立体几何高考常考题型

合集下载

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型

高中立体几何知识点及经典题型立体几何是高中数学中的重要部分,它研究了在三维空间内的几何形体。

本文将介绍高中立体几何的主要知识点和经典题型。

知识点以下是高中立体几何的主要知识点:1. 空间几何基础:点、线、面的概念及性质。

2. 参数方程和一般式方程:用参数或方程表示几何体的方法。

3. 立体图形的投影:点、直线、平面在投影中的表现形式。

4. 空间几何中的平行与垂直:直线、平面之间的平行关系及垂直关系。

5. 直线与面的位置关系:直线与平面之间的交点、垂线、倾斜角等概念。

6. 空间角的性质:二面角、棱锥、棱台等形体的角度关系。

7. 空间几何中的直线及曲线:空间中直线与曲线的方程及性质。

8. 空间立体角:球、球台、球扇等形体的角度关系。

9. 空间的切线:曲线在空间中的切线方程及其性质。

10. 空间的幂:圆、球及其他形体的幂的概念和性质。

经典题型以下是高中立体几何的经典题型:1. 求直线与平面的位置关系问题:例如,给定一直线和一个平面,求它们之间的交点、垂直线、倾斜角等。

2. 求空间角的问题:例如,给定两个平面的交线,求二面角的度数。

3. 求直线与曲线的位置关系问题:例如,给定一条直线和一个曲面,求它们之间的位置关系。

4. 求切线和法平面的问题:例如,给定一个曲线和一个点,求曲线在该点处的切线方程及法平面方程。

5. 求空间形体的幂问题:例如,给定一个球和一个平面,求平面关于球的幂及其性质。

以上只是一些经典的立体几何题型,通过解答这些题目,可以加深对立体几何知识的理解和运用。

希望本文对高中立体几何知识点和题型的介绍能够帮助到你。

祝你在学习立体几何时取得好成绩!。

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。

历年高考真题专题04立体几何

历年高考真题专题04立体几何

专题04 立体几何【2020年】1.(2020·新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A. 51-B. 51-C. 51+D. 51+ 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).2.(2020·新课标Ⅰ)已知A 、B 、C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A. 64πB. 48πC. 36πD. 32π【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC , 222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=,∴球O 的表面积2464S R ππ==.3.(2020·新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A. EB. FC. GD. H【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M点所在位置,可知在侧视图中所对应的点为E。

