立体几何(四)

合集下载

立体几何与空间向量小题分类练习(四)综合应用-北京市2021-2022学年高二上学期期中数学备考

 立体几何与空间向量小题分类练习(四)综合应用-北京市2021-2022学年高二上学期期中数学备考

高二专题分类-立体几何与空间向量(四)空间向量与立体几何的综合应用一.选择题1.(2021·北京八中高二期末)正方体1111ABCD A B C D -中,AC 和1A D 所成角的大小是( ) A .30B .45C .60D .752.(2021·北京市朝阳区北京教育学院朝阳分院高二期中)已知空间四边形ABCD 的每条边和对角线的长都等于a ,点,E F 分别是,BC AD 的中点,则AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ 的值为( )A .2aB .212aC .214aD 2 3.(2021·北京昌平区·昌平一中高二月考)已知正四棱锥S ABCD -的侧棱长与底面边长都相等,点E 是SB 的中点,则直线AE ,SD 所成角的余弦值为( )A .3B C D .134.(2021·北京西城·)如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与BC 所成角的余弦值为( )A .25B .35C .13D .235.(2020·北京和平街第一中学高二月考)已知向量()2,0,1n =为平面α的法向量,点()1,2,1A -在α内,点()1,2,2P -在α外,则点P 到平面α的距离为( )A B C .D6.(2021·北京八中高二期末)如图,正方体1111ABCD A B C D -的棱长为1,点E 为1DD 的中点,点P 为BDE 内部一动点,P 点到平面1111D C B A 的正射影为点Q ,则Q 到点A 的距离的最小值为( )AB C D .17.(2021·北京师范大学昌平附属学校)正方体1111ABCD A B C D -中,点E 为1BB 中点,平面1A EC 与平面ABCD 所成二面角的余弦值为( )A B C D 8.(2021·北京高二期末)在空间直角坐标系Oxyz 中,已知点(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D ,则直线AD 与BC 所成角的大小是___.二.填空题9.(2020·北京市广渠门中学)已知平面α的一个法向量()2,2,1n =--,点()1,3,0A --在平面α内,则点()2,1,4P -到平面α的距离为_________.10.(2021·北京朝阳·高二期末)如图,平行六面体ABCD -A 1B 1C 1D 1的底面ABCD 是菱形,且∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1.则A 1C 与平面C 1BD _______(填“垂直”或“不垂直”);A 1C 的长为_______.11.(2021·北京昌平区·昌平一中高二月考)如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足BC 1⃗⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =1,则BC 1⃗⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角最大值为___________.12.(2021·北京昌平区·昌平一中高二月考)如图,正方体1111ABCD A B C D -的棱长为2,E 为1BB 的中点,则异面直线1BC 与1D E 所成的角为___________.13.(2021·北京人大附中高二期末)如图,若正三棱柱111ABC A B C -的底面边长为8,对角线1B C 的长为10,点D 为AC 的中点,则点1B 到平面1C BD 的距离为_____,直线1AB 与直线BD 所成角的余弦值为________.14.(2021·北京高二期末)如图,在四面体ABCD 中,其棱长均为1,M ,N 分别为BC ,AD 的中点.若MN ⃗⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ +yAC ⃗⃗⃗⃗⃗ +zAD ⃗⃗⃗⃗⃗ ,则x y z ++=________;直线MN 和CD 的夹角为________.15.(2020·北京市第十二中学高二期中)在长方体1111ABCD A B C D -中,4AB AD ==,11AA =,点P 在底面1111D C B A 上.(1)若点P 与点1A 重合,则点P 到平面11BDD B 的距离是__________. (2)若点P 到直线AD 和11C D 的距离相等,则1PC 的最小值是__________.参考答案1.C 【分析】连接1B C ,即可得到11//A D B C ,则1B CA ∠(或补角)即为异面直线AC 和1A D 所成角,再根据正方体的性质计算可得; 【详解】解:如图连接1B C ,在正方体1111ABCD A B C D -中,因为11//A B CD ,且11=A B CD ,所以四边形11A B CD 为平行四边形,所以11//A D B C , 所以1B CA ∠(或补角)即为异面直线AC 和1A D 所成角, 显然1AB C 为等边三角形,所以160B CA ∠=. 故选:C.2.C 【分析】由题意可知,空间四边形ABCD 相邻两边的夹角都为60︒,所以把,,AB AC AD 看成空间向量的基底,将,AE AF 用基底表示化简可得答案 【详解】11()22AB AC AE AF AD ⋅=+⋅1()4AB AD AC AD =⋅+⋅ 22211(cos60cos60)44a a a ︒︒=+= 故选:C3.C 【分析】由题意画出图形,连接AC ,BD ,交于O ,连接,EO SO ,可得//EO SD ,则AEO ∠为直线AE 与直线SD 所成的角,证明AC ⊥平面SBD ,AC OE ⊥,则求解直角三角形得答案.【详解】解:如图,连接AC ,BD ,交于O ,连接,EO SO ,则SO ⊥平面ABCD ,又AC ⊂平面ABCD ,所以SO AC ⊥, 因为正四棱锥S ABCD -的侧棱长与底面边长都相等,则AC BD ⊥, 又BD SO O ⋂=,所以AC ⊥平面SBD , 又OE ⊂平面SBD ,所以AC OE ⊥,在SBD 中,O 为BD 的中点,点E 是SB 的中点,所以//EO SD ,则直线AE 与直线SD 所成的角为AEO ∠或其补角, 设正四棱锥S ABCD -的棱长为2,则AO =AE =在Rt AOE 中,1EO .cosEO AEO AE ∴∠==即直线AE ,SD 故选:C .4.D 【分析】设正方体的棱长为2,建立空间直角坐标系,利用向量法求解直线1A E 与BC 所成的角即可. 【详解】解:设正方体的棱长为2,如图所示建立空间直角坐标系, 则1(2A ,0,2),(0E ,1,0),(0C ,2,0),(2B ,2,0), 则1(2,1,2),(2,0,0)A E BC =--=- 所以111cos ,||||A E BC A EBC A E BC ⋅<>=42323==⨯, 所以异面直线1A E 与直线BC 所成角的余弦值为23,故选:D .5.A 【分析】利用点到平面距离公式的向量求法即可求解. 【详解】因为()1,2,1A -,()1,2,2P -, 所以()2,0,3PA =-,因为平面α的法向量为()2,0,1n =,所以点P 到平面α的距离为242PA n d n⋅-==, 故选:A.6.B 【分析】建立空间直角坐标系,用向量法求AQ 的距离,再由表达式研究最小值即可 【详解】由题可知,Q 点在线段11B D 上运动,且Q 不与11,B D 重合,如图以D 为原点,1,,DA DC DD 分别为,,x y z 轴,建立空间直角坐标系, 则易知(1,0,0)A ,又11B D 为1111D C B A 的对角线,故可设(,,1),(01)Q a a a <<,则AQ =令2222t a a =-+,则易知12a =时,2222t a a =-+所以AQ 故选:B 7.C 【分析】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法可求得平面1A EC 与平面ABCD 所成二面角的余弦值. 【详解】设正方体1111ABCD A B C D -的棱长为2,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()12,0,2A 、()2,2,1E 、()0,2,0C ,所以,()10,2,1EA =-,()2,0,1CE =, 设平面1A CE 的法向量为(),,m x y z =,则12020m EA y z m CE x z ⎧⋅=-+=⎨⋅=+=⎩,取1x =,可得()1,1,2m =--,易知平面ABCD 的一个法向量为()0,0,1n =,所以,cos ,6m n m n m n⋅<>===⨯⋅,易知,平面1A EC 与平面ABCD 故选:C. 8.60︒ 【分析】利用空间向量求夹角公式直接求解. 【详解】(1,0,0),(0,2,0),(0,0,2),(0,0,1)A B C D(0,2,2),(1,0,1)BC AD ∴=-=-21cos ,20AD BC AD BC AD BC⋅∴===⋅又空间中两直线夹角范围为(0,90⎤⎦,故,60AD BC = 所以直线AD 与BC 所成角的大小是60︒ 故答案为:60︒9.23【分析】由题意算出()1,4,4AP =-,根据向量()2,2,1n =--是平面α的一个法向量,算出向量AP 在n 上的投影的绝对值,即可得到P 到α的距离.【详解】解:根据题意,可得()()1,3,0,1,4,2A P ---,()1,4,4AP =-, 又平面α的一个法向量()2,2,1n =--,点A 在α内,()2,1,4P ∴-到α的距离等于向量AP 在n 上的投影的绝对值,()()1242412P n A -⨯-+⨯-∴⨯=-=+ 即(232AP n d n===- 故答案为:23【点睛】本题给出平面的法向量和平面上的一点,求平面外一点到平面的距离;着重考查了向量的数量积公式和点到平面的距离计算等知识,属于中档题.10.垂直【分析】设CB a =,CD b =,1CC c =,可得出1CA a b c =++,计算得出1110CA BD CA BC ⋅=⋅=,可得出1CA BD ⊥,11CA BC ⊥,利用线面垂直的判定定理可证得结论成立,求1CA 的平方即可求A 1C 的长.【详解】设CB a =,CD b =,1CC c =,由题意可得1CA a b c =++,则()()()2211CA BD CA CD CB a b c b a b a c b c a ⋅=⋅-=++⋅-=-+⋅-⋅cos60cos600c b c a =⋅-⋅=,1CA BD ∴⊥,同理可证11CA BC ⊥,1BD BC B ⋂=,故1CA ⊥平面1C BD .∠C 1CB =∠C 1CD =∠BCD =60°.CD =CC 1=1,11CD CB CC ∴===,222221111()2()1112()6222CA a b c a b c a b b c a c ∴=++=+++⋅+⋅+⋅=+++++=1CA →∴=即A 1C .11.60【分析】以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤,根据空间向量的数量积运算得x z =,再根据空间向量的夹角运算和二次函数的性质可得答案.【详解】解:以D 为坐标原点,以DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间坐标系,如图所示:∠M 是左侧面ADD 1A 上的一个动点,设点M (x ,0,z ),其中01,1)0(x z ≤≤≤≤, 1(1,1,0),(0,1,1),B C =,1(1,0,1),(1,1,)BC BM x z ∴=-=--,111BC BM x z ∴⋅=-+=,即x z =,又1||2,||(BC BM x ===设1BC 与BM 的夹角为θ,1cos 2θ∴== 设2()1f x x x =-+,()f x 在10,2⎡⎤⎢⎥⎣⎦上单调递减,在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以13(0)1,()24f f ==,3()14f x ≤≤,所以1cos 2θ≤≤1BC 与BM 的夹角最大值为60.故答案为:60.12.4π. 【分析】连接1BC ,证明11//BC AD ,则1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,从而可的答案.【详解】解:连接1BC ,由正方体的性质可知,11//AB C D ,且11AB C D =,所以11ABC D 是平行四边形,所以11//BC AD ,所以1AD E ∠或其补角即为异面直线1BC 与1D E 所成的角,在1AD E △中,113,D E AD AE ==则22211111cos 2AD D E AE AD E AD D E +-∠===⋅ 即异面直线1BC 与1D E又因异面直线1BC 与1D E 所成的角的范围为0,2π⎛⎤ ⎥⎝⎦, 所以异面直线1BC 与1D E 所成的角为4π. 故答案为:4π.13 【分析】设1B C 与1BC 交于点O ,连接1AC ,可证得1//AB 平面1C BD ,求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,然后利用11A BC D C ABD V V --=进行计算求解;由于1//AB DO ,直线1AB 与直线BD 所成的角为ODB ∠,利用余弦定理进行计算求解即可.【详解】设1B C 与1BC 交于点O ,连接1AC ,在正三棱柱111ABC A B C -中,显然点O 为1B C 的中点,又点D 为AC 的中点, 所以1//AB DO ,又DO ⊂平面1C BD ,1AB ⊄平面1C BD ,所以1//AB 平面1C BD ,所以求点1B 到平面1C BD 的距离可以转化为求点A 到平面1C BD 的距离,因为8BD =,16CC ==,1C D所以有22211BD C D BC +=,所以1BD C D ⊥,所以112BC D S =⨯△易得BD AC ⊥,所以142ABD S =⨯=△ 设点A 到平面1C BD 的距离为h ,由11A BC D C ABD V V --=,即111133BC D ABD S h S C C ⨯⨯=⨯⨯△△,所以有11633h ⨯=⨯,解得:h = 因为1//AB DO ,所以直线1AB 与直线BD 所成的角为ODB ∠,因为1BD C D ⊥,O 为1B C 的中点,所以1152DO BC ==,而BD =所以22222255cos2OD BD OB ODB OD BD+-+-∠===⨯..【点睛】关键点点睛:求线面距离通常可以转化为求三棱锥的高,而求三棱锥的高通常利用等体积法进行求解.14.12-. 4π 【分析】利用空间向量的线性运算把MN 用,,AB AC AD 表示即可得,,x y z ,再由向量的数量积得向量夹角,从而得异面直线所成的角.【详解】由已知得MN 1122MB BA AN CB AB AD =++=-+11111()22222AB AC AB AD AB AC AD =--+=--+,又MN xAB y AC z AD =++且,,AB AC AD 不共面,∠12x y ==-,12z =,∠12x y z ++=-, ABCD 是棱长为1的正四面体,∠111cos602AB AC ⋅=⨯⨯︒=,同理12AB AD AC AD ⋅=⋅=,2222111111444222MN MN AB AC ADAB AC AB AD AC AD ==+++⋅-⋅-⋅44444== CD AD AC =-,111()()222MN CD AB AC AD AD AC ⋅=--+⋅-22111111222222AB AD AB AC AC AD AC AD AD AC =-⋅+⋅-⋅++-⋅11111114442242=-+-++-=, ∠12cos ,2MN CD MN CD MN CD ⋅<>===,∠,4MN CD π<>=, ∠异面直线MN 和CD 所成的角为4π. 【点睛】 关键点点睛:本题考查空间向量基本定理,考查用向量法求异面直线所成的角.在空间任意不共面的三个向量可作为空间的一个基底,空间所有向量都可用基底表示,且表示方法唯一,因此在用同一个基底用两种不同方法表示出同一向量时,两种表示法中对应的系数相等.由此结合向量的运算法则可表示得结论.同样用向量法求异面直线所成的角,可以直接计算,不需要作图与证明.15. 3【分析】(1)若点P 与点1A 重合,在平面1111D C B A 内,过P 作11PE B D ⊥,证明PE ⊥平面11BDD B ,则PE 为点P 到平面11BDD B 的距离,利用等面积法求解; (2)以1D 为坐标原点建立空间直角坐标系,设()(),,00,0P x y x y >≤,得()2210,0x y x y +=>≤,再由两点间的距离公式写出1PC ,利用配方法求最小值.【详解】解:(1)如图,若点P 与点1A 重合,在平面1111D C B A 内,过1A 作111A E B D ⊥, ∠平面1111A B C D ⊥平面11BB D D ,平面1111A B C D 平面1111BB D D B D =,∠1A E ⊥平面11BDD B ,则1A E 为点P 到平面11BDD B = (2)以1D 为坐标原点建立如图所示空间直角坐标系.设()(),,00,0P x y x y >≤y ,即()2210,0x y x y +=>≤,P 的轨迹为双曲线的部分, ()14,0,0C ,则1PC = ∠当2x =时,1PC 的最小值是3.故答案为:3.。

精品高三复习练习题:立体几何4

精品高三复习练习题:立体几何4

1.与正方体ABCD —1111A B C D 的三条棱AB 、CC 1 、A 11D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个答案:D解析:经验证线段1B D 上的点B,D,中点,四等分点均满足题意,故由排除法知应有无数个点.2.直三棱柱ABC —111A B C 中,若90BAC ∠=°1AB AC AA ,==,则异面直线1BA 与1AC 所成的角等于 ( )A.30°B.45°C.60°D.90° 答案:C解析:不妨设AB=AC=11AA =,建立空间直角坐标系如图所示,则B(0,-1,0),1(001)A ,,,A(0,0,0),1(101)C -,,,∴11(011)BA AC =,,,=u u u u u u u r u u u u u u u u r (-1,0,1).∴cos 111111BA AC BA AC BA AC ⋅,=||||u u u u u u u r u u u u u u u u r u u u u r u u u u r u u u u r u u u u r 11222==⨯. ∴1160BA AC ,=u r °. ∴异面直线1BA 与1AC 所成的角为60°.3.在空间中,①若四点不共面,则这四点中任何三点都不共线;②若两条直线没有公共点,则这两条直线是异面直线.以上两个命题中,逆命题为真命题的是(把符合要求的命题序号都填上).答案:②解析:对于①的逆命题可举反例,如直线AB ∥CD,A B C D A B C D ,、、、没有三点共线但、、、四点共面;对于②的逆命题由异面直线定义知正确,故填②.4.若a 、b 是异面直线,在直线a 上有5个点,在直线b 上有4个点,则这9个点可确定平面的个数为 个.答案:9解析:直线a 上任一点与直线b 确定一平面,共5个,直线b 上任一点与直线a 确定一平面,共4个,一共9个.5.如图,三棱锥A —BCD 中E F G AB AC AD ,、、分别是侧棱、、上的点.AE AB AF AC AG AD ==且满足:::EFG BCD :.V V 求证∽证明:在△ABD 中,∵AE ∶AB=AG ∶AD,∴EG ∥BD.同理,GF ∥DC,EF ∥BC.又GEF ∠与DBC ∠方向相同.∴GEF DBC ∠=∠.同理EGF BDC ,∠=∠.∴△EFG ∽△BCD.题组一 共线、共面问题1.下列命题中正确的有几个?( )①若△ABC 在平面α外,它的三条边所在的直线分别交α于点P 、Q 、R,则P 、Q 、R 三点共线;②若三条直线a 、b 、c 互相平行且分别交直线l 于A 、B 、C 三点,则这四条直线共面;③空间中不共面的五个点一定能确定10个平面.A.0个B.1个C.2个D.3个答案:C解析:在①中,因为P 、Q 、R 三点既在平面ABC 上,又在平面α上,所以这三点必在平面ABC 与α的交线上,即P 、Q 、R 三点共线,故①正确;在②中,因为a ∥b,所以a 与b 确定一个平面α,而l 上有A 、B 两点在该平面上,所以l α⊂,即a 、b 、l 三线共面于α;同理a 、c 、l 三线也共面,不妨设为β,而α、β有两条公共的直线a 、l,∴α与β重合,即这四条直线共面,故②正确;在③中,不妨设其中四点共面,则它们最多只能确定7个平面,故③错.2.如图所示,ABCD —1111A B C D 是正方体,O 是11B D 的中点,直线1A C 交平面11AB D 于点M,则下列结论正确的是 ( )A.A 、M 、O 三点共线B.A 、M 、O 、1A 不共面C.A 、M 、C 、O 不共面D.B 、1B 、O 、M 共面答案:A解析:连接11AC AC ,,则11A C ∥AC,∴1A 、1C 、C 、A 四点共面. ∴1AC ⊂平面11ACC A . ∵1M AC ∈,∴M ∈平面11ACC A .又M ∈平面11AB D ,∴M 在平面11ACC A 与平面11AB D 的交线上,同理O 也在平面11ACC A 与平面11AB D 的交线上,∴A 、M 、O 三点共线.3.在空间四边形ABCD 的边AB BC CD DA E F G H EF HG M ,,、、、上分别取、、、四点如果与交于点那么( )A.M 一定在直线AC 上B.M 一定在直线BD 上C.M 可能在直线AC 上,也可能在直线BD 上D.M 既不在直线AC 上,也不在直线BD 上答案:A解析:平面ABC ⋂平面ACD AC M =,∈平面ABC M ,∈平面ACD,从而M AC ∈.4.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交.其中,使三条直线共面的充分条件有 .(把符合要求的条件序号都填上)答案:①④解析:①中两直线相交确定平面,由于第三条直线不过前两条直线的交点且又分别与它们都相交,所以第三条直线也在这个平面内.②中可能有直线和平面平行.③中直线最多可确定3个平面.④两条平行线确定一个平面,第三条直线与它们都相交,所以第三条直线也在这个平面内.5.如图,在四边形ABCD 中,已知AB ∥CD,直线AB 、BC 、AD 、CD 与平面α相交于点E 、G 、H 、F.求证:E 、F 、G 、H 四点共线.证明:∵AB ∥CD,∴直线AB 、CD 确定一个平面β.∵E 是直线AB 上一点,∴E β∈,又E α∈,E 是平面α与β的一个公共点.同理可证F 、G 、H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E 、F 、G 、H 四点共线.题组二 异面直线6.到两互相垂直的异面直线的距离相等的点… ( )A.只有1个B.恰有3个C.恰有4个D.有无穷多个答案:D解析:放在正方体中研究,显然,线段1OO 、EF 、FG 、GH 、HE 的中点到两垂直异面直线AB 、CD 的距离都相等,所以排除A 、B 、C,选D.7.如图,正方体1AC 中,E 、F 分别是线段BC 、1CD 的中点,则直线1A B 与直线EF 的位置关系是( )A.相交B.异面C.平行D.垂直答案:A解析:如题图所示,直线1A B 与直线1CD 平行,所以确定一个平面11A BCD ,显然EF ⊂平面11A BCD ,直线EF 与1CD 相交1A B ,∥1CD ,所以1A B 与EF 相交.8.如图,长方体1111ABCD A B C D -中,12AA AB AD ==,=1,点E 、F 、G 分别是1DD 、AB 、1CC 的中点.求异面直线1A E 与GF 所成角的大小.解:连接1B G EG ,,由于E 、G 分别是1DD 和1CC 的中点,∴EG C 11D ,而11C D A 11B ,∴EG A 11B ,∴四边形11EGB A 是平行四边形.∴1A E ∥1B G ,从而1B GF ∠为异面直线1A E 与GF 所成的角,连接1B F ,易求得11325FG BG B F =,=,=, ∵22211FG B G B F +=,∴190B GF ∠=°,即异面直线1A E 与GF 所成的角为90°.题组三 综合问题9.在正方体ABCD —1111A B C D 的侧面1AB 内有一动点P 到直线11A B 与直线BC 的距离相等,则动点P 所在曲线的形状为( )答案:C解析:动点P 到定点B 的距离也就是P 到直线BC 的距离,它等于到直线11A B 的距离,所以动点P 的轨迹是以B 为焦点,以11A B 为准线的过A 的抛物线的一部分.10.如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为 ( )A.AC BD ⊥B.AC ∥截面PQMNC.AC=BDD.异面直线PM 与BD 所成的角为45°答案:C解析:由PQ ∥AC,QM ∥BD PQ QM ,⊥可得AC BD ⊥,故A 正确;由PQ ∥AC 可得AC ∥截面PQMN,故B 正确;异面直线PM 与BD 所成的角等于PM 与PN 所成的角,故D 正确;综上C 是错误的,故选C.11.已知正方体ABCD —1111A B C D 中,E 是对角线1AB 上一点,且113AE AB F =,是对角线BD 上一点且13BF BD =.求证:E 、F 、C 、1A 四点共面. 证明:∵113AE AB =,延长1A E 与AB 交于G,则12111AG AE A B EB ==,即12AG AB =, ∴∶GA=1∶1.同理延长CF 与AB 交于G′,则′∶G′A=1∶1.∴G 与G′重合,即直线1A E 与CF 相交于G,从而确定一个平面.∴E 、F 、C 、1A 四点共面.12.如图所示,三棱锥P-ABC 中PA ,⊥平面60ABC BAC ,∠=°,PA=AB=AC=2,E 是PC 的中点.(1)求证AE 与PB 是异面直线.(2)求三棱锥A-EBC 的体积.解:(1)证明:假设AE 与PB 共面,设平面为α,∵A B E ααα∈,∈,∈,∴平面α即为平面ABE,∴P ∈平面ABE,这与P ∉平面ABE 矛盾,所以直线AE 与PB 是异面直线.(2)∵PA ⊥平面ABC,E 是PC 的中点,∴E 到平面ABC 的距离112h PA ==. ∵△ABC 中60BAC ,∠=°,AB=AC=2,∴△ABC 的面积12ABC S AB AC =⨯⨯⨯V sin BAC ∠312232=⨯⨯⨯=. ∴三棱锥A —EBC 的体积,即三棱锥E —ABC 的体积为3111333ABC hS =⨯⨯=V .。

