有70个房间,大房间每间住8个人,小房间每间住6个人,480个学生刚好住满.设大房间有x 个,小房间有y 个,则列出方程组为⎩⎪⎨⎪⎧x +y =708x +6y =480. 【变式训练】1.若(a -1)x +4y |a|=3是二元一次方程,则a =-1.2.小明在解题时发现二元一次方程□x-y =3中,x 的系数已经模糊不清(用“□”表示),但查看答案发现⎩⎪⎨⎪⎧x =-2,y =5是这个方程的一组解,则“□”表示的数为-4.师生活动:学生先独立思考并作答,然后分小组交流讨论,派学生代表进行讲解,教师最后进行完善. 活动四: 课堂检测【课堂检测】1.下列各组数中,不是x +y =5的解的是(B)A.⎩⎪⎨⎪⎧x =2y =3B.⎩⎪⎨⎪⎧x =1y =6C.⎩⎪⎨⎪⎧x =-2y =7D.⎩⎪⎨⎪⎧x =0y =5 2.在方程组⎩⎪⎨⎪⎧2x -y =1,y =3z +1;⎩⎪⎨⎪⎧x =2,3y -x =1;⎩⎪⎨⎪⎧x +y =0,3x -y =5;⎩⎪⎨⎪⎧xy =1,x +2y =3;⎩⎪⎨⎪⎧1x +1y =1,x +y =1中, 是二元一次方程组的有(A)A .2个B .3个C .4个D .5个3.下列各组数是二元一次方程组⎩⎪⎨⎪⎧x +3y =7,y -x =1的解的是(A)A.⎩⎪⎨⎪⎧x =1y =2B.⎩⎪⎨⎪⎧x =0y =1C.⎩⎪⎨⎪⎧x =7y =0D.⎩⎪⎨⎪⎧x =1y =-24.如图,设他们中有x 个成人,y 个儿童,根据图中的对话可得方程组(C)A.⎩⎪⎨⎪⎧x +y =3030x +15y =195B.⎩⎪⎨⎪⎧x +y =19530x +15y =8 针对本课时的主要问题,分层次进行检测,达到了解课堂学习效果的目的.。
七年级数学下册8.2消元—二元一次方程组的解法(代入消元法)教案新人教版
初一数学教学设计消元——二元一次方程组的解法(代入消元法)教学设计思路在前面已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
知识目标通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地应用“代入消元法”解方程组;会借助二元一次方程组解简单的实际问题;提高逻辑思维能力、计算能力、解决实际问题的能力。
能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法。
情感目标体会解二元一次方程组中的“消元” 思想,即通过消元把解二元一次方程组转化成解两个一元一次方程。
由此感受“划归”思想的广泛应用。
教学重点难点疑点及解决办法重点是用代入法解二元一次方程组。
难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。
疑点是如何“消元”,把“二元”转化为“一元”。
解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。
教学方法:引导发现法,谈话讨论法,练习法,尝试指导法课时安排: 1 课时。
教具学具准备:电脑或投影仪。
教学过程教 师 活动学生活动(一)创设情境,激趣导入在 8.1 中我们已经看到,直接设两个未知数( 设胜 x 场,负 yx y 22看图,分析已知条2x y40表示本章引言中场 ) ,可以列方程组件问题的数量关系。
如果只设一个未知数 ( 设胜 x 场 ) , 思考 这个问题也可以用一元一次方程________________________[1] 来解。
师生互动分析: [1]2x + (22 - x)=40 。
列式解答观察思考,同 上面的二元一次方程组和一元一次方程有什么关系?[2]桌交流 [2] 通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方 总结程。
人教版七年级数学下册全册教案-第八章-二元一次方程组
第八章《二元一次方程组》全章教材分析一、教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。
教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程(组)的解。
接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。
然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。
最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。