4.(2020·新课标Ⅲ)下图为某几何体的三视图,则该几何体的表面积是()2233【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:22AB AD DB===∴ADB△是边长为2根据三角形面积公式可得:2113sin 60(22)23222ADB S AB AD =⋅⋅︒=⋅=△ ∴该几何体的表面积是:2362332=⨯++.5.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为( ). A . 63+ B. 623+C. 123+D. 1223+ 【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形, 则其表面积为:()1322222sin 6012232S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+⎪⎝⎭. 6.(2020·山东卷)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A. 20°B. 40°C. 50°D. 90°【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥..由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒,由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.7.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( ) A. 12π B. 24π C. 36π D. 144π【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即()()()22223232332R ++==,所以,这个球的表面积为2244336S R πππ==⨯=.8.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A. 73B. 143C. 3D. 6【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 9.(2020·山东卷)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为球心,5为半径的球面与侧面BCC 1B 1的交线长为________.【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E 3=,111D E B C ⊥, 又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥,因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥, 因为球的半径为5,13D E =,所以2211||||||532EP D P D E =-=-=, 所以侧面11B C CB 与球面的交线上的点到E 的距离为2,因为||||2EF EG ==,所以侧面11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EF C EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得2222FG ππ=⨯=. 10.(2020·浙江卷)已知圆锥展开图的侧面积为2π,且为半圆,则底面半径为_______.【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 11.(2020·江苏卷)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【解析】正六棱柱体积为23622=123⨯;圆柱体积为21()222ππ⋅=;所求几何体体积为1232π 12.(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.2【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于223122AM =-=,故1222222S =⨯⨯=△ABC ,设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()1332222r =⨯++⨯=,解得:22r ,其体积:34233V r ππ==. 【2019年】1.【2019·全国Ⅰ卷】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π 【解析】,PA PB PC ABC ==△为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CEAC C EF =∴⊥平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体的一部分,22226R =++=,即364466,π62338R V R =∴=π=⨯=π,故选D .2.【2019·全国Ⅱ卷】设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B .3.【2019·全国Ⅲ卷】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线;B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线;D .BM ≠EN ,且直线BM ,EN 是异面直线【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是相交直线.过M 作MF OD ⊥于F ,连接BF ,平面CDE ⊥平面ABCD ,,EO CD EO ⊥⊂平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD ,MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知3,12EO ON EN ===,,35,,722MF BF BM ==∴=,BM EN ∴≠,故选B .4.【2019·浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是( )A .158B .162C .182D .324 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为264633616222++⎛⎫⨯+⨯⨯=⎪⎝⎭. 故选B.5.【2019·浙江卷】设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点).记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P –AC –B 的平面角为γ,则( ) A .β<γ,α<γ B .β<α,β<γ C .β<α,γ<α D .α<β,γ<β 【解析】如图,G 为AC 中点,连接VG ,V 在底面ABC 的投影为O ,则P 在底面的投影D 在线段AO 上,过D 作DE 垂直于AC 于E ,连接PE ,BD ,易得PE VG ∥,过P 作PF AC ∥交VG 于F ,连接BF ,过D 作DH AC ∥,交BG 于H ,则,,BPF PBD PED αβγ=∠=∠=∠,结合△PFB ,△BDH ,△PDB 均为直角三角形,可得cos cos PF EG DH BD PB PB PB PBαβ===<=,即αβ>; 在Rt △PED 中,tan tan PD PD ED BD γβ=>=,即γβ>,综上所述,答案为B.6.【2019·全国Ⅲ卷】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形,∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.7.【2019·北京卷】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.8.【2019·北京卷】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.9.【2019·天津卷】已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【解析】由题意,四棱锥的底面是边长为2的正方形,侧棱长均为5,借助勾股定理,可知四棱锥的高为512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12,故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 10.【2019·江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD 的体积是 ▲ .【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=,因为E 为1CC 的中点,所以112CE CC =,由长方体的性质知1CC ⊥底面ABCD , 所以CE 是三棱锥E BCD -的底面BCD 上的高,所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=. 【2018年】1.【2018·全国Ⅰ卷】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .172B .52C .3D .2【答案】B2.【2018·全国Ⅰ卷】已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为 A .33 B .23 C .324D .3【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体1111ABCD A B C D -中, 平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理,平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间,且过棱的中点的正六边形,且边长为22,所以其面积为232336424S ⎛⎫=⨯⨯= ⎪ ⎪⎝⎭,故选A. 3.【2018·全国Ⅲ卷】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A .4.【2018·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .2B .4C .6D .8【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯=故选C. 5.【2018·全国Ⅲ卷】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .543【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,2393ABC S AB ==△,6AB ∴=,点M 为三角形ABC 的重心,2233BM BE ∴==,Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯⨯=,故选B.6.【2018·全国Ⅱ卷】在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为 A .15B .5C .5 D .2 【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1=5DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得222111115cos 2545DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系, 则()()((110,0,0,1,0,0,3,3D A B D ,所以()(111,0,3,3AD DB =-=, 因为1111115cos ,25AD DB AD DB AD DB ⋅===⨯, 所以异面直线1AD 与1DB 所成角的余弦值为55,故选C. 7.【2018·浙江卷】已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ1【解析】设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO ,SN ,SE ,SM ,OM ,OE ,则SO 垂直于底面ABCD ,OM 垂直于AB , 因此123,,,SEN SEO SMO ∠=∠=∠=θθθ 从而123tan ,tan ,tan ,SN SN SO SOEN OM EO OM====θθθ 因为SN SO EO OM ≥≥,,所以132tan tan tan ,≥≥θθθ即132≥≥θθθ,故选D.8.【2018·江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】439.【2018·全国II 卷】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.【解析】因为母线SA ,SB 所成角的余弦值为78,所以母线SA ,SB 所成角的正弦值为158,因为SAB △的面积为515,l 所以22115515,802l l ⨯=∴=,因为SA 与圆锥底面所成角为45°,所以底面半径为π2cos ,42r l ==因此圆锥的侧面积为22ππ402π.2rl l == 【2017年】1.【2017·全国Ⅱ卷】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为A 3B 15C 10D 3【答案】C【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为21111,2,21221cos603,5BC D BC BD C D AB ∠==+-⨯⨯⨯︒===,易得22211C D BD BC =+,因此111210cos 55BC BC D C D ∠===,故选C . 2.【2017·全国Ⅰ卷】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A .10B .12C .14D .16【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)2122⨯+⨯⨯=,故选B . 3.【2017·北京卷】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为A .2B .3C .2D .2【解析】几何体是四棱锥P ABCD -,如图.最长的棱长为补成的正方体的体对角线,即该四棱锥的最长棱的长度为22222223l =++=,选B . 4.【2017·全国Ⅱ卷】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .5.【2017·全国Ⅲ卷】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π4【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭, 由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛⎫==⨯⨯= ⎪ ⎪⎝⎭,故选B. 6.【2017·浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .12π+ B .32π+ C .312π+ D .332π+ 【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+,故选A .7.【2017·浙江卷】如图,已知正四面体–D ABC (所有棱长均相等的三棱锥),P ,Q ,R 分别为AB ,BC ,CA 上的点,AP=PB ,2BQ CRQC RA==,分别记二面角D –PR –Q ,D –PQ –R ,D –QR –P 的平面角为αβγ,,,则A . γαβ<<B .αγβ<<C .αβγ<<D .βγα<<【解析】设O 为三角形ABC 中心,则O 到PQ 距离最小,O 到PR 距离最大,O 到RQ 距离居中,而三棱锥的高相等,因此αγβ<<,所以选B .8.【2017·全国I 卷】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则133OG x =⨯3x =.∴35FG SG x ==-, 222233566SO h SG GO x x ⎛⎫⎛⎫==-=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭3553x ⎛⎫=- ⎪ ⎪⎝⎭, ∴三棱锥的体积2113355333ABC V S h x x ⎛⎫=⋅=⨯⨯- ⎪ ⎪⎝⎭△451535123x x =-. 设()4535n x x x =-,x >0,则()345320n x x x '=-, 令()0n x '=,即43403x -=,得43x =,易知()n x 在43x =处取得最大值. ∴max 154854415V =⨯⨯-=.9.【2017·山东卷】由一个长方体和两个14圆柱体构成的几何体的三视图如图,则该几何体的体积为.【解析】由三视图可知,长方体的长、宽、高分别为2,1,1,圆柱的高为1,底面圆的半径为1,所以2π1π21121242V⨯=⨯⨯+⨯⨯=+.10.【2017·天津卷】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.【解析】设正方体的边长为a,则26183a a=⇒=,其外接球直径为233R a==,故这个球的体积34π3V R==4279ππ382⨯=.11.【2017·江苏卷】如图,在圆柱12O O内有一个球O,该球与圆柱的上、下底面及母线均相切.记圆柱12O O的体积为1V,球O的体积为2V,则12VV的值是.【解析】设球半径为r,则213223423V r rV rπ⨯==π.故答案为32.12.【2017·全国Ⅲ卷】a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,2AB AD ==,当直线AB 与a 成60°角时,60ABD ∠=,故2BD =,又在Rt BDE △中,2,2BE DE =∴=,过点B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知2BF DE ==,ABF ∴△为等边三角形,60ABF ∴∠=,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【2016年】1. 【2016高考新课标1卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )17π (B )18π (C )20π (D )28π【解析】该几何体直观图如图所示:是一个球被切掉左上角的18,设球的半径为R ,则37428V R 833ππ=⨯=,解得R 2=,所以它的表面积是78的球面面积和三个扇形面积之和2271=42+32=1784S πππ⨯⨯⨯⨯故选A . 2.【2016高考新课标2理数】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A )20π (B )24π (C )28π (D )32π【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.3.【2016年高考北京理数】某三棱锥的三视图如图所示,则该三棱锥的体积为()A.16B.13C.12D.1 【解析】分析三视图可知,该几何体为一三棱锥P ABC -,其体积111111326V =⋅⋅⋅⋅=,故选A. 4.【2016高考新课标3理数】如图,网格纸上小正方形的边长为1,粗实现画出的是某多面体的三视图,则该多面体的表面积为( )(A )18365+(B )54185+(C )90 (D )81【解析】由三视图该几何体是以侧视图为底面的斜四棱柱,所以该几何体的表面积236233233554185S =⨯⨯+⨯⨯+⨯⨯=+,故选B .5.【2016高考山东理数】一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π (B )1233+π (C )1236+π (D )216+π 【解析】由三视图可知,2的半球,体积为31142223V =⨯π⨯=),下面是底面积为1,高为1的四棱锥,体积2111133V =⨯⨯=,故选C. 6.【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥, 则( )A .m ∥lB .m ∥nC .n ⊥lD .m ⊥n【解析】由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C . 7.【2016年高考四川理数】已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则该三棱锥的体积是 .正视图331【解析】由三棱锥的正视图知,三棱锥的高为1,底面边长为232,2,所以,该三棱锥的体积为113322132V =⨯⨯⨯=.8.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【解析】几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=9.【2016高考新课标2理数】 ,αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果,,//m n m n αβ⊥⊥,那么αβ⊥.(2)如果,//m n αα⊥,那么m n ⊥.(3)如果//,m αβα⊂,那么//m β.(4)如果//,//m n αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号)【解析】对于①,,,//m n m n αβ⊥⊥,则,αβ的位置关系无法确定,故错误;对于②,因为//n α,所以过直线n 作平面γ与平面β相交于直线c ,则//n c ,因为,,m m c m n α⊥∴⊥∴⊥,故②正确;对于③,由两个平面平行的性质可知正确;对于④,由线面所成角的定义和等角定理可知其正确,正确的有②③④.10.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【解析】ABC △中,因为2,120AB BC ABC ==∠=,所以30BAD BCA ∠=∠=.由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=,所以AC =设AD x =,则0x <<DC x =.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅24x =-+.故BD =在PBD ∆中,PD AD x ==,2PB BA ==.由余弦定理可得222cos 2PD PB BD BPD PD PB +-∠===⋅,所以30BPD ∠=. 由此可得,将△ABD 沿BD 翻折后可与△PBD 重合,无论点D 在任何位置,只要点D 的位置确定,当平面PBD ⊥平面BDC 时,四面体PBCD 的体积最大(欲求最大值可不考虑不垂直的情况).EDC B A P过P 作直线BD 的垂线,垂足为O .设PO d =,则11sin 22PBD S BD d PD PB BPD =⨯=⋅∠△,12sin 302d x =⋅,解得d = 而△BCD的面积111sin )2sin 30(2)222S CD BC BCD x x=⋅∠=⋅=.当平面PBD ⊥平面BDC 时:四面体PBCD 的体积111)332BCD V S d x=⨯=⨯△=.观察上式,易得)2x x x x +≤,当且仅当x x -,即x 时取等号,同时我们可以发现当x x PBCD 的体积最大,为1.211.【2016高考新课标1卷】平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α//平面CB 1D 1,α平面ABCD =m ,α平面AB B 1A 1=n ,则m 、n 所成角的正弦值为 (A)2(B )2(C)3 (D)13【解析】设平面11CB D 平面ABCD ='m ,平面11CB D 平面11ABB A ='n ,因为α∥平面11CB D ,所以','m m n n ∥∥,则,m n 所成的角等于','m n 所成的角.过1D 作11D E B C ∥,交AD 的延长线于点E,连接CE ,则CE 为'm .连接1A B ,过B 1作111B F A B ∥,交1AA 的延长线于点1F ,则11B F 为'n .连接BD ,则111,BD CE B F A B ∥∥,则','m n 所成的角即为1,A B BD 所成的角,为60︒,故,m n 所成角的正弦值为32,选A.12.【2016高考新课标3理数】在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是( )(A )4π (B )92π (C )6π (D )323π 【解析】要使球的体积V 最大,必须球的半径R 最大.由题意知球的与直三棱柱的上下底面都相切时,球的半径取得最大值32,此时球的体积为334439()3322R πππ==,故选B . 13.【2016高考天津理数】已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_______m 3.【解析】由三视图知四棱锥高为3,底面平行四边形的一边长为2,其对应的高为1,因此所求四棱锥的体积1(21)323V =⨯⨯⨯=.故答案为2.。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