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理

高中数学第一章立体几何初步4空间图形的基本关系与公理4.1空间图形基本关系的认识4.2空间图形的公理
第十二页,共42页。
[小组合作型]
空间点、线、面的位置(wèi zhi)关系
(1)如果 a α,b α,l∩a=A,l∩b=B,l β,那么 α 与 β 的位置关系是________.
(2)如图 1-4-1,在正方体 ABCD-A′B′C′D′中, 哪几条棱所在的直线与直线 BC′是异面直线?
图 1-4-1
第十页,共42页。
两个平面若有三个公共点,则这两个平面( )
A.相交
B.重合
C.相交或重合
D.以上都不对
【解析】 若三个点在同一条直线上,则两平面可能相交;若这三个点不 在同一直线上,则这两个平面重合.
【答案】 C
第十一页,共42页。
[质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1: _____________________________________________________ 解惑: _______________________________________________________ 疑问 2: _____________________________________________________ 解惑: _______________________________________________________ 疑问 3: ______________________________________________________ 解惑: _______________________________________________________
平面与平面 的位置关系
面面平行 面面相交
α∥β α∩β=a
第五页,共42页。

2014-2019年高考数学真题分类汇编专题10:立体几何4(球的切接问题)带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何4(球的切接问题)带详细答案

2014-2019年高考数学真题分类汇编专题10:立体几何(球的切接问题)选择题1.(2014•大纲版理)正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )A .814πB .16πC .9πD .274π 【考点】球的体积和表面积;球内接多面体【分析】正四棱锥P ABCD -的外接球的球心在它的高1PO 上,记为O ,求出1PO ,1OO ,解出球的半径,求出球的表面积.【解答】解:设球的半径为R ,则棱锥的高为4,底面边长为2,222(4)R R ∴=-+,94R ∴=, ∴球的表面积为29814()44ππ=. 故选:A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.2.(2014•陕西理)已知底面边长为1为( )A .323πB .4πC .2πD .43π 【考点】球的体积和表面积【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径1R =,最后根据球的体积公式,可算出此球的体积.【解答】解:正四棱柱的底面边长为1,又正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径1R = 根据球的体积公式,得此球的体积为34433V R ππ==. 故选:D .【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.(2015•新课标Ⅱ文)已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点,若三棱锥O ABC -体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π【考点】球的体积和表面积【分析】当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,利用三棱锥O ABC -体积的最大值为36,求出半径,即可求出球O 的表面积.【解答】解:如图所示,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大,设球O 的半径为R ,此时2311136326O ABC C AOB V V R R R --==⨯⨯⨯==,故6R =,则球O 的表面积为24144R ππ=, 故选:C .【点评】本题考查球的半径与表面积,考查体积的计算,确定点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC -的体积最大是关键.4.(2016•新课标Ⅱ文)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A .12πB .323πC .8πD .4π【考点】球的体积和表面积【分析】先通过正方体的体积,求出正方体的棱长,然后求出球的半径,即可求出球的表面积.【解答】解:正方体体积为8,可知其边长为2,所以球的表面积为24(3)12ππ=.故选:A .【点评】本题考查学生的空间想象能力,体积与面积的计算能力,是基础题.5.(2016•新课标Ⅲ文理)在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )A .4πB .92πC .6πD .323π 【考点】棱柱、棱锥、棱台的体积【分析】根据已知可得直三棱柱111ABC A B C -的内切球半径为32,代入球的体积公式,可得答案. 【解答】解:AB BC ⊥,6AB =,8BC =, 10AC ∴=. 故三角形ABC 的内切圆半径681022r +-==, 又由13AA =, 故直三棱柱111ABC A B C -的内切球半径为32, 此时V 的最大值3439()322ππ=, 故选:B .【点评】本题考查的知识点是棱柱的几何特征,根据已知求出球的半径,是解答的关键.6.(2017•新课标Ⅲ文理)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 【考点】棱柱、棱锥、棱台的体积;LR :球内接多面体【分析】推导出该圆柱底面圆周半径r =,由此能求出该圆柱的体积. 【解答】解:圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r ==,∴该圆柱的体积:2314V Sh ππ==⨯⨯=.故选:B .【点评】本题考查面圆柱的体积的求法,考查圆柱、球等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想,是中档题.7.(2018•新课标Ⅲ文理)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为( )A .B .C .D .【考点】棱柱、棱锥、棱台的体积;球的内接多面体;【分析】求出,ABC ∆为等边三角形的边长,画出图形,判断D 的位置,然后求解即可.【解答】解:ABC ∆为等边三角形且面积为2AB =6AB =, 球心为O ,三角形ABC 的外心为O ',显然D 在O O '的延长线与球的交点如图:263O C '==,2OO '=, 则三棱锥D ABC -高的最大值为:6,则三棱锥D ABC -体积的最大值为:3163=. 故选:B .【点评】本题考查球的内接多面体,棱锥的体积的求法,考查空间想象能力以及计算能力.8.(2019•新课标Ⅰ理12)已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为( )A .B .C . D【考点】球的体积和表面积,,多面体外接球体。

立体几何四 直线、平面垂直的判定及其性质

立体几何四  直线、平面垂直的判定及其性质

立体几何四 直线、平面垂直的判定及其性质[考试要求]1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面垂直的有关性质与判定定理.2.能运用公理、定理和已获得的结论证明一些空间图形的垂直关系的简单命题.1.直线与平面垂直(1)定义:如果直线l 与平面α内的任意一条直线都垂直,则直线l 与平面α垂直.(2)判定定理与性质定理文字语言 图形语言符号语言判定 定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⎭⎬⎫a ,b ⊂αa ∩b =Ol ⊥a l ⊥b⇒l ⊥α 性质 定理垂直于同一个平面的两条直线平行⎭⎬⎫a ⊥αb ⊥α⇒a ∥b (1)平面的一条斜线和它在平面上的射影所成的锐角叫做这条直线和这个平面所成的角.(2)当直线与平面垂直和平行(或直线在平面内)时,规定直线和平面所成的角分别为90°和0°.(3)范围:⎣⎢⎡⎦⎥⎤0,π2. 3.二面角的有关概念(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.(3)范围:[0,π].4.平面与平面垂直(1)定义:如果两个平面所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⎭⎬⎫l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎬⎫α⊥βl⊂βα∩β=al⊥a⇒l⊥α[常用结论]直线与平面垂直的五个结论(1)若一条直线垂直于一个平面,则这条直线垂直于这个平面内的任意直线.(2)若两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(3)垂直于同一条直线的两个平面平行.(4)一条直线垂直于两平行平面中的一个,则这条直线与另一个平面也垂直.(5)两个相交平面同时垂直于第三个平面,它们的交线也垂直于第三个平面.一、易错易误辨析(正确的打“√”,错误的打“×”)(1)垂直于同一个平面的两平面平行.()(2)若α⊥β,a⊥β⇒a∥α.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()[答案](1)×(2)×(3) ×(4)×二、教材习题衍生1.下列命题中错误的是()A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γA[A错误,l与β可能平行或相交,其余选项均正确.]2.如图,正方形SG1G2G3中,E,F分别是G1G2,G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,则在四面体S-EFG中必有()A.SG⊥△EFG所在平面B.SD⊥△EFG所在平面C.GF⊥△SEF所在平面D.GD⊥△SEF所在平面A[四面体S-EFG如图所示:由SG⊥GE,SG⊥GF.且GE∩GF=G得SG⊥△EFG所在的平面.故选A.]3.如图所示,已知P A⊥平面ABC,BC⊥AC,则图中直角三角形的个数为________.4[∵P A⊥平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC,则△P AB,△P AC为直角三角形.由BC⊥AC,且AC∩P A=A,∴BC⊥平面P AC,从而BC⊥PC.因此△ABC,△PBC也是直角三角形.]考点一直线与平面垂直的判定与性质判定线面垂直的四种方法[典例1](1)(2019·北京高考)已知l,m是平面α外的两条不同直线.给出下列三个论断:①l⊥m;②m∥α;③l⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:________.(2)如图所示,已知AB为圆O的直径,点D为线段AB上一点,且AD=13DB,点C为圆O上一点,且BC=3AC,PD⊥平面ABC,PD=DB.求证:P A⊥CD.(1)②③⇒①或①③⇒②[(1)已知l,m是平面α外的两条不同直线,由①l⊥m与②m∥α,不能推出③l⊥α,因为l可以与α平行,也可以相交不垂直;由①l⊥m与③l⊥α能推出②m∥α;由②m∥α与③l⊥α可以推出①l⊥m.故正确的命题是②③⇒①或①③⇒②.](2)[证明]因为AB为圆O的直径,所以AC⊥CB,在Rt△ACB中,由3AC =BC,得∠ABC=30°.设AD=1,由3AD=DB,得DB=3,BC=23,由余弦定理得CD2=DB2+BC2-2DB·BC cos 30°=3,所以CD2+DB2=BC2,即CD⊥AB.因为PD⊥平面ABC,CD⊂平面ABC,所以PD⊥CD,由PD∩AB=D,得CD⊥平面P AB,又P A⊂平面P AB,所以P A⊥CD.点评:通过本例(2)的训练我们发现:判定定理与性质定理的合理转化是证明线面垂直的基本思想;另外,在解题中要重视平面几何知识,特别是正余弦定理及勾股定理的应用.[跟进训练]如图所示,在直三棱柱ABC-A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是CC1上一点.当CF=2时,证明:B1F⊥平面ADF.[证明]因为AB=AC,D是BC的中点,所以AD⊥BC.在直三棱柱ABC-A1B1C1中,因为BB1⊥底面ABC,AD⊂底面ABC,所以AD⊥B1B.因为BC∩B1B=B,BC,B1B⊂平面B1BCC1,所以AD⊥平面B1BCC1.因为B1F⊂平面B1BCC1,所以AD⊥B1F.法一:在矩形B1BCC1中,因为C1F=CD=1,B1C1=CF=2,所以Rt△DCF≌Rt△FC1B1,所以∠CFD=∠C1B1F,所以∠B1FD=90°,所以B1F⊥FD.因为AD∩FD=D,AD,FD⊂平面ADF,所以B1F⊥平面ADF.法二:在Rt△B1BD中,BD=CD=1,BB1=3,所以B1D=BD2+BB21=10.在Rt△B1C1F中,B1C1=2,C1F=1,所以B1F=B1C21+C1F2= 5.在Rt△DCF中,CF=2,CD=1,所以DF=CD2+CF2= 5.显然DF 2+B 1F 2=B 1D 2, 所以∠B 1FD =90°.所以B 1F ⊥FD .因为AD ∩FD =D ,AD ,FD ⊂平面ADF , 所以B 1F ⊥平面ADF .考点二 面面垂直的判定与性质证明面面垂直的两种方法[典例2] (2020·雅安模拟)如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD .(1)求证:平面ACF ⊥平面BDF ;(2)若∠CBA =60°,求三棱锥E -BCF 的体积. [解] (1)证明:在菱形ABCD 中,AC ⊥BD , ∵FD ⊥平面ABCD ,∴FD ⊥AC . 又∵BD ∩FD =D ,∴AC ⊥平面BDF . 而AC ⊂平面ACF ,∴平面ACF ⊥平面BDF . (2)取BC 的中点O ,连接EO ,OD , ∵△BCE 为正三角形,∴EO ⊥BC , ∵平面BCE ⊥平面ABCD 且交线为BC , ∴EO ⊥平面ABCD . ∵FD ⊥平面ABCD ,∴EO ∥FD ,得FD ∥平面BCE . ∴V E -BCF =V F -BCE =V D -BCE =V E -BCD .∵S △BCD =12×2×2×sin 120°=3,EO = 3. ∴V E -BCF=13S △BCD ×EO =13×3×3=1.点评:抓住面面垂直的性质,实现面面与线面及线线垂直间的转化是求解本题的关键,另外在第(2)问求解体积时等体积法的应用,是破题的另一要点,平时训练要注意灵活应用.[跟进训练](2020·广州模拟)如图,在三棱锥V-ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC,且AC=BC=2,O,M分别为AB,VA的中点.(1)求证:平面MOC⊥平面VAB;(2)求三棱锥B-VAC的高.[解](1)证明:∵AC=BC,O 为AB的中点,∴OC⊥AB.∵平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,OC⊂平面ABC,∴OC⊥平面VAB.∵OC⊂平面MOC, ∴平面MOC⊥平面VAB.(2)在等腰直角△ACB中,AC=BC=2,∴AB=2,OC=1,∴等边△VAB的面积为S△VAB =12×22×sin 60°=3,又∵OC⊥平面VAB,∴OC⊥OM,在△AMC中,AM=1,AC=2,MC=2,∴S△AMC =12×1×72=74,∴S△VAC=2S△MAC=72,由三棱锥V-ABC的体积与三棱锥C-VAB的体积相等,即13S△VAC·h=13S△VAB·OC, ∴h=3×172=2217,即三棱锥B-VAC的高为221 7.考点三平行与垂直的综合问题1.对命题条件的探索的三种途径途径一:先猜后证,即先观察与尝试给出条件再证明.途径二:先通过命题成立的必要条件探索出命题成立的条件,再证明充分性.途径三:将几何问题转化为代数问题.2.解决平面图形翻折问题的关键是抓住“折痕”,准确把握平面图形翻折前后的两个“不变”.(1)与折痕垂直的线段,翻折前后垂直关系不改变;(2)与折痕平行的线段,翻折前后平行关系不改变.探索性问题中的平行和垂直关系[典例3-1](2019·北京高考)如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为菱形,E为CD的中点.(1)求证:BD⊥平面P AC;(2)若∠ABC=60°,求证:平面P AB⊥平面P AE;(3)棱PB上是否存在点F,使得CF∥平面P AE?说明理由.[解](1)证明:因为P A⊥平面ABCD,所以P A⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又P A∩AC=A,所以BD⊥平面P AC.(2)证明:因为P A⊥平面ABCD,AE⊂平面ABCD,所以P A⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD,所以AB⊥AE.又AB∩P A=A,所以AE⊥平面P AB.因为AE⊂平面P AE,所以平面P AB⊥平面P AE.(3)棱PB上存在点F,使得CF∥平面P AE.取F为PB的中点,取G为P A的中点,连接CF,FG,EG.则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面P AE,EG⊂平面P AE,所以CF∥平面P AE.点评:(1)处理空间中平行或垂直的探索性问题,一般先根据条件猜测点的位置,再给出证明.探索点存在问题,点多为中点或n等分点中的某一个,需根据相关的知识确定点的位置.(2)利用向量法,设出点的坐标,结论变条件,求出点的坐标,并指明点的位置.折叠问题中的平行与垂直关系[典例3-2](2018·全国卷Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°.以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.(1)证明:平面ACD⊥平面ABC;(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=23DA,求三棱锥Q-ABP的体积.[解](1)证明:由已知可得,∠BAC=90°,即BA⊥AC.又BA⊥AD,AD∩AC=A,AD,AC⊂平面ACD,所以AB⊥平面ACD.又AB⊂平面ABC,所以平面ACD⊥平面ABC.(2)由已知可得,DC=CM=AB=3,DA=3 2.又BP=DQ=23DA,所以BP=2 2.如图,过点Q作QE⊥AC,垂足为E,则QE∥DC且QE=13DC.由已知及(1)可得,DC⊥平面ABC,所以QE⊥平面ABC,QE=1.因此,三棱锥Q-ABP的体积为V Q-ABP=13×S△ABP×QE=13×12×3×22sin 45°×1=1.点评:本例第(1)问是垂直关系证明问题,求解的关键是抓住“BA⊥AC”折叠过程中始终不变;本例第(2)问是计算问题,求解的关键是抓住“∠ACM=90°”折叠过程中始终不变.即折叠问题的处理可采用:不变的关系可在平面图形中处理,而对于变化的关系则要在立体图形中解决.[跟进训练]1.(2020·梧州模拟)如图,四边形ABCD中,AB=AD=CD=1,BD=2,BD⊥CD.将四边形ABCD沿对角线BD折成四面体A′-BCD,使平面A′BD⊥平面BCD,则下列结论正确的是()A.A′C⊥BDB.∠BA′C=90°C.CA′与平面A′BD所成的角为30°D.四面体A′-BCD的体积为1 3B[若A成立可得BD⊥A′D,产生矛盾,故A错误;由题设知:△BA′D 为等腰直角三角形,CD⊥平面A′BD,得BA′⊥平面A′CD,于是B正确;由CA′与平面A′BD所成的角为∠CA′D=45°知C错误;V A′-BCD=V C-A′BD=16,故D错误,故选B.]2.如图,直三棱柱ABC-A1B1C1中,D,E分别是棱BC,AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.(1)求证:C1E∥平面ADF;(2)设点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF? [解](1)证明:连接CE交AD于O,连接OF.因为CE,AD为△ABC的中线,则O为△ABC的重心,故CFCC1=COCE=23,故OF∥C1E,因为OF⊂平面ADF,C1E⊄平面ADF,所以C1E∥平面ADF.(2)当BM=1时,平面CAM⊥平面ADF.证明如下:因为AB=AC,D为BC的中点,故AD⊥BC.在直三棱柱ABC-A1B1C1中,BB1⊥平面ABC,BB1⊂平面B1BCC1,故平面B1BCC1⊥平面ABC.又平面B1BCC1∩平面ABC=BC,AD⊂平面ABC,所以AD⊥平面B1BCC1,又CM⊂平面B1BCC1,故AD⊥CM.又BM=1,BC=2,CD=1,FC=2,故Rt△CBM≌Rt△FCD.易证CM⊥DF,又DF∩AD=D,DF,AD⊂平面ADF,故CM⊥平面ADF.又CM⊂平面CAM,故平面CAM⊥平面ADF.。