二、教学目标(一)知识与技能目标1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二(三)元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。
(二)过程与方法目标1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。
2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。
(三)情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。
三、重点、难点重点:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题;难点:以方程组为工具分析问题、解决含有多个未知数的问题。
四、课时划分建议本章共12课时:二元一次方程(组)1课时,消元思想3课时,应用方程组解决实际问题2课时,三元一次方程组2课时,复习1课时,单元检测2课时,讲评1课时。
七年级下册数学教案消元-解二元一次方程组
学校教师备课笔记学校教师备课笔记茄子西红柿FECADB教学环节教学活动设计意图让学生感受列表法的直观,体会用列表法梳理数量关系的好处,培养学生使用列表法的意识.学生交流解法,碰撞思维火花,体会一题多解的问题情境,学会从多种角度考虑问题.考查学生对探究问题的理解程度,同时让学生体会数学来源于生活,又服务于生活.教师活动学生活动备用图(1)学生先齐读,再小声读题,划出关键词句,明确问题让我们做什么.(2)学生分享找出的关键词句.(3)小组合作交流,完成三个任务:①找出等量关系;②设出恰当的未知数;③列出方程组.(4)学生代表板演解题过程并讲解.(5)学生讲完解法一后,教师引导学生重新回顾解法一,并给出下面的表格,由表格可以清楚地看出各个数据和等量关系,然后提倡学生采用列表法梳理等量关系.2.类比延展请加入生活中的其它实际背景(如:消毒液、花坛、黑板、墙报、窗户等)对这道题进行改编并写在下面的横线上.______________________________________________________四、当堂检测1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使一个螺栓配套两个螺帽,应如何分配工人才能使螺栓和螺帽刚好配套?设生产螺栓x人,生产螺帽y人,列方程组为( )茄子西红柿未知边长x y种植面积10x10y单位产量之比 1 2总产量之比10x2×10y法二:解:如图1,一种种植方案为:茄子、西红柿的种植区域分别为长方形AEFD和BCFE.设AE=x m,BE=y m.(31):(42)3:2÷÷=则⎩⎨⎧==+2:310:1020yxyx解这个方程组得⎩⎨⎧==812yx答:过长方形土地的长边上离一端12 m处,把这块地分为两个长方形.较大一块地种茄子,较小一块地种西红柿.学生自由发言根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量(按瓶计算)比为2:5.某厂每天生产这种消毒液22.5t,这些消毒液应该分装大、小瓶两种产品各多少瓶?教学环节教学活动设计意图教师活动学生活动A.⎩⎨⎧==+yxyx241590B.⎩⎨⎧==yxyx4548-90C.⎩⎨⎧==+yxyx243090D.⎩⎨⎧=-=yxyx24)15(2-902.如图,8块相同的长方形地砖拼成一个大长方形,大长方形的宽为60 cm,每块长方形地砖的长和宽分别是多少?五、归纳总结PPT回放几张重点幻灯片,引导学生回顾本节所学内容,谈一谈有哪些收获.六、布置作业必做题:1.课本P102 习题8.3 4、5选做题:课本P102 习题8.3 7学生讲解1.C2.解:设长方形的长为xcm,宽为ycm根据题意,列方程组⎩⎨⎧=++=6032yxyxx解这个方程组,得⎩⎨⎧==1545yx答:长方形的长为45cm,宽为15cm。
人教版数学七年级下8.3 第1课时 利用二元一次方程组解决实际问题教案
典例精析
例1.某市举办中学生足球比赛,规定胜一场得3分,平一场得1分.市第二中学足球队比赛11场,没有输过一场,共得27分,试问该队胜几场,平几场?
教学资源课前准备
PPT、多媒体
教学环节
教学过程设计
二次备课
一、复习引入
1.二元一次方程组的定义是什么?
2.二元一次方程组的解法有哪些?
3.列方程解决实际问题,一般有哪些步骤?
