Logical full abstraction and PCF
Processability and automaticity
2022.10.18
CONTENT
Processability Theory • Introduction Automaticity Theory • Key constructs • Conclusion • References
INTRODUCTION OF PT
• Processability Theory claims that the mechanisms of the human mind impose constraints on how learners develop the ability to process such linguistic information.
• Processability theory is a theory and a model of second language acquisition( main focus) developed by Manfred Pienemann that touches the linguistic structures that surface in the learning of a second language.
KEY CONSTRUCTS
1. Processing hierarchy theory: the key of processability theory • A kind of language information processing program rated by grade. • The basis is transfer of grammatical information between sentences or phrases. • Eg. She gives him a book.( the grammatical information of the singular third person isR源自PRESENTATIVES OF AT
【英语作文】如何写出符合西方特色的英语议论文
1.推论方式——三段论(syllogism)写议论文经常要使用三段论,它是把两个判断联系起来,从而推出一个新的判断结论的演绎推理(参看本书第二章第二节之四)。
我们知道,任何一个人的知识都可分为直接的和间接的两个部分,而且间接知识占的比重极大。
间接知识是经过别人的实践而概括出来的,总带有不同程度的一般性。
当我们遇到某一特殊事物时往往联想起有关的一般知识。
特殊事物和一般知识联系起来,便可实现一个推理,得出一个新的判断结论。
三段论通常由三个判断构成。
第一个判断叫“大前提”(major premise),表示的是一般原理、原则;第二个判断叫“小前提”(minor premise),表示的是个别对象;第三个判断叫“结论”(conclusion),是从两个前提推导出来的判断。
例如:All mothers are women.(大前提)Mary is a mother.(小前提)Therefore Mary is a woman.(结论)上面这个例子所表示的是典型的三段论,通常称为“亚里士多德式”(Aristotelian style)。
亚里士多德(Aristotle)是古希腊哲学家,他提出的这种推论方式已沿用了两千多年,今天在我们的议论文写作中还得采用它。
但是,仅仅了解三段论的结构形式,还不能保证我们会运用它以得出正确的结论。
为了得出正确的、令人信服的结论,我们必须严格遵守下面规则:1)每一个三段论,只能有三个“项”(term),也称为“名词”。
如上例中只有Mary,mother,woman三个名词,违反这条规定便会出现“四名词错误”(the fallacy of four terms)。
例如:All Whisky contains alcohol.(大前提)This grape soda is a soft drink.(小前提)This grape soda contains alcohol.(结论)这个例子里出现了四个名词:Whisky,alcohol,grape soda,soft drink。
长期完整性的分层容错 论文翻译_0
长期完整性的分层容错论文翻译长期完整性的分层容错秉健春,佩特罗斯曼尼阿蒂斯英特尔研究大学伯克利分校斯科特 Shenker,约翰 Kubiatowicz 美国加州大学伯克利分校摘要通常,容错服务有关的假设类型和故障,他们可以容忍的最大数量这种故障时,同时提供其正确性的保证;阈值是侵犯性,正确性丢失。
我们重新审视的概念在长期归档存储方面的故障阈值。
我们注意到,故障阈值不可避免地长期违反服务,使得传统的容错不适用长期的。
在这项工作中,我们进行的再分配容错预算的一项长期的服务。
我们分裂投入服务件的服务,每一个都可以容忍不同没有失败的故障数(并不会造成整个服务失败):每件可在一个关键值得信赖的过错层,它必须永远不会失败,或不可信的故障层,它可以大量经常失败,或其他故障层次之间。
通过仔细工程的一项长期的服务分裂成片,必须服从不同的故障阈值,我们可以延长其必然灭亡。
我们证明了这一点做法 Bonafide,一个长期的 key - value 存储,与所有类似的文献中提出的系统,在保持完整性面对拜占庭故障,无需自我认证的数据。
我们描述了分层容错的概念,设计,实施, Bonafide 和实验1/ 3评价,并主张我们的做法是一个实际仍未显著改善在长期服务的艺术状态。
一,引言当前容错复制服务设计往往不适合长期的应用,如档案,数字文物,这是越来越重要的存储 [42],为企业的监管[5, 6],文化[36]原因。
从典型的故障假设这不合适结果这类系统的正确性空调。
例如,在典型的拜占庭容错(BFT)系统[13],它是假定复制故障副本的数目总是比一些不太固定阈值,如副本人口的 1 / 3。
在典型的短期的应用,这样一个 uniformthreshold 基于故障假设是合理的,可以实现的。
例如,可以说在一个 wellmaintained 人口多元化,高保证副本服务器,由当时总人口的三分之一被打破生长进入或刚刚出现故障,故障副本的运营商可以修复它们。
CCF推荐的国际学术会议和期刊目录修订版发布
CCF推荐的国际学术会议和期刊目录修订版发布CCF(China Computer Federation中国计算机学会)于2010年8月发布了第一版推荐的国际学术会议和期刊目录,一年来,经过业内专家的反馈和修订,于日前推出了修订版,现将修订版予以发布。
本次修订对上一版内容进行了充实,一些会议和期刊的分类排行进行了调整,目录包括:计算机科学理论、计算机体系结构与高性能计算、计算机图形学与多媒体、计算机网络、交叉学科、人工智能与模式识别、软件工程/系统软件/程序设计语言、数据库/数据挖掘/内容检索、网络与信息安全、综合刊物等方向的国际学术会议及期刊目录,供国内高校和科研单位作为学术评价的参考依据。
目录中,刊物和会议分为A、B、C三档。
A类表示国际上极少数的顶级刊物和会议,鼓励我国学者去突破;B类是指国际上著名和非常重要的会议、刊物,代表该领域的较高水平,鼓励国内同行投稿;C类指国际上重要、为国际学术界所认可的会议和刊物。
这些分类目录每年将学术界的反馈和意见,进行修订,并逐步增加研究方向。
中国计算机学会推荐国际学术刊物(网络/信息安全)一、 A类序号刊物简称刊物全称出版社网址1. TIFS IEEE Transactions on Information Forensics andSecurity IEEE /organizations/society/sp/tifs.html2. TDSC IEEE Transactions on Dependable and Secure ComputingIEEE /tdsc/3. TISSEC ACM Transactions on Information and SystemSecurity ACM /二、 B类序号刊物简称刊物全称出版社网址1. Journal of Cryptology Springer /jofc/jofc.html2. Journal of Computer SecurityIOS Press /jcs/3. IEEE Security & Privacy IEEE/security/4. Computers &Security Elsevier http://www.elsevier.nl/inca/publications/store/4/0/5/8/7/7/5. JISecJournal of Internet Security NahumGoldmann. /JiSec/index.asp6. Designs, Codes andCryptography Springer /east/home/math/numbers?SGWID=5 -10048-70-35730330-07. IET Information Security IET /IET-IFS8. EURASIP Journal on InformationSecurity Hindawi /journals/is三、C类序号刊物简称刊物全称出版社网址1. CISDA Computational Intelligence for Security and DefenseApplications IEEE /2. CLSR Computer Law and SecurityReports Elsevier /science/journal/026736493. Information Management & Computer Security MCB UniversityPress /info/journals/imcs/imcs.jsp4. Information Security TechnicalReport Elsevier /locate/istr中国计算机学会推荐国际学术会议(网络/信息安全方向)一、A类序号会议简称会议全称出版社网址1. S&PIEEE Symposium on Security and Privacy IEEE /TC/SP-Index.html2. CCSACM Conference on Computer and Communications Security ACM /sigs/sigsac/ccs/3. CRYPTO International Cryptology Conference Springer-Verlag /conferences/二、B类序号会议简称会议全称出版社网址1. SecurityUSENIX Security Symposium USENIX /events/2. NDSSISOC Network and Distributed System Security Symposium Internet Society /isoc/conferences/ndss/3. EurocryptAnnual International Conference on the Theory and Applications of Cryptographic Techniques Springer /conferences/eurocrypt2009/4. IH Workshop on Information Hiding Springer-Verlag /~rja14/ihws.html5. ESORICSEuropean Symposium on Research in Computer Security Springer-Verlag as.fr/%7Eesorics/6. RAIDInternational Symposium on Recent Advances in Intrusion Detection Springer-Verlag /7. ACSACAnnual Computer Security Applications ConferenceIEEE /8. DSNThe International Conference on Dependable Systems and Networks IEEE/IFIP /9. CSFWIEEE Computer Security Foundations Workshop /CSFWweb/10. TCC Theory of Cryptography Conference Springer-Verlag /~tcc08/11. ASIACRYPT Annual International Conference on the Theory and Application of Cryptology and Information Security Springer-Verlag /conferences/ 12. PKC International Workshop on Practice and Theory in Public Key Cryptography Springer-Verlag /workshops/pkc2008/三、 C类序号会议简称会议全称出版社网址1. SecureCommInternational Conference on Security and Privacy in Communication Networks ACM /2. ASIACCSACM Symposium on Information, Computer and Communications Security ACM .tw/asiaccs/3. ACNSApplied Cryptography and Network Security Springer-Verlag /acns_home/4. NSPWNew Security Paradigms Workshop ACM /current/5. FC Financial Cryptography Springer-Verlag http://fc08.ifca.ai/6. SACACM Symposium on Applied Computing ACM /conferences/sac/ 7. ICICS International Conference on Information and Communications Security Springer /ICICS06/8. ISC Information Security Conference Springer /9. ICISCInternational Conference on Information Security and Cryptology Springer /10. FSE Fast Software Encryption Springer http://fse2008.epfl.ch/11. WiSe ACM Workshop on Wireless Security ACM /~adrian/wise2004/12. SASN ACM Workshop on Security of Ad-Hoc and Sensor Networks ACM /~szhu/SASN2006/13. WORM ACM Workshop on Rapid Malcode ACM /~farnam/worm2006.html14. DRM ACM Workshop on Digital Rights Management ACM /~drm2007/15. SEC IFIP International Information Security Conference Springer http://sec2008.dti.unimi.it/16. IWIAIEEE International Information Assurance Workshop IEEE /17. IAWIEEE SMC Information Assurance Workshop IEEE /workshop18. SACMATACM Symposium on Access Control Models and Technologies ACM /19. CHESWorkshop on Cryptographic Hardware and Embedded Systems Springer /20. CT-RSA RSA Conference, Cryptographers' Track Springer /21. DIMVA SIG SIDAR Conference on Detection of Intrusions and Malware and Vulnerability Assessment IEEE /dimva200622. SRUTI Steps to Reducing Unwanted Traffic on the Internet USENIX /events/23. HotSecUSENIX Workshop on Hot Topics in Security USENIX /events/ 24. HotBots USENIX Workshop on Hot Topics in Understanding Botnets USENIX /event/hotbots07/tech/25. ACM MM&SEC ACM Multimedia and Security Workshop ACM。