立体几何高考题

立体几何高考题

1、一个正方体的棱长为2cm,其体对角线的长度为?
A. 2cm
B. 2√2cm
C. 4cm
D. 2√3cm
(答案)B
2、一个圆锥的底面半径为3cm,高为4cm,其母线长为?
A. 3cm
B. 4cm
C. 5cm
D. 6cm
(答案)C
3、一个球的内接正方体的棱长为6cm,则该球的半径为?
A. 3cm
B. 3√2cm
C. 3√3cm
D. 6cm
(答案)C
4、一个直三棱柱的底面为等腰直角三角形,且直角边长为2cm,高为3cm,其体积为?
A. 3cm³
B. 6cm³
C. 9cm³
D. 12cm³
(答案)B
5、一个圆柱的底面半径为2cm,高为5cm,其侧面积为?
A. 10π cm²
B. 20π cm²
C. 40π cm²
D. 50π cm²
(答案)B
6、一个正四棱锥的底面边长为4cm,高为3cm,其体积为?
A. 8cm³
B. 12cm³
C. 16cm³
D. 24cm³
(答案)C
7、一个圆锥的侧面展开图是一个半圆,且该半圆的半径为5cm,则该圆锥的高为?
A. √15cm
B. √20cm
C. √25cm
D. 5cm
(答案)C
8、一个正方体的内切球半径为2cm,则该正方体的体积为?
A. 8cm³
B. 32cm³
C. 64cm³
D. 128cm³
(答案)C。