视频引入
二、讲授新课
探究点1:列方程组解决简单实际问题
问题1:养牛场原有30只大牛和15只小牛,1天约用饲料675 kg;一周后又购进12只大牛和5只小牛,这时1天约用饲料940 kg.饲养员李大叔估计每只大牛1天约需饲料18到20 kg,每只小牛1天约需饲料7到8 kg.你认为李大叔估计的准确吗?
第8单元
课 题名 称
8.3 实际问题与二元一次方程组
8.3.1 利用二元一次方程组解决实际问题
总课时数
2
第( 1 )课 时
教材及学情分析
1.教材分析
本节课讲的是七年级《数学》下册第八章第三节的第一课时——用二元一次方程组解决实际问题,在学生已经熟练掌握二元一次方程组的解法的基础上,通过对实际问题审,设,列,解,验,答;经历建立二元一次方程组这种数学模型解决实际问题的过程,体验用方程组解决实际问题的一般方法,进一步提高分析问题与解决问题的能力,进而增强数学应用的意识.
归纳总结:用二元一次方程组解决实际问题的步骤:
(1)审题:弄清题意和题目中的_________;
《二元一次方程组》教学设计和反思
数学新人教版七年级下册8。
1 二元一次方程组教案和教案说明课堂教学设计1、提问:要解决课前问题,求出它究竟胜了几场,负了几场,只满足第一个方程可以吗?只满足第二个呢?所以,我们把两个方程合起来,必须满足两个方程,才能找到最后的答案。
引出二元一次方程组的概念。
2、让学生观察活动四所列的两个方程的解,找到最终答案。
引出二元一次方程组的解的概念。
3、(二次分组PK)通过几组题,深入理解二元一次方程组以及它的解的定义。
学生了解二元一次方程组以及它的解的含义。
通过几组练习题,加深对定义的理解。
预见:因课本定义已淡化,学生可能会在第(4)、(5)小题出现判断不清.教师注意强调:只要两个一次方程合起来,一共有两个未知数,组成的方程组就是二元一次方程组.注意在学生回答第3题时,让她说明做法,强调两个方程同时满足才是方程组的解。
第4题,学生小学时已有接触,注意让学生体会以前用算术或是一元一次方程解决,如今用二元一次方程组解决,两者谁更容易理解.第5题,若要用枚举法找到方程组的解很麻烦,下节课学习简单的解法。
最后统计红蓝两队得分,祝贺胜利者的同时,以激励失败的队伍,用林书豪的一句话:我打篮球是为了享受整个过程,追求永恒的快乐,而不是输赢的快乐。
激励学生学会享受学习的快乐。
通过再次抢答,让学生学会竞争,增强学生的学习兴趣。
通过练习,让学生深入理解两个概念.选用第4题,注意了学生小学知识的衔接,让学生体会到二元一次方程组解决问题的优势,从而领悟学习它的必要性。
通过提出求解第5题的方程组,让学生带着新的问题准备走进下节课的课堂,为下节课二元一次方程组的解法做铺垫。
从生活实际及榜样人物提出问题,最终又回归现实生活,让学生感受数学来源于生活又应用于生活,用榜样人物的话进行德育教育,激励学生学会享受学习的快乐。
丁慧玲二元一次方程组的解法教案
《二元一次方程组的解法—代入法》教案设计闵集中学丁慧玲教案内容人教版七年级数学下册第八章二元一次方程组教案目标(1)知识与技能目标:会用代入消元法解简单的二元一次方程组。
(2)过程与方法目标:经历探索代入消元法解二元一次方程组的过程,理解代入消元法的基本思想所体现的化归思想方法。
(3)情感、态度与价值观目标:通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识。
教案重、难点与关键教案重点:用代入消元法解二元一次方程组教案难点:探索如何用代入消元法解二元一次方程组,感受“消元”思想。
教案关键:把方程组中的某个方程变形,而后代入另一个方程中去,消去一个未知数,转化成一元一次方程。
学生分析授课对象是七年级学生,特为以后的进一步学习二元一次方程组做好铺垫。
教案内容分析本节主要内容是在上节已认识二元一次方程(组)和二元一次方程(组)的解等概念的基础上,来学习解方程组的第一种方法——代入消元法。