mlc-llm 推理优化和大语言模型搭建解析
MLC-LLM推理优化和大语言模型搭建解析一、引言随着人工智能技术的不断发展和突破,机器学习和深度学习算法在自然语言处理领域得到了广泛应用。
其中,大语言模型(Large Language Model,LLM)以其出色的文本生成和推理能力受到了广泛关注。
本文将围绕MLC-LLM推理优化和大语言模型搭建进行解析,探讨其原理、应用以及未来发展方向。
二、MLC-LLM推理优化原理1. MLC-LLM简介MLC-LLM(Multi-Level Complementary-Learning Language Model)是一种结合了多层次互补学习的大语言模型。
它通过多层次的神经网络结构,融合了不同层次的语义信息,实现了更加准确和丰富的文本生成和推理能力。
2. 推理优化原理MLC-LLM推理优化主要包括以下几个方面:a. 多模态信息融合:通过整合文本、图像、声音等多模态信息,提升语言模型的推理能力。
b. 上下文理解:利用上下文信息和语境推断,优化语言模型的推理逻辑。
c. 反向传播机制:通过反向传播算法,不断优化语言模型的参数和权重,提高推理的准确性。
三、大语言模型搭建解析1. 数据预处理在搭建大语言模型时,首先需要进行数据预处理。
这包括数据清洗、分词、标注词性等过程,以确保语言模型能够正确理解和处理输入的文本信息。
2. 神经网络结构设计大语言模型的搭建离不开合理的神经网络结构设计。
通常采用的是Transformer等深度学习模型作为基础结构,通过堆叠多个Transformer块构建深层次的语言模型。
3. 参数优化训练在搭建大语言模型的过程中,需要进行大规模的参数优化训练。
这需要大量的数据集和计算资源,以不断调整和优化语言模型的参数,提高其性能和泛化能力。
四、MLC-LLM推理优化和大语言模型搭建的应用1. 自然语言生成MLC-LLM推理优化和大语言模型搭建在自然语言生成领域有着广泛的应用。
它可以生成具有逻辑和连贯性的文章、故事、对话等文本内容,广泛应用于智能客服、文案生成等领域。
acl 2023随笔 自然语言中的复杂推理
acl 2023随笔自然语言中的复杂推理自然语言中的复杂推理自然语言是人类交流和表达思想的主要方式之一。
然而,尽管人类在日常对话中能够轻松地进行复杂的推理,但要让计算机系统能够理解和进行类似的推理却是一项巨大的挑战。
在人工智能领域,自然语言处理(NLP)的发展旨在使计算机系统能够理解和处理自然语言。
其中一个重要的研究方向是如何使计算机系统能够进行复杂推理。
复杂推理是指基于已知事实和逻辑规则,通过推导和演绎得出新的结论。
这种推理过程需要对语义、逻辑和常识等多个层面进行综合考虑。
例如,当我们听到一句话“如果今天下雨,那么我就会带伞”,我们可以根据这个条件来判断如果今天确实下雨了,那么我就会带伞。
这种推理过程涉及到条件语句、逻辑关系以及我们对天气和带伞习惯等方面的常识。
在自然语言处理中,实现复杂推理需要解决多个问题。
首先是语义表示问题。
自然语言中存在歧义和多义现象,同一句话可能有不同的解释。
因此,需要将自然语言转化为计算机能够理解的形式,如逻辑形式或图形表示。
其次是推理规则的建模问题。
推理规则是指根据已知事实和逻辑规则进行推导和演绎的方法。
这些规则需要能够覆盖自然语言中各种复杂的推理情况,并且能够灵活地应对不同的语境和背景知识。
最后是常识表示和推理问题。
常识是人类在日常生活中积累的一种普遍知识,它对于理解和进行复杂推理至关重要。
因此,需要将常识以某种方式表示,并将其融入到推理过程中。
近年来,随着深度学习技术的发展,自然语言处理取得了一些重要进展。
例如,基于神经网络的模型可以通过大量数据进行训练,并学习到自然语言中的一些模式和规律。
这些模型可以用于语义表示、句法分析、情感分析等任务,并在某种程度上实现了对复杂推理的支持。
然而,目前仍然存在许多挑战和限制。
首先,复杂推理需要对大量的背景知识和常识进行建模。
目前的自然语言处理模型往往只能处理局部的语义和逻辑关系,对于全局的推理和常识表示仍然存在困难。
其次,复杂推理需要对不同层面的信息进行综合考虑,包括语义、逻辑、常识等。
面向计算机科学的数理逻辑系统建模与推理英文原版第二版教学设计
Teaching Design of Modeling and Reasoning in Mathematical Logic for Computer Science IntroductionMathematical Logic is a fundamental branch of mathematics thatstudies reasoning and inference. It provides a systematic approach to reasoning and problem-solving that can be applied to various fields, including computer science. In this teaching design, we will be usingthe second edition of the English original text entitled Modeling and Reasoning with Mathematical Logic: An Introduction for Computer Scientists.The m of this teaching design is to introduce students to the basics of mathematical logic and its applications to computer science. We will cover topics such as propositional logic, predicate logic, set theory, and proofs. In addition, we will use examples and exercises that are relevant to computer science, such as programming language semantics, databases, and artificial intelligence.Course ObjectivesUpon completion of this course, students should be able to:1.the principles of mathematical logic and its applications in computer science.2.and reason about various problems usingpropositional and predicate logic. 3.the basics of set theory and itsuse in modeling problems. 4.simple theorems using mathematical reasoning.5.the principles of mathematical logic in programming language semantics, database design, and artificial intelligence.Course OutlineChapter 1: Introduction to Mathematical LogicIn this chapter, we will provide a brief introduction tomathematical logic and its history. We will also introduce the syntaxand semantics of propositional logic, including truth tables and logical equivalence.Chapter 2: Reasoning with Propositional LogicIn chapter 2, we will cover the basics of reasoning withpropositional logic, including deductions, proofs, and the resolution method. We will also use examples and exercises that are relevant to computer science, such as circuit design and programming language semantics.Chapter 3: Predicate LogicChapter 3 introduces predicate logic, which extends propositional logic by adding quantifiers and predicates. We will cover the syntax and semantics of predicate logic, as well as the first-order logic. We will also use examples and exercises that are relevant to computer science, such as databases and artificial intelligence.Chapter 4: Set TheoryChapter 4 introduces the basics of set theory, including set operations, relations, and functions. We will cover the axiomatic foundations of set theory, as well as the ZFC axioms. We will also useexamples and exercises that are relevant to computer science, such as programming language semantics and databases.Chapter 5: Reasoning with Sets and RelationsIn chapter 5, we will apply our knowledge of set theory andpredicates to reason about sets and relations. We will cover basic set operations, equivalence relations, and partial orders. We will also use examples and exercises that are relevant to computer science, such as database normalization and graph algorithms.Chapter 6: Proofs and TheoremsChapter 6 introduces the basics of mathematical proofs and theorem proving. We will cover various proof techniques, including direct proofs, proofs by contradiction, and mathematical induction. We will also use examples and exercises that are relevant to computer science, such as program verification and testing.Teaching MethodologyThe teaching methodology will include lectures, in-class problem-solving, and assignments. In the lectures, we will cover the theory and principles of mathematical logic and their applications in computer science. In the problem-solving sessions, we will work through examples and exercises to reinforce the concepts covered in the lectures. Finally, the assignments will be designed to test students’ understanding of the course material.AssessmentThe assessment will be based on assignments (40%), mid-term examination (30%), and final examination (30%).ConclusionIn conclusion, this teaching design provides a systematic approachto teaching mathematical logic and its applications in computer science. By the end of the course, students will have a solid foundation in mathematical logic that they can apply to various areas in computer science.。
模糊和精准二元作文