高考必刷小题 立体几何

高考必刷小题 立体几何
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11.如图所示,在正方体ABCD-A1B1C1D1中,E是平面ADD1A1的中心,M, N,F分别是B1C1,CC1,AB的中点,则下列说法正确的是 A.MN=12EF
√B.MN≠12EF √C.MN与EF异面
D.MN与EF平行
1 A.4
dm2
C.
3 4
dm2
√B.
2 4
dm2
D.34 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
根据题意,在平面VAC内,过点P作EF∥AC分别交VA,VC于点F,E, 在平面VBC内,过点E作EQ∥VB交BC于点Q, 在平面VAB内,过点F作FD∥VB交AB于点D,连接DQ,如图所示, 因为EF∥AC, 所以△VEF∽△VCA,设其相似比为k, 则VVAF=VVCE=AECF=k,0<k<1, 因为 VA=VB=VC=1,且两两垂直,所以 AC= 2,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
因为EF⊂平面VAC, 所以FD⊥EF, 所以四边形 FEQD 是矩形,即 S 矩形 FEQD=
FD·EF=(1-k)· 2k=- 2k-122+ 42,
所以当
k=12时,S
矩形 FEQD
有最大值
2 4.
故该截面面积的最大值是
对于A,如图(1),α∩β=l,m⊥l,n∥l,则满足m∥α,n∥β,m⊥n, 平面α与β不一定垂直,故A错误; 对于B,如图(2),α∩β=l,n∥l,m⊥α,则满足n∥β,m⊥n,平面 α与β不一定垂直,故B错误;
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

高中数学必修2立体几何常考题型:棱柱、棱锥、棱台的结构特征

高中数学必修2立体几何常考题型:棱柱、棱锥、棱台的结构特征

棱柱、棱锥、棱台的结构特征【知识梳理】1.空间几何体题型一、棱柱的结构特征【例1】下列关于棱柱的说法:(1)所有的面都是平行四边形;(2)每一个面都不会是三角形;(3)两底面平行,并且各侧棱也平行;(4)被平面截成的两部分可以都是棱柱.其中正确说法的序号是________.[解析](1)错误,棱柱的底面不一定是平行四边形;(2)错误,棱柱的底面可以是三角形;(3)正确,由棱柱的定义易知;(4)正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是(3)(4).[答案](3)(4)【类题通法】有关棱柱的结构特征问题的解题策略(1)紧扣棱柱的结构特征进行有关概念辨析①两个面互相平行;②其余各面是四边形;③相邻两个四边形的公共边互相平行.求解时,首先看是否有两个平行的面作为底面,再看是否满足其他特征.(2)多注意观察一些实物模型和图片便于反例排除.【对点训练】1.下列四个命题中,假命题为()A.棱柱中两个互相平行的平面一定是棱柱的底面B.棱柱的各个侧面都是平行四边形C.棱柱的两底面是全等的多边形D.棱柱的面中,至少有两个面互相平行解析:选A A错,正六棱柱的两个相对的侧面互相平行,但不是棱柱的底面,B、C、D 是正确的.题型二、棱锥、棱台的结构特征【例2】下列关于棱锥、棱台的说法:(1)用一个平面去截棱锥,底面和截面之间的部分组成的几何体叫棱台;(2)棱台的侧面一定不会是平行四边形;(3)棱锥的侧面只能是三角形;(4)由四个面围成的封闭图形只能是三棱锥;(5)棱锥被平面截成的两部分不可能都是棱锥,其中正确说法的序号是________.[解析](1)错误,若平面不与棱锥底面平行,用这个平面去截棱锥,棱锥底面和截面之间的部分不是棱台;(2)正确,棱台的侧面一定是梯形,而不是平行四边形;(3)正确,由棱锥的定义知棱锥的侧面只能是三角形;(4)正确,由四个面围成的封闭图形只能是三棱锥;(5)错误,如图所示四棱锥被平面截成的两部分都是棱锥.[答案](2)(3)(4)【类题通法】判断棱锥、棱台形状的两个方法(1)举反例法:结合棱锥、棱台的定义举反例直接判断关于棱锥、棱台结构特征的某些说法不正确.(2)直接法:2.试判断下列说法正确与否:①由六个面围成的封闭图形只能是五棱锥;②两个底面平行且相似,其余各面都是梯形的多面体是棱台.解:①不正确,由六个面围成的封闭图形有可能是四棱柱;②不正确,两个底面平行且相似,其余各面都是梯形的多面体.侧棱不一定相交于一点,所以不一定是棱台.题型三、多面体的平面展开图【例3】如图是三个几何体的侧面展开图,请问各是什么几何体?[解]由几何体的侧面展开图的特点,结合棱柱,棱锥,棱台的定义,可把侧面展开图还原为原几何体,如图所示:所以①为五棱柱,②为五棱锥,③为三棱台.【类题通法】1.解答此类问题要结合多面体的结构特征发挥空间想象能力和动手能力.2.若给出多面体画其展开图时,常常给多面体的顶点标上字母,先把多面体的底面画出来,然后依次画出各侧面.3.若是给出表面展开图,则可把上述程序逆推.【对点训练】3.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图(图中数字写在正方体的外表面上),若图中“0”上方的“2”在正方体的上面,则这个正方体的下面是()A.1B.2C.快D.乐解析:选B由题意,将正方体的展开图还原成正方体,1与乐相对,2与2相对,0与快相对,所以下面是2.【练习反馈】1.下列几何体中棱柱有()A.5个B.4个C.3个D.2个解析:选D由棱柱定义知,①③为棱柱.2.下列图形经过折叠可以围成一个棱柱的是()解析:选D A、B、C中底面边数与侧面个数不一致,故不能围成棱柱.3.棱锥最少有________个面.答案:44.下列几何体中,________是棱柱,________是棱锥,________是棱台(仅填相应序号).答案:①③④⑥⑤5.(1)三棱锥、四棱锥、十五棱锥分别有多少条棱?多少个面?(2)有没有一个多棱锥,其棱数是2 012?若有,求出有多少个面;若没有,说明理由.解:(1)三棱锥有6条棱、4个面;四棱锥有8条棱、5个面;十五棱锥有30条棱、16个面.(2)设n棱锥的棱数是2 012,则2n=2012,所以n=1 006,1 006棱锥的棱数是2 012,它有1 007个面.。