并初步体会解二元一次方程组的基本思想“消元”。
二元一次方程组的求解,不但用到了前面学过的一元一次方程的解法,是对过去所学知识的一个回顾和提高,同时,也为后面的利用方程组来解决实际问题打下了基础。
初中阶段要掌握的二元一次方程组的消元解法有代入消元法和加减消元法两种,教材都是按先求解后应用的顺序安排,这样安排既可以在前一小节中有针对性的学习解法,又可在后一小节的应用中巩固前面的知识,但教材相对应的练习安排较少,不过这样也给了学生一较大的发挥空间。
教具准备教师准备:ppt多媒体课件教案方法本节课采用“问题引入——探究解法——归纳反思”的教案方法,坚持启发式教案。
教案过程活动一:回顾与思考问题1:什么是二元一次方程?问题2:什么是二元一次方程组?问题3:什么是二元一次方程的解?问题4:什么是二元一次方程组的解?活动二:课前热身1.把下列方程写成用含x的式子表示y的形式.(1)2x-y=3 (2)3x+y-1=02.你能把上面两个方程写成用含y的式子表示x的形式?活动三:探究:用代入消元法解二元一次方程组1、2、自主探究,小组讨论那么怎样求解二元一次方程组呢?上面的二元一次方程组和一元一次方程有什么关系?3、学生归纳,教师作补充上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章二元一次方程组教材内容本章主要内容包括:二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,三元一次方程组解法举例,二元一次方程组的应用。
教材首先从一个篮球联赛中的问题入手,归纳出二元一次方程组及解的概念,并估算简单的二元一次方程(组)的解。
接着,以消元思想为基础,依次讨论了解二元一次方程组的常用方法——代入法和消元法。
然后,选择了三个具有一定综合性的问题:“牛饲料问题”“种植计划问题”“成本与产出问题”,将贯穿全章的实际问题提高到一个新的高度。
最后,通过举例介绍了三元一次方程组的解法,使消元的思想得到了充分的体现。
教学目标〔知识与技能〕1、了解二元一次方程组及相关概念,能设两个未知数,并列方程组表示实际问题中的两种相关的等量关系;2、掌握二元一次方程组的代入法和消元法,能根据二元一次方程组的具体形式选择适当的解法;3、了解三元一次方程组的解法;4、学会运用二(三)元一次方程组解决实际问题,进一步提高学生分析问题和解决问题的能力。
〔过程与方法〕1、以含有多个未知数的实际问题为背景,经历“分析数量关糸,设未知数,列方程,解方程和检验结果”,体会方程组是刻画现实世界中含有多个未知数的问题的数学模型。
2、在把二元一次方程组转化为x=a,y=b的形式的过程中,体会“消元”的思想。
〔情感、态度与价值观〕通过探究实际问题,进一步认识利用二元一次方程组解决问题的基本过程,体会数学的应用价值,提高分析问题、解决问题的能力。
重点难点二元一次方程组及相关概念,消元思想和代入法、加减法解二元一次方程组,利用二元一次方程组解决实际问题是重点;以方程组为工具分析问题、解决含有多个未知数的问题是难点。
课时分配8.1二元一次方程组……………………………………1课时8.2 消元——二元一次方程组的解法………………… 4课时8.3再探实际问题与二元一次方程组………………… 3课时*8.4三元一次方程组解法举例…………………………2课时本章小结…………………………………………………2课时8.1二元一次方程组[教学目标]理解二元一次方程、二元一次方程组及它们解的概念,会检验一对数是不是二元一次方程组的解。
[重点难点]二元一次方程、二元一次方程组及其解的含义是重点;理解二元一次方程组的解是难点。
[教学过程]一、问题导入我们很多同学喜欢打篮球,这里面也有学问。