模糊和精准二元作文English:Fuzzy logic is a type of binary logic that allows for degrees of truth rather than simply true or false values. It is especially useful for handling applications that involve uncertainty and incomplete information. Fuzzy logic deals with vague or imprecise information by assigning a degree of membership to each element in a set. For example, in the statement "the weather is hot," traditional logic would only allow for it to be either true or false. However, in fuzzy logic, the statement can be assigned a degree of truth, such as , indicating a high likelihood of the weather being hot. This flexibility and ability to handle ambiguity make fuzzy logic suitable for a range of applications, including control systems, decision-making models, and pattern recognition tasks. On the other hand, precise logic is based on crisp, well-defined rules and values. It aims to establish a clear distinction between true and false, without any intermediary states. In precise logic, a statement is either true or false, with no room for uncertainty or partial truth. Precise logic is often used in applications that require exact information and precise decision-making, such as mathematics, scientific experiments, and computer programming. While fuzzy logic allows for the incorporation of uncertainty and imprecision, precise logic offers a more deterministic approach, focusing on precise and exact values. Both fuzzy and precise logic have their strengths and weaknesses, and the choice between them depends on the specific requirements of the application at hand.中文翻译:模糊逻辑是一种二元逻辑,它允许存在真实度或者真假度的程度,而不仅仅是简单的真或假。
计算机体系结构-量化研究方法笔记2
计算机体系结构-量化研究方法笔记2一、概述在计算机科学领域,计算机体系结构是一个重要的研究方向。
量化研究方法可以帮助我们更好地理解和分析计算机体系结构的复杂性,从而为优化和改进计算机系统提供支持。
本文将就计算机体系结构的量化研究方法进行笔记整理,并对相关内容进行深入探讨。
二、量化研究方法的基本概念1. 量化研究方法的定义量化研究方法是一种通过定量数据和分析技术来研究问题和现象的方法。
在计算机体系结构领域,量化研究方法可以帮助我们收集和分析系统性能数据、硬件指标、指令级别的执行统计等信息,从而更好地了解计算机系统的特性和性能表现。
2. 量化研究方法的优势量化研究方法可以提供客观、可验证的数据和结论,有利于科学研究的的严谨性和可靠性。
通过量化分析,我们可以深入挖掘计算机体系结构的内在规律和特点,为系统设计和优化提供有效的依据。
三、量化研究方法在计算机体系结构中的应用1. 性能评估与优化在计算机体系结构研究中,性能评估与优化是一个重要的课题。
量化研究方法可以帮助我们通过实验数据和分析来评估系统的性能,找到系统瓶颈并进行相应的优化。
通过量化分析,我们可以发现系统运行过程中的性能瓶颈,提出优化方案并验证其有效性。
2. 硬件设计与验证在计算机体系结构的硬件设计与验证中,量化研究方法同样具有重要作用。
通过收集和分析硬件指标、延迟统计、能耗数据等信息,我们可以对硬件设计方案进行量化评估,验证设计的可行性和性能表现。
3. 架构模拟与分析在计算机体系结构的研究中,架构模拟与分析也是一个重要的方向。
量化研究方法可以为架构模拟和分析提供数据支持,帮助我们对系统进行深入分析、研究和验证,从而发现系统的特性和行为规律。
四、量化研究方法在实际工作中的挑战与应对1. 数据收集的难点在实际工作中,数据收集往往是一个比较困难的环节。
不同的计算机系统、应用场景、工作负载等因素都会对数据收集产生影响,因此如何有效地进行数据收集是一个需要仔细考虑和处理的问题。
描述逻辑手册15章翻译(部分)
描述逻辑手册15章翻译(部分)[ 2008-1-23 21:21:00 | By: lvxiu ] 自然语言处理自KL-ONE的早期开始,描述逻辑的主要应用之一就是自然语言处理中的语义解释。
语义解释是将语句的语法分析转化为其逻辑形式的一种推导过程。
典型地,描述逻辑被用于编码知识库,该知识库含语法、语义元素以辅助语义解释过程。
知识库的一部分组成词汇语义知识,将词及其语法属性与概念结构联系起来,另一部分描述上下文及领域知识,以描述概念深层含义。
语义解释自然语言组成部分例如名词短语或者动词短语,其用以进行语义表示的逻辑形式的一个基本属性即组合性,即整体的语义表示是其各个子部分语义表示的组合。
这样即使得语法结构与逻辑形式之间可以有紧密的对应关系。
这样,基于语法规则的解析器即可以使用对应的逻辑组合的语汇语义规则(指名各子部分的逻辑表示如何组合以形成整体的逻辑表达)增量地构造语义表示。
因此,每一个词都对应一个逻辑表达式,用来形成用它组成的整体的逻辑表达式。
可以在解析过程中进行有效的语义消歧。
解析器在组合构造整体的逻辑式的每一阶段,通过检查逻辑形式的不一致性排除语义上不合理的解释,这样可以排除许多语法上合理而语义上不合理的解释。
这种消歧在特定领域里非常有效,领域知识可以极大地减少整体可能有的逻辑形式的数量。
显然,给定的上下文及领域知识越多,消歧效果越好。
因此,逻辑形式的一致性检查起到了一个通用的选择限制作用。
一个词的概念应该包含语法关系例如同义,上下位关系,不兼容性,以及词条中预计变元的子类信息。
例如动词paint可概念化为一个事件,这一事件有一施动者词干角色,对应于带有特定选择约束即概念生物名词的主语变元。
语义词条应指名语法结构与概念信息之间合适的对应关系。
例如句子“A painter pai nts a fresco”包含概念Painter、Fresco 及Paint,同时概念Paint有两个词干角色,一个施动者及一个受动者,它们各自的选择约束条件分别是生物名词及非生物名词。
计算机体系结构书籍
计算机体系结构书籍
《计算机组成与设计:硬件/软件接口》
作者:David A. Patterson, John L. Hennessy
《现代操作系统》
作者:Andrew S. Tanenbaum, Herbert Bos
《计算机网络:自顶向下方法》
作者:James F. Kurose, Keith W. Ross
《深入理解计算机系统》
作者:Randal E. Bryant, David R. O'Hallaron
《计算机体系结构:量化方法》
作者:John L. Hennessy, David A. Patterson
《计算机组成原理》
作者:Carl Hamacher, Zvonko Vranesic, Safwat Zaky
《计算机体系结构:量化研究方法》
作者:John L. Hennessy, David A. Patterson
《高级计算机体系结构》
作者:Henrik Haggren, Jarmo Takala, Erkki Lassila
《计算机体系结构与设计:透视与概念》
作者:William Stallings
《设计计算机体系结构:从并行到互联网》
作者:Mile Stojcev
《计算机体系结构导论》
作者:John L. Hennessy, David A. Patterson
以上书籍都是关于计算机体系结构方面的经典教材,涵盖了计算机硬件与软件接口、操作系统、计算机网络、计算机组成与设计、计算机系统性能评估等主题,适合计算机相关专业学生和从事计算机体系结构研究的读者阅读。
永不丢失数据的笔记本——HP EliteBook 6930p诠释“功能主义设计哲学”
永不丢失数据的笔记本——HP EliteBook 6930p诠释“功
能主义设计哲学”
佚名
【期刊名称】《信息方略》
【年(卷),期】2009(000)007
【摘要】近日,围绕其商务笔记本系列产品,惠普以前瞻性的战略眼光,探索推进了“功能主义设计哲学”的理念——这是一个站在用户的立场,让一台笔记本电脑承载的每项功能都有具体依托的设计理念。
“
【总页数】1页(P11)
【正文语种】中文
【中图分类】TP368.32
【相关文献】
1.永不丢失数据的笔记本——HP EIiteBook 6930p诠释"功能主义设计哲学" [J], 付凯
2.HP EliteBook 8440p笔记本电脑面面观 [J],
3.永不丢失数据的笔记本——HP EliteBook 6930p诠释“功能主义设计哲学” [J],
4.HP EliteBook 8460p笔记本电脑 [J],
5.引人注目偷窃勿扰 HP EliteBook x360 1030 G2笔记本电脑 [J], 刘忆冰
因版权原因,仅展示原文概要,查看原文内容请购买。
Oracle CRM Application Foundation 用户指南说明书
Part I Resource Manager
1 Introduction to Oracle Resource Manager
1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.3
Overview of the Oracle Resource Manager....................................................................... 1-1 What is the Resource Manager?................................................................................... 1-2 What are Resources? ...................................................................................................... 1-3 Understanding Roles ..................................................................................................... 1-4 Understanding Groups ................................................................................................. 1-6 Determining Group Hierarchy..................................................................................... 1-7 Understanding Teams ................................................................................................... 1-7 What is a Salesperson? .................................................................................................. 1-8 How are the Different Resource Name Fields Used? ............................................... 1-8
深入理解与探索:电脑编程的核心逻辑与工作机制
深入理解与探索:电脑编程的核心逻辑与工作机制Title: A Comprehensive Dive into the Fundamentals and Inner workings of Computer ProgrammingIn today's digital era, computer programming has become an essential skill that drives innovation and technological advancements. At its core, programming is a methodical process of giving instructions to computers, allowing them to perform tasks, interact with users, and solve problems efficiently. Understanding the fundamental logic and mechanisms behind programming is crucial for anyone seeking to master this craft.1. Fundamental Logic:The basic logic of programming revolves around the four main concepts: variables, data types, control structures, and functions.- Variables: Variables are placeholders for storing data. They have a name and a type (e.g., integers, strings) that determines the kind of information they can hold. They allow programmers to manipulate data dynamically during program execution.- Data Types: These classify the different kinds of values avariable can hold. Examples include integers, floating-point numbers, characters, and Boolean values (true/false).- Control Structures: These include conditional statements (if-else), loops (for, while), and branching (switch-case). They dictate how the program flows based on conditions or repetitive actions.- Functions: Functions are reusable blocks of code that perform specific tasks. They help in modular programming, making code more organized and easier to maintain.2. Mechanisms at Work:- Algorithms: The heart of programming is algorithms, which are step-by-step procedures to solve a problem. They define the logic flow of a program, from input to output.- Memory Management: Computers store data in memory, which can be either RAM (Random Access Memory) for temporary storage or persistent storage like hard drives. Programmers must understand how to allocate and deallocate memory effectively.