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.【例1】如图,在△ABC中,∠ABC=,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.(1)证明 ∵OB=OC,又∵∠ABC=,∴∠OCB=,∴∠BOC=.⊥∴CO AB.又PO⊥平面ABC,⊥OC⊂平面ABC,∴PO OC.又∵PO,AB⊂平面PAB,PO∩AB=O,∴CO⊥平面PAB,即CO⊥平面PDB.又CO⊂平面COD,∴平面PDB⊥平面COD.(2)解 以OC,OB,OP所在射线分别为x,y,z轴,建立空间直角坐标系,如图所示.设OA=1,则PO=OB=OC=2,DA=1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1),∴PD=(0,-1,-1),BC=(2,-2,0),BD=(0,-3,1).设平面BDC的一个法向量为n=(x,y,z),∴∴令y=1,则x=1,z=3,∴n=(1,1,3).设PD与平面BDC所成的角为θ,则sin θ===.即直线PD与平面BDC所成角的正弦值为.【类题通法】利用向量求空间角的步骤间标.第一步:建立空直角坐系第二步:确定点的坐标.线)坐标.第三步:求向量(直的方向向量、平面的法向量计夹(或函数值).第四步:算向量的角将夹转为间.第五步:向量角化所求的空角查关键错题规.第六步:反思回顾.看点、易点和答范【变式训练】 如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(1)证明:EF∥B1C.(2)求二面角EA1DB1的余弦值.(1)证明 由正方形的性质可知A1B1AB DC∥∥,且A1B1=AB=DC,所以四边形A1B1CD为平行四边形,从而B1C A∥1D,又A1D⊂面A1DE,B1C⊄面A1DE,于是B1C∥面A1DE.又B1C⊂面B1CD1,面A1DE∩面B1CD1=EF,所以EF∥B1C.(2)解 因为四边形AA1B1B,ADD1A1,ABCD均为正方形,所以AA1⊥AB,AA1⊥AD,AB⊥AD且AA1=AB=AD.以A为原点,分别以AB,AD,AA1为x轴,y轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A(0,0,0),B(1,0,0),D(0,1,0),A1(0,0,1),B1(1,0,1),D1(0,1,1),而E点为B1D1的中点,所以E点的坐标为.设平面A1DE的一个法向量n1=(r1,s1,t1),而该面上向量A1E=,A1D=(0,1,-1),由n1⊥A1E,n1⊥A1D得r1,s1,t1应满足的方程组(-1,1,1)为其一组解,所以可取n1=(-1,1,1).设平面A1B1CD的一个法向量n2=(r2,s2,t2),而该面上向量A1B1=(1,0,0),A1D=(0,1,-1),由此同理可得n2=(0,1,1).所以结合图形知二面角EA1DB1的余弦值为==.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式:(1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,AB⊥AD,AB=1,AD=2,AC=CD=.(1)求证:PD⊥平面PAB;(2)求直线PB与平面PCD所成角的正弦值;(3)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.(1)证明 因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊥AD,所以AB⊥平面PAD,所以AB⊥PD.又PA⊥PD,AB∩PA=A,所以PD⊥平面PAB.(2)解 取AD的中点O,连接PO,CO.因为PA=PD,所以PO⊥AD.因为PO⊂平面PAD,平面PAD⊥平面ABCD,所以PO⊥平面ABCD.因为CO⊂平面ABCD,所以PO⊥CO.因为AC=CD,所以CO⊥AD.如图,建立空间直角坐标系O-xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD的一个法向量为n=(x,y,z),则即令z=2,则x=1,y=-2.所以n=(1,-2,2).又PB=(1,1,-1),所以cos〈n,PB〉==-.所以直线PB与平面PCD所成角的正弦值为.(3)解 设M是棱P A上一点,则存在λ∈0,1],使得AM=λAP.因此点M(0,1-λ,λ),BM=(-1,-λ,λ).因为BM⊄平面PCD,所以要使BM∥平面PCD,则BM·n=0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=.所以在棱P A上存在点M,使得BM∥平面PCD,此时=.应设,把要成立的作件结论当条,据此列方对断问题,先假存在【类题通法】(1)于存在判型的求解规围内”等.标,是否有定范的解程或方程组,把“是否存在”化问题转为“点的坐是否有解对问题,通常借助向量,引进参数,合已知和列出等式综结论,解出参数.(2)于位置探究型【变式训练】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,∠P AD=45°,E为P A的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.(1)证明 取PB的中点M,连接EM和CM,过点C作CN⊥AB,垂足为点N.∵CN⊥AB,DA⊥AB,∴CN∥DA,又AB∥CD,∴四边形CDAN为平行四边形,∴CN=AD=8,DC=AN=6,在Rt△BNC中,BN===6,∴AB=12,而E,M分别为P A,PB的中点,∴EM∥AB且EM=6,又DC∥AB,∥且EM=CD,四边形CDEM为平行四边形,∴EM CD∥∵⊂平面PBC,DE⊄平面PBC,∴DE CM.CM∴DE∥平面BPC.(2)解 由题意可得DA,DC,DP两两互相垂直,如图,以D为原点,DA,DC,DP分别为x,y,z轴建立空间直角坐标系D-xyz,则A(8,0,0),B(8,12,0),C(0,6,0),P(0,0,8).假设AB上存在一点F使CF⊥BD,设点F坐标为(8,t,0),则CF=(8,t-6,0),DB=(8,12,0),由CF·DB=0得t=.又平面DPC的一个法向量为m=(1,0,0),设平面FPC的法向量为n=(x,y,z).又PC=(0,6,-8),FC=.由得即不妨令y=12,有n=(8,12,9).则cos〈n,m〉===.又由图可知,该二面角为锐二面角,故二面角F-PC-D的余弦值为.题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力.【例3】如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD 上,AE=CF=,EF交BD于点H.将△DEF沿EF折到△D′EF的位置,OD′=.(1)证明:D′H⊥平面ABCD;(2)求二面角B-D′A-C的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD .又由AE =CF 得=,故AC ∥EF .因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO ==4.由EF ∥AC 得==.所以OH =1,D ′H =DH =3.于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH .又D ′H ⊥EF ,而OH ∩EF =H ,所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF 的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0),B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB =(3,-4,0),AC =(6,0,0),AD′=(3,1,3).设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量,则即所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量,则即所以可取n =(0,-3,1).于是cos 〈m ,n 〉===-.sin 〈m ,n 〉=.因此二面角B -D ′A -C 的正弦值是.【类题通法】立体几何中的折叠问题,是翻折前后形中面位置系和度量系的化关键搞清图线关关变情况,一般地翻折后在同一平面上的性不生化还个质发变,不在同一平面上的性生化个质发变.【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD⊥平面A1OC;(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.(1)证明 在题图1中,因为AB=BC=1,AD=2,E是AD的中点,∠BAD=,所以BE⊥AC.即在题图2中,BE⊥OA1,BE⊥OC,从而BE⊥平面A1OC.又CD∥BE,所以CD⊥平面A1OC.(2)解 由已知,平面A1BE⊥平面BCDE,又由(1)知,BE⊥OA1,BE⊥OC,所以∠A1OC为二面角A1-BE-C的平面角,所以∠A1OC=.如图,以O为原点,OB,OC,OA1分别为x轴、y轴、z轴正方向建立空间直角坐标系,因为A1B=A1E=BC=ED=1,BC∥ED,所以B,E,A1,C,得BC=,A1C=,CD=BE=(-,0,0).设平面A1BC的一个法向量n1=(x1,y1,z1),平面A1CD的一个法向量n2=(x2,y2,z2),平面A1BC与平面A1CD的夹角为θ,则得取n1=(1,1,1);得取n2=(0,1,1),从而cos θ=|cos〈n1,n2〉|==,即平面A1BC与平面A1CD夹角的余弦值为.。