新高考地区专用2020_2022三年高考数学真题分项汇编专题04立体几何

新高考地区专用2020_2022三年高考数学真题分项汇编专题04立体几何

专题04 立体几何1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )A.B.C.D.【答案】C【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【解析】依题意可知棱台的高为MN=157.5−148.5=9(m),所以增加的水量即为棱台的体积V.棱台上底面积S=140.0k m2=140×106m2,下底面积S'=180.0k m2=180×106m2,∴V=13ℎ(S+S'+√S S')=13×9×(140×106+180×106+√140×180×1012)¿3×(320+60√7)×106≈(96+18×2.65)×107=1.437×109≈1.4×109(m3).故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为36π,且3≤l≤3√3,则该正四棱锥体积的取值范围是( )A.[18,814]B.[274,814]C.[274,643]D.[18,27]【答案】C【分析】设正四棱锥的高为ℎ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【解析】∵ 球的体积为36π,所以球的半径R=3,设正四棱锥的底面边长为2a,高为ℎ,则l2=2a2+ℎ2,32=2a2+(3−ℎ)2,所以6ℎ=l2,2a2=l2−ℎ2所以正四棱锥的体积V=13Sℎ=13×4a2×ℎ=23×(l2−l436)×l26=19(l4−l636),所以V'=19(4l3−l56)=19l3(24−l26),当3≤l≤2√6时,V'>0,当2√6<l≤3√3时,V'<0,所以当l=2√6时,正四棱锥的体积V取最大值,最大值为64 3,又l=3时,V=274,l=3√3时,V=814,所以正四棱锥的体积V的最小值为274,所以该正四棱锥体积的取值范围是[274,643].故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为3√3和4√3,其顶点都在同一球面上,则该球的表面积为( )A.100πB.128πC.144πD.192π【答案】A【分析】根据题意可求出正三棱台上下底面所在圆面的半径r1,r2,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【解析】设正三棱台上下底面所在圆面的半径r1,r2,所以2r1=3√3sin60∘,2r2=4√3sin60∘,即r 1=3,r2=4,设球心到上下底面的距离分别为d1,d2,球的半径为R,所以d1=√R2−9,d2=√R2−16,故|d1−d2|=1或d1+d2=1,即|√R2−9−√R2−16|=1或√R2−9+√R2−16=1,解得R2=25符合题意,所以球的表面积为S=4πR2=100π.故选:A.4.【2021年新高考1卷】已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为( )A .B.C.D.【答案】B【分析】设圆锥的母线长为,根据圆锥底面圆的周长等于扇形的弧长可求得的值,即为所求.【解析】设圆锥的母线长为,由于圆锥底面圆的周长等于扇形的弧长,则,解得.故选:B.5.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为( )A.B.C.D.【答案】D【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【解析】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高,下底面面积,上底面面积,所以该棱台的体积.故选:D. 6.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为( )A.20°B.40°C.50°D.90°【答案】B【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点处的纬度,计算出晷针与点处的水平面所成角.【解析】画出截面图如下图所示,其中是赤道所在平面的截线;是点处的水平面的截线,依题意可知;是晷针所在直线.是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知、根据线面垂直的定义可得..由于,所以,由于,所以,也即晷针与点处的水平面所成角为.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.7.【2022年新高考1卷】已知正方体ABCD−A1B1C1D1,则( )A.直线BC1与D A1所成的角为90°B.直线BC1与C A1所成的角为90°C.直线BC1与平面B B1D1D所成的角为45°D.直线BC1与平面ABCD所成的角为45°【答案】ABD【分析】数形结合,依次对所给选项进行判断即可.【解析】如图,连接B1C、BC1,因为D A1/¿B1C,所以直线BC1与B1C所成的角即为直线BC1与D A1所成的角,因为四边形B B1C1C为正方形,则B1C⊥BC1,故直线BC1与D A1所成的角为90°,A 正确;连接A1C,因为A1B1⊥平面B B1C1C,BC1⊂平面B B1C1C,则A1B1⊥B C1,因为B1C⊥BC1,A1B1∩B1C=B1,所以BC1⊥平面A1B1C,又A1C⊂平面A1B1C,所以BC1⊥C A1,故B正确;连接A1C1,设A1C1∩B1D1=O,连接BO,因为B B1⊥平面A1B1C1D1,C1O⊂平面A1B1C1D1,则C1O⊥B1B,因为C1O⊥B1D1,B1D1∩B1B=B1,所以C1O⊥平面B B1D1D,所以∠C1BO为直线BC1与平面B B1D1D所成的角,设正方体棱长为1,则C1O=√22,BC1=√2,sin∠C1BO=C1OB C1=12,所以,直线BC1与平面B B1D1D所成的角为30∘,故C错误;因为C1C⊥平面ABCD,所以∠C1BC为直线BC1与平面ABCD所成的角,易得∠C1BC=45∘,故D正确.故选:ABD8.【2022年新高考2卷】如图,四边形ABCD为正方形,ED⊥平面ABCD,FB∥ED,AB=ED=2FB,记三棱锥E−ACD,F−ABC,F−ACE的体积分别为V1,V2,V3,则( )A.V3=2V2B.V3=V1 C.V3=V1+V2D.2V3=3V1【答案】CD【分析】直接由体积公式计算V1,V2,连接BD交AC于点M,连接EM,FM,由V3=VA−EFM+VC−EFM计算出V3,依次判断选项即可.【解析】设AB=ED=2FB=2a,因为ED⊥平面ABCD,FB∥ED,则V1=13⋅ED⋅S△ACD=13⋅2a⋅12⋅(2a)2=43a3,V2=13⋅FB⋅S△ABC=13⋅a⋅12⋅(2a)2=23a3,连接BD交AC于点M,连接EM,FM,易得BD⊥AC,又ED⊥平面ABCD,AC⊂平面ABCD,则ED⊥AC,又ED∩BD=D,ED,BD⊂平面BDEF,则AC⊥平面BDEF,又BM=DM=12BD=√2a,过F作FG⊥DE于G,易得四边形BDGF为矩形,则FG=BD=2√2a,EG=a,则EM=√2(√)2√6a,FM=√2(√)2√3a,EF=√2(√)23a,E M2+F M2=E F2,则EM⊥FM,S△EFM=12EM⋅FM=3√22a2,AC=2√2a,则V3=V A−EFM+V C−EFM=13AC⋅S△EFM=2a3,则2V3=3V1,V3=3V2,V3=V1+V2,故A、B错误;C、D正确.故选:CD.9.【2021年新高考1卷】在正三棱柱中,,点满足,其中,,则( )A .当时,的周长为定值B.当时,三棱锥的体积为定值C.当时,有且仅有一个点,使得D.当时,有且仅有一个点,使得平面【答案】BD【分析】对于A,由于等价向量关系,联系到一个三角形内,进而确定点的坐标;对于B,将点的运动轨迹考虑到一个三角形内,确定路线,进而考虑体积是否为定值;对于C,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数;对于D,考虑借助向量的平移将点轨迹确定,进而考虑建立合适的直角坐标系来求解点的个数.【解析】易知,点在矩形内部(含边界).对于A,当时,,即此时线段,周长不是定值,故A错误;对于B,当时,,故此时点轨迹为线段,而,平面,则有到平面的距离为定值,所以其体积为定值,故B正确.对于C,当时,,取,中点分别为,,则,所以点轨迹为线段,不妨建系解决,建立空间直角坐标系如图,,,,则,,,所以或.故均满足,故C错误;对于D,当时,,取,中点为.,所以点轨迹为线段.设,因为,所以,,所以,此时与重合,故D正确.故选:BD.【点睛】本题主要考查向量的等价替换,关键之处在于所求点的坐标放在三角形内.10.【2021年新高考2卷】如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点.则满足的是( )A.B.C.D.【答案】BC【分析】根据线面垂直的判定定理可得BC的正误,平移直线构造所考虑的线线角后可判断AD的正误.【解析】设正方体的棱长为,对于A,如图(1)所示,连接,则,故(或其补角)为异面直线所成的角,在直角三角形,,,故,故不成立,故A错误.对于B,如图(2)所示,取的中点为,连接,,则,,由正方体可得平面,而平面,故,而,故平面,又平面,,而,所以平面,而平面,故,故B正确.对于C,如图(3),连接,则,由B的判断可得,故,故C正确.对于D,如图(4),取的中点,的中点,连接,则,因为,故,故,所以或其补角为异面直线所成的角,因为正方体的棱长为2,故,,,,故不是直角,故不垂直,故D错误.故选:BC.11.【2020年新高考1卷(山东卷)】已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以为球心,为半径的球面与侧面BCC1B1的交线长为________.【答案】.【分析】根据已知条件易得,侧面,可得侧面与球面的交线上的点到的距离为,可得侧面与球面的交线是扇形的弧,再根据弧长公式可求得结果.【解析】如图:取的中点为,的中点为,的中点为,因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,又四棱柱为直四棱柱,所以平面A1B1C1D1,所以,因为,所以侧面,设为侧面与球面的交线上的点,则,因为球的半径为,,所以,所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得.故答案为:.【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.12.【2020年新高考2卷(海南卷)】已知正方体ABCD-A1B1C1D1的棱长为2,M、N 分别为BB1、AB的中点,则三棱锥A-NMD1的体积为____________【答案】【分析】利用计算即可.【解析】因为正方体ABCD-A1B1C1D1的棱长为2,M、N分别为BB1、AB的中点所以,故答案为:【点睛】在求解三棱锥的体积时,要注意观察图形的特点,看把哪个当成顶点好计算一些. 13.【2022年新高考1卷】如图,直三棱柱ABC−A1B1C1的体积为4,△A1BC的面积为2√2.(1)求A到平面A1BC的距离;(2)设D为A1C的中点,A A1=AB,平面A1BC⊥平面AB B1A1,求二面角A−BD−C 的正弦值.【答案】(1)√2;(2)√3 2【分析】(1)由等体积法运算即可得解;(2)由面面垂直的性质及判定可得BC⊥平面AB B1A1,建立空间直角坐标系,利用空间向量法即可得解.【解析】(1)在直三棱柱ABC−A1B1C1中,设点A到平面A1BC的距离为h,则V A−A1BC=13S△A1BC⋅ℎ=2√23ℎ=VA1−ABC=13S△ABC⋅A1A=13VABC−A1B1C1=43,解得ℎ=√2,所以点A到平面A1BC的距离为√2;(2)取A1B的中点E,连接AE,如图,因为A A1=AB,所以AE⊥A1B,又平面A1BC⊥平面AB B1A1,平面A1BC∩平面AB B1A1=A1B,且AE⊂平面AB B1A1,所以AE⊥平面A1BC,在直三棱柱ABC−A1B1C1中,B B1⊥平面ABC,由BC⊂平面A1BC,BC⊂平面ABC可得AE⊥BC,B B1⊥BC,又AE,B B1⊂平面AB B1A1且相交,所以BC⊥平面AB B1A1,所以BC,BA,B B1两两垂直,以B为原点,建立空间直角坐标系,如图,由(1)得AE =√2,所以A A 1=AB =2,A 1B =2√2,所以BC =2,则A (0,2,0),A 1(0,2,2),B (0,0,0),C (2,0,0),所以A 1C 的中点D (1,1,1),则⃗B D =(1,1,1),⃗B A =(0,2,0),⃗BC =(2,0,0),设平面ABD 的一个法向量⃗m =(x ,y ,z ),则{⃗m ⋅⃗BD =x +y +z =0⃗m ⋅⃗BA =2y =0,可取⃗m =(1,0,−1),设平面BDC 的一个法向量⃗n =(a ,b ,c ),则{⃗m ⋅⃗BD =a +b +c =0⃗m ⋅⃗BC =2a =0,可取⃗n=(0,1,−1),则cos 〈⃗m ,⃗n 〉=⃗m ⋅⃗n¿⃗m ∨⋅∨⃗n ∨¿=√√=12¿,所以二面角A −BD−C 的正弦值为√1−(12)2=√32.14.【2022年新高考2卷】如图,PO 是三棱锥P −ABC 的高,P A =PB ,AB ⊥AC ,E 是PB 的中点.(1)证明:OE /¿平面P AC ;(2)若∠ABO =∠CBO =30°,PO =3,P A =5,求二面角C −AE −B 的正弦值.【答案】(1)证明见解析;(2)11 13【分析】(1)连接BO并延长交AC于点D,连接OA、PD,根据三角形全等得到OA=OB,再根据直角三角形的性质得到AO=DO,即可得到O为BD的中点从而得到OE//PD,即可得证;(2)过点A作Az//OP,如图建立平面直角坐标系,利用空间向量法求出二面角的余弦值,再根据同角三角函数的基本关系计算可得;【解析】(1)证明:连接BO并延长交AC于点D,连接OA、PD,因为PO是三棱锥P−ABC的高,所以PO⊥平面ABC,AO,BO⊂平面ABC,所以PO⊥AO、PO⊥BO,又P A=PB,所以△POA≅△POB,即OA=OB,所以∠OAB=∠OBA,又AB⊥AC,即∠BAC=90°,所以∠OAB+∠OAD=90°,∠OBA+∠ODA=90°,所以∠ODA=∠OAD所以AO=DO,即AO=DO=OB,所以O为BD的中点,又E为PB的中点,所以OE//PD,又OE⊄平面P AC,PD⊂平面P AC,所以OE//平面P AC(2)解:过点A作Az//OP,如图建立平面直角坐标系,因为PO=3,AP=5,所以OA=√A P2−P O2=4,又∠OBA=∠OBC=30°,所以BD=2OA=8,则AD=4,AB=4√3,所以AC=12,所以O(2√3,2,0),B(4√3,0,0),P(2√3,2,3),C(0,12,0),所以E(3√3,1,32),则⃑AE=(3√3,1,32),⃑AB=(4√3,0,0),⃑AC=(0,12,0),设平面AEB的法向量为⃑n=(x,y,z),则¿,令z=2,则y=−3,x=0,所以⃑n=(0,−3,2);设平面AEC的法向量为⃑m=(a,b,c),则¿,令a=√3,则c=−6,b=0,所以⃑m=(√3,0,−6);所以cos⟨⃑n,⃑m⟩=⃑n⋅⃑m|⃑n||⃑m|=√√−4√313设二面角C−AE−B为θ,由图可知二面角C−AE−B为钝二面角,所以cosθ=−4√313,所以sinθ=√1−cos2θ=1113故二面角C−AE−B的正弦值为11 13;15.【2021年新高考1卷】如图,在三棱锥中,平面平面,,为的中点.(1)证明:;(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.【答案】(1)证明见解析;(2).【分析】(1)由题意首先证得线面垂直,然后利用线面垂直的定义证明线线垂直即可;(2)方法二:利用几何关系找到二面角的平面角,然后结合相关的几何特征计算三棱锥的体积即可.【解析】(1)因为,O是中点,所以,因为平面,平面平面,且平面平面,所以平面.因为平面,所以.(2)[方法一]:通性通法—坐标法如图所示,以O为坐标原点,为轴,为y轴,垂直且过O的直线为x轴,建立空间直角坐标系,则,设,所以,设为平面的法向量,则由可求得平面的一个法向量为.又平面的一个法向量为,所以,解得.又点C到平面的距离为,所以,所以三棱锥的体积为.[方法二]【最优解】:作出二面角的平面角如图所示,作,垂足为点G.作,垂足为点F,连结,则.因为平面,所以平面,为二面角的平面角.因为,所以.由已知得,故.又,所以.因为,.[方法三]:三面角公式考虑三面角,记为,为,,记二面角为.据题意,得.对使用三面角的余弦公式,可得,化简可得.①使用三面角的正弦公式,可得,化简可得.②将①②两式平方后相加,可得,由此得,从而可得.如图可知,即有,根据三角形相似知,点G为的三等分点,即可得,结合的正切值,可得从而可得三棱锥的体积为.【整体点评】(2)方法一:建立空间直角坐标系是解析几何中常用的方法,是此类题的通性通法,其好处在于将几何问题代数化,适合于复杂图形的处理;方法二:找到二面角的平面角是立体几何的基本功,在找出二面角的同时可以对几何体的几何特征有更加深刻的认识,该法为本题的最优解.方法三:三面角公式是一个优美的公式,在很多题目的解析中灵活使用三面角公式可以使得问题更加简单、直观、迅速.16.【2021年新高考2卷】在四棱锥中,底面是正方形,若.(1)证明:平面平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【分析】(1)取的中点为,连接,可证平面,从而得到面面.(2)在平面内,过作,交于,则,建如图所示的空间坐标系,求出平面、平面的法向量后可求二面角的余弦值.【解析】(1)取的中点为,连接.因为,,则,而,故.在正方形中,因为,故,故,因为,故,故为直角三角形且,因为,故平面,因为平面,故平面平面.(2)在平面内,过作,交于,则,结合(1)中的平面,故可建如图所示的空间坐标系.则,故.设平面的法向量,则即,取,则,故.而平面的法向量为,故.二面角的平面角为锐角,故其余弦值为.17.【2020年新高考1卷(山东卷)】如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【答案】(1)证明见解析;(2).【分析】(1)利用线面垂直的判定定理证得平面,利用线面平行的判定定理以及性质定理,证得,从而得到平面;(2)方法一:根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得的最大值,即为直线与平面所成角的正弦值的最大值.【解析】(1)在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面.(2)[方法一]【最优解】:通性通法因为两两垂直,建立空间直角坐标系,如图所示:因为,设,设,则有,设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB与平面QCD所成角的正弦值等于,当且仅当时取等号,所以直线与平面所成角的正弦值的最大值为.[方法二]:定义法如图2,因为平面,,所以平面.在平面中,设.在平面中,过P点作,交于F,连接.因为平面平面,所以.又由平面,平面,所以平面.又平面,所以.又由平面平面,所以平面,从而即为与平面所成角.设,在中,易求.由与相似,得,可得.所以,当且仅当时等号成立.[方法三]:等体积法如图3,延长至G,使得,连接,,则,过G点作平面,交平面于M,连接,则即为所求.设,在三棱锥中,.在三棱锥中,.由得,解得,当且仅当时等号成立.在中,易求,所以直线PB与平面QCD所成角的正弦值的最大值为.【整体点评】(2)方法一:根据题意建立空间直角坐标系,直线PB与平面QCD所成角的正弦值即为平面的法向量与向量的夹角的余弦值的绝对值,即,再根据基本不等式即可求出,是本题的通性通法,也是最优解;方法二:利用直线与平面所成角的定义,作出直线PB与平面QCD所成角,再利用解三角形以及基本不等式即可求出;方法三:巧妙利用,将线转移,再利用等体积法求得点面距,利用直线PB与平面QCD所成角的正弦值即为点面距与线段长度的比值的方法,即可求出.18.【2020年新高考2卷(海南卷)】如图,四棱锥P-ABCD的底面为正方形,PD底面ABCD.设平面PAD与平面PBC的交线为.(1)证明:平面PDC;(2)已知PD=AD=1,Q为上的点,QB=,求PB与平面QCD所成角的正弦值.【答案】(1)证明见解析;(2).【分析】(1)利用线面平行的判定定理以及性质定理,证得,利用线面垂直的判定定理证得平面,从而得到平面;(2)根据题意,建立相应的空间直角坐标系,得到相应点的坐标,设出点,之后求得平面的法向量以及向量的坐标,求得,即可得到直线与平面所成角的正弦值.【解析】(1)在正方形中,,因为平面,平面,所以平面,又因为平面,平面平面,所以,因为在四棱锥中,底面是正方形,所以且平面,所以因为,所以平面;(2)如图建立空间直角坐标系,因为,则有,设,则有,因为QB=,所以有设平面的法向量为,则,即,令,则,所以平面的一个法向量为,则根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于所以直线与平面所成角的正弦值为.【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有线面平行的判定和性质,线面垂直的判定和性质,利用空间向量求线面角,利用基本不等式求最值,属于中档题目.。

(完整版)立体几何经典大题(各个类型的典型题目)

(完整版)立体几何经典大题(各个类型的典型题目)

1立体几何大题训练(1)1.如图,已知△ABC 是正三角形,EA ,CD 都垂直于平面ABC ,且EA =AB =2a ,DC =a ,F 是BE 的中点.(1)FD ∥平面ABC ;(2)AF ⊥平面EDB .2.已知线段PA ⊥矩形ABCD 所在平面,M 、N 分别是AB 、PC 的中点。

(1)求证:MN //平面PAD ; (2)当∠PDA =45°时,求证:MN ⊥平面PCD ;FCB A E D2AB CDEF立体几何大题训练(2)3.如图,在四面体ABCD 中,CB=CD,BD AD ⊥,点E,F 分别是AB,BD 的中点.求证: (1)直线EF// 面ACD ; (2)平面⊥EFC 面BCD .4.在斜三棱柱A 1B 1C 1—ABC 中,底面是等腰三角形,AB =AC ,侧面BB 1C 1C ⊥底面ABC (1)若D 是BC 的中点,求证 AD ⊥CC 1;(2)过侧面BB 1C 1C 的对角线BC 1的平面交侧棱于M ,若AM =MA 1, 求证 截面MBC 1⊥侧面BB 1C 1C ;(3)AM =MA 1是截面MBC 1⊥平面BB 1C 1C 的充要条件吗?请你叙述判断理由]C13立体几何大题训练(3)5。

如图,在正方体ABCD-A 1B 1C 1D 1中,M 、N 、G 分别是A 1A ,D 1C,AD 的中点. 求证:(1)MN//平面ABCD; (2)MN ⊥平面B 1BG .6。

如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 为棱AD 、AB 的中点. (1)求证:EF ∥平面CB 1D 1;(2)求证:平面CAA 1C 1⊥平面CB 1D 1._ G_ M _ D_1_ C_1_ B_1_ A_1_ N _ D_ C_ B_ ABA 1F4立体几何大题训练(4)7、如图,在直四棱柱ABCD —A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB ∥CD ,AB=4,BC=CD=2,AA 1=2,E 、E 1分别是棱AD 、AA 1的中点(1)设F 是棱AB 的中点,证明:直线EE 1∥面FCC 1;(2)证明:平面D 1AC ⊥面BB 1C 1C 。

专题04 立体几何(解析版)

专题04 立体几何(解析版)