- Execution Environment: The programming language interpreter or compiler translates source code into machine-readable instructions, which the computer's processor executes. This process involves parsing, compilation, and interpretation.- Input/Output Operations: Programs interact with users through input devices (e.g., keyboard, mouse) and generate output on screens, files, or other devices. Managing these interactions is crucial for creating user-friendly applications.3. Exploring Further:To delve deeper into programming, it's important to study:- Object-Oriented Programming (OOP): This paradigm emphasizes the use of objects, which encapsulate data and behavior, promoting reusability and modularity.- Data Structures: Arrays, lists, trees, graphs, and queues are fundamental data structures that help organize and manipulate data efficiently.- Debugging and Testing: Identifying and fixing errors (bugs) is a critical part of programming. Debugging tools and testing methodologies are essential for ensuring code quality.- Concurrency and Parallelism: As hardware capabilities increase, understanding how to write concurrent and parallel programs becomes vital for efficient resource utilization.In conclusion, understanding the core logic and工作机制 of computer programming is a journey that begins with grasping the fundamentals and expands into a deep exploration of various concepts and techniques. It's a continuous learning process that requires patience, practice, and a passion for problem-solving. By mastering these principles, one can unlock the power of technology and contribute to the ever-evolving digital landscape.中文翻译:在当今数字化时代,计算机编程是一项关键技能,它推动着创新和科技进步。
英文作文逻辑与修辞
英文作文逻辑与修辞英文:When it comes to writing an essay, there are two important aspects that need to be considered: logic and rhetoric.Firstly, logic is the backbone of an essay. It refers to the structure and coherence of the argument presented. A well-structured essay should have a clear introduction, body paragraphs that support the thesis statement, and a conclusion that summarizes the main points. Each paragraph should have a clear topic sentence and provide evidence to support the argument. Additionally, the essay should flow logically from one point to the next, with each paragraph building upon the previous one.On the other hand, rhetoric refers to the use of language to persuade or influence the reader. It includes the use of literary devices such as metaphors, similes, andpersonification, as well as the use of persuasive language and emotional appeals. A well-written essay should not only present a logical argument, but also engage the reader and evoke an emotional response.For example, consider the following sentence: "The sun was shining brightly." This sentence is straightforward and factual, but it does not engage the reader. However, if we use a simile and say "The sun was shining like a diamond in the sky," it not only provides a visual image for the reader, but also makes the sentence more interesting and engaging.In conclusion, both logic and rhetoric are important aspects of writing an effective essay. While logic provides the structure and coherence of the argument, rhetoric adds depth and engagement to the writing.中文:写作文章时,需要考虑两个重要方面,逻辑和修辞。
作文如何形成完整的逻辑链
作文如何形成完整的逻辑链英文回答:To form a complete logical chain in an essay, it is important to have a clear structure and flow of ideas. Here are some steps to achieve this:1. Introduction: Start with a captivating opening sentence or a thought-provoking question to grab thereader's attention. Provide some background information on the topic and state your thesis statement.2. Body paragraphs: Each body paragraph should focus on one main idea or argument that supports your thesis statement. Begin each paragraph with a topic sentence that introduces the main idea. Then, provide supporting evidence, examples, or explanations to strengthen your argument. Use transitional words or phrases to smoothly connect yourideas and maintain a coherent flow.3. Organization: Arrange your body paragraphs in a logical order. You can choose to present your arguments in a chronological, cause-effect, or problem-solution manner, depending on the nature of your topic. Make sure there is a clear connection between each paragraph and that they build upon each other.4. Counterarguments: Address potential counterarguments or opposing viewpoints in your essay. Acknowledge these perspectives and provide a rebuttal to strengthen your own argument. This shows that you have considered different viewpoints and strengthens the overall logic of your essay.5. Conclusion: Summarize your main points and restate your thesis statement in a concise and impactful way. Avoid introducing new information in the conclusion. End with a strong closing statement that leaves a lasting impression on the reader.中文回答:要形成一篇完整的逻辑链,文章需要具备明确的结构和思路。
计算机程序设计艺术4b译本
计算机程序设计艺术4b译本
《计算机程序设计艺术4b译本》是图灵奖得主高德纳所著的关于算法分析的多卷论著之一。
该译本的内容丰富,主要讨论了生成所有树这一主题,并全面地讨论了这一著名主题,提供了124个新的练习,继续为程序设计打下坚实的基础。
同时,本册还论述了组合生成的历史,对几个文明古国及其他国家在这方面的历史进行了透彻的研究和精辟的分析。
《计算机程序设计艺术4b译本》是程序设计理论和实践的珍贵源泉,对个人的深远影响得到了无数读者的赞扬。
如果你对计算机程序设计艺术感兴趣,可以阅读该译本以获取更多信息。
模糊推理全蕴涵算法及其还原性
模糊推理全蕴涵算法及其还原性
模糊推理全蕴涵算法及其还原性
模糊推理全蕴涵算法(Fuzzy Inference Full Embedding Algorithm,FIFE)是一种用于解决模糊推理问题的有效方法,它可以根据给定的
输入数据,提取出更少的推理规则,然后推导出更多的结果,提供更
为全面的推理。
FIFE是一种模糊推理算法,它可以根据输入数据来建
立一组规则,以帮助模糊推理系统更好地处理问题。
在FIFE算法中,系统会根据输入数据提取出一组规则,并将这些规则
用于推断出更多的结果。
这种规则推理方法的优势在于,它可以根据
输入数据自动构建一组规则,并将这些规则用于推断出更多的结果,
使得模糊推理系统可以更好地处理问题。
FIFE算法具有还原性,也就是说,它可以根据输入数据自动构建一组
规则,并将这些规则用于推断出更多的结果,最终推导出输入数据的
原始模糊推理问题的解决方案。
这种还原性的优势在于,它可以提供
更好的灵活性,使得模糊推理系统可以更高效地处理问题。
总之,FIFE是一种有效的模糊推理算法,它可以根据输入数据构建规则,从而推导出更多的结果,并具有还原性,可以提供更好的灵活性,以帮助模糊推理系统更好地处理问题。
汹涌澎湃汹涌澎湃汹涌澎湃汹涌澎湃
重构的全面介绍如果查看当今任何主要集成开发环境(IDE),必然会在某些地方发现“重构”选项。
如果继续跟随编程社区的开发行为,那么肯定会发现很多与该主题相关的文章和书籍。
对于某些编程人员来说,自设计模式开始,重构就是编程过程中最重要的开发技术。
与其他时尚的东西不同,因为重构可以帮助编程人员和编码员更好且更有成效地工作,所以他们都很乐于接受并热心传播这项技术。
毫无疑问,不管使用的是什么工具、编程语言,也无论正在开发什么类型的程序,重构的应用已经成为编程人员日常工作中非常重要的部分。
C#就是其中之一;目前,大量的开发人员使用C#语言来完成重构,同时很多优秀且成熟的工具可用于自动完成重构过程。
本章包含以下内容:● 重构的含义以及它的重要性● 重构带来的好处● 有关重构的一些常见错误看法● 有关C#编程语言的一些具体情况,以及重构是如何与C#语言密切相关的下面首先介绍一些与重构相关的背景。
1.1 重构的快速浏览在处理某些编程任务时,可以使用很多方法来完成。
虽然只是从一个概念开始的,但是随着进一步了解细节信息,难免遇到这些问题:“是否应该把这种方法放到类中或可能的其他类中?是使用类表示数据类型,还是直接使用基本类型?是否要把这个类分成多个部分?两个类之间是否存在继承关系或是否应该只是使用组合?”如果与其他同事交流这些想法,那么可能会听到更多关于设计系统的方法。
然而,一旦决定使用某种方法,那么后面如果要更改最初的决定将付出高昂的代价。
重构将教会读者如何高效地修改代码,这样将把因为这些更改而产生的影响保持在最低水平。
此外,重构还将帮助把设计视为在项目任何阶段都可以予以处理的问题,而不是从一开始就一成不变的。
事实上,可以通过十分灵活的方式处理设计问题。
第 章 1代码重构(C# & ASP .NET 版)2所有的设计决策都是人们依靠知识、经验和创造性获得的产物。