看下面的问题:[投影1]篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?你知道吗?二、二元一次方程和二元一次方程组这个问题中包含了哪些必须同时满足的条件? 胜的场数+负的场数=总场数, 胜场积分+负场积分=总积分.若设胜的场数是x ,负的场数是y ,你能用方程把这些条件表示出来吗?x +y =222x +y =40这两个方程与一元一次方程有什么不同?它们有什么特点?所含未知数的个数不同;特点是:(1)含有两个未知数,(2)含有未知数的项的次数是1。
像这样含有两个未知数,并且含有未知数的项的次数是1的方程叫做二元一次方程。
上面的问题包含了两个必须同时满足的条件,也就是未知数x 、y 必须同时满足方程x +y =22和2x +y =40 把两个方程合在一起,写成x +y =22 ① 2x +y =40 ②像这样,把具有两个未知数且含未知数的项的次数是1的两个方程合在一起,就组成了二元一次方程组. 三、二元一次方程、二元一次方程组的解探究:[投影2]满足方程①,且符合问题的实际意义的x 、y 的值有哪些?把它们填入表中. 为此我们用含x 的式子表示y ,即y =22-x (x 可取一些自然数)。
显然,上表中每一对x 、y 的值都是方程①的解。
一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 如果不考虑方程的实际意义,那么x 、y 还可以取哪些值?这些值是有限的吗? 还可以取x =-1,y =23;x =0.5,y =21.5,等等。
所以,二元一次方程的解有无数对。
上表中哪对x 、y 的值还满足方程②?x =18,y =2还满足方程②.也就是说,它们是方程①与方程②的公共解,记作18,4.x y =⎧⎨=⎩二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 四、例题例1 若方程x 2 m –1 + 5y 2–3n = 7是二元一次方程.求m 2+n 的值。
分析:由二元一次方程的概念你可以知道什么?解:依题意,得 2 m –1=1,2–3n =1. 由2 m –1=1,得 m =1 由2–3n =1得n =1/3 ∴m 2+n =1+1/3=4/3.五、课堂练习[投影3]1、下列各对数值中是二元一次方程x +2y=2的解的是〔 〕A ⎩⎨⎧==02y xB ⎩⎨⎧=-=22y xC ⎩⎨⎧==10y x D ⎩⎨⎧=-=01y x2、课本94面练习。
六、课堂小结1、二元一次方程、二元一次方程组的概念;2、二元一次方程、二元一次方程组的解. 七、作业:课本95面1-4.八、教学反思在教学中引导学生对知识进行迁移与类比,让学生用原有的利用一元一次方程进行认知结构去童话新的知识,符合建构主义理念。
通过探究活动得出结论:1.二元一次方程组的解是成对出现的;2.二元一次方程组的解有无数多个,这与一元一次方程有着显著的区别。
通过对比,让学生体验到从算术方法到代数方法是一种进步。
而当我们遇到求多个未知量,而且数量关系较复杂时,列二元一次方程组比列一元一次方程容易,它大大减轻了我们的思维负担。
8.2消元(一)[教学目标]1、掌握代入法解二元一次方程组;2、经历探索二元一次方程组的解法的过程,初步体会“消元” 的基本思想.[重点难点] 代入消元法解二元一次方程组是重点;理解“消元”的基本思想是难点。
[教学过程] 一、情景导入下面是我们讨论过的一个关于篮球比赛的问题:[投影1]篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分.负一场得1分,某队为了争取较好的名次,想在全部22场比赛中得到40分,那么这个队胜负场数分别是多少?请你求出结果。
设这个队胜了x 场,依题意,得 2x+(22-x)=40 解得 x =18 22-x =4所以,这个队胜了18场,负了4场.我们知道,设胜的场数是x ,负的场数是y ,可列方程组: x +y =22 2x +y =40 那么怎样求这个方程组的解呢? 二、代入消元法上面的二元一次方程组和一元一次方程有什么关系?可以发现,二元一次方程组中第1个方程x +y =22说明y =22-x ,将第2个方程2x +y =40的y 换为22-x ,这个方程就化为一元一次方程2x+(22-x)=40。