专题04 立体几何1.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为A .B .C .D【答案】D【解析】解法一:,PA PB PC ABC ==Q △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,∴PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,2R ==即344π33R V R =∴=π==,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC Q △为边长为2的等边三角形,CF ∴=又90CEF ∠=︒,12CE AE PA x ∴===, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,,,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,34433V R ∴=π==,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决. 2.【2019年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面【答案】B【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ⊂⊂∥,则αβ∥”此类的错误.3.【2019年高考全国Ⅲ卷理数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,Q 平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,,5,22MF BF BM ==∴=BM EN ∴≠,故选B .【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题.4.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯= ⎪⎝⎭.故故B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.5.【2019年高考浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则 A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<β【答案】B【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BDPB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PDED BDγβ=>=,即γβ>,综上所述,答案为B.【名师点睛】本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.常规解法下易出现的错误有,不能正确作图得出各种角,未能想到利用“特殊位置法”,寻求简便解法.6.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=, 所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.7.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=. 【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.8.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 【答案】如果l ⊥α,m ∥α,则l ⊥m .【解析】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内; (3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α. 故答案为:如果l ⊥α,m ∥α,则l ⊥m.【名师点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力.将所给论断,分别作为条件、结论加以分析即可.9.【2019底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 【答案】π42=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.10.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【名师点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积.11.【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A−MA 1−N 的正弦值.【答案】(1)见解析;(2)5. 【解析】(1)连结B 1C ,ME . 因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME =12B 1C . 又因为N 为A 1D 的中点,所以ND =12A 1D . 由题设知A 1B 1=P DC ,可得B 1C =P A 1D ,故ME =P ND , 因此四边形MNDE 为平行四边形,MN ∥ED . 又MN ⊄平面EDC 1,所以MN ∥平面C 1DE . (2)由已知可得DE ⊥DA .以D 为坐标原点,DA uuu r的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-u u u r,1(12)A M =--u u u u r,1(1,0,2)A N =--u u u u r,(0,MN =u u u u r.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u r m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u ur ,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||5⋅〈〉===‖m n m n m n , 所以二面角1A MA N --【名师点睛】本题考查线面平行关系的证明、空间向量法求解二面角的问题.求解二面角的关键是能够利用垂直关系建立空间直角坐标系,从而通过求解法向量夹角的余弦值来得到二面角的正弦值,属于常规题型.12.【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值. 【答案】(1)证明见解析;(2【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A , 故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒, 故AE AB =,12AA AB =.以D 为坐标原点,DA u u u r的方向为x 轴正方向,||DA uuu r 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =u u u r ,(1,1,1)CE =-u u u r,1(0,0,2)CC =u u u u r.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u ur n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩u u u u ru u ur m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0). 于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --的正弦值为2. 【名师点睛】本题考查了利用线面垂直的性质定理证明线线垂直以及线面垂直的判定,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.13.【2019年高考全国Ⅲ卷理数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2. (1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【答案】(1)见解析;(2)30o .【解析】(1)由已知得AD P BE ,CG P BE ,所以AD P CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB ⊥BE ,AB ⊥BC ,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC . 由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH.以H 为坐标原点,HC u u u r的方向为x 轴的正方向,建立如图所示的空间直角坐标系H –xyz ,则A (–1,1,0),C (1,0,0),G (2,0),CG u u u r =(1,0),AC u u u r=(2,–1,0).设平面ACGD 的法向量为n =(x ,y ,z ),则0,0,CG AC ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n即0,20.x x y ⎧+=⎪⎨-=⎪⎩ 所以可取n =(3,6,又平面BCGE 的法向量可取为m =(0,1,0),所以cos ,||||2⋅〈〉==n m n m n m . 因此二面角B –CG –A 的大小为30°.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,最后通过建系的向量解法将求二面角转化为求二面角的平面角问题,突出考查考生的空间想象能力.14.【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)(3)见解析. 【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1).所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=u u u r u u u r u u u r.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P为锐角,所以其余弦值为3.(3)直线AG 在平面AEF 内.因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--u u ur ,所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r .由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=u u u r n .所以直线AG 在平面AEF 内.【名师点睛】(1)由题意利用线面垂直的判定定理即可证得题中的结论;(2)建立空间直角坐标系,结合两个半平面的法向量即可求得二面角F −AE −P 的余弦值;(3)首先求得点G 的坐标,然后结合平面AEF 的法向量和直线AG 的方向向量即可判断直线是否在平面内.15.【2019年高考天津卷理数】如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(1)求证:BF ∥平面ADE ;(2)求直线CE 与平面BDE 所成角的正弦值; (3)若二面角E BD F --的余弦值为13,求线段CF 的长.【答案】(1)见解析;(2)49;(3)87. 【解析】依题意,可以建立以A 为原点,分别以AB AD AE u u u r u u u r u u u r,,的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得(0,0,0),(1,0,0),(1,2,0),(0,1,0)A B C D ,(0,0,2)E .设(0)CF h h =>>,则()1,2,F h .(1)依题意,(1,0,0)AB =u u u r 是平面ADE 的法向量,又(0,2,)BF h =u u u r,可得0BF AB ⋅=u u u r u u u r ,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE .(2)依题意,(1,1,0),(1,0,2),(1,2,2)BD BE CE =-=-=--u u u r u u u r u u u r.设(,,)x y z =n 为平面BDE 的法向量,则0,0,BD BE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 即0,20,x y x z -+=⎧⎨-+=⎩不妨令1z =, 可得(2,2,1)=n .因此有4cos ,9||||CE CE CE ⋅==-u u u ru u u r u u u r n n n .所以,直线CE 与平面BDE 所成角的正弦值为49. (3)设(,,)x y z =m 为平面BDF 的法向量,则0,0,BD BF ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rm m 即0,20,x y y hz -+=⎧⎨+=⎩不妨令1y =,可得21,1,h ⎛⎫=-⎪⎝⎭m .由题意,有||1cos ,||||3⋅〈〉===m n m n m n ,解得87h =.经检验,符合题意.所以,线段CF 的长为87.【名师点睛】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.16.【2019年高考江苏卷】如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E .【答案】(1)见解析;(2)见解析.【解析】(1)因为D ,E 分别为BC ,AC 的中点, 所以ED ∥AB .在直三棱柱ABC−A 1B 1C 1中,AB ∥A 1B 1, 所以A 1B 1∥ED .又因为ED ⊂平面DEC 1,A 1B 1⊄平面DEC 1,所以A 1B 1∥平面DEC 1.(2)因为AB =BC ,E 为AC 的中点,所以BE ⊥AC . 因为三棱柱ABC−A 1B 1C 1是直棱柱,所以CC 1⊥平面ABC . 又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C , 所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.17.【2019年高考浙江卷】(本小题满分15分)如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35. 【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC , 所以,A 1E ⊥平面ABC ,则A 1E ⊥BC . 又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F . 所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形. 由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形. 由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1, 所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG由于O 为A 1G 的中点,故12A G EO OG ===所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B1,0),1B,3,22F ,C (0,2,0).因此,3(,22EF =u u u r,(BC =u u u r .由0EF BC ⋅=u u u r u u u r得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ. 由(1)可得1=(10)=(02BC A C -u u u r u u u u r,,,. 设平面A 1BC 的法向量为n ()x y z =,,, 由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u rn n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u ru u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35. 【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.18.【云南省昆明市2019届高三高考5月模拟数学试题】已知直线l ⊥平面α,直线m ∥平面β,若αβ⊥,则下列结论正确的是 A .l β∥或l β⊄ B .//l m C .m α⊥ D .l m ⊥【答案】A【解析】对于A ,直线l ⊥平面α,αβ⊥,则l β∥或l β⊂,A 正确;对于B ,直线l ⊥平面α,直线m ∥平面β,且αβ⊥,则//l m 或l 与m 相交或l 与m 异面,∴B 错误;对于C ,直线m ∥平面β,且αβ⊥,则m α⊥或m 与α相交或m α⊂或m α∥,∴C 错误; 对于D ,直线l ⊥平面α,直线m ∥平面β,且αβ⊥,则//l m 或l 与m 相交或l 与m 异面,∴D 错误. 故选A .【名师点睛】本题考查了空间平面与平面关系的判定及直线与直线关系的确定问题,也考查了几何符号语言的应用问题,是基础题.19.【陕西省2019届高三年级第三次联考数学试题】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为A.4B .34 C.4D .54【答案】B【解析】如图,设BC 的中点为D ,连接1A D 、AD 、1A B , 易知1A AB ∠即为异面直线AB 与1CC 所成的角(或其补角). 设三棱柱111ABC A B C -的侧棱与底面边长均为1,则AD =112A D =,1A B =由余弦定理,得2221111cos 2A A AB A B A AB A A AB+-∠=⋅111322114+-==⨯⨯. 故应选B.【名师点睛】本题主要考查了异面直线所成角的求解,通过平移找到所成角是解这类问题的关键,若平移不好作,可采用建系,利用空间向量的运算求解,属于基础题.解答本题时,易知1A AB ∠即为异面直线AB 与1CC 所成的角(或其补角),进而通过计算1ABA △的各边长,利用余弦定理求解即可. 20.【四川省宜宾市2019届高三第三次诊断性考试数学试题】如图,边长为2的正方形ABCD 中,,E F 分别是,BC CD 的中点,现在沿,AE AF 及EF 把这个正方形折成一个四面体,使,,B C D 三点重合,重合后的点记为P ,则四面体P AEF -的高为A .13B .23C .34D .1【答案】B【解析】如图,由题意可知PA PE PF ,,两两垂直,∴PA ⊥平面PEF , ∴11111123323PEF A PEF V S PA -=⋅=⨯⨯⨯⨯=△, 设P 到平面AEF 的距离为h ,又2111321212112222AEF S =-⨯⨯-⨯⨯-⨯⨯=△, ∴13322P AEF hV h -=⨯⨯=,∴123h =,故23h =, 故选B .【名师点睛】本题考查了平面几何的折叠问题,空间几何体的体积计算,属于中档题.折叠后,利用A PEF P AEF V V --=即可求得P 到平面AEF 的距离.21.【广东省深圳市高级中学2019届高三适应性考试(6月)数学试题】在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π【解析】如图,在等边三角形ABC 中,取AB 的中点F ,设等边三角形ABC 的中心为O ,连接PF ,CF ,OP .由6AB =,得23AO BO CO CF OF ===== PAB Q △是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又平面PAB ⊥平面ABC ,PF ∴⊥平面ABC ,PF OF ∴⊥,OP ==则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(24π48π⨯=,故答案为48π.【名师点睛】本题主要考查四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径.求外接球半径的常见方法有:①若三条棱两两垂直,则用22224R a b c =++(,,a b c 为三条棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC △外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径. 22.【2019北京市通州区三模数学试题】如图,在四棱柱1111ABCD A B C D -中,侧棱1A A ABCD ⊥底面,AB AC ⊥,1AB =,12,AC AA AD CD ===E 为线段1AA 上的点,且12AE =.(1)求证:BE ⊥平面1ACB ;(2)求二面角11D AC B --的余弦值;(3)判断棱11A B 上是否存在点F ,使得直线DF ∥平面1ACB ,若存在,求线段1A F 的长;若不存在,说明理由.【答案】(1)见解析;(2;(3)见解析. 【解析】(1)因为1A A ABCD ⊥底面, 所以1A A AC ⊥. 又因为AB AC ⊥, 所以AC ⊥平面11ABB A , 又因为BE ⊂平面11ABB A , 所以AC ⊥BE . 因为112AE ABAB BB ==,∠EAB =∠ABB 1=90°, 所以1Rt Rt ABE BB A △∽△. 所以1ABE AB B ∠=∠. 因为1190BAB AB B ∠+∠=︒, 所以190BAB ABE ∠+∠=︒. 所以BE ⊥1AB . 又1AC AB A =I , 所以BE ⊥平面1ACB .(2)如图,以A 为原点建立空间直角坐标系,依题意可得111(0,0,0),(0,1,0),(2,0,0),(1,2,0),(0,0,2),(0,1,2),(2,0,2),A B C D A B C -11(1,2,2),(0,0,)2D E -.由(1)知,1(0,1,)2EB u u u r =-为平面1ACB 的一个法向量,设(,,)x y z =n 为平面1ACD 的法向量.因为1(1,2,2),(2,0,0)AD AC u u u u r u u u r=-=,则10,0,AD AC ⎧⋅=⎪⎨⋅=⎪⎩u u u u u u u r r n n 即220,20,x y z x -+=⎧⎨=⎩不妨设1z =,可得(0,1,1)=n .因此cos ,||||EB EB EB u u u r u u u r u u u r n n n ×<>=. 因为二面角11D AC B --为锐角, 所以二面角11D AC B --. (3)设1A F a =,则(0,,2)F a ,(1,2,2)DF a u u u r=-+.1(1,2,2)(0,1,)2102DF EB a a u u u r u u u r ?-+?=+-=,所以1a =-(舍).即直线DF 的方向向量与平面1ACB 的法向量不垂直, 所以,棱11A B 上不存在点F ,使直线DF ∥平面1ACB .【名师点睛】本题主要考查线面垂直与平行、以及二面角的问题,熟记线面垂直的判定定理以及空间向量的方法求二面角即可,属于常考题型.(1)根据线面垂直的判定定理,直接证明,即可得出结论成立;(2)以A 为原点建立空间直角坐标系,由(1)得到1(0,1,)2EB u u u r =-为平面1ACB 的一个法向量,再求出平面1ACD 的一个法向量,求两向量夹角的余弦值,即可得出结果; (3)先设1A F a =,用向量的方法,由0DF EBu u u r u u u r?求出a 的值,结合题意,即可判断出结论.【扫描二维码关注更多精彩★玩转高中数学研讨】。

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结

第四讲-立体几何题型归类总结高中数学-立体几何第四讲立体几何题型归类总结一、考点分析基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

斜棱柱底面是正多边形的棱柱正棱柱直棱柱其他棱柱2.棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的垂线上,这样的棱锥叫做正棱锥。

3.球球的性质:球心与截面圆心的连线垂直于截面;r=R2-d2(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)球与多面体的组合体:球与正四面体、长方体、正方体等的内接与外切。

注:球的有关问题转化为圆的问题解决。

球面积、体积公式:S球=4πR,V球=4/3πR³(其中R为球的半径)二、平行垂直基础知识网络平行与垂直关系可互相转化平行关系a⊥α,b⊥α⇒a//ba⊥α,a//b⇒b⊥αa⊥α,a⊥β⇒α//βα//β,a⊥α⇒a⊥βα//β,γ⊥α⇒γ⊥β垂直关系线线平行判定线线垂直性质判定性质判定面面垂直定义面面垂直线面平行面面平行线面垂直异面直线所成的角,线面角,二面角的求法1.求异面直线所成的角θ∈(0°,90°):解题步骤:找(作):利用平移法找出异面直线所成的角;(1)可固定一条直线平移另一条与其相交;(2)可将两条一面直线同时平移至某一特殊位置。

常用中位线平移法证:证明所找(作)的角就是异面直线所成的角(或其补角)。

常需要证明线线平行;计算:通过解三角形,求出异面直线所成的角;2求直线与平面所成的角度$\theta\in[0^\circ,90^\circ]$:关键在于找到“两足”:垂足和斜足。

解题步骤:1.找到斜线与其在平面内的射影的夹角(注意三垂线定理的应用);2.证明所找到的角度就是直线与平面所成的角度(或其补角)(常常需要证明线面垂直);3.通过解直角三角形,计算线面角度。

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

2023年高中数学基础知识梳理及基础题型归纳-立体几何模块-第四节 直线、平面垂直的判定及其性质

第四节直线、平面垂直的判定及其性质【知识点15】直线与平面垂直的判定1.直线与平面垂直的定义画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直2.直线和平面垂直的判定定理典型例题:【例1】(概念的理解)下列命题中,正确的序号是________.①若直线l与平面α内的无数条直线垂直,则l⊥α;②若直线l与平面α内的一条直线垂直,则l⊥α;③若直线l不垂直于平面α,则α内没有与l垂直的直线;④若直线l不垂直于平面α,则α内也可以有无数条直线与l垂直;⑤过一点和已知平面垂直的直线有且只有一条.【反思】(1)对于线面垂直的定义要注意“直线垂直于平面内的所有直线”说法与“直线垂直于平面内无数条直线”不是一回事,后者说法是不正确的,它可以使直线与平面斜交.(2)判定定理中要注意必须是平面内两相交直线.【变式1】(1)若三条直线OA,OB,OC两两垂直,则直线OA垂直于()A.平面OAB B.平面OACC.平面OBC D.平面ABC(2)如果一条直线垂直于一个平面内的:①三角形的两边;②梯形的两边;③圆的两条直径;④正五边形的两边.能保证该直线与平面垂直的是________.(填序号)【变式2】已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中,一定能推出m⊥β的是()A.α∥β,且m⊂αB.m∥n,且n⊥β C.m⊥n,且n⊂βD.m⊥n,且n∥β【变式3】下列说法中,正确的有()①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直;②过直线l外一点P,有且仅有一个平面与l垂直;③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面;④垂直于角的两边的直线必垂直角所在的平面;⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.A.2个B.3个C.4个D.5个例2(线面垂直的判定)如图,在三棱锥S-ABC中,∠ABC=90°,D是AC的中点,且SA=SB=SC.(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.【反思】(1)利用线面垂直的判定定理证明线面垂直的步骤①在这个平面内找两条直线,使它们和这条直线垂直;②确定这个平面内的两条直线是相交的直线;③根据判定定理得出结论.(2)平行转化法(利用推论):①a∥b,a⊥α⇒b⊥α;②α∥β,a⊥α⇒a⊥β.【变式1】如图,正方体ABCD-A1B1C1D1的棱长为2.求证:AC⊥B1D;【变式2】如图所示,直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,∠ACB=90°,C点到AB1的距离为CE,D为AB的中点.求证:(1)CD⊥AA1;(2)AB1⊥平面CED.【练习3】如图,在四棱锥P-ABCD中,底面ABCD是矩形,P A⊥平面ABCD,AP=AB=2,BC=22,E,F分别是AD,PC的中点.证明:PC⊥平面BEF.知识点【能力提升思考】已知∠BAC在平面α内,P∠α,∠PAB=∠PAC.求证:点P在平面α内的射影在∠BAC的平分线上.【变式1】如图所示,在斜三棱柱ABC—A1B1C1中,∠BAC=90°,BC1⊥AC,C1H⊥AB,证明:点H是C1在平面ABC内的射影.【反思】(1)求直线和平面所成角的步骤①寻找过斜线上一点与平面垂直的直线;②连结垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角;③把该角归结在某个三角形中,通过解三角形,求出该角.(2)在上述步骤中,其中作角是关键,而确定斜线在平面内的射影是作角的关键,几何图形的特征是找射影的依据,图形中的特殊点是突破口.【知识点16】直线与平面所成的角典例讲解:【例1】(直线与平面所成的角)如图,在正方体ABCD-A1B1C1D1中,(1)求A1B与平面AA1D1D所成的角;(2)求A1B与平面BB1D1D所成的角.【反思】求直线与平面所成角的步骤:(1)寻找过斜线上一点与平面垂直的直线.(2)连接垂足和斜足得到斜线在平面上的射影,斜线与其射影所成的锐角或直角即为所求的角.(3)把该角归结在某个三角形中,通过解三角形,求出该角.【变式1】如图所示,AB是圆柱的母线,BD是圆柱底面圆的直径,C是底面圆周上一点,且AB=BC=2,∠CBD=45°,求直线BD与平面ACD所成角的大小.【变式2】如图,已知∠BOC在平面α内,OA是平面α的斜线,且∠AOB=∠AOC=60°,OA=OB=OC=1,BC=2,求OA与平面α所成的角的大小.【思考1】把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点棱锥体积最大时,直线BD和平面ABC所成的角的大小为()A.90° B.60° C.45° D.30°【变式1】如图所示,四棱锥S-ABCD的底面为正方形,SD⊥底面ABCD,则下列结论中不正确的是()A.AC⊥SBB.AB∥平面SCDC.SA与平面SBD所成的角等于SC与平面SBD所成的角D.AB与SC所成的角等于DC与SA所成的角【例4】(综合应用)如图,P A⊥矩形ABCD所在的平面,M,N分别是AB,PC的中点.(1)求证:MN∥平面P AD;(2)若PD与平面ABCD所成的角为45°,求证:MN⊥平面PCD.【方法小结】1.直线和平面垂直的判定方法:(1)利用线面垂直的定义.(2)利用线面垂直的判定定理.(3)利用下面两个结论:①若a∥b,a⊥α,则b⊥α;②若α∥β,a⊥α,则a⊥β.2.线线垂直的判定方法:(1)异面直线所成的角是90°.(2)线面垂直,则线线垂直.3.求线面角的常用方法:(1)直接法(一作(或找)二证(或说)三计算).(2)转移法(找过点与面平行的线或面).(3)等积法(三棱锥变换顶点,属间接求法).【知识点17】距离问题典型例题:【例1】如图,已知AB是圆O的直径,C为圆上一点,AB=2,AC=1,P为∠O所在平面外一点,且PA垂直于圆O所在平面,PB与平面ABC所成的角为45°.(1)求证:BC∠平面PAC;(2)求点A到平面PBC的距离.【变式1】已知△ABC 的三条边长分别是5,12,13,点P 到A ,B ,C 三点的距离都等于7,则点P 到平面ABC 的距离为____【例2】如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.【反思】 求点到平面距离的方法总结:PA BCD E(1)过已知点作出平面的垂线段是关键. 作垂线段通常要借助于垂面,然后利用面面垂直性质定理作出平面的垂线.(2)作出垂线段后,通常利用等面积法求得距离.【变式1】如图,直四棱柱1111ABCD A B C D -中,//AB CD ,AD AB ⊥,2AB =,2AD =,1=3AA ,E 为CD 上一点,1DE =,3EC =.(1)证明:BE ⊥平面11BB C C ; (2)求点1B 到平面11EA C 的距离.【反思】 求点到平面距离的方法总结:(1)当直接作出垂线段比较困难时,可以考虑利用等体积法求距离. (2)用等体积法求距离,一般用三棱锥体积相等来求解.(3)可以用线面平行关系,转化到一个更容易求解的三棱锥去求距离;也可以利用比例关系,化为其他点到平面的距离来求解.【例题3】如图,在长方体1111ABCD A B C D -中,2AB =,1AD =,11A A =.ABCD EA 1B 1C 1D 1(1)证明:直线1BC 平行于平面1D AC ; (2)求直线1BC 到平面1D AC 的距离.【反思】 求直线到平面距离的方法总结:(1)求线面距离,根据直线上的点到平面距离相等,所以可以转化为点面距离来求解. (2)在转化为点面距的时候,选择合适的点会对解题有促进作用.【变式1】在直三棱柱111ABC -A B C 中,90 ABC =∠︒,11,2AB =BC =BB =,求: (1)异面直线11B C 与1A C 所成角的余弦值; (2)直线11B C 到平面BC A 1的距离.【思考】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.求异面直线1CC 和AB 的距离;ABCD A 1B 1C 1D 1ACBA 1B 1C 1C1A1B1CA BD【感悟】求两条异面直线距离的方法总结:(1)利用图形关系作出两条异面直线的公垂线,是求两异面直线距离的基本方法,但难度较大.(2)过两条异面直线中的一条直线作另一条直线的平行线,构造线面平行,将异面直线距离化为线面距离,进而转化为点面距离,是求异面直线距离的常用方法.(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离,再化为点面距离.【知识点18】二面角的概念【例1】(概念的理解)有下列结论:①两个相交平面组成的图形叫作二面角;②异面直线a,b分别和一个二面角的两个面垂直,则a,b所成的角与这个二面角的平面角相等或互补;③二面角的平面角是从棱上一点出发,分别在两个面内作射线所成的角;④二面角的大小与其平面角的顶点在棱上的位置没有关系.其中正确的是()A.①③B.②④C.③④D.①②【例2】如图,已知Rt△ABC,斜边BC⊂α,点A∉α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.【反思】(1)定义法:在二面角的棱上找一点,在两个半平面内过该点分别作垂直于棱的射线.(2)垂面法:过棱上一点作与棱垂直的平面,该平面与二面角的两个半平面形成交线,这两条射线(交线)所成的角,即为二面角的平面角.(3)垂线法:利用线面垂直的性质来寻找二面角的平面角,这是最常用也是最有效的一种方法.(1)定义:从一条直线出发的两个半平面所组成的图形.(2)相关概念:①这条直线叫做二面角的棱,②两个半平面叫做二面角的面.(3)画法:(4)记法:二面角α-l-β或α-AB-β或P-l-Q或P-AB-Q.(5)二面角的平面角:若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l -β的平面角是∠AOB.【变式1】如图,AB 是⊙O 的直径,P A 垂直于⊙O 所在的平面,C 是圆周上的一点,且P A =AC ,求二面角P -BC -A 的大小.【变式2】在正方体ABCD -A 1B 1C 1D 1中,截面A 1BD 与底面ABCD 所成二面角A 1-BD -A 的正切值为( ) A.32 B.22C. 2D.3【思考1】已知在直三棱柱111ABC A B C -中,4AB =,3AC BC ==,D 为AB 的中点.(1)求异面直线1CC 和AB 的距离;(2)若11AB A C ⊥,求二面角11A CD B --的平面角的余弦值.C1A1B1CA BD【变式1】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)求AE为何值时,二面角D1-EC-D的大小为45°?【方法小结】1.求二面角大小的步骤简称为“一作二证三求”.【知识点19】平面与平面垂直(1)平面与平面垂直①定义:一般地,两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.②画法:③记作:α⊥β.(2)判定定理文字语言一个平面过另一个平面的垂线,则这两个平面垂直图形语言符号语言l⊥α,l⊂β⇒α⊥β【例1】(概念理解)下列不能确定两个平面垂直的是()A.两个平面相交,所成二面角是直二面角B.一个平面垂直于另一个平面内的一条直线C.一个平面经过另一个平面的一条垂线D.平面α内的直线a垂直于平面β内的直线b【例2】已知直线m,n与平面α,β,给出下列三个结论:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则m⊥n;③若m⊥α,m∥β,则α⊥β.其中正确结论的个数是()A.0 B.1 C.2 D.3【变式1】过两点与一个已知平面垂直的平面()A.有且只有一个B.有无数个C .有且只有一个或无数个D .可能不存在【变式2】α,β是两个不同的平面,m ,n 是平面α及β之外的两条不同直线,给出四个论断:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题_____.【例2】(证明面面垂直)如图,在四棱锥P -ABCD 中,P A ⊥CD ,AD ∥BC ,∠ADC =∠P AB =90°,BC =CD =12AD .(1)在平面P AD 内找一点M ,使得直线CM ∥平面P AB ,并说明理由. (2)证明:平面P AB ⊥平面PBD .【延申变式1】如图,在四棱锥P -ABCD 中,P A 垂直于矩形ABCD 所在的平面,试证明:平面PCD ⊥平面P AD .【延申变式2】如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,PB =BC ,M 是PC 中点,试证明:平面MBD ⊥平面PCD .【反思】证明面面垂直常用的方法(1)定义法:即说明两个半平面所成的二面角是直二面角.(2)判定定理法:在其中一个平面内寻找一条直线与另一个平面垂直,即把问题转化为线面垂直.(3)性质法:两个平行平面中的一个垂直于第三个平面,则另一个也垂直于此平面. 【变式1】 如图,在三棱柱ABC -A 1B 1C 1中,侧棱垂直于底面,∠ACB =90°,AC =12AA 1,D 是棱AA 1的中点.证明:平面BDC 1⊥平面BDC .【变式2】如图,四棱锥P -ABCD 的底面ABCD 为正方形,P A ⊥底面ABCD ,AC ,BD 交于点E,F是PB的中点.求证:(1)EF∥平面PCD;(2)平面PBD⊥平面P AC.【思考3】如图所示,在正三棱柱ABC-A1B1C1中,E为BB1的中点,求证:截面A1CE⊥侧面ACC1A1.【方法小结】平面与平面垂直的判定定理的应用思路(1)本质:通过直线与平面垂直来证明平面与平面垂直,即线面垂直⇒面面垂直.(2)证题思路:处理面面垂直问题转化为处理线面垂直问题,进一步转化为处理线线垂直问题来解决.【能力提升】垂直问题难点突破专题【例1】(空间位置关系相关定理)如图,PA⊥平面ABCD,AD//BC,AD=2BC,AB⊥BC,点E为PD中点.(1)求证:AB⊥PD;(2)求证:CE//平面PAB.【变式1】如图,在三棱柱111ABC A B C -中,平面11A ACC ⊥平面ABC , AB =BC =2,∠ACB =30°AA 1=3, 11,BC A C E ⊥为AC 的中点.求证: 1A C ⊥平面1C EB ;求二面角1A AB C --的余弦值.【例2】(数量关系)如图,三棱锥P ABC -中,PB ⊥底面ABC ,2PB BC ==,1AC =,AB = E 为PC 的中点,点F 在PA 上,且2PF FA =.(1)求证:平面PAC ⊥平面BEF ;【变式2】已知多面体ABCDEF 中,四边形ABCD 为平行四边形, EF CE ⊥,且AC =, 1AE EC ==, 2BC EF =, //AD EF . (1)求证:平面ACE ⊥平面ADEF ;【例3】在三棱柱111ABC A B C -中,已知侧棱1CC ⊥底面,ABC M 为BC 的中点,13,2,AC AB BC CC ===.(1)证明: 1B C ⊥平面1AMC ;(2)求点1A 到平面1AMC 的距离.【变式3】.如图,直三棱柱(侧棱与底面垂直的棱柱)ABC ﹣A 1B 1C 1中,点G 是AC 的中点.(1)求证:B 1C ∥平面 A 1BG ;(2)若AB=BC , 1AC ,求证:AC 1⊥A 1B .【例4】(几何图形的特征).如图,在多面体ABCDFE中,四边形ADFE是正方形,在等腰梯形ABCD中,AD∥BC,AB=CD=AD=1,BC=2,G为BC中点,平面ADFE⊥平面ADCB.(1)证明:AC⊥BE;(2)求三棱锥A−GFC的体积.-中,PD⊥底面ABCD,底面ABCD为菱形,【变式4】已知四棱锥P ABCD=∠=,E为AB的中点.AD DAB2,60(1)证明:平面PAB⊥平面PED;(2)若PD=,求E到平面PBC的距离.-中,底面ABCD为矩形,PA⊥平面【例5】(存在性问题). 如图,四棱锥P ABCDABCD,PA=AD=1,AB=√3,点E为PD的中点,点F在棱DC上移动.(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;⊥.(2)求证:无论点F在DC的何处,都有PF AE。