然而,编程是一个非常广的领域,权衡设计的优缺点是一件十分棘手的事情。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Logical Full Abstraction and PCFJohn Longley Gordon PlotkinNovember27,2000AbstractWe introduce the concept of logical full abstraction,generalising the usual equational notion.We consider the language PCF and twoextensions with“parallel”operations.The main result is that,forstandard interpretations,logical full abstraction is equivalent to equa-tional full abstraction together with universality;the proof involvesconstructing enumeration operators.We also consider restrictions onlogical complexity and on the level of types.1IntroductionThe study of denotational semantics seeks to provide mathematical descrip-tions of programming languages by giving denotations of programs in terms of previously understood mathematical structures.For example,if P is a program that takes an input and produces an output,we might take its de-notation to be a function from a set of input-values to a set of output-values. The most widely-known approach to denotational semantics is that of tra-ditional domain theory(see e.g.,[14]),where the mathematical structures involved are certain kinds of complete partial order(cpo).Other kinds of mathematical structure have also been used successfully—for a selection of different approaches see[1,11,13].One of the principal aims of denotational semantics is to deepen our un-derstanding of the logic of programming languages,and to provide concep-tual and mathematical tools for reasoning about programs.A more specific goal is to provide mathematical foundations for“program logics”of a kind that could be used by ordinary programmers.Denotational semantics can be used to establish relationships between a programming language L and a logic J.By giving interpretations of both L and J in some common mathematical structure M,we may be able to show that if certain theorems are provable in the logic then certain properties of programs hold—for example,that if the sentence P(3)=5is provable in J then the program P(3)returns the answer5.Such a result would show that the logic J was indeed useful for proving certain facts about programs in L.1In this kind of situation we have a way of directly understanding the meaning of certain simple sentences of J(e.g.,P(3)=5)as statements about computations in L.One is then prompted to ask whether one could extend this to all sentences of the logic,and give an interpretation of J purely in terms of the language L and its evaluation rules,without reference to the structure M.For example,one might interpret quantifiers as ranging over closed programs or terms of appropriate type.We might call this an operational interpretation of J,in contrast to its denotational interpretation in M.Besides the intrinsic interest of such an interpretation,it seems likely that an operational interpretation would be more easily grasped by a non-specialist than a denotational one.Now,given a logic J with both an operational interpretation in terms of L and a denotational interpretation in M,it is natural to ask whether these“agree”in the sense that a sentence is true under one interpretation if and only if it is true under the other.In this case,we will say that the interpretation of L in M is logically fully abstract(or LFA)for J.A logically fully abstract interpretation can be used to show that all sentences provable in J express true facts about L under the operational interpretation.Note that the familiar notion of(equational)full abstraction can be seen as a spe-cial case of logical full abstraction:consider a logic J whose only assertions are equations between terms of L,and whose operational interpretation is “observational equivalence”.Both the general concept and the name“logical full abstraction”are due to the second author,though the idea wasfirst worked out in thefirst author’s Ph.D.thesis[11].The idea as we have outlined it above is of course extremely general,as it depends not only on L and J but also on the kinds of operational and denotational interpretation we have in mind.The aim of the present paper is to illustrate the basic idea by discussing one particular kind of logical full abstraction,in the context of a simple logic for the prototypical functional language PCF(see[14,3]).We anticipate that the study of other notions of logical full abstraction(whether for PCF or other languages)will prove a very interesting area for further research.The study of equational full abstraction commonly results in theories of extensional objects,often of functions and data structures;these objects have a natural mathematical structure,perhaps of order-theoretic,topo-logical or algebraic character.The study here of logical full abstraction results rather in intensional concerns,such as the study of definability and so of computability.These distinctions harken back to Scott’s original ex-plicit choice[16,17]to investigatefirst extensional theories and only then to consider questions of computability and of the relation with symbolic computation.They also bring to mind the much more recent programme of synthetic domain theory,where one tries to integrate the different ap-proaches by working in,for example,the effective topos[7].One should also2remark that intensional aspects may nonetheless play a role in the study of equational full abstraction—see the study of games in[1,8].The rest of the paper is structured as follows.In Section2we review the definitions of the three versions of PCF that we will consider.We also define the syntax of a program logic for these languages,and propose a simple operational interpretation of this logic.In Section3we introduce a very general notion of denotational interpretation for our languages,and show how such an interpretation gives rise to a denotational interpretation of the logic.We thus obtain a notion of logical full abstraction.In Section4we prove the main result of the paper:a standard interpretation is LFA if and only if it is both equationally fully abstract(EFA)and universal(meaning, roughly,that every element of the model is definable).We end in Section5 with a few further observations,and mention some open questions and some avenues for future investigation.In particular,we consider restrictions on logical complexity and on the level of types.For example,it follows from our main theorem that a standard interpretation is LFA iffit isΠ2-LFA(i.e., LFA forΠ2-sentences).There are standard interpretations which are EFA, but notΠ1-LFA;it is an open question whether there are any interpretations which areΠ1-LFA but notΠ2-LFA.2PCF and its LogicPCF is an extension of the simply-typedλ-calculus with arithmetic operators and general recursion.It can be regarded as a prototypical“sequential”functional language;an understanding of PCF is thus an important step towards an understanding of modern functional languages such as Haskell, Miranda and ML.We begin by reviewing the syntax and evaluation rules for PCF,and for two extensions,PCF+and PCF++,obtained by adding “parallel”operations.All three of these languages appear essentially in[14]; the formulations here differ in two inessential respects:one is the absence of a Boolean type;the other is the use of a“parallel-or”constant rather than a parallel conditional(for which see[18]).The types of PCF are built up from a single ground typeι(the natural numbers)using the right-associative binary type constructor→;we write M:σto mean“M is a term of typeσ”.For each typeσwe have a countably infinite set of variables