这就是说,二元一次方程组中的两个未知数,可以消去其中的一个未知数,转化为我们熟悉的一元一次方程。
这样,我们就可以先求出一个未知数,然后再求出另一未知数.这种将未知数的个数由多化少、逐一解决的思想,叫做消元思想.例1 解方程组:⎩⎨⎧=-=-14833y x y x 分析:根据消元的思想,解方程组要把两个未知数转化为一个未知数,为此,需要用一个未知数表示另一个未知数。
怎样表示呢?转化成的一元一次方程是什么?解:由①得x=y+3③把③代入②,得 3(y +3)-8y =14 解得y=-1把y=-1代人③得x=2. ∴⎩⎨⎧-==12y x归纳:[投影2]上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.解上面的方程组能消去y 吗?试试看。
三、课堂练习:课本98面1;99面2题。
四、课堂小结1、什么是消元的思想?什么是代入消元法?2、用代入消元法解二元一次方程组。
五、作业:课本103面1、2题。
3、(1) 4x -y =52x +4y=24(2) 53215.05.1=+=-y x y x六、教学反思在教学过程中,重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据,体会未知向已知,陌生向熟悉转化这一重要思想——转化思想。
及时梳理知识,形成模式化,同时起到了小结作用,使学生认识到用代入法解二元一次方程的一般步骤。
然后通过练习进一步熟练掌握解二元一次方程的一般步骤。
8.2消元(二)〔教学目标〕初步学会用二元一次方程组解决简单的实际问题及有关的数学问题。
〔重点难点〕二元一次方程的运用是重点;用二元一次方程组解决简单的实际问题是难点。
〔教学过程〕一、复习导入上节课我们学习了用代入消元法解二元一次方程组,回忆一下:怎样用代入消元法解二元一次方程组?什么是二元一次方程组的解? 今天我们学习用二元一次方程组解决有关的问题。
二、例题 例1[投影1]已知12-==y x 是方程组54+=-=+a by x by ax 的解,求a 、b 的值.分析:根据方程组的解的意义,我们可以知道什么? 解:把12-==y x 代入 54+=-=+a by x b y ax ,得21425a b b a -=⎧⎨⨯+=+⎩把①代入②,得8+2a-1=a+5 解得a =-2 把a =-2代入①,得b=-5∴25a b =-⎧⎨=-⎩例2[投影2] 根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)①②为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?分析:问题中有哪些未知量?消毒液应该分装的大瓶数和小瓶数。
问题中有哪些等量关系?大瓶数︰小瓶数=2︰5大瓶所装消毒液+小瓶所装消毒液=22.5吨 设怎样的未知数可以表示上面的两个等量关系? 设这些消毒液应分装x 大瓶和y 小瓶,则⎩⎨⎧=+=2250000025050025y x yx 请你用代入消元法解答上面的方程组。
解之得,2000050000x y =⎧⎨=⎩答:这些消毒液应该分装20000大瓶和50000小瓶. 三、课堂练习 课本99面3、4题。
四、课堂小结列二元一次方程组解决实际问题与列一元一次方程解决实际问题的思想和步骤是相同的,不同的是一个设一个未知数,一个设两个未知数.一般地,同一个问题既可以列一元一次方程来解决,也可以列二元一次方程组来解决,不过,有时设两个未知数列方程组更方便些。
五、作业:课本103面4、6.补充题:已知方程组⎩⎨⎧=+=-31ay bx by ax 的解为112x y =⎧⎪⎨=⎪⎩,求a +b 的值.六、教学反思本课是代入消元法的巩固和深化,设置活动目的在于帮助学生迅速再现以往的知识经验,起到承上启下的作用。