2020年高考数学 专题四 立体几何题型分析 理

2020年高考数学 专题四 立体几何题型分析 理

2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ­ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ­ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ­ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD ­A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD ­A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D ­A 1C ­E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q ­PB ­A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ­ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。

2017年全国文数立体几何高考题—老师专用(4)

2017年全国文数立体几何高考题—老师专用(4)

2017年全国文数立体几何高考题—老师专用(4)1.【2017全国III 卷文数·9T 】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( ) A .πB .3π4C .π2D .π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以2r BC ==,那么圆柱的体积是22314V r h πππ==⨯⨯=⎝⎭,故选B. 【考点】圆柱体积【名师点睛】涉及球与棱柱、棱锥的切、接问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内切、外接的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解. 2.【2017全国III 卷文数·10T 】在正方体1111ABCD A BC D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【答案】C【考点】线线位置关系【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.3.【2017全国II 卷文数·6T 】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90πB.63πC.42πD.36π 【答案】B【解析】由题意,该几何体是由高为6的圆柱 截取一半后的图形加上高为4的圆柱, 故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B.4. 【2017全国I卷文数·6T】如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直接AB与平面MNQ不平行的是A.B.C.D.【答案】A试题分析:由B,AB∥MQ,则直线AB∥平面MNQ;由C,AB∥MQ,则直线AB∥平面MNQ;由D,AB∥NQ,则直线AB∥平面MNQ.故A不满足,选A.【考点】空间位置关系判断【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.5. 【2017全国北京卷文数·6T】某三棱锥的三视图如图所示,则该三棱锥的体积为(A)60 (B)30(C)20 (D)10【答案】D6.【2017全国I 卷文数·16T 】已知三棱锥S-ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S-ABC 的体积为9,则球O 的表面积为________. 【答案】36π形所在平面的直线上任一点到多边形的顶点的距离相等,然后同样的方法找到另一个多边形的各顶点距离相等的直线(这两个多边形需有公共点),这样两条直线的交点,就是其外接球的球心,再根据半径,顶点到底面中心的距离,球心到底面中心的距离,构成勾股定理求解,有时也可利用补体法得到半径,例:三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.7.【2017全国II 卷文数·15T 】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.8.【2017全国天津卷文数·11T 】已知一个正方形的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 【答案】92π【解析】设正方体边长为,则226183a a =⇒=,外接球直径为34427923,πππ3382R V R ====⨯=.9.【2017全国江苏卷文数·6T 】如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是. 【答案】32⋅【考点】圆柱体积【名师点睛】空间几何体体积问题的常见类型及解题策略(1)若所给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解. (2)若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解. 10.【2017全国山东卷文数·13T 】由一个长方体和两个14圆柱构成的几何体的三视图如图,则该几何体的体积为 .【答案】π22+【解析】试题分析:由三视图可知,长方体的长宽高分别为2,1,1,圆柱的高为1,底面圆半径为1,所以2π1π21121242V ⨯=⨯⨯+⨯⨯=+.【考点】三视图及几何体体积的计算.【名师点睛】(1)由实物图画三视图或判断、选择三视图,此时需要注意“长对正、高平齐、宽相等”的原则.[ (2)由三视图还原实物图,解题时首先对柱、锥、台、球的三视图要熟悉,再复杂的几何体也是由这些简单的几何体组合而成的;其次,要遵循以下三步:①看视图,明关系;②分部分,想整体;③综合起来,定整体. 11.【2017全国山东卷文数·18T 】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD , (Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】①证明见解析.②证明见解析.试题分析:(Ⅰ)取11B D 中点F ,证明1//AO CF ,(Ⅱ)证明11B D ⊥面1A EM .(II)因为 AC BD ⊥,E ,M 分别为AD 和OD 的中点, 所以EM BD ⊥,因为ABCD 为正方形,所以AO BD ⊥, 又 1A E ⊥平面ABCD ,BD ⊂平面ABCD 所以1,A E BD ⊥ 因为11//,B D BD所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A E EM E = .所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .【考点】空间中的线面位置关系【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.12.【2017全国江苏卷文数·15T 】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .【答案】(1)见解析(2)见解析【解析】证明:(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥. 又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .【考点】线面平行判定定理、线面垂直判定与性质定理,面面垂直性质定理 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.13.【2017全国III 卷文数·19T 】(12分)如图,四面体ABCD 中,△ABC 是正三角形,AD =CD . (1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.【答案】(1)详见解析;(2)1【解析】试题分析:(1)取AC 中点O ,由等腰三角形及等比三角形性质得OD AC ⊥,OB AC ⊥,再根据线面垂直判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平几知识确定EC AE =,再根据锥体体积公式得,两者体积比为1:1.∴2==EC AE ,在ABD ∆中,设x DE =,根据余弦定理DEAD AE DE AD BD AD AB BD AD ADB ⋅-+=⋅-+=∠22cos 222222 x x ⨯⨯-+=⨯⨯-+=22222222)22()22(2222222解得2=x ,∴点E 是BD 的中点,则ACE B ACE D V V --=,∴1=--ACEB ACED V V .【考点】线面垂直判定及性质定理,锥体体积【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.14.【2017全国II 卷文数·18T 】(12分)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,AB=BC=12AD, ∠BAD=∠ABC=90°。

江苏名校备战高考12讲专题04 立体几何(学生版)

江苏名校备战高考12讲专题04 立体几何(学生版)

专题04 立体几何 一、单选题1. 【江苏省南通市2020-2021学年高三上学期12月月考模拟】在三棱锥P ABC -中,PA ⊥平面ABC ,23BAC π∠=,3AP =,23AB =,Q 是边BC 上的一动点,且直线PQ 与平面ABC 所成角的最大值为3π,则三棱锥P ABC -的外接球的表面积为( )A .50πB .55πC .57πD .108π2. 【江苏省南通市2020-2021学年高三上学期期中】把与直线l 垂直的向量称为直线l 的法向量.设(,)e A B =是直线l 的一个方向向量,那么(,)n B A =- 就是直线l 的一个法向量.借助直线的法向量,我们可以方便地计算点到直线的距离.已知P 是直线l 外一点,n 是直线l 的一个法向量,在直线l 上任取一点Q ,那么PQ 在法向量n 上的投影向量为()cos n PQ n θ⋅(θ为向量n 与PQ 的夹角),其模就是点P 到直线l 的距离d ,即PQ n d n ⋅=.据此,请解决下面的问题:已知点A (-4,0),B (2,-1),C (-1,3),则点A 到直线BC 的距离是( ) A .215 B .7 C .275 D .83. 【江苏省南通市2021届高三下学期3月模拟】一个正三棱锥(底面积是正三角形,顶点在底面上的射影为底面三角形的中心)的四个顶点都在半径为1的球面上,球心在三棱锥的底面所在平面上,则该正三棱锥的体积是A .334B .33C .34D .3124. 【江苏省南通市海安高级中学2020-2021学年高三上学期12月测试】三棱锥A BCD -中,60ABC CBD DBA ∠=∠=∠=︒,2BC BD ==,ACD △的面积为11,则此三棱锥外接球的体积为( )A .16πB .4πC .163πD .323π 5. 【江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测】如图所示,在正方体1111ABCD A B C D -中,E ,F 分别是11AB BC ,的中点,则异面直线EF 与1C D 所成的角为( )A .30B .45︒C .60︒D .90︒6. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】在三棱锥P ABC -中,PA ⊥面ABC ,ABC 是边长为2的正三角形,且3PA =,则二面角P BC A --的大小为( ) A .30 B .45︒ C .60︒ D .无法确定7. 【江苏省南通市如皋市2020-2021学年高三上学期教学质量调研(三)】直三棱柱111ABC A B C -中,侧棱14BB =,2AB =,3AC BC ==,则点C 到平面11A BC 的距离为( )A .22211B .42211C .62211D .1222118. 【江苏省南通市如皋市2020-2021学年高三上学期期中】正三棱锥S ABC -中,2SA =,22AB =,则该棱锥外接球的表面积为( )A .43πB .4πC .12πD .6π9. 【江苏省南通市如皋市2021届高三下学期4月第二次适应性考试】如图,在边长为2的正方形ABCD 中,点M 、N 分别是边CD 、BC 的中点,将ADM △沿AM 翻折到PAM △,在ADM △翻折到PAM △的过程中,tan PND ∠的最大值为( )A .54B .255C .55D .2310. 【江苏省南通市通州区、启东市2020-2021学年高三上学期期末】攒尖是古代中国建筑中屋顶的一种结构形式依其平面有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑如图所示,某园林建筑为六角攒尖,它的主要部分的轮廓可近似看作一个正六棱锥,设正六棱锥的侧面等腰三角形的顶角为2θ,则侧棱与底面内切圆半径的比为( )A .33sin θB .33cos θC .12sin θD .12cos θ11. 【江苏省镇江市、南通市如皋2020-2021学年高三上学期教学质量调研(二)】正三棱锥S ABC -中,2SA =,22AB =,则该棱锥外接球的表面积为( )A .43πB .4πC .12πD .6π12. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】棱长为6的正四面体ABCD 与正三棱锥E BCD -的底面重合,若由它们构成的多面体ABCDE 的顶点均在一球的球面上,则正三棱锥E BCD -的体积为( )A .92B .242C .362D .722二、多选题1. 【江苏省南通,徐州,淮安,泰州,宿迁,镇江,连云港等七市2021届高三下学期2月第一次调研】已知m ,n 是两条不重合的直线,α,β是两个不重合的平面,则( )A .若//m α,//n α,则//m nB .若//m α,m β⊥,则αβ⊥C .若//αβ,m α⊥,n β⊥,则//m nD .若αβ⊥,//m α,βn//,则m n ⊥ 2. 【江苏省南通市2020-2021学年高三上学期12月月考模拟】已知边长为2的等边ABC ,点D 、E 分别是边AC 、AB 上的点,满足//DE BC 且ADAC λ=(()0,1λ∈),将ADE 沿直线DE 折到A DE '的位置,在翻折过程中,下列结论成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面ACD 'B .存在102λ∈⎛⎫ ⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDE C .若12λ=,当二面角A DE B '--等于60°时,72A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为2393. 【江苏省南通市2020-2021学年高三上学期期中】如图,四棱锥P ABCD -中,平面PAD ⊥底面ABCD ,PAD △是等边三角形,底面ABCD 是菱形,且60BAD ∠=︒,M 为棱PD 的中点,N 为菱形ABCD 的中心,下列结论正确的有( )A .直线PB 与平面AMC 平行B .直线PB 与直线AD 垂直C .线段AM 与线段CM 长度相等D .PB 与AM 所成角的余弦值为24 4. 【江苏省南通市2021届高三下学期3月模拟】已知菱形ABCD 中,∠BAD =60°,AC 与BD 相交于点O .将∠ABD 沿BD 折起,使顶点A 至点M ,在折起的过程中,下列结论正确的是( ) A .BD ∠CMB .存在一个位置,使∠CDM 为等边三角形C .DM 与BC 不可能垂直D .直线DM 与平面BCD 所成的角的最大值为60°5. 【江苏省南通市海安市2020-2021学年高三上学期阶段质量检测(一)】如图所示,在长方体1111ABCD A B C D -,若AB BC =,E 、F 分别是1AB 、1BC 的中点,则下列结论中成立的是( )A .EF 与1BB 垂直B .EF ⊥平面11BDD BC .EF 与1CD 所成的角为45︒ D .//EF 平面1111D C B A6. 【江苏省南通市海安市2020-2021学年高三上学期期末】在棱长为2的正四面体ABCD 中,点E ,F ,G 分别为棱BC ,CD ,DA 的中点,则( )A .//AC 平面EFGB .过点E ,F ,G 的截面的面积为12C .AD 与BC 的公垂线段的长为2D .CD 与平面GBC 所成角的大小小于..二面角G BC D --的大小 7. 【江苏省南通市启东市2020-2021学年高三上学期期中】已知正方体1111ABCD A B C D -的棱长为4,点M ,N 分别是棱11A D ,CD 的中点,点P 在四边形ABCD 内,点Q 在线段BN 上,若25PM =,则( ) A .点P 的轨迹的长度为2π B .线段MP 的轨迹与平面11ADC B 的交线为圆弧C .PQ 长度的最小值为65105-D .PQ 长度的最大值为252+ 8. 【江苏省南通市如东县2020-2021学年高三上学期期末】如图,在棱长为1的正方体1111ABCD A B C D -中,P 为线段11B D 上一动点(包括端点),则以下结论正确的有( )A .三棱锥1P A BD -的体积为定值13B .过点P 平行于平面1A BD 的平面被正方体1111ABCD A BCD -截得的多边形的面积为32C .直线1PA 与平面1A BD 所成角的正弦值的范围为36,33⎡⎤⎢⎥⎣⎦ D .当点P 与1B 重合时,三棱锥1P A BD -的外接球的体积为32π 9. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】设α,β是两个相交平面,则下列说法正确的是( )A .若直线m α⊥,则在平面β内一定存在无数条直线与直线m 垂直B .若直线m α⊥,则在平面β内一定不存在与直线m 平行的直线C .若直线m α⊂,则在平面β内一定存在与直线m 垂直的直线D .若直线m α⊂,则在平面β内一定不存在与直线m 平行的直线10. 【江苏省南通市如皋市2020-2021学年高三上学期期末】如图,在边长为2的正方形ABCD 中,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连结PB ,PC ,在ADM △翻折到PAM △的过程中,下列说法正确的是( )A .四棱锥P ABCM -的体积的最大值为255B .当面PAM ⊥平面ABCM 时,二面角PAB C 的正切值为54C .存在某一翻折位置,使得AM PB ⊥D .棱PB 的中点为N ,则CN 的长为定值 11. 【江苏省南通市如皋市2020-2021学年高三上学期期中】在正方体1111ABCD A B C D -中,若E ,F 分别为1B B ,11B C 的中点,则( )A .直线1//A E 平面1ACDB .直线1B D ⊥平面1ACDC .平面1//A EF 平面1ACD D .平面11A B CD ⊥平面1ACD 12. 【江苏省南通市如皋市2021届高三下学期4月第二次适应性考试】在四面体ABCD 中,ABC 是边长为2的正三角形.60ADB ∠=︒,二面角D AB C --的大小为60︒,则下列说法正确的是( )A .AB CD ⊥B .四面体ABCD 的体积V 的最大值为32 C .棱CD 的长的最小值为3D .四面体ABCD 的体积最大时,四面体ABCD 的外接球的表面积为529π 13. 【江苏省镇江市、南通市如皋2020-2021学年高三上学期教学质量调研(二)】在正方体1111ABCD A B C D -中,若E ,F 分别为1B B ,11B C 的中点,则( )A .直线1//A E 平面1ACDB .直线1B D ⊥平面1ACDC .平面1//A EF 平面1ACD D .平面11A B CD ⊥平面1ACD14. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】如图,正方体1111ABCD A B C D -的棱长为1,E 为1BA 的中点( )A .直线1EC 与直线AD 是异面直线B .在直线11AC 上存在点F ,使EF ⊥平面1ACDC .直线1BA 与平面1ACD 所成角是6π D .点B 到平面1ACD 的距离是22 15. 【江苏省南通市学科基地2020-2021学年高三上学期第一次联考】如图,在半圆柱中,AB 为上底面直径,DC 为下底面直径,AD ,BC 为母线,AB =AD =2,点F 在AB 上,点G 在DC 上,BF =DG =1,P 为DC 的中点.则( )A .BF ∠PGB .异面直线AF 与CG 所成角为60°C .三棱锥P —ACG 的体积为32D .直线AP 与平面ADG 所成角的正弦值为1510 16. 【江苏省南通市通州区2020-2021学年高三上学期第三次调研考试】下列命题中正确的是( ) A .,,,A B M N 是空间中的四点,若,,BA BM BN 不能构成空间基底,则,,,A B M N 共面B .已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为2(2,0,)3n =-,则直线//l αD .若直线l 的方向向量为(1,0,3)e =,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的正弦值为55三、填空题1. 【江苏省南通,徐州,淮安,泰州,宿迁,镇江,连云港等七市2021届高三下学期2月第一次调研】已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________.2. .【江苏省南通市2020-2021学年高三上学期期中】如图所示,在边长为2的菱形ABCD 中,60BCD ∠=︒,现将ABD △沿对角线BD 折起,得到三棱锥P BCD -.则当二面角P BD C --的大小为23π时,三棱锥P BCD -的外接球的表面积为______.3. 【江苏省南通市海安高级中学2020-2021学年高三上学期1月调研】在三棱锥P ABC -中,ABC 与PBC 均为边长为1的等边三角形,,,,P A B C ,四点在球O 的球面上,当三棱锥P ABC -的体积最大时,则球O 的表面积为______.4. 【江苏省南通市海安高级中学2020-2021学年高三上学期12月测试】《九章算术》是我国古代数学名著,它在几何学中的研究比西方早一千多年,书中将四个面均为直角三角形的四面体称为鳖臑.如图,四面体P ABC -为鳖臑,PA ⊥平面ABC ,AB BC ⊥,且1==PA AB ,2BC =,则二面角A PC B --的正弦值为______.5. .【江苏省南通市海安高级中学2020-2021学年高三上学期期中】已知三棱锥P ABC -中,PA ,PB ,PC 两两垂直,且1PA PB PC ===,以P 为球心,22为半径的球面与该三棱锥表面的交线的长度之和为______. 6. 【江苏省南通市海安市2020-2021学年高三上学期阶段质量检测(一)】如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为_______.7. 【江苏省南通市海安市2020-2021学年高三上学期期末】已知某空心圆锥的母线长为5cm ,高为4cm ,记该圆锥内半径最大的球为球O ,则球O 与圆锥侧面的交线的长为________cm .8. 【江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测】某同学在参加《通用技术》实践课时,制作了一个实心..工艺品(如图所示).该工艺品可以看成一是个球体被一个棱长为8的正方体的6个面所截后剩余的部分(球心与正方体的中心重合).若其中一个截面圆的周长为6π,则该球的半径为___;现给出定义:球面被平面所截得的一部分叫做球冠.截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.如果球面的半径是R ,球冠的高是h ,那么球冠的表面积计算公式是2S Rh π= . 由此可知,该实心..工艺品的表面积是____.9. 【江苏省南通市启东市2020-2021学年高三上学期期中】在我国古代数学名著《九章算术》中,把两底面为直角三角形的直棱柱称为“堑堵”,已知三棱柱111ABC A B C -是一个“堑堵”,其中12AB BB ==,1BC =,5AC =,则这个“堑堵”的外接球的表面积为________.10. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】在梯形ABCD 中,//AD BC ,AB BC ⊥,222AD AB BC ===,将ABC 沿对角线AC 翻折到AMC ,连结MD .当三棱锥M ACD -的体积最大时,该三棱锥的外接球的表面积为__________.11. 【江苏省南通市如皋市2020-2021学年高三上学期教学质量调研(三)】如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,三角形PAD 为正三角形,且平面PAD ⊥平面ABCD ,则四棱锥P ABCD -外接球的表面积为_________.12. 【江苏省南通市通州高级中学2020-2021学年高三上学期第五次阶段性测试】我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童.如图的刍童ABCD EFGH -有外接球,且26,22,15,5AB AD EH EF ====,平面EFGH 与平面ABCD 的距离为1则,该刍童外接球的体积为______.13. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】如图,三棱锥P ABC -中,1BC =,2AC =,3PC =,PA AB =,PA AC ⊥,PB BC ⊥.点Q 在棱PB 上且1BQ =,则直线CQ 与平面ABC 所成的角是__________.14. 【江苏省南通市学科基地2020-2021学年高三上学期第一次联考】某公司周年庆典活动中,制作的“水晶球”工艺品如图所示,底座是用一边长为2m 的正方形钢板,按各边中点连线垂直折起四个小三角形制成,再将一个水晶玻璃球放入其中.若水晶球最高点到底座底面的距离为(2+1)m ,则水晶球的表面积为_______m 2.15. 【江苏省南通市通州区2020-2021学年高三上学期第三次调研考试】正方体1111ABCD A B C D -的棱长为1,E ,F 分别为BC ,1CC 的中点.则平面AEF 截正方体所得的截面面积为______;以点E 为球心,以104为半径的球面与对角面11ACC A 的交线长为______.四、解答题1. 【江苏省南通,徐州,淮安,泰州,宿迁,镇江,连云港等七市2021届高三下学期2月第一次调研】如图,在正六边形ABCDEF 中,将ABF 沿直线BF 翻折至A BF '△,使得平面A BF '⊥平面BCDEF ,O ,H 分别为BF 和A C '的中点.(1)证明://OH 平面A EF ';(2)求平面A BC '与平面A DE 所成锐二面角的余弦值.2. 【江苏省南通市2020-2021学年高三上学期12月月考模拟】如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,//AD BC ,90ABC ∠=︒,45BCD ∠=︒,2BC AD =.(1)求证:BD PC ⊥;(2)若PC BC =,求平面PAD 和平面PBC 所成的角(锐角)的余弦值.3. 【江苏省南通市2020-2021学年高三上学期期末模拟】如图,在四棱锥P -ABCD 中,23,AD =3,AB =3,AP =//AD BC ,AD ⊥平面PAB ,90APB ︒∠=,点E 满足2133PE PA PB =+.(1)证明:PE DC ⊥; (2)求二面角A -PD -E 的余弦值.4. 【江苏省南通市2020-2021学年高三上学期期中】已知四棱锥P ­ABCD ,底面ABCD 为菱形,PD =PB ,H 为PC 上的点,过AH 的平面分别交PB ,PD 于点M ,N ,且BD ∠平面AMHN .(1)证明:MN ∠PC ;(2)当H 为PC 的中点,PA =PC =3AB ,PA 与平面ABCD 所成的角为60°,求AD 与平面AMHN 所成角的正弦值.5. 【江苏省南通市海安高级中学2020-2021学年高三上学期1月调研】如图,平面ABCD ⊥平面DBNM ,且菱形ABCD 与菱形DBNM 全等,且MDB DAB ∠=∠,G 为MC 中点.(1)求证:平面//GBD 平面AMN .(2)求直线AD 与平面AMN 的所成角的正弦值.6. 【江苏省南通市海安高级中学2020-2021学年高三上学期12月测试】如图,在三棱锥P ABC -中,2AB BC ==,2PA PB PC AC ====.(1)证明:平面PAC ⊥平面ABC ;(2)点M 在棱BC 上,且PC 与平面PAM 所成角的正弦值为34,求BM . 7. 【江苏省南通市海安高级中学2020-2021学年高三上学期期中】如图,四棱锥P ABCD -的底面为直角梯形,//AB CD ,AD CD ⊥,1AB AD ==,2CD =,PD ⊥平面ABCD .(1)求证:BC ⊥平面PBD ;(2)已知2PD =,点E 为棱PB 的中点,求直线AE 与平面DCE 所成角的正弦值.8. 【江苏省南通市海安市2020-2021学年高三上学期阶段质量检测(一)】如图,四边形ABCD 与BDEF 均为菱形,FA FC =,且60DAB DBF ∠=∠=︒.(1)求证:AC ⊥平面BDEF ;(2)求直线AD 与平面AEF 所成角的正弦值.9. 【江苏省南通市海安市2020-2021学年高三上学期期末】如图,在四棱锥A BCDE -中,//BC DE ,22BC DE ==,BC CD ⊥,F 为AB 的中点,BC EF ⊥.(1)求证:AC BC ⊥;(2)若AD CD =,2AC =,求直线AE 与平面BDE 所成角的正弦值的最大值.10. 【江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测】如图,四边形ABCD 与BDEF 均为菱形,FA FC =,2AB =,且60DAB DBF ∠=∠=.(1)求证:AC BF ⊥;(2)求二面角E AF B --的余弦值.11. 【江苏省南通市启东市2020-2021学年高三上学期期中】如图,在正三棱柱111ABC A B C -中,233AB =,12A A =,D ,E ,F 分别为线段AC ,1A A ,1C B 的中点.(1)证明://EF 平面ABC ;(2)求直线1C B 与平面BDE 所成角的正弦值.12. 【江苏省南通市启东市2020-2021学年高三上学期期中】如图所示的某种容器的体积为318dm π,它是由半球和圆柱两部分连接而成,半球的半径与圆柱的底面半径都为dm r ,圆柱的高为dm h .已知顶部半球面的造价为3a 元2/dm ,圆柱的侧面造价为a 元2/dm ,圆柱底面的造价为23a 元2/dm .(1)将圆柱的高h 表示为底面半径r 的函数,并求出定义域;(2)当容器造价最低时,圆柱的底面半径r 为多少?13. 【江苏省南通市如东县2020-2021学年高三上学期期末】如图,几何体为圆柱Ω的一半,四边形ABCD为圆柱Ω的轴截面,点E 为圆弧AB 上异于A ,B 的点,点F 为线段ED 上的动点.(1)求证:BE AF ⊥;(2)若2AB =,1AD =,30ABE ∠=︒,且直线CA 与平面ABF 所成角的正弦值为1510,求EF ED 的值. 14. 【江苏省南通市如皋市2020-2021学年高三上学期10月第一次教学质量调研】如图,在六面体1111ABCD A B C D -中,11//AA CC ,底面ABCD 是菱形,且1A D ⊥平面1AA C .(1)求证:平面1AB C ⊥平面1A DB ;(2)求证:11//BB DD .15. 【江苏省南通市如皋市2020-2021学年高三上学期教学质量调研(三)】如图,已知五面体ABCDEF 中,CDEF 为正方形,且平面CDEF ⊥平面ABCD ,120ADC BCD ∠=∠=.(1)证明:ABCD 为等腰梯形;(2)若AD DE =,求二面角F BD C --的余弦值.16. 【江苏省南通市如皋市2020-2021学年高三上学期期末】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AC ,BD 相交于点N ,2DN NB =,已知3PA AC AD ===,33BD =30ADB ∠=︒.(1)求证:AC ⊥平面PAD ;(2)设棱PD 的中点为M ,求平面PAB 与平面MAC 所成二面角的正弦值.17. 【江苏省南通市如皋市2020-2021学年高三上学期期中】如图,在三棱柱111ABC A B C -中,底面ABC 是边长为2正三角形,侧面11ACC A 是菱形,且平面11ACC A ⊥平面ABC ,E ,F 分别是棱11A C ,BC 的中点,12C G GC =.(1)证明://EF 平面11ABB A ;(2)若①三棱锥1C ABC -的体积为1;②1C C 与底面所成的角为60︒;③异面直线1BB 与AE 所成的角为30.请选择一个条件求平面EFG 与平面11ACC A 所成的二面角(锐角)的余弦值.18. 【江苏省南通市如皋市2021届高三下学期4月第二次适应性考试】如图,在多面体ABCDEF 中,底面ABCD 是边长为2的的菱形,60BAD ∠=,四边形BDEF 是矩形,平面BDEF ⊥平面ABCD ,3BF =,G 和H 分别是CE 和CF 的中点.(∠)求证:平面//BDGH 平面AEF ;(∠)求二面角H BD C --的大小.19. 【江苏省南通市通州高级中学2020-2021学年高三上学期第五次阶段性测试】如图所示,该几何体是由一个直三棱柱ADE BCF 和一个正四棱锥P ABCD -组合而成,AD AF ⊥,2AE AD ==.(∠)证明:平面PAD ⊥平面ABFE ;(∠)求正四棱锥P ABCD -的高h ,使得二面角C AF P --的余弦值是223. 20. 【江苏省南通市通州区、启东市2020-2021学年高三上学期期末】如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 是PD 上的点.(1)当E 是PD 的中点时,求证://PB 平面AEC ;(2)设1==PA AB ,3PC =,若直线PC 与平面AEC 所成角的正弦值为13,求PE 的长. 21. 【江苏省南通市通州区2020-2021学年高三上学期第三次调研考试】如图,在四棱锥P ABCD -中,四边形ABCD 是等腰梯形,//,2,4AB DC BC CD AB ===.M N ,分别是,AB AD 的中点,且PD NC ⊥,平面PAD ⊥平面ABCD .(1)证明:PD ⊥平面ABCD ;(2)已知三棱锥D PAB -的体积为23,求二面角C PN M --的大小. 22. 【江苏省南通市学科基地2020-2021学年高三上学期第一次联考】如图,已知多面体ABCDEF 的底面ABCD 是边长为2的正方体,FA ∠底面ABCD ,AF =2,且DE =AF λ(0<λ<1).(1)求证:CE ∠平面ABF ;(2)若二面角B —CF —E 的大小为56π,求λ的值. 23. 【江苏省如东高级中学、丹阳高级中学、如皋中学2020-2021学年高三上学期12月三校联考】如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,四边形ABCD 为梯形,//BC AD ,AB AD ⊥,E 为侧棱PA 上一点,且2AE PE =,3AP =,2AB BC ==,4=AD .(1)证明://PC 平面BDE . (2)求平面PCD 与平面BDE 所成锐二面角的余弦值.24. 【江苏省镇江市、南通市如皋2020-2021学年高三上学期教学质量调研(二)】如图,在三棱柱111ABC A B C -中,底面ABC 是边长为2正三角形,侧面11ACC A 是菱形,且平面11ACC A ⊥平面ABC ,E ,F 分别是棱11A C ,BC 的中点,12C G GC =.(1)证明://EF 平面11ABB A ;(2)若①三棱锥1C ABC -的体积为1;②1C C 与底面所成的角为60︒;③异面直线1BB 与AE 所成的角为30.ACC A所成的二面角(锐角)的余弦值.请选择一个条件求平面EFG与平面11。