of typeσ,ranged over by xσ,yσ,zσ,...;we also have the following collection of constants:0,1,2,...:ι,cond:ι→ι→ι→ι,succ,pred:ι→ι,Yσ:(σ→σ)→σ.The terms of PCF are built up from the variables and constants as usual in the simply-typedλ-calculus:3•if M:τ,then(λxσ.M):σ→τ;•if M:σ→τand N:σ,then(MN):τ.We frequently omit unnecessary parentheses,taking juxtaposition to be left-associative;we also omit type superscripts on variables,when this causes no ambiguity.We identify terms up to change of bound variables(α-conversion);we write M[N1/xσ11,...,N n/xσn n]for capture-avoiding simul-taneous substitution(where N1:σ1,...,N n:σn).An environment is afinite non-repetitive list xσ11,...,xσn n of variables (where n≥0);the empty environment is written .We say that M is a term of typeσin environmentΓ(and writeΓ M:σ)if M:σand all the free variables of M occur inΓ.If xσis a variable not inΓ,we writeΓ,xσfor the environment obtained by appending xσtoΓ.The evaluation rules for PCF are given by defining a notion of reduction (or rewriting)on closed terms.Specifically,we inductively define a binary relation M→N on closed terms of the same type as follows(here n ranges over the numerals0,1,2,...):•(λxσ.M)N→M[N/xσ];•succ n→(n+1),pred(n+1)→n,pred0→0,cond0NP→N, cond(n+1)NP→P,YσM→M(YσM);•if M→M then MN→M N;•if M→M :ιthen succ M→succ M ,pred M→pred M ,cond MNP→cond M NP.We think of→as a“one-step reduction relation”;we write→+for its transitive closure,and→∗for its transitive reflexive closure.We say that a term M:ιterminates if M→∗n for some(necessarily unique)numeral n.The language defined above is intuitively“sequential”—no two subterms of a term are ever evaluated“in parallel”.We now introduce two extensions of PCF including parallel operators.The language PCF+is defined in the same way as PCF except that we add an extra constant por:ι→ι→ι(“parallel-or”),together with the reduction rules:•por0M→0,por M0→0,por(m+1)(n+1)→1;•if M→M :ιthen por MN→por M N,por NM→por NM .The syntax of PCF++is defined in the same way as PCF+,except that we add a further constant exists:(ι→ι)→ι(“existential quantification”).Its reduction rules are those for PCF+together with the following,writingΩσfor Yσ(λxσ.x):•if Mn→+0for some n,then exists M→0;4•if MΩι→+m+1,then exists M→1.We say that a one-step reduction M→M is deterministic if whenever M→M then M =M ,and write M→d M for this relationship.Note that whereas for PCF every one-step reduction is deterministic,this is not so for PCF+and PCF++.Nevertheless,in all these languages evaluation is deterministic:if M→∗n and M→∗n then n=n .(In fact the more general Church-Rosser Property holds,that if M→∗N i,for i=1,2,then for some P,N i→∗P,for i=1,2).We need some standard notions.Suppose L is one of the three languages PCF,PCF+or PCF++.A(one-place)term context C[]of L is a term of L with zero or more holes,to befilled by a term of appropriate type.Two terms M,M :σare observationally equivalent(and we write M≈M )if for all term contexts C[]such that C[M],C[M ]are closed terms of typeιwe have C[M]→∗n iffC[M ]→∗n.The Context Lemma characterises this equivalence.When M and M are both closed,the lemma asserts that for σ=σ1→···→σh→ι,M≈M ifffor all closed terms N1:σ1,...,N h:σh and numerals n,MN1...N h→∗n iffM N1...N h→∗n(a more general version for open terms is easily derived).An operational proof of the Context Lemma for PCF can be found in[12,3]and similar proofs can be obtained for PCF+and PCF++;for these latter two languages it is also a consequence of the facts that the usual cpo model is adequate and that allfinite elements are definable(see Section3below for a definition of adequacy).Operational soundness(that is,if M→∗N then M≈N)is a consequence of the Context Lemma,together with the Church-Rosser Property.Now that we have defined the languages of interest,we introduce the syntax of a simple many-sorted program logic J L,much in the spirit of LCF [5].We believe that this is the kind of logic that would in principle be useful for specifying and proving properties of programs.The sorts of J L are the types of L;the expressions of sortσin J L are precisely the terms of typeσin L;and the logical variables of sortσare just the term variables of typeσ. The syntax of the formulae of J L is as follows(here M,N are expressions of the same type and P:ι):φ::=⊥|M=N|P⇓|φ1∧φ2|φ1∨φ2|φ1⊃φ2|∀xσ.φ1|∃xσ.φ1. Note that J L is really a many-sortedfirst-order logic—we have a sepa-rate ground sort for each typeσ.We identify formulae up to change of bound variables(α-conversion);we writeφ[N1/xσ11,...,N n/xσn n]for capture-avoiding simultaneous substitution into formulae(where N1:σ1,...,N n:σn). We will not be specific here about the axioms and inference rules of J L,how-ever we essentially have in mind those of classicalfirst-order logic.Next we give a simple operational interpretation of J L;this gives us a way of translating formulae into statements about computations in L.We5define a relation|=opφ(read“φis operationally true”)on sentences(i.e., closed formulae)of J L as follows:•|=op⊥doesn’t hold;•|=op(M=N)iffM≈N;•|=op(P⇓)iffP terminates;•|=opϕ∧ψiff|=opϕand|=opψ;•|=opϕ∨ψiff|=opϕor|=opψ;•|=opϕ⊃ψiffeither|=opϕor|=opψ;•|=op∀xσ.ϕiff|=opϕ[M/x]for all closed M:σ;•|=op∃xσ.ϕiff|=opϕ[M/x]for some closed M:σ.We extend the relation|=op to all formulae as follows:ifφhas free variables among x1,...,x n,then|=opφiff|=opφ[M1/x1,...,M n/x n]for all closed expressions M1,...,M n of appropriate types.Notice that the notion of operational truth only requires concepts re-lating to L itself—we are thus hopeful that this interpretation of the logic would be readily understood by a non-specialist.However,we should point out that operational interpretations of the formulae of J L other than the “classical”one we have given are possible—for an alternative(arguably more “computational”)interpretation see[11,Section8.2].3Denotational Interpretations of PCFWe now introduce a very general notion of denotational interpretation for our languages;it is convenient to use the language of category theory.Given a category C withfinite products,we interpret types of L by objects of C, and terms of L by morphisms of C;we also need a semantic correlate of termination.We therefore say that an interpretation I of L in C is given by the following data:•for each typeσan object I[[σ]]of C(and for each environmentΓ=xσ11,...,xσn n we write I[[Γ]]for I[[σ1]]×···×I[[σn]]);•for each L-term M:σin environmentΓa morphism I[[Γ M]]from I[[Γ]]to I[[σ]](and if M is closed we write I[[M]]for I[[ M]]);•a set T⊂Hom(1,I[[ι]])(to be thought of as the set of“fully defined”or“terminating”elements of I[[ι]]).We impose two requirements.First,for any environmentΓ=xσ11,...,xσn n we require that I[[Γ xσi i]]:I[[Γ]]→I[[σi]]be the evident projection,for61≤i≤n.Second,we require that I be compositional in the following sense:ifΓ=xσ11,...,xσn n,Γ M:τand∆ N i:σi,for1≤i≤n,thenI[[∆ M[N1/x1,...,N n/x n]]]=I[[Γ M]]◦ I[[∆ N1]],...,I[[∆ N n]] . That is,tupling and composition in C corresponds to substitution in L.This definition of