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳

高考数学立体几何题型全归纳一、空间几何体的结构特征1. 一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如下(单位cm),则该三棱柱的表面积为()正视图:是一个矩形,长为2,高为√(3);侧视图:是一个矩形,长为2,高为1;俯视图:是一个正三角形,边长为2。

解析:底面正三角形的边长a = 2,底面积S_{底}=(√(3))/(4)a^2=(√(3))/(4)×2^2=√(3)。

侧棱长h = 1,三个侧面的面积S_{侧}=3×2×1 = 6。

所以表面积S=2S_{底}+S_{侧}=2√(3)+6。

2. 若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()正视图:是一个梯形,上底为1,下底为2,高为2;侧视图:是一个矩形,长为2,宽为1;俯视图:是一个矩形,长为2,宽为1。

解析:该几何体是一个四棱台。

上底面积S_{1}=1×1 = 1,下底面积S_{2}=2×2=4,高h = 2。

根据四棱台体积公式V=(1)/(3)h(S_{1}+S_{2}+√(S_{1)S_{2}})=(1)/(3)×2×(1 + 4+√(1×4))=(14)/(3)二、空间几何体的表面积与体积3. 已知球的直径SC = 4,A,B是该球球面上的两点,AB=√(3),∠ ASC=∠BSC = 30^∘,则棱锥S - ABC的体积为()解析:设球心为O,因为SC是球的直径,∠ ASC=∠ BSC = 30^∘所以SA=SB = 2√(3),AO = BO=√(3)又AB=√(3),所以 AOB是等边三角形,S_{ AOB}=(√(3))/(4)×(√(3))^2=(3√(3))/(4)V_{S - ABC}=V_{S - AOB}+V_{C - AOB}=(1)/(3)× S_{ AOB}×(SO + CO)=(1)/(3)×(3√(3))/(4)×2=√(3)4. 一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()正视图:是一个正方形,右上角缺了一个等腰直角三角形;侧视图:是一个正方形,右上角缺了一个等腰直角三角形;俯视图:是一个正方形,右上角缺了一个小正方形。

立体几何高考专题--球台的几种常见体积计算方法

立体几何高考专题--球台的几种常见体积计算方法

立体几何高考专题--球台的几种常见体积
计算方法
球台是一个常见的几何体,其体积计算是高考几何题中常考的题型之一。

下面介绍几种常见的计算球台体积的方法:
方法一:分层叠加法
1. 首先,将球台分成多个薄圆盘层,每个薄圆盘层的厚度为Δh。

2. 然后,计算每个薄圆盘层的面积,并乘以Δh得到薄圆盘层的体积。

3. 最后,将所有薄圆盘层的体积相加即可得到球台的体积。

这种方法适用于球台上下直径变化较小的情况。

方法二:切割法
1. 首先,将球台切割成一系列小柱体。

2. 计算每个小柱体的体积,然后将所有小柱体的体积相加即可
得到球台的体积。

这种方法适用于球台上下直径变化较大的情况。

方法三:积分法
1. 首先,使用函数表示球台的截面,得到球台的微元体积dV。

2. 然后,对球台的截面进行积分,即可得到球台的体积。

这种方法适用于球台形状比较复杂的情况。

需要注意的是,无论使用哪种方法计算球台的体积,都需要根
据几何性质正确设置各个参数和变量,确保计算结果的准确性。

以上是关于球台的几种常见体积计算方法的介绍。

希望对您的
学习有帮助!。

从易到难分析立体几何常见题型及练习

从易到难分析立体几何常见题型及练习

立体几何常见类型题题型一、空间几何体三视图与直观图 (1)由实物图画三视图1.如图甲所示,在正方体1111D C B A ABCD -中,E 、F 分别是1AA 、11D C 的中点,G 是正方形11B BCC 的中心,则四边形AGFE 在该正方体的各个面上的投影可能是图乙中的_______________。

(2)三视图还原实物图2..某空间几何体的三视图如图所示,则该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+D. 2343π+ (3)斜二测画法有关的计算问题(S S 42'=) 3.等腰梯形ABCD ,上底1=CD ,腰2==BC AD ,下底,3=AB 以下底所在直线为x 轴,则由斜二侧画法画出的直观图''''D C B A 的面积是 ________ 题型二、空间几何体的表面积与侧面积 (1)空间几何体的表面积与体积4.已知某几何体的俯视图如图所示的矩形,正视图(或称主视图)是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形。

(1)画出几何体的直观图 (2)求该几何体的侧面积S 。

(3)求该几何体的体积V ;(2)空间几何体展开图及面积计算5.已知圆锥的侧面展开图是右图所示的扇形,半径为1,圆心角为ο120, 则圆锥的表面积和体积分别是多少?(3)割补法和等体积法求体积6.如图,正方体''''D C B A ABCD -的棱长为2,E 是AB 的中点, 求:(1)三棱锥EC A B '-的体积V . (2)求B 点到平面EC A '的距离。