四元正四面体摆法要点

四元正四面体摆法要点

四元正四面体摆法要点
一、四元正四面体的基本概念
四元正四面体,又称四面体,是由四个等边三角形组成的立体几何图形。

在每个面上,都有一个顶点与其他三个顶点相连,形成一个正四面体的结构。

这种独特的结构使其在力学、物理学等领域具有广泛的应用。

二、四元正四面体摆法的原理
四元正四面体摆法的原理是基于地球重力和物体摆动的规律。

当四个等边三角形组成一个四元正四面体时,摆动中心位于正四面体的重心。

在摆动过程中,重力会对摆动产生影响,使得摆动轨迹呈现出特定的规律。

三、四元正四面体摆法的操作步骤
1.准备工具:四元正四面体摆、支架、重物。

2.安装支架:根据实际情况选择合适的支架,确保支架稳定可靠。

3.悬挂四元正四面体:将四元正四面体摆的四个顶点分别悬挂在支架上,使其保持平衡。

4.调整摆动角度:根据需要调整四元正四面体的摆动角度,使其达到预期的摆动效果。

5.观察摆动规律:观察四元正四面体摆动过程中的轨迹,分析其与重力、摆动角度等因素的关系。

四、四元正四面体摆法的应用领域
1.物理学:研究物体在重力作用下的运动规律,为桥梁、建筑等工程结构的设计提供理论依据。

2.地球物理学:通过研究地球重力场,探测地下的矿产资源、地质构造等信息。

3.工程领域:在桥梁、塔架等工程结构中,利用四元正四面体摆法检测结构的稳定性和安全性。

五、总结与建议
四元正四面体摆法作为一种实用的摆动实验方法,在多个领域具有广泛的应用。

通过对四元正四面体的研究和实践,我们可以更好地了解物体在重力作用下的运动规律,为实际工程应用提供理论支持。

空间向量与立体几何(四)答案

空间向量与立体几何(四)答案

空间向量与立体几何(四)解析1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面的夹角为( ) A .60° B .120° C .60°或120° D .90° 答案 A解析 |cos 〈m ,n 〉|=|m ·n ||m ||n |=|-1|2·2=12,即〈m ,n 〉=60°.∴两平面所成角为60°. 2.在棱长为3的正方体ABCD -A 1B 1C 1D 1中,E 为线段AA 1的中点,F 为线段C 1D 1上靠近D 1的三等分点,则异面直线A 1B 与EF 所成角的余弦值为( ) A.114 B.214 C.314 D.17 答案 B解析 如图,建立空间直角坐标系,则A 1(3,0,0),B (3,3,3), E ⎝⎛⎭⎫3,0,32,F (0,1,0),所以A 1B —→=(0,3,3),EF →=⎝⎛⎭⎫-3,1,-32, 所以|cos 〈A 1B —→,EF →〉|=⎪⎪⎪⎪⎪⎪⎪⎪A 1B —→·EF →||A 1B —→·|EF →|=⎪⎪⎪⎪⎪⎪3-9232×72=214. 3.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点M 为棱CC 1的中点,则直线B 1M 与平面A 1D 1M 所成角的正弦值是( ) A.215 B.25C.35 D.45答案 B解析 建立如图所示的空间直角坐标系,则A 1(1,0,1),D 1(0,0,1), M ⎝⎛⎭⎫0,1,12,B 1(1,1,1),A 1D 1—→=(-1,0,0),D 1M —→=⎝⎛⎭⎫0,1,-12, MB 1→=⎝⎛⎭⎫1,0,12,设平面A 1D 1M 的法向量为m =(x ,y ,z ), 则⎩⎪⎨⎪⎧ A 1D 1—→·m =0,D 1M —→·m =0⇒⎩⎪⎨⎪⎧-x =0,y -12z =0,令y =1可得z =2,所以m =(0,1,2),设直线B 1M 与平面A 1D 1M 所成角为θ,sin θ=|m ·MB 1→||m |·|MB 1→|=15×52=25.4.在三棱锥P -ABC 中,PC ⊥底面ABC ,∠BAC =90°,AB =AC =4,∠PBC =45°,则点C 到平面P AB 的距离是( ) A.463 B.263 C.433 D.423答案 A解析 方法一 建立如图所示的空间直角坐标系, 则A (0,0,0),B (4,0,0),C (0,4,0),P (0,4,42), ∴AP →=(0,4,42),AB →=(4,0,0),PC →=(0,0,-42). 设平面P AB 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·AP →=0,m ·AB →=0,即⎩⎨⎧4y +42z =0,4x =0,令y =2,则z =-1,∴m =(0,2,-1),∴点C 到平面P AB 的距离为|PC →·m ||m |=463.方法二 ∵PC ⊥底面ABC ,∴PC ⊥AB ,又AB ⊥AC ,且PC ∩AC =C ,PC ,AC ⊂平面P AC , ∴AB ⊥平面P AC ,∴AB ⊥P A ,∵AC =AB =4,∴BC =42,∴PC =42,PB =8, 在Rt △P AB 中,P A =82-42=43,令点C 到平面P AB 的距离为d ,∵V P -ABC =V C -P AB , ∴13×12×4×4×42=13×12×4×43×d ,∴d =463. 5.如图,已知长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成的角的正弦值为( )A.33535B.277C.33D.24答案 A解析 如图,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则C 1(0,3,1),D 1(0,0,1),E (1,1,0),C (0,3,0), 所以DC 1→=(0,3,1),D 1E —→=(1,1,-1),D 1C —→=(0,3,-1). 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·D 1E —→=0,n ·D 1C —→=0,即⎩⎪⎨⎪⎧ x +y -z =0,3y -z =0,即⎩⎪⎨⎪⎧x =2y ,z =3y ,取y =1,得n =(2,1,3).因为cos 〈DC 1→,n 〉=DC 1→·n |DC 1→|·|n |=(0,3,1)·(2,1,3)10×14=33535,所以DC 1与平面D 1EC 所成的角的正弦值为33535.6.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的角的余弦值为( )A.12B.23C.33D.22 答案 B解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝⎛⎭⎫1,0,12,D (0,1,0),∴A 1D —→=(0,1,-1),A 1E —→=⎝⎛⎭⎫1,0,-12. 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),∴⎩⎪⎨⎪⎧ A 1D —→·n 1=0,A 1E —→·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,解得⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2);∵平面ABCD 的一个法向量为n 2=(0,0,1),∴cos 〈n 1,n 2〉=23×1=23,即平面A 1ED 与平面ABCD 所成的角的余弦值为23.7.设A (2,3,1),B (4,1,2),C (6,3,7),D (-5,-4,8),则点D 到平面ABC 的距离为________. 答案491717解析 设平面ABC 的法向量为n =(x ,y ,z ).∴n ·AB →=0,n ·AC →=0,∴⎩⎪⎨⎪⎧(x ,y ,z )·(2,-2,1)=0,(x ,y ,z )·(4,0,6)=0,即⎩⎪⎨⎪⎧2x -2y +z =0,4x +6z =0,∴⎩⎪⎨⎪⎧x =-32z ,y =-z .令z =-2,则n =(3,2,-2).又∵AD →=(-7,-7,7),∴点D 到平面ABC 的距离为d =|AD →·n ||n |=|3×(-7)+2×(-7)-2×7|32+22+(-2)2=4917=491717.8.已知四棱锥P -ABCD 的底面ABCD 是边长为2的正方形,P A =PD =5,平面ABCD ⊥平面P AD ,M 是PC 的中点,O 是AD 的中点,则直线BM 与平面PCO 所成角的正弦值是___________. 答案88585解析 以O 为原点,OA 为x 轴,过O 作AB 的平行线为y 轴,OP 为z 轴, 建立空间直角坐标系,则B (1,2,0),P (0,0,2),C (-1,2,0),M ⎝⎛⎭⎫-12,1,1,O (0,0,0), OP →=(0,0,2),OC →=(-1,2,0),BM →=⎝⎛⎭⎫-32,-1,1, 设平面PCO 的法向量m =(x ,y ,z ),⎩⎪⎨⎪⎧m ·OP →=2z =0,m ·OC →=-x +2y =0,可得m =(2,1,0),设直线BM 与平面PCO 所成角为θ,则sin θ=|cos 〈m ,BM →〉|=|m ·BM →||m ||BM →|=45×174=88585. 9.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E 是BC 的中点,F 是DD 1的中点. (1)求证:CF ∥平面A 1DE ;(2)求平面A 1DE 与平面A 1DA 夹角的余弦值.(1)证明 分别以DA ,DC ,DD 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系, 则 A 1(2,0,2),E (1,2,0),D (0,0,0),C (0,2,0),F (0,0,1),则DA 1→=(2,0,2),DE →=(1,2,0),CF →=(0,-2,1),设平面A 1DE 的法向量n =(a ,b ,c ), 则⎩⎪⎨⎪⎧n ·DA 1→=2a +2c =0,n ·DE →=a +2b =0,取n =(-2,1,2),∴CF →·n =(0,-2,1)·(-2,1,2)=0,又CF ⊄平面A 1DE ,∴CF ∥平面A 1DE . (2)解 DC →=(0,2,0)是平面A 1DA 的法向量, ∴cos 〈n ,DC →〉=(-2,1,2)·(0,2,0)(-2)2+12+22·0+22+0=13,即平面A 1DE 与平面A 1DA 夹角的余弦值为13.10.如图,平面ABDE ⊥平面ABC ,△ABC 是等腰直角三角形,AC =BC =4,四边形ABDE 是直角梯形,BD ∥AE ,BD ⊥BA ,BD =12AE =2,O ,M 分别为CE ,AB 的中点.(1)求异面直线AB 与CE 所成角的大小; (2)求直线CD 与平面ODM 所成角的正弦值. 解 (1)∵DB ⊥BA ,平面ABDE ⊥平面ABC ,平面ABDE ∩平面ABC =AB ,DB ⊂平面ABDE ,∴DB ⊥平面ABC . ∵BD ∥AE ,∴EA ⊥平面ABC .如图所示,以C 为坐标原点,分别以CA ,CB 所在直线为x ,y 轴,以过点C 且与EA 平行的直线为z 轴,建立空间直角坐标系.∵AC =BC =4,∴C (0,0,0),A (4,0,0),B (0,4,0),E (4,0,4),∴AB →=(-4,4,0),CE →=(4,0,4).∴cos 〈AB →,CE →〉=-1642×42=-12,∴异面直线AB 与CE 所成角的大小为π3.(2)由(1)知O (2,0,2),D (0,4,2),M (2,2,0), ∴CD →=(0,4,2),OD →=(-2,4,0),MD →=(-2,2,2). 设平面ODM 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ⊥OD →,n ⊥MD →,可得⎩⎪⎨⎪⎧-2x +4y =0,-2x +2y +2z =0,令x =2,则y =1,z =1,∴n =(2,1,1).设直线CD 与平面ODM 所成的角为θ,则sin θ=|cos 〈n ,CD →〉|=⎪⎪⎪⎪⎪⎪n ·CD →|n ||CD →|=3010,∴直线CD 与平面ODM 所成角的正弦值为3010. 11.如图所示,在正方体ABCD -A 1B 1C 1D 1中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线B 1C 与EF 所成角最小时,其余弦值为( ) A .0 B.12 C.105D.1116答案 C解析 以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系, 在正方体ABCD -A 1B 1C 1D 1中,点E 为线段AB 的中点,设正方体棱长为2, 则D (0,0,0),E (2,1,0),B 1(2,2,2),C (0,2,0),B 1C —→=(-2,0,-2),设F (m,0,0)(0≤m ≤2),EF →=(m -2,-1,0),设异面直线B 1C 与EF 的夹角为θ,则cos θ=|EF →·B 1C —→||EF →|·|B 1C —→|=|-2×(m -2)|22·(m -2)2+1=12·1(m -2)2+1,异面直线B 1C 与EF 所成角最小时,则cos θ最大,即m =0时,cos θ=12·14+1=210=105.12.如图,正三棱柱ABC -A 1B 1C 1的所有棱长都相等,E ,F ,G 分别为AB ,AA 1,A 1C 1的中点,则B 1F 与平面GEF 所成角的正弦值为________. 答案 35解析 设正三棱柱的棱长为2,取AC 的中点D ,连接DG ,DB , 分别以DA ,DB ,DG 所在的直线为x 轴,y 轴,z 轴建立空间直角坐标系 则B 1(0,3,2),F (1,0,1),E ⎝⎛⎭⎫12,32,0,G (0,0,2),B 1F —→=(1,-3,-1),EF →=⎝⎛⎭⎫12,-32,1,GF →=(1,0,-1).设平面GEF 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ EF →·n =0,GF →·n =0,即⎩⎪⎨⎪⎧12x -32y +z =0,x -z =0,取x =1,则z =1,y =3,故n =(1,3,1)为平面GEF 的一个法向量,所以|cos 〈n ,B 1F —→〉|=|1-3-1|5×5=35,所以B 1F 与平面GEF 所成角的正弦值为35.13.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,底面边长为2,直线CC 1与平面ACD 1所成角的正弦值为13,则正四棱柱的高为________.答案 4解析 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,设DD 1=a ,则A (2,0,0),C (0,2,0),D 1(0,0,a ), 故AC →=(-2,2,0),AD 1→=(-2,0,a ),CC 1→=(0,0,a ), 设平面ACD 1的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AC →=-2x +2y =0,n ·AD →1=-2x +az =0,可取n =⎝⎛⎭⎫1,1,2a , 故cos 〈n ,CC 1→〉=n ·CC →1|n ||CC 1→|=2a ·4a 2+2=22a 2+4, 又直线CC 1与平面ACD 1所成角的正弦值为13,∴22a 2+4=13,解得a =4.14.设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记D 1PD 1B =λ.当∠APC为锐角时,λ的取值范围是________. 答案 ⎣⎡⎭⎫0,13 解析 建立如图所示的空间直角坐标系,则A (1,0,0),C (0,1,0),B (1,1,0),D 1(0,0,1),由D 1PD 1B=λ得P (λ,λ,1-λ),则P A →=(1-λ,-λ,λ-1),PC →=(-λ,1-λ,λ-1),因为∠APC 为锐角, 所以P A →·PC →=(1-λ,-λ,λ-1)·(-λ,1-λ,λ-1)=(λ-1)(3λ-1)>0,解得λ<13或λ>1,又因为动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,所以λ的取值范围为0≤λ<13.15.如图,在正方体ABCD -A 1B 1C 1D 1中,E 为线段AA 1上的一个动点,F 为线段B 1C 1上的一个动点,则平面EFB 与底面ABCD 所成的角的余弦值的取值范围是( ) A.⎣⎡⎦⎤0,22 B.⎣⎡⎦⎤33,22 C.⎣⎡⎦⎤0,33 D.⎣⎡⎦⎤0,55 答案 A解析 设平面EFB 与底面ABCD 所成的角为θ,如图所示,建立空间直角坐标系,设正方体的棱长为1,AE =m ,FC 1=n ,则D (0,0,0),A (1,0,0),B (1,1,0),C (0,1,0),D 1(0,0,1),E (1,0,m ),F (n,1,1).BE →=(0,-1,m ),BF →=(n -1,0,1), 设平面EFB 的一个法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧-y +mz =0,(n -1)x +z =0, 取x =-1,则平面EFB 的法向量为(-1,m (n -1),n -1),而底面ABCD 的一个法向量为(0,0,1),则cos θ=|n -1|1+m 2(n -1)2+(n -1)2,结合选项,当n =1时,cos θ=0,当n ≠1时,cos θ=11(1-n )2+m 2+1∈⎝⎛⎦⎤0,22,故cos θ∈⎣⎡⎦⎤0,22. 16.如图,已知在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,AB =2,点E 在棱AB 上移动. (1)求证:D 1E ⊥A 1D ;(2)在棱AB 上是否存在点E 使得AD 1与平面D 1EC 所成的角为π6?若存在,求出AE 的长,若不存在,说明理由.(1)证明 ∵AE ⊥平面AA 1D 1D ,A 1D ⊂平面AA 1D 1D ,∴AE ⊥A 1D . ∵在长方体ABCD -A 1B 1C 1D 1中,AD =AA 1=1,∴A 1D ⊥AD 1.∵AE ∩AD 1=A ,∴A 1D ⊥平面AED 1. ∵D 1E ⊂平面AED 1,∴D 1E ⊥A 1D .(2)解 以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设棱AB 上存在点E (1,t,0)(0≤t ≤2),使得AD 1与平面D 1EC 所成的角为π6,A (1,0,0),D 1(0,0,1),C (0,2,0),AD 1→=(-1,0,1),CD 1→=(0,-2,1),CE →=(1,t -2,0), 设平面D 1EC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·CD 1→=-2y +z =0,n ·CE →=x +(t -2)y =0,取y =1,得n =(2-t,1,2),∴sin π6=|AD 1→·n ||AD 1→||n |=|t -2+2|2×(t -2)2+5,整理,得t 2+4t -9=0, 解得t =13-2或t =-2-13(舍去),∴在棱AB 上存在点E 使得AD 1与平面D 1EC 所成的角为π6,此时AE =13-2.。