interpretation for L is extremely weak(we do not require C to be cartesian-closed,for instance),but it suffices for our purposes. The most familiar concrete example is given by the category of cpos:all three of our languages have a canonical interpretation in this category(see[14]).The following concepts will play a significant role in the rest of the paper:•I is sound if M→M implies I[[M]]=I[[M ]];•I is adequate if for all closed M:ιwe have I[[M]]=I[[n]]iffM→∗n;•I is equationally fully abstract(EFA)if for all closed M,M :σwe have I[[M]]=I[[M ]]iffM≈M ;•I is atomically fully abstract(AFA)if it is EFA and for all closed M:ιwe have I[[M]]∈T iffM terminates;•I is universal if every morphism f:1→I[[σ]]in C is definable (meaning that there is a closed term M:σsuch that I[[M]]=f);•I is standard if every morphism1→I[[ι]]is definable and the set Tof fully defined elements is{I[[n]]|n is a numeral}.Our definitions of equational full abstraction and universality are weak in that they involve only closed terms—in our general setting it is not possible to deduce the corresponding stronger facts for open terms(and arbitrary morphisms).However,the two notions of full abstraction coincide if the interpretation modelsβ-conversion.Further,the two notions of universality coincide if the interpretation is cartesian-closed(by which we mean that the underlying category is cartesian closed,and that the higher-order types,λ-abstraction and application are interpreted accordingly—see[10];this prop-erty implies that the interpretation modelsβη-conversion).It follows from operational soundness that any EFA interpretation is sound.Note that the usual interpretation in cpos is sound,adequate,standard and cartesian closed;it is AFA for PCF+and PCF++but not EFA for PCF(see[14]).Next we show how any interpretation I of L gives rise to a denota-tional interpretation of J L.First some notation:For each typeσlet Sσbe Hom(1,I[[σ]]);we may think of Sσinformally as the set of“elements”of I[[σ]].For each environmentΓwe also let SΓbe Hom(1,I[[Γ]]).Then when-everΓ M:σwe have the set-theoretic function I[[Γ M]]◦−:SΓ→Sσ.For any formulaφwith FV(φ)⊆Γ,we can now define a subset[[φ]]Γof SΓ,corresponding intuitively to the set of tuples of elements for which the predicateφholds:7•z∈[[⊥]]Γnever;•z∈[[M=N]]ΓiffI[[Γ M]]◦z=I[[Γ N]]◦z;•z∈[[P⇓]]ΓiffI[[Γ P]]◦z∈T;•z∈[[φ∧ψ]]Γiffz∈[[φ]]Γand z∈[[ψ]]Γ;•z∈[[φ∨ψ]]Γiffz∈[[φ]]Γor z∈[[ψ]]Γ;•z∈[[φ⊃ψ]]Γiffz∈[[φ]]Γor z∈[[ψ]]Γ;•z∈[[∀xσ.φ]]Γiff z,w ∈[[φ]]Γ,xσfor all w∈Sσ;•z∈[[∃xσ.φ]]Γiff z,w ∈[[φ]]Γ,xσfor some w∈Sσ.(in the last two cases,we assume—without loss of generality—that xσdoes not occur inΓ).We say thatφis denotationally true under the interpretation I(and write|=Iφ)if[[φ]]Γis the whole of SΓ,whereΓcontains all the free variables ofφ.In particular,ifφis closed then|=Iφiff∗∈[[φ]],where∗is the unique element of S and we write[[φ]]for[[φ]] .Now that we have given both operational and denotational interpreta-tions of J L,we have a natural notion of logical full abstraction:Definition1An interpretation I of L is logically fully abstract(LFA)if for all sentencesφof J L we have|=opφiff|=Iφ.More generally,if F is a class of sentences of J L,we say I is LFA for F if for allφ∈F we have |=opφiff|=Iφ.Note that if an interpretation is LFA for a class of sentences,then it is also LFA for the Boolean closure of that class.The next lemma shows that such notions as adequacy1and eq uational full abstraction can be recovered as special instances of logical full abstraction.Proposition2Let I be an interpretation of L.Then(i)I is EFA(respectively AFA)iffit is LFA for all sentences of the form M=N(respectively and P⇓);(ii)I is adequate iffit is LFA for all sentences of the form P=n;(iii)Suppose that I is adequate.Then the definable elements of T are those of the form I[[n]]iffI is LFA for all sentences of the form P⇓. Proof(i)is immediate.For(ii),it suffices to note that,by the Context Lemma,P≈n iffP→∗n for closed P:ι.For(iii),note that the condition on T is equivalent to the statement that for all closed P:ι,|=I P⇓iff|=I P=n for some n and also that the statement that I is LFA for all sentences of the form P⇓holds is equivalent to the statement that for all closed P:ι,|=I P⇓iff|=op P⇓.But it is an easy consequence of adequacy and the Context Lemma that for all closed P:ι,|=I P=n for some n iff|=op P⇓.P1This observation is due to Eugenio Moggi.8The above lemma makes it clear that any EFA interpretation is adequate. Further,such an interpretation is AFA iffthe definable elements of T are those of the form I[[n]].In particular,a standard EFA interpretation is AFA.4A characterization of LF A InterpretationsIn this section we prove the following theorem characterizing LFA interpre-tations.This is the main result of the paper.Theorem3Let I be a standard interpretation of L.Then it is LFA for J L iffit is both EFA and universal.The standardness condition is a mild requirement that seems to hold in all natural interpretations.(We will see below that this condition is in fact necessary for the conclusion.)Our theorem can be used to show that LFA interpretations exist,and that particular interpretations are LFA for particular languages;it also guides us in the search for LFA interpretations.The right-to-left implication in the theorem is fairly straightforward: Lemma4Let M:σbe closed,z∈SΓ.Then z,I[[M]] ∈[[φ]]Γ,xσiffz∈[[φ[M/x]]]Γ.Proof First note that ifΓ,xσ N:τthen,by the requirements placed on interpretations,I[[Γ,xσ N]]◦ z,I[[M]] =I[[Γ N[M/xσ]]]◦z.The proof of the lemma is now a routine induction onφ.PProposition5Suppose I is a standard,EFA and universal interpretation of L.Then it is LFA.Proof Wefirst show by induction that|=opφiff|=Iφfor all sentencesφof J L.For the sentence⊥this is trivial.For sentences of the form M=N or P⇓it is given by Proposition2(i)and the fact that a standard EFA interpretation is AFA.The cases for the connectives∧,∨,⊃are all trivial. For sentences∀xσ.φ,supposefirst that|=I∀xσ.φ.Then given any closed M:σwe have ∗,I[[M]] ∈[[φ]]xσby definition of[[∀xσ.φ]],hence,by Lemma4,∗∈[[φ[M/x]]]and so|=opφ[M/x]by the induction hypothesis. Thus|=op∀xσ.φ.Conversely,suppose|=op∀xσ.φ.For any w∈Sσ,by universality we have w=I[[M]]for some closed M:σ.But we have that |=opφ[M/x],and so∗∈[[φ[M/x]]]by the induction hypothesis.Hence by Lemma4 ∗,w ∈[[φ]]xσ.Thus[[φ]]xσ=S xσ,so|=I∀xσ.φ.The argument for∃is similar.This completes the proof for sentences.To see that the result extends to all formulae,just observe that if∀ x.φis the universal closure ofφthen |=opφiff|=op∀ x.φ,and|=Iφiff|=I∀ x.φ.P9For the converse direction,we know from Proposition2(i)that every LFAinterpretation is AFA.Thus it only remains to show that every standard LFAinterpretation is universal.To show this,we will for each typeσconstructa closed term Eσ:ι→σ(called an enumerator for typeσ)such that forall closed M:σthere exists n such that Eσn≈M.It is easy to see thatthis suffices:we have|=op∀xσ.∃yι.Eσy=x,and so if I is LFA then also |=I∀xσ.