类型三.证明线面平行1.在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。

2.正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证: C1O ∥面11AB D ; 考点:法1:利用平行四边形 法2:利用面面平行的性质类型四.证明面面平行1. 正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .2.在正方体1111ABCD A B C D -中,E 、F 、G分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .A ED 1CB 1DCBAD 1ODBAC 1B 1A 1C A 1AB 1C 1 CD 1D G EF类型五.证明线面垂直1. 正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面. (考点:线面垂直的判定定理)2. ,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD . 考点:线面垂直的判定,运用勾股定理寻求线线垂直3. 已知ABC ∆中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC .4. 四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=o ,求证:BD ⊥平面ACD5. 如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠= 且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂 直于底面ABCD . G 为AD 的中点,求证:BG ⊥平面PAD ; (考点:利用面面垂直性质定理)类型六.证明面面垂直1. 如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. 求证:平面1A AC ⊥平面BDE . (考点:面面垂直的判定)ABD CA ’D ’B ’C ’SDCBA2.如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC . 考点:面面垂直的判定(证二面角是直二面角)类型七.证明线线垂直1. 在正方体ABCD-A ’B ’C ’D ’中,M 为DD ’的中点,O 为AC 的中点,AB=2 证明:B ’O ⊥AC 考点:法1:线面垂直→线线垂直 法2:勾股定理法3:等腰三角形三线合一。