2023年高考数学一轮复习第七章立体几何与空间向量4空间直线平面的平行练习含解析

2023年高考数学一轮复习第七章立体几何与空间向量4空间直线平面的平行练习含解析

空间直线、平面的平行考试要求 1.理解空间中直线与直线、直线与平面、平面与平面的平行关系,并加以证明.2.掌握直线与平面、平面与平面平行的判定与性质,并会简单应用.知识梳理1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行错误!⇒a∥α性质定理一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行错误!⇒a∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行错误!⇒β∥α性质定理两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行错误!⇒a∥b常用结论(1)垂直于同一条直线的两个平面平行,即若a⊥α,a⊥β,则α∥β.(2)平行于同一个平面的两个平面平行,即若α∥β,β∥γ,则α∥γ.(3)垂直于同一个平面的两条直线平行,即a⊥α,b⊥α,则a∥b.(4)若α∥β,a⊂α,则a∥β.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一条直线平行于一个平面内的一条直线,则这条直线平行于这个平面.( ×)(2)若直线a∥平面α,P∈α,则过点P且平行于直线a的直线有无数条.( ×)(3)若直线a⊂平面α,直线b⊂平面β,a∥b,则α∥β.( ×)(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.( √)教材改编题1.下列说法中,与“直线a∥平面α”等价的是( )A.直线a上有无数个点不在平面α内B.直线a与平面α内的所有直线平行C.直线a与平面α内无数条直线不相交D.直线a与平面α内的任意一条直线都不相交答案 D解析因为a∥平面α,所以直线a与平面α无交点,因此a和平面α内的任意一条直线都不相交.2.已知不重合的直线a,b和平面α,则下列选项正确的是( )A.若a∥α,b⊂α,则a∥bB.若a∥α,b∥α,则a∥bC.若a∥b,b⊂α,则a∥αD.若a∥b,a⊂α,则b∥α或b⊂α答案 D解析若a∥α,b⊂α,则a∥b或异面,A错;若a∥α,b∥α,则a∥b或异面或相交,B错;若a∥b,b⊂α,则a∥α或a⊂α,C错;若a∥b,a⊂α,则b∥α或b⊂α,D对.3.如图是长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为______.答案平行四边形解析∵平面ABFE∥平面DCGH,又平面EFGH∩平面ABFE=EF,平面EFGH∩平面DCGH=HG,∴EF∥HG.同理EH∥FG,∴四边形EFGH是平行四边形.题型一 直线与平面平行的判定与性质 命题点1 直线与平面平行的判定例1 如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,E ,F 分别是BC ,PD 的中点,求证:(1)PB ∥平面ACF ;(2)EF ∥平面PAB .证明 (1)如图,连接BD 交AC 于O ,连接OF ,∵四边形ABCD 是平行四边形, ∴O 是BD 的中点,又∵F 是PD 的中点,∴OF ∥PB , 又∵OF ⊂平面ACF ,PB ⊄平面ACF , ∴PB ∥平面ACF .(2)取PA 的中点G ,连接GF ,BG . ∵F 是PD 的中点, ∴GF 是△PAD 的中位线, ∴GF 綉12AD ,∵底面ABCD 是平行四边形,E 是BC 的中点, ∴BE 綉12AD ,∴GF 綉BE ,∴四边形BEFG 是平行四边形, ∴EF ∥BG ,又∵EF ⊄平面PAB ,BG ⊂平面PAB , ∴EF ∥平面PAB .命题点2 直线与平面平行的性质例2 如图所示,在四棱锥P-ABCD中,四边形ABCD是平行四边形,M是PC的中点,在DM 上取一点G,过G和PA作平面交BD于点H.求证:PA∥GH.证明如图所示,连接AC交BD于点O,连接OM,∵四边形ABCD是平行四边形,∴O是AC的中点,又M是PC的中点,∴PA∥OM,又OM⊂平面BMD,PA⊄平面BMD,∴PA∥平面BMD,又平面PAHG∩平面BMD=GH,∴PA∥GH.教师备选如图,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于点E,交DP于点F,求证:四边形BCFE是梯形.证明∵四边形ABCD为矩形,∴BC∥AD.∵AD⊂平面PAD,BC⊄平面PAD,∴BC∥平面PAD.∵平面BCFE∩平面PAD=EF,BC⊂平面BCFE,∴BC∥EF.∵AD=BC,AD≠EF,∴BC≠EF,∴四边形BCFE是梯形.思维升华(1)判断或证明线面平行的常用方法①利用线面平行的定义(无公共点).②利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α).③利用面面平行的性质(α∥β,a⊂α⇒a∥β).④利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).(2)应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作辅助平面确定交线.跟踪训练1 如图所示,已知四边形ABCD是正方形,四边形ACEF是矩形,M是线段EF的中点.(1)求证:AM∥平面BDE;(2)若平面ADM∩平面BDE=l,平面ABM∩平面BDE=m,试分析l与m的位置关系,并证明你的结论.(1)证明如图,记AC与BD的交点为O,连接OE.因为O,M分别为AC,EF的中点,四边形ACEF是矩形,所以四边形AOEM是平行四边形,所以AM∥OE.又因为OE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)解l∥m,证明如下:由(1)知AM∥平面BDE,又AM⊂平面ADM,平面ADM∩平面BDE=l,所以l∥AM,同理,AM∥平面BDE,又AM⊂平面ABM,平面ABM∩平面BDE=m,所以m∥AM,所以l∥m.题型二平面与平面平行的判定与性质例3 如图所示,在三棱柱ABC-A1B1C1中,过BC的平面与上底面A1B1C1交于GH(GH与B1C1不重合).(1)求证:BC∥GH;(2)若E,F,G分别是AB,AC,A1B1的中点,求证:平面EFA1∥平面BCHG.证明(1)∵在三棱柱ABC-A1B1C1中,∴平面ABC∥平面A1B1C1,又∵平面BCHG∩平面ABC=BC,且平面BCHG∩平面A1B1C1=HG,∴由面面平行的性质定理得BC∥GH.(2)∵E,F分别为AB,AC的中点,∴EF∥BC,∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綉AB,∴A1G綉EB,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.又∵A1E∩EF=E,A1E,EF⊂平面EFA1,∴平面EFA1∥平面BCHG.延伸探究在本例中,若将条件“E,F,G分别是AB,AC,A1B1的中点”变为“点D,D1分别是AC,A1C1上的点,且平面BC1D∥平面AB1D1”,试求ADDC的值.解如图,连接A1B交AB1于O,连接OD1.由平面BC 1D ∥平面AB 1D 1, 且平面A 1BC 1∩平面BC 1D =BC 1, 平面A 1BC 1∩平面AB 1D 1=D 1O , 所以BC 1∥D 1O ,则A 1D 1D 1C 1=A 1OOB=1. 又由题设A 1D 1D 1C 1=DC AD, 所以DC AD=1,即AD DC=1. 教师备选如图,在三棱柱ABC -A 1B 1C 1中,E ,F ,G 分别为B 1C 1,A 1B 1,AB 的中点.(1)求证:平面A 1C 1G ∥平面BEF ;(2)若平面A 1C 1G ∩BC =H ,求证:H 为BC 的中点. 证明 (1)∵E ,F 分别为B 1C 1,A 1B 1的中点, ∴EF ∥A 1C 1,∵A 1C 1⊂平面A 1C 1G ,EF ⊄平面A 1C 1G , ∴EF ∥平面A 1C 1G ,又F ,G 分别为A 1B 1,AB 的中点, ∴A 1F =BG , 又A 1F ∥BG ,∴四边形A 1GBF 为平行四边形, 则BF ∥A 1G ,∵A 1G ⊂平面A 1C 1G ,BF ⊄平面A 1C 1G , ∴BF ∥平面A 1C 1G ,又EF ∩BF =F ,EF ,BF ⊂平面BEF , ∴平面A 1C 1G ∥平面BEF .(2)∵平面ABC∥平面A1B1C1,平面A1C1G∩平面A1B1C1=A1C1,平面A1C1G与平面ABC有公共点G,则有经过G的直线,设交BC于点H,如图,则A1C1∥GH,得GH∥AC,∵G为AB的中点,∴H为BC的中点.思维升华证明面面平行的常用方法(1)利用面面平行的判定定理.(2)利用垂直于同一条直线的两个平面平行(l⊥α,l⊥β⇒α∥β).(3)利用面面平行的传递性,即两个平面同时平行于第三个平面,则这两个平面平行(α∥β,β∥γ⇒α∥γ).跟踪训练2 如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形.(1)证明:平面A1BD∥平面CD1B1;(2)若平面ABCD∩平面CD1B1=直线l,证明:B1D1∥l.证明(1)由题设知BB1綉DD1,所以四边形BB1D1D是平行四边形,所以BD∥B1D1.又BD⊄平面CD1B1,B1D1⊂平面CD1B1,所以BD∥平面CD1B1.因为A1D1綉B1C1綉BC,所以四边形A1BCD1是平行四边形,所以A1B∥D1C.又A1B⊄平面CD1B1,D1C⊂平面CD1B1,所以A1B∥平面CD1B1.又因为BD∩A1B=B,BD,A1B⊂平面A1BD,所以平面A1BD∥平面CD1B1.(2)由(1)知平面A1BD∥平面CD1B1,又平面ABCD∩平面CD1B1=直线l,平面ABCD∩平面A1BD=直线BD,所以直线l∥直线BD,在四棱柱ABCD-A1B1C1D1中,四边形BDD1B1为平行四边形,所以B 1D 1∥BD ,所以B 1D 1∥l .题型三 平行关系的综合应用例4 如图,在正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别为对角线BD ,CD 1上的点,且CQ QD 1=BP PD =23.(1)求证:PQ ∥平面A 1D 1DA ;(2)若R 是AB 上的点,AR AB的值为多少时,能使平面PQR ∥平面A 1D 1DA ?请给出证明. (1)证明 连接CP 并延长,与DA 的延长线交于M 点,如图,连接MD 1,因为四边形ABCD 为正方形, 所以BC ∥AD ,故△PBC ∽△PDM , 所以CP PM =BP PD =23,又因为CQ QD 1=BP PD =23, 所以CQ QD 1=CP PM =23, 所以PQ ∥MD 1.又MD 1⊂平面A 1D 1DA ,PQ ⊄平面A 1D 1DA , 故PQ ∥平面A 1D 1DA .(2)解 当AR AB 的值为35时,能使平面PQR ∥平面A 1D 1DA .如图,证明如下:因为AR AB =35,即BR RA =23, 故BR RA =BP PD. 所以PR ∥DA .又DA ⊂平面A 1D 1DA ,PR ⊄平面A 1D 1DA , 所以PR ∥平面A 1D 1DA ,又PQ ∥平面A 1D 1DA ,PQ ∩PR =P ,PQ ,PR ⊂平面PQR , 所以平面PQR ∥平面A 1D 1DA . 教师备选如图,四边形ABCD 与ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ; (2)平面BDE ∥平面MNG .证明 (1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO . 又BE ⊄平面DMF ,MO ⊂平面DMF , 所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN , 又DE ⊄平面MNG ,GN ⊂平面MNG , 所以DE ∥平面MNG . 又M 为AB 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN , 又MN ⊂平面MNG ,BD ⊄平面MNG , 所以BD ∥平面MNG ,又DE ,BD ⊂平面BDE ,DE ∩BD =D ,所以平面BDE ∥平面MNG .思维升华 证明平行关系的常用方法熟练掌握线线、线面、面面平行关系间的相互转化是解决线线、线面、面面平行的综合问题的关键.面面平行判定定理的推论也是证明面面平行的一种常用方法.跟踪训练3 如图所示,四边形EFGH 为空间四边形ABCD 的一个截面,若截面为平行四边形. (1)求证:AB ∥平面EFGH ;(2)若AB =4,CD =6,求四边形EFGH 周长的取值范围.(1)证明 ∵四边形EFGH 为平行四边形, ∴EF ∥HG .∵HG ⊂平面ABD ,EF ⊄平面ABD , ∴EF ∥平面ABD . 又∵EF ⊂平面ABC , 平面ABD ∩平面ABC =AB , ∴EF ∥AB ,又∵AB ⊄平面EFGH ,EF ⊂平面EFGH , ∴AB ∥平面EFGH . (2)解 设EF =x (0<x <4), 由(1)知EF ∥AB , ∴CF CB =EF AB =x4, 与(1)同理可得CD ∥FG , ∴FG CD =BF BC, 则FG 6=BF BC=BC -CF BC =1-x4, ∴FG =6-32x .∴四边形EFGH 的周长L =2⎝⎛⎭⎪⎫x +6-32x =12-x .又∵0<x <4,∴8<L <12,故四边形EFGH 周长的取值范围是(8,12).课时精练1.(2022·宁波模拟)下列命题中正确的是( )A.若a,b是两条直线,且a∥b,那么a平行于经过b的任何平面B.若直线a和平面α满足a∥α,那么a与α内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面α满足a∥b,a⊂α,b⊄α,则b∥α答案 D解析A中,a可以在过b的平面内;B中,a与α内的直线也可能异面;C中,两平面可能相交;D中,由直线与平面平行的判定定理知b∥α,正确.2.(2022·呼和浩特模拟)设a,b是两条不同的直线,α,β是两个不同的平面,则α∥β的一个充分条件是( )A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α答案 D解析对于A,一条直线与两个平面都平行,两个平面不一定平行,故A不正确;对于B,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B不正确;对于C,两个平面中的两条直线平行,不能保证两个平面平行,故C不正确;对于D,如图,在直线b上取点B,过点B和直线a确定一个平面γ,交平面β于a′,因为a∥β,所以a∥a′,又a′⊄α,a⊂α,所以a′∥α,又因为b∥α,b∩a′=B,b⊂β,a′⊂β,所以β∥α.3.(2022·广州模拟)如图,在三棱柱ABC-A1B1C1中,AM=2MA1,BN=2NB1,过MN作一平面分别交底面△ABC的边BC,AC于点E,F,则( )A.MF∥EBB.A1B1∥NEC.四边形MNEF为平行四边形D.四边形MNEF为梯形答案 D解析由于B,E,F三点共面,F∈平面BEF,M∉平面BEF,故MF,EB为异面直线,故A错误;由于B1,N,E三点共面,B1∈平面B1NE,A1∉平面B1NE,故A1B1,NE为异面直线,故B错误;∵在平行四边形AA1B1B中,AM=2MA1,BN=2NB1,∴AM∥BN,AM=BN,故四边形AMNB为平行四边形,∴MN∥AB.又MN⊄平面ABC,AB⊂平面ABC,∴MN∥平面ABC.又MN⊂平面MNEF,平面MNEF∩平面ABC=EF,∴MN∥EF,∴EF∥AB,显然在△ABC中,EF≠AB,∴EF≠MN,∴四边形MNEF为梯形,故C错误,D正确.4.(2022·杭州模拟)已知P为△ABC所在平面外一点,平面α∥平面ABC,且α交线段PA,PB,PC于点A′,B′,C′,若PA′∶AA′=2∶3,则S△A′B′C′∶S△ABC等于( )A.2∶3B.2∶5C.4∶9D.4∶25答案 D解析∵平面α∥平面ABC,∴A′C′∥AC,A′B′∥AB,B′C′∥BC,∴S△A′B′C′∶S△ABC=(PA′∶PA)2,又PA′∶AA′=2∶3,∴PA′∶PA=2∶5,∴S△A′B′C′∶S△ABC=4∶25.5.(多选)(2022·济宁模拟)如图,在下列四个正方体中,A,B为正方体的两个顶点,D,E,F为所在棱的中点,则在这四个正方体中,直线AB与平面DEF平行的是( )答案AC解析对于A,AB∥DE,AB⊄平面DEF,DE⊂平面DEF,∴直线AB与平面DEF平行,故A正确;对于B,如图,取正方体所在棱的中点G,连接FG并延长,交AB延长线于H,则AB与平面DEF相交于点H,故B错误;对于C,AB∥DF,AB⊄平面DEF,DF⊂平面DEF,∴直线AB与平面DEF平行,故C正确;对于D,AB与DF所在平面的正方形对角线有交点B,DF与该对角线平行,∴直线AB与平面DEF相交,故D错误.6.(多选)如图,透明塑料制成的长方体容器ABCD-A1B1C1D1内灌进一些水,固定容器一边AB 于地面上,再将容器倾斜,随着倾斜程度的不同,有下面几个结论,其中正确的是( )A .没有水的部分始终呈棱柱形B .水面EFGH 所在四边形的面积为定值C .随着容器倾斜程度的不同,A 1C 1始终与水面所在平面平行D .当容器倾斜如图(3)所示时,AE ·AH 为定值 答案 AD解析 根据棱柱的特征(有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行),结合题中图形易知A 正确;由题图可知水面EFGH 的边EF 的长保持不变,但邻边的长却随倾斜程度而改变,可知B 错误;因为A 1C 1∥AC ,AC ⊂平面ABCD ,A 1C 1⊄平面ABCD ,所以A 1C 1∥平面ABCD ,当平面EFGH 不平行于平面ABCD 时,A 1C 1不平行于水面所在平面,故C 错误;当容器倾斜如题图(3)所示时,因为水的体积是不变的,所以棱柱AEH -BFG 的体积V 为定值,又V =S △AEH ·AB ,高AB 不变,所以S △AEH 也不变,即AE ·AH 为定值,故D 正确.7.考查①②两个命题,①⎭⎪⎬⎪⎫m ⊂αl ∥m ⇒l ∥α;②⎭⎪⎬⎪⎫l ∥m m ∥α ⇒l ∥α,它们都缺少同一个条件,补上这个条件就可以使其构成真命题(其中l ,m 为直线,α为平面),则此条件为__________. 答案 l ⊄α解析 ①由线面平行的判定定理知l ⊄α;②由线面平行的判定定理知l ⊄α.8.如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E ,F ,G ,H 分别是棱CC 1,C 1D 1,D 1D ,DC 的中点,N 是BC 的中点,点M 在四边形EFGH 及其内部运动,则M 只需满足条件______,就有MN ∥平面B 1BDD 1.(注:请填上你认为正确的一个条件即可,不必考虑全部可能情况)答案 点M 在线段FH 上(或点M 与点H 重合) 解析 连接HN ,FH ,FN (图略), 则FH ∥DD 1,HN ∥BD ,∴平面FHN ∥平面B 1BDD 1,只需M ∈FH , 则MN ⊂平面FHN ,∴MN ∥平面B 1BDD 1.9.如图,在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别是BC ,CC 1,C 1D 1,AA 1的中点,求证:(1)BF ∥HD 1; (2)EG ∥平面BB 1D 1D ; (3)平面BDF ∥平面B 1D 1H . 证明 如图.(1)取B 1B 的中点M ,连接HM ,MC 1,易证四边形HMC 1D 1是平行四边形, ∴HD 1∥MC 1. 又MC 1∥BF , ∴BF ∥HD 1.(2)取BD 的中点O ,连接OE ,OD 1, 则OE 綉12DC .又D 1G 綉12DC ,∴OE 綉D 1G .∴四边形OEGD 1是平行四边形, ∴EG ∥D 1O .又D 1O ⊂平面BB 1D 1D ,EG ⊄平面BB 1D 1D , ∴EG ∥平面BB 1D 1D .(3)由(1)知BF ∥HD 1,由题意易证B 1D 1∥BD .又B 1D 1,HD 1⊂平面B 1D 1H ,BF ,BD ⊂平面BDF ,且B 1D 1∩HD 1=D 1,DB ∩BF =B , ∴平面BDF ∥平面B 1D 1H .10.如图,在四棱锥P -ABCD 中,AD ∥BC ,AB =BC =12AD ,E ,F ,H 分别为线段AD ,PC ,CD 的中点,AC 与BE 交于O 点,G 是线段OF 上一点.(1)求证:AP ∥平面BEF ; (2)求证:GH ∥平面PAD . 证明 (1)如图,连接EC , 因为AD ∥BC ,BC =12AD ,所以BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形, 所以O 为AC 的中点. 又因为F 是PC 的中点, 所以FO ∥AP , 因为FO ⊂平面BEF ,AP ⊄平面BEF ,所以AP ∥平面BEF .(2)连接FH ,OH ,因为F ,H 分别是PC ,CD 的中点, 所以FH ∥PD ,因为PD ⊂平面PAD ,FH ⊄平面PAD , 所以FH ∥平面PAD .又因为O 是BE 的中点,H 是CD 的中点, 所以OH ∥AD ,因为AD ⊂平面PAD ,OH ⊄平面PAD , 所以OH ∥平面PAD .又FH ∩OH =H ,FH ,OH ⊂平面OHF , 所以平面OHF ∥平面PAD . 又因为GH ⊂平面OHF , 所以GH ∥平面PAD .11.(多选)已知α,β是两个平面,m,n是两条直线.下列命题正确的是( )A.如果m∥n,n⊂α,那么m∥αB.如果m∥α,m⊂β,α∩β=n,那么m∥nC.如果α∥β,m⊂α,那么m∥βD.如果α⊥β,α∩β=n,m⊥n,那么m⊥β答案BC解析如果m∥n,n⊂α,那么m∥α或m⊂α,故A不正确;如果m∥α,m⊂β,α∩β=n,那么m∥n,这就是线面平行推得线线平行的性质定理,故B正确;如果α∥β,m⊂α,那么m∥β,这就是利用面面平行推线面平行的性质定理,故C正确;缺少m⊂α这个条件,故D不正确.12.(2022·福州检测)如图所示,正方体ABCD-A1B1C1D1中,点E,F,G,P,Q分别为棱AB,C1D1,D1A1,D1D,C1C的中点,则下列叙述中正确的是( )A.直线BQ∥平面EFGB.直线A1B∥平面EFGC.平面APC∥平面EFGD.平面A1BQ∥平面EFG答案 B解析过点E,F,G的截面如图所示(H,I分别为AA1,BC的中点),连接A1B,BQ,AP,PC,易知BQ与平面EFG相交于点Q,故A错误;∵A1B∥HE,A1B⊄平面EFG,HE⊂平面EFG,∴A1B∥平面EFG,故B正确;AP⊂平面ADD1A1,HG⊂平面ADD1A1,延长HG与PA必相交,故C错误;易知平面A1BQ与平面EFG有交点Q,故D错误.13.(多选)(2022·临沂模拟)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将△ABE 沿AE 翻折,使得二面角B -AE -D 为直二面角,得到图2所示的四棱锥B -AECD ,点F 为线段BD 上的动点(不含端点),则在四棱锥B -AECD 中,下列说法正确的有( )图1 图2A .B ,E ,C ,F 四点不共面 B .存在点F ,使得CF ∥平面BAE C .三棱锥B -ADC 的体积为定值D .存在点E 使得直线BE 与直线CD 垂直 答案 AB解析 对于A ,假设直线BE 与直线CF 在同一平面上,所以E 在平面BCF 上, 又因为E 在折前线段BC 上,BC ∩平面BCF =C ,所以E 与C 重合,与E 异于C 矛盾, 所以直线BE 与直线CF 必不在同一平面上,即B ,E ,C ,F 四点不共面,故A 正确; 对于B ,如图,当点F 为线段BD 的中点,EC =12AD 时,直线CF ∥平面BAE ,证明如下:取AB 的中点G ,连接GE ,GF , 则EC ∥FG 且EC =FG ,所以四边形ECFG 为平行四边形, 所以FC ∥EG ,又因为EG ⊂平面BAE , 则直线CF 与平面BAE 平行,故B 正确;对于C ,在三棱锥B -ADC 中,因为点E 的移动会导致点B 到平面ACD 的距离发生变化,所以三棱锥B -ADC 的体积不是定值,故C 不正确;对于D ,过D 作DH ⊥AE 于H ,因为平面BAE ⊥平面AECD ,平面BAE ∩平面AECD =AE ,所以DH ⊥平面BAE ,所以DH ⊥BE ,若存在点E 使得直线BE 与直线CD 垂直,DH ⊂平面AECD ,且DC ⊂平面AECD ,DH ∩DC =D ,所以BE ⊥平面AECD ,所以BE ⊥AE ,与△ABE 是以B 为直角的三角形矛盾,所以不存在点E 使得直线BE 与直线CD 垂直,故D 不正确.14.如图,在长方体ABCD -A 1B 1C 1D 1中,AD =DD 1=1,AB =3,E ,F ,G 分别是AB ,BC ,C 1D 1的中点,点P 在平面ABCD 内,若直线D 1P ∥平面EFG ,则线段D 1P 长度的最小值是________.答案72解析 如图,连接D 1A ,AC ,D 1C .因为E ,F ,G 分别为AB ,BC ,C 1D 1的中点, 所以AC ∥EF ,又EF ⊄平面ACD 1,AC ⊂平面ACD 1, 则EF ∥平面ACD 1.同理可得EG ∥平面ACD 1,又EF ∩EG =E ,EF ,EG ⊂平面EFG ,所以平面ACD 1∥平面EFG . 因为直线D 1P ∥平面EFG , 所以点P 在直线AC 上.在△ACD 1中,易得AD 1=2,AC =2,CD 1=2, 所以1AD C S △=12×2×22-⎝⎛⎭⎪⎫222=72, 故当D 1P ⊥AC 时,线段D 1P 的长度最小,最小值为7212×2=72.15.(2022·合肥市第一中学模拟)正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ,N 分别是棱BC ,CC 1的中点,动点P 在正方形BCC 1B 1(包括边界)内运动,且PA 1∥平面AMN ,则PA 1的长度范围为( )A.⎣⎢⎡⎦⎥⎤1,52B.⎣⎢⎡⎦⎥⎤324,52C.⎣⎢⎡⎦⎥⎤324,32 D.⎣⎢⎡⎦⎥⎤1,32答案 B解析 取B 1C 1的中点E ,BB 1的中点F ,连接A 1E ,A 1F ,EF , 取EF 的中点O ,连接A 1O ,如图所示,∵点M ,N 分别是棱长为1的正方体ABCD -A 1B 1C 1D 1中棱BC ,CC 1的中点, ∴AM ∥A 1E ,MN ∥EF ,∵AM ∩MN =M ,A 1E ∩EF =E ,AM ,MN ⊂平面AMN ,A 1E ,EF ⊂平面A 1EF , ∴平面AMN ∥平面A 1EF ,∵动点P 在正方形BCC 1B 1(包括边界)内运动, 且PA 1∥平面AMN ,∴点P 的轨迹是线段EF ,∵A 1E =A 1F =12+⎝ ⎛⎭⎪⎫122=52,EF =1212+12=22,∴A 1O ⊥EF ,∴当P 与O 重合时,PA 1的长度取最小值A 1O , A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,当P 与E (或F )重合时,PA 1的长度取最大值A 1E 或A 1F ,A 1E =A 1F =52.∴PA 1的长度范围为⎣⎢⎡⎦⎥⎤324,52.16.如图,正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M ,N 分别为AB 1,A 1C 1上的点,A 1N =AM .(1)求证:MN ∥平面BB 1C 1C ;(2)求MN 的最小值.(1)证明 如图,作NE ∥A 1B 1交B 1C 1于点E ,作MF ∥AB 交BB 1于点F ,连接EF , 则NE ∥MF .∵NE ∥A 1B 1,∴NEA 1B 1=C 1NA 1C 1.又MF ∥AB ,∴MF AB =B 1MAB 1,∵A 1C 1=AB 1,A 1N =AM ,∴C 1N =B 1M .∴NE A 1B 1=MF AB,又AB =A 1B 1,∴NE =MF .∴四边形MNEF 是平行四边形,∴MN ∥EF , 又MN ⊄平面BB 1C 1C ,EF ⊂平面BB 1C 1C , ∴MN ∥平面BB 1C 1C .(2)解 设B 1E =x ,∵NE ∥A 1B 1, ∴B 1E B 1C 1=A 1NA 1C 1.又∵MF ∥AB ,∴B 1F BB 1=B 1M AB 1,∵A 1N =AM ,A 1C 1=AB 1=2a ,B 1C 1=BB 1=a ,B 1E =x ,∴B 1E B 1C 1+B 1F BB 1=A 1N A 1C 1+B 1MAB 1,∴x a +B 1F a =1,∴B 1F =a -x ,从而MN =EF =B 1E 2+B 1F 2 =x 2+a -x2 =2⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫a 22, ∴当x =a 2时,MN 的最小值为22a .。