∃yι.Eσy=x.That is,for all x∈Sσthere exists y∈Sιsuch that I[[zι Eσzι]]◦y=x.But I is standard so y=I[[N]]say,hence x=I[[EσN]].Thus I is universal.The fact that such enumerators exist is of some interest in its own right.In the case of PCF++,suitable terms Eσare already defined in[14],butfor PCF and PCF+we need a different technique.The method we use is,essentially,to construct a“simulator”for the relevant language within itself.A very similar method has recently(and independently)been employed byAbramsky et al.[1]to prove a definability result for an interpretation ofsequential PCF based on games;a similar result has been proved by Hylandand Ong[8].This yields an alternate semantic proof of the existence ofenumerators for PCF,analogous to that in[14]for PCF++.It is worthremarking that there is no corresponding definability result for PCF+.Itmay well be that there can be none;it is not at all clear,however,howto even formulate a precise statement to that effect.In what follows,Lstands for either PCF or PCF+,and − is some effective G¨o del-numberingof L-terms as natural numbers.Proposition6For each typeσthere exists a closed term Eσ:ι→σof Lsuch that Eσ M ≈M for all closed terms M:σof L.We nowfixσ=σ1→···→σh→ι(h≥0)and consider the con-struction of Eσ;we will not be completely explicit as all we require is its existence.The basic idea is that—given closed terms M:σand N j:σj,for j=1,...,h—the computation of Eσ M N1...N h will simulate the reduc-tion of MN1...N h via the G¨o del-numbering.The problem here is that we do not have access to the G¨o del-numbers of the N j,but only to the terms themselves;so,in fact,we symbolically reduce(via G¨o del-numbers)the term Mx1...x h,where the x j are variables used to stand for the N j.This results in a further problem when,in the course of the symbolic reduction,we come to a term of the form x j M1...M a.In this case we do not reduce,but rather interpret,“passing”suitable simulations of M1,...,M a to N j.For the idea to work,it turns out that we need variables not only ofthe typesσj,but also of all their subtypes.Let us define the relation≺between types to be the transitive relation generated from all instances ofγj≺(γ1→···→γm→ι),for j=1,...,m.Letτ1,...,τk be the(possibly repetitive)enumeration of all typesτ≺σin breadth-first order(regarding10σas a binary tree).Notice that for each i with1≤i≤k there exist p i≤q i such thatτi=τpi+1→···→τq i→ι;we drop the subscripts on p and q when they are clear from the context.Note also thatτi=σi for1≤i≤h.To simulate MN1...N h we may need arbitrarily many variables of eachtypeτi.We thus suppose that we have a countably infinite supply of vari-ables x j i:τi for each i,and that the mapping(i,j)→ x j i is recursive;we say a term isσ-open if its free variables are among the x j i.To“store”the “values”of these variables we will use closed terms F i:ι→τi,where F i j stores the value of x j i.Since at any given stage onlyfinitely many variables will be in use,we need a way to introduce new variables.For each i we letpush i beλvτi fι→τi jιλyτp+1p+1...yτq q.cond j(vy p+1...y q)(f(pred j)y p+1...y q).The effect of push i V F is to store the value given by a closed term V inthe“register”x0i,and the previous value of x j i in the register x j+1i ;we havepush i V F0≈V and push i V F(j+1)≈F j.To compensate for the use ofpush i,we also need an operation↑i on terms of L that“bumps up”theindices on the appropriate variables;the term N↑i is defined to be the termobtained by the capture-avoiding simultaneous substitution of V j i for x j i for every x j i occurring freely in N.Clearly the mapping N → N↑i is partial recursive.So,to define Eσwe construct an“ι-simulator”S:ρ(whereρis thetype(ι→τ1)→···→(ι→τk)→ι→ι)such that if N:ιis aσ-openterm then SF1...F k N simulates N,taking x j i to stand for F i j.Following the idea outlined above,S will perform repeated one-step reductions,but terms of the form x j i N p+1...N q are interpreted by passing simulations of the arguments N p+1,...,N q to F i j:τi.For this,we need“τi-simulators”S i of typeρi=(ι→τ1)→···→(ι→τk)→ι→τi;these are defined from theι-simulator S:ρby the termsΘi:ρ→ρi given in Lemma7,below. Formally,S is obtained as afixed-point of the termΦ:ρ→ρgiven in Lemma8,below;its definition makes use of theΘi,and the terms R:ρused there and in Lemma7are to be thought of as“approximants”to S.We need some special notation.First,for any vector F of terms F1,...,F kand term M we write M F for(...(MF1)...F k).Second,for any such vectorwe abbreviate F1,...,F p,(push p+1V p+1F p+1),...,(push q V q F q),F q+1,...,F k to push p,q(V p+1,...,V q; F),where1≤p≤q≤k.Third,for any term M and1≤p≤q≤k we write M↑p,q for(...(M↑p+1)...↑q).Finally,the no-tation C[|N1|,...,|N a|]→+d C [|N 1|,...,|N a |]means that given PCF terms U1,...,U a such that U j→∗N j(1≤j≤a)there exist PCF terms U 1,...,U a such that U j →∗N j (1≤j ≤a )and C[U1,...,U a]→+d C [U 1,...,U a ];no-tice that the U j and U j must be closed.(Here C[,...,]and C [,...,] are“multi-place”contexts and→d is the deterministic one-step reduction relation defined in Section2.)This is useful because the call-by-name eval-uation mechanism of L means that we cannot force subterms such as the11U j to be evaluated when we would like.The consideration of deterministic reduction(and hence of PCF terms)is only needed for Lemma11below. Note that transitivity holds:if C[|N1|,...,|N a|]→+d C [|N 1|,...,|N a |]→+dC [|N 1|,...,|N a |]then C[|N1|,...,|N a|]→+d C [|N 1|,...,|N a |].Lemma7There exist closed L-termsΘi:ρ→ρi for1≤i≤k,such thatfor allσ-open N:τi and closed R:ρ,F1:ι→τ1,...,F k:ι→τk we haveΘi R F| N |→+dλyτp+1p+1...yτq q.R push p,q(y p+1,...,y q; F)| (N↑p,q)x0p+1...x0q |. Proof DefineΘi to be the termλrρfι→τ11...fι→τkkzιyτp+1p+1...yτq q.r push p,q(y p+1,...,y q; f)(Gz)where G:ι→ιis a closed PCF term such that for anyσ-open N:τi, G N →+ (N↑p,q)x0p+1...x0q .PWe now consider the termΦ.Notice that the clauses given below coverall syntactic shapes for terms of typeι.(The clause marked†applies onlyto PCF+.)Lemma8There exists a closed L-termΦ:ρ→ρsuch that for all closed terms R:ρ,F1:ι→τ1,...,F k:ι→τk we haveΦR F| n |→+d n;ΦR F| succ M |→+d succ(R F| M |);ΦR F| pred M |→+d pred(R F| M |);ΦR F| cond LMN |→+d cond(R F| L |)(R F| M |)(R F| N |);ΦR F| YτN1N2...N a |→+d R F| N1(YτN1)N2...N a |(a≥2);ΦR F| (λzτ.M)N1...N a |→+d R F| M[N1/z]N2...N a |(a≥1);†ΦR F| por MN |→+d por(R F| M |)(R F| N |);ΦR F| x j i N p+1...N q |→+d F i j(Θp+1R F| N p+1 |)...(Θq R F| N q |).Proof(Hint)We constructΦvia a“case split”with at most(k+7)cases. The need for the consideration of PCF terms arises here,in order to ensure deterministic reduction.PNote that terms of the forms succ M,pred M,cond LMN or por MN are interpreted rather than symbolically reduced;this is needed to handle terms such as succ x j i N p+1...N q where the operator must be interpreted since an argument is.It is also worth noting that there is no way to interpret terms such as YτN1N2...N a or(λzτ.M)N1...N a as the typeτthere is arbitrary and our method enables us to deal only with afinite number of given types (here theτi).12。