暑期训练(四)立体图形的计算

暑期训练(四)立体图形的计算

暑期训练(四)(立体几何)基础知识:长方体的表面积=(长×宽+长×高+宽×高) ×2正方体的表面积=棱长×棱长×6长方体的体积=长×宽×高正方体的体积=棱长×棱长×棱长长(或正)方体的体积=底面积×高基础例题:1、有一块长方形的铁皮,长60厘米,宽40厘米。

在这块铁皮的四角剪去边长5厘米的小正方形,然后制成一个无盖的长方体盒子,求这个长方体盒子的体积。

2、把一个正方体木块锯成3个大小一样的小长方体后,表面积增加了36平方厘米。

原来正方体的体积是多少?3、把一个长方体截去一个高为8厘米的长方形后,剩下的部分是一个正方体。

正方体的表面积比原来长方体的表面积减少320平方厘米。

求原来长方体的体积。

4、有一个棱长为9厘米的正方体,在每两个对面的中央钻一个边长为2厘米的正方形孔,且穿透,所得立体的体积是多少?5、如图所示的长方体,底面和右面的面积之和是125平方分米。

如果它的长、宽、高都是质数,那么这个长方体的体积可能是多少立方分米?6、有甲、乙、丙三个正方体水池,它们内边长分别是5米、3米、1米,把两堆碎石分别沉没在乙、丙两个水池的水里,它们的水面分别升高了4厘米和2厘米。

如果将这两堆碎石都沉没在甲水池的水里,甲水池的水面升高了多少厘米?7、长方体不同的三个面的面积分别是10平方厘米、15平方厘米和6平方厘米,这个长方形的体积是多少立方厘米?提高部分:8、一个磁带盒的长是14厘米,宽11厘米,厚3厘米。

现有4盒,按图(1)、图(2)摆放的方式进行包装,哪种包装方式更节约包装纸?为什么?还有其他的包装方式吗?试再画出一种并与前两种进行比较。

(1) (2)9、将一个大正方体木块,雕刻成棱长比为1:2:3的三个小正方体叠在一起的形状(如图),在损耗最小的情况下,得到的立体图形的表面积占原正方体的___分之___,体积占原正方体的___分之___;10、在下边各图中,不能折成一个无盖立方体盒子的是______;A B C D11、用棱长是1厘米的立方块拼成如图11-1所示的立体图形,问该图形的表面积是多少平方厘米?12、如图,先后沿一个长方体不同方向切了三刀。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何(四)——空间距离的求法一、 知识要点:(一 )点面距离:1、 定义法:作出点P 在平面α内的正射影A ,把P A 放在直角三角形中来求.2、转化法:当点P 到平面α的垂线不宜作出时,可转化为另一点Q 到平面的距离,利用PQ //α或PQ 的中点在平面α上.3、向量法:求点A 到平面α的距离d ,可以在平面α上任取一点B ,则AB在平面α的法向量n上的射影长为所求。

4、等体积法:当该点在平面内的射影位置不好确定时, 可用等体积法计算点到平面的距离.(二). 直线到平面的距离的求法当直线与平面平行时,直线到平面的距离往往是通过直线上的某特殊点到平面的距离来实现.(三) 平面到平面的距离的求法利用两平行平面间的距离处处相等,将求面面距离转化为求点面距离或线面距离,对于点的选择可根据题设,选择特殊点来求.(四)、异面直线的距离(1)定义法:直接计算异面直线的公垂线段的长; (2)转化法:转化为点面距离、线面距离或面面距离;(3)向量法:设向量n与异面直线a,b 都垂直,,A a B b ∈∈,则两异面直线a,b 间的距离d 就是AB 在n 方向上的投影的绝对值。

||||AB n d n ∙=二、 过手训练:1、已知正三棱锥P -ABC ,点P ,A ,B ,C P A ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________。

【答案】3【解析】因为在正三棱锥P -ABC 中,P A ,PB ,PC 两两互相垂直,所以可以把该正三棱锥看作为一个正方体的一部分,(如图所示),此正方体内接于球,正方体的体对角线为球的直||.||AB n d n ⋅=径,球心为正方体对角线的中点。

球心到截面ABC 的距离为球的半径减去正三棱锥P -ABC在面ABC 上的高。

所以正方体的棱长为2,可求得正三棱锥P -ABC 在面ABC 上的ABC =2、已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1= E 为CC 1的中点,则直线AC 1与平面BED 的距离为A 2 BC D 1【答案】D【命题意图】本试题主要考查了正四棱柱的性质的运用,以及点到面的距离的求解。

体现了转换与化归的思想的运用,以及线面平行的距离,转化为点到面的距离即可。

【解析】连结BD AC ,交于点O ,连结OE ,因为E O ,是中点,所以1//AC OE ,且121AC OE =,所以BDE AC //1,即直线1AC 与平面BED 的距离等于点C 到平面BED 的距离,过C 做OE CF ⊥于F ,则CF 即为所求距离.因为底面边长为2,高为22,所以22=AC ,2,2==CE OC ,2=OE ,所以利用等积法得1=CF ,选 D.三、 典型例题:例1、如图,在直三棱柱111C B A ABC - 中,AB=4,AC=BC=3,D 为AB 的中点(Ⅰ)求点C 到平面11ABB A 的距离;(Ⅱ)若11AB AC ⊥求二面角11A CD C --的平面角的余弦值.【命题立意】本题考查立体几何的相关知识,考查线面垂直关系、二面角的求法以及空间向量在立体几何中的应用.解:(1)由A C B C =,D 为AB 的中点,得CD AB ⊥,又1C D A A ⊥,故11CD A ABB ⊥面,所以点C 到平面11A ABB的距离为CD ==(2)如图,取1D 为11A B 的中点,连结1DD ,则111DD AA CC ∥∥,又由(1)知11CD A ABB ⊥面,故1CD A D ⊥1CD DD ⊥,所以11A DD ∠为所求的二面角11A CD C --的平面角。

因1A D 为1AC 在面11A ABB 上的射影,又已知11AB AC ⊥,由三垂线定理的逆定理得11AB A D ⊥,从而111,A AB A DA ∠∠都与1B AB ∠互余,因此111A AB A DA∠=∠,所以111Rt A AD RtB A A ,因此,1111AA A B AD AA =,即21118AA AD A B == ,得1AA =从而1A D ==,所以,在11Rt A DD中,111111cos DD AA A DD A D A D ===。

例2、如图,在直三棱柱AB-A 1B 1C 1中.∠ BAC=90°,AB=AC=AA 1 =1.D 是棱CC 1上的一 P 是AD 的延长线与A 1C 1的延长线的交点,且PB 1∥平面BDA . (I)求证:CD=C 1D :(II)求二面角A-A 1D-B 的平面角的余弦值; (Ⅲ)求点C 到平面B 1DP 的距离.解析:(1)连接1B A交1BA 于O ,1//B P 1面BDA ,111,,B P AB P AB P D OD ⊂= 1面面面BA1//B P OD∴,又O为1B A的中点,D ∴为AP中点,1C ∴1为A P ,1ACD PC D ∴∆≅∆1C D CD ∴=,D 为1CC 的中点。

(2)由题意11,AB AC AB AA AB C C ⊥⊥⇒⊥1面AA ,过B 作AH AD ⊥,连接BH ,则BH AD ⊥,AHB ∴∠为二面角1A A DB --的平面角。

在1AA D ∆中,111,AA AD A D ===,则23AH AH BH AHB BH ==∠===(3)因为11C B PD B PCD V V -=,所以1111133B PD PCD h S A B S ∆∆⋅=⋅,111A B = 11111244PCD PC C PC D S S S ∆∆∆=-=-=, 在1B DP ∆中,1111955344,3222B D B P PD DB P DB P +-===∠==∠=⋅11331,22543B PD S h ∆∴=⋅==四、 高考链接:1、已知1111ABCD A BC D -是底面边长为1的正四棱柱,1O 是11AC 和11B D 的交点。

(1)设1AB 与底面1111A B C D 所成的角的大小为α,二面角111A B D A --的大小为β。

求证:tan βα=; (2)若点C 到平面11AB D 的距离为43,求正四棱柱1111ABCD A BC D -解:设正四棱柱的高为h 。

⑴ 连1AO ,1AA ⊥底面1111A B C D 于1A ,DB D 1∴ 1AB 与底面1111A B C D 所成的角为11AB A ∠,即11AB A α∠= ∵ 11AB AD =,1O 为11B D 中点,∴111AO B D ⊥,又1111AO B D ⊥, ∴ 11AO A ∠是二面角111A B D A --的平面角,即11AO A β∠= ∴ 111tan AA h A B α==,111tan AA AO βα===。

⑵ 建立如图空间直角坐标系,有11(0,0,),(1,0,0),(0,1,0),(1,1,)A h B D C h11(1,0,),(0,1,),(1,1,0)AB h AD h AC =-=-=设平面11AB D 的一个法向量为(,,)n x y z =,∵ 111100n AB n AB n AD n AD ⎧⎧⊥⋅=⎪⎪⇔⎨⎨⊥⋅=⎪⎪⎩⎩,取1z =得(,,1)n h h = ∴ 点C 到平面11AB D 的距离为||43||n AC d n ⋅=== ,则2h =。

2、如图,四棱锥P-ABCD 中,PA⊥底面ABCD ,四边形ABCD 中,AB⊥A D ,AB+AD=4,CD=2,︒=∠45CDA .(I )求证:平面PAB⊥平面PAD ; (II )设AB=AP .(i )若直线PB 与平面PCD 所成的角为︒30,求线段AB 的长;(ii )在线段AD 上是否存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等?说明理由。

解析:本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。

解法一:(I )因为PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AB ⊥,又,,AB AD PA AD A ⊥= 所以AB ⊥平面PAD 。

又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD 。

(II )以A 为坐标原点,建立空间直角坐标系 A —xyz (如图)在平面ABCD 内,作CE//AB 交AD 于点E ,则.CE AD ⊥ 在Rt CDE ∆中,DE=cos 451CD ⋅︒=,sin 451,CE CD =⋅︒=设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,(1,1,0),(0,4,).CD PD t t =-=--(i )设平面PCD 的法向量为(,,)n x y z =,由n CD ⊥ ,n PD ⊥ ,得0,(4)0.x y t y tx -+=⎧⎨--=⎩取x t =,得平面PCD 的一个法向量{,,4}n t t t =-,又(,0,)PB t t =-,故由直线PB 与平面PCD 所成的角为30︒,得21cos 60||,,2||||n PB n PB ⋅︒==⋅ 解得445t t ==或(舍去,因为AD 40t =->),所以4.5AB = (ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等,设G (0,m ,0)(其中04m t ≤≤-)则(1,3,0),(0,4,0),(0,,)GC t m GD t m GP m t =--=--=-,由||||GC GD =得222(4)t m m t --=+,(2) 由(1)、(2)消去t ,化简得2340m m -+=(3)由于方程(3)没有实数根,所以在线段AD 上不存在一个点G , 使得点G 到点P ,C ,D 的距离都相等。

从而,在线段AD 上不存在一个点G , 使得点G 到点P ,B ,C ,D 的距离都相等。

解法二: (I )同解法一。

(II )(i )以A 为坐标原点,建立空间直角坐标系A —xyz (如图) 在平面ABCD 内,作CE//AB 交AD 于E , 则CE AD ⊥。

在平面ABCD 内,作CE//AB 交AD 于点E ,则.CE AD ⊥在Rt CDE ∆中,DE=cos 451CD ⋅︒=,sin 451,CE CD =⋅︒=设AB=AP=t ,则B (t ,0,0),P (0,0,t ) 由AB+AD=4,得AD=4-t ,所以(0,3,0),(1,3,0),(0,4,0)E t C t D t ---,(1,1,0),(0,4,).CD PD t t =-=--设平面PCD 的法向量为(,,)n x y z =,由n CD ⊥ ,n PD ⊥ ,得0,(4)0.x y t y tx -+=⎧⎨--=⎩取x t =,得平面PCD 的一个法向量{,,4}n t t t =-,又(,0,)PB t t =-,故由直线PB 与平面PCD 所成的角为30︒,得21cos 60||,,2||||n PB n PB ⋅︒==⋅ 解得445t t ==或(舍去,因为AD 40t =->),∴4.5AB = (ii )假设在线段AD 上存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等,由GC=CD ,得45GCD GDC ∠=∠=︒, 从而90CGD ∠=︒,即,CG AD ⊥ ∴sin 451,GD CD =⋅︒=设,AB λλ=则AD=4-,3AG AD GD λ=-=-, 在Rt ABG ∆中,GB ==1,=> 这与GB=GD 矛盾。

相关文档
最新文档