2022年高考立体几何汇编

2022年高考立体几何汇编

2022年高考立体几何汇编一.选择题(共10小题)1.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π2.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50% 3.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.4.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.2 5.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3 6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B17.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.4 8.(2021•甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.9.(2021•甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.10.(2021•乙卷)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.二.多选题(共2小题)11.(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中点,P为所在棱的中点,M,N 为正方体的顶点,则满足MN⊥OP的是()A.B.C.D.12.(2021•新高考Ⅰ)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P三.填空题(共4小题)13.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则ABC的面积的取值范围为.14.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为.15.(2021•乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).16.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为.四.解答题(共11小题)17.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.18.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA =,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.19.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.20.(2021•北京)已知正方体ABCD﹣A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE 于点F.(1)求证:点F为B1C1中点;(2)若点M为棱A1B1上一点,且二面角M﹣CF﹣E的余弦值为,求.21.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.(1)求三棱锥F﹣EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.22.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A﹣PM﹣B的正弦值.23.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.24.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?25.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面P AM⊥平面PBD;(2)若PD=DC=1,求四棱锥P﹣ABCD的体积.26.(2021•新高考Ⅰ)如图,在三棱锥A﹣BCD中,平面ABD⊥平面BCD,AB=AD,O 为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E﹣BC﹣D的大小为45°,求三棱锥A﹣BCD的体积.27.(2021•上海)四棱锥P﹣ABCD,底面为正方形ABCD,边长为4,E为AB中点,PE⊥平面ABCD.(1)若△P AB为等边三角形,求四棱锥P﹣ABCD的体积;(2)若CD的中点为F,PF与平面ABCD所成角为45°,求PC与AD所成角的大小.2021年高考立体几何汇编参考答案与试题解析一.选择题(共10小题)1.(2021•天津)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A.3πB.4πC.9πD.12π【分析】由题意画出图形,由球的体积求出球的半径,再由直角三角形中的射影定理求得截面圆的半径,代入圆锥体积公式得答案.【解答】解:如图,设球O的半径为R,由题意,,可得R=2,则球O的直径为4,∵两个圆锥的高之比为1:3,∴AO1=1,BO1=3,由直角三角形中的射影定理可得:r2=1×3,即r=.∴这两个圆锥的体积之和为V=.故选:B.【点评】本题考查球内接圆锥体积的求法,考查空间想象能力与思维能力,考查运算求解能力,是中档题.2.(2021•新高考Ⅱ)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到的一颗地球静止同步轨道卫星点的纬度最大值为α,该卫星信号覆盖地球表面的表面积S=2πr2(1﹣cosα)(单位:km2),则S占地球表面积的百分比约为()A.26%B.34%C.42%D.50%【分析】由题意,地球静止同步卫星轨道的左右两端的竖直截面图,求解cosα,根据卫星信号覆盖的地球表面面积可得S占地球表面积的百分比.【解答】解:由题意,作出地球静止同步卫星轨道的左右两端的竖直截面图,则OB=36000+6400=424000,那么cosα=;卫星信号覆盖的地球表面面积S=2πr2(1﹣cosα),那么,S占地球表面积的百分比为42%.故选:C.【点评】本题考查了对题目的阅读能力和理解能力,属于基础题.3.(2021•新高考Ⅱ)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+12B.28C.D.【分析】过A作AE⊥A1B1,得A1E==1,AE==.连接AC,A1C1,过A作AG⊥A1C1,求出A1G=,从而AG==,由此能求出正四棱台的体积.【解答】解:如图ABCD﹣A1B1C1D1为正四棱台,AB=2,A1B1=4,AA1=2.在等腰梯形A1B1BA中,过A作AE⊥A1B1,可得A1E==1,AE===.连接AC,A1C1,AC=,A1C1==4,过A作AG⊥A1C1,A1G==,AG===,∴正四棱台的体积为:V===.故选:D.【点评】本题考查四棱台的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力,是中档题.4.(2021•北京)某四面体的三视图如图所示,该四面体的表面积为()A.B.4C.3+D.2【分析】由三视图还原原几何体,其中P A⊥底面ABC,AB⊥AC,P A=AB=AC=2,再由三角形面积公式求解.【解答】解:由三视图还原原几何体如图,P A⊥底面ABC,AB⊥AC,P A=AB=AC=1,则△PBC是边长为的等边三角形,则该四面体的表面积为S=.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.5.(2021•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是()A.B.3C.D.3【分析】由三视图还原原几何体,可知该几何体为直四棱柱,底面四边形ABCD为等腰梯形,由已知三视图求得对应的量,再由棱柱体积公式求解.【解答】解:由三视图还原原几何体如图,该几何体为直四棱柱,底面四边形ABCD为等腰梯形,其中AB∥CD,由三视图可知,延长AD与BC后相交于一点,且AD⊥BC,且AB=,CD=,AA1=1,等腰梯形的高为=,则该几何体的体积V==.故选:A.【点评】本题考查由三视图求面积、体积,关键是由三视图还原原几何体,是中档题.6.(2021•浙江)如图,已知正方体ABCD﹣A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1【分析】通过证明直线A1D⊥平面ABD1,MN是△ABD1的中位线,可判断A;根据异面直线的判断可知A1D与直线D1B是异面直线,可判断B;根据异面直线的判断可知直线A1D与直线D1B是异面直线,可判断C;由MN∥AB,可知MN不与平面BDD1B1垂直,可判断D.【解答】解:连接AD1,如图:由正方体可知A1D⊥AD1,A1D⊥AB,∴A1D⊥平面ABD1,∴A1D⊥D1B,由题意知MN为△D1AB的中位线,∴MN∥AB,又∵AB⊂平面ABCD,MN⊄平面ABCD,∴MN∥平面ABCD.∴A对;由正方体可知A1D与平面BDD1相交于点D,D1B⊂平面BDD1,D∉D1B,∴直线A1D与直线D1B是异面直线,∴B、C错;∵MN∥AB,AB不与平面BDD1B1垂直,∴MN不与平面BDD1B1垂直,∴D错.故选:A.【点评】本题考查了线面平行的判定定理和线面垂直的判定定理与性质,考查了逻辑推理核心素养,属于中档题.7.(2021•新高考Ⅰ)已知圆锥的底面半径为,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.2C.4D.4【分析】设母线长为l,利用圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,列出方程,求解即可.【解答】解:由题意,设母线长为l,因为圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,则有,解得,所以该圆锥的母线长为.故选:B.【点评】本题考查了旋转体的理解和应用,解题的关键是掌握圆锥底面周长即为侧面展开图半圆的弧长,圆锥的母线长即为侧面展开图半圆的半径,考查了逻辑推理能力与运算能力和空间思维能力,属于基础题.8.(2021•甲卷)已知A,B,C是半径为1的球O的球面上的三个点,且AC⊥BC,AC=BC=1,则三棱锥O﹣ABC的体积为()A.B.C.D.【分析】先确定△ABC所在的截面圆的圆心O1为斜边AB的中点,然后在Rt△ABC和Rt△AOO1中,利用勾股定理求出OO1,再利用锥体的体积公式求解即可.【解答】解:因为AC⊥BC,AC=BC=1,所以底面ABC为等腰直角三角形,所以△ABC所在的截面圆的圆心O1为斜边AB的中点,所以OO1⊥平面ABC,在Rt△ABC中,AB=,则,在Rt△AOO1中,,故三棱锥O﹣ABC的体积为.故选:A.【点评】本题考查了锥体外接球和锥体体积公式,解题的关键是确定△ABC所在圆的圆心的位置,考查了逻辑推理能力、化简运算能力、空间想象能力,属于中档题.9.(2021•甲卷)在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥A﹣EFG后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是()A.B.C.D.【分析】作出正方体,截去三棱锥A﹣EFG,根据正视图,摆放好正方体,即可求解侧视图.【解答】解:由题意,作出正方体,截去三棱锥A﹣EFG,根据正视图,可得A﹣EFG在正方体左侧面,如图,根据三视图的投影,可得相应的侧视图是D图形,故选:D.【点评】本题考查简单空间图形的三视图,属基础题.10.(2021•乙卷)在正方体ABCD﹣A1B1C1D1中,P为B1D1的中点,则直线PB与AD1所成的角为()A.B.C.D.【分析】由AD1∥BC1,得∠PBC1是直线PB与AD1所成的角(或所成角的补角),由此利用余弦定理,求出直线PB与AD1所成的角.【解答】解∵AD1∥BC1,∴∠PBC1是直线PB与AD1所成的角(或所成角的补角),设正方体ABCD﹣A1B1C1D1的棱长为2,则PB1=PC1==,BC1==2,BP==,∴cos∠PBC1===,∴∠PBC1=,∴直线PB与AD1所成的角为.故选:D.【点评】本题考查异面直线所成角和余弦定理,考查运算求解能力,是基础题.二.多选题(共2小题)11.(2021•新高考Ⅱ)如图,下列正方体中,O为底面的中点,P为所在棱的中点,M,N 为正方体的顶点,则满足MN⊥OP的是()A.B.C.D.【分析】对于A,设正方体棱长为2,设MN与OP所成角为θ,求出tanθ=,从而不满足MN⊥OP;对于B,C,D,作出平面直角坐标系,设正方体棱长为2,利用向量法进行判断.【解答】解:对于A,设正方体棱长为2,设MN与OP所成角为θ,则tanθ==,∴不满足MN⊥OP,故A错误;对于B,如图,作出平面直角坐标系,设正方体棱长为2,则N(2,0,0),M(0,0,2),P(2,0,1),O(1,1,0),=(2,0,﹣2),=(1,﹣1,1),=0,∴满足MN⊥OP,故B正确;对于C,如图,作出平面直角坐标系,设正方体棱长为2,则M(2,2,2),N(0,2,0),O(1,1,0),P(0,0,1),=(﹣2,0,﹣2),=(﹣1,﹣1,1),=0,∴满足MN⊥OP,故C正确;对于D,如图,作出平面直角坐标系,设正方体棱长为2,则M(0,2,2),N(0,0,0),P(2,1,2),O(1,1,0),=(0,﹣2,﹣2),=(1,0,2),=﹣4,∴不满足MN⊥OP,故D错误.故选:BC.【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系基础知识,考查数学运算、逻辑思维等核心素养,是中档题.12.(2021•新高考Ⅰ)在正三棱柱ABC﹣A1B1C1中,AB=AA1=1,点P满足=λ+μ,其中λ∈[0,1],μ∈[0,1],则()A.当λ=1时,△AB1P的周长为定值B.当μ=1时,三棱锥P﹣A1BC的体积为定值C.当λ=时,有且仅有一个点P,使得A1P⊥BPD.当μ=时,有且仅有一个点P,使得A1B⊥平面AB1P【分析】判断当λ=1时,点P在线段CC1上,分别计算点P为两个特殊点时的周长,即可判断选项A;当μ=1时,点P在线段B1C1上,利用线面平行的性质以及锥体的体积公式,即可判断选项B;当λ=时,取线段BC,B1C1的中点分别为M,M1,连结M1M,则点P在线段M1M上,分别取点P在M1,M处,得到均满足A1P⊥BP,即可判断选项C;当μ=时,取CC1的中点D1,BB1的中点D,则点P在线的DD1上,证明当点P在点D1处时,A1B⊥平面AB1D1,利用过定点A与定直线A1B垂直的平面有且只有一个,即可判断选项D.【解答】解:对于A,当λ=1时,=+μ,即,所以,故点P在线段CC1上,此时△AB1P的周长为AB1+B1P+AP,当点P为CC1的中点时,△AB1P的周长为,当点P在点C1处时,△AB1P的周长为,故周长不为定值,故选项A错误;对于B,当μ=1时,,即,所以,故点P在线段B1C1上,因为B1C1∥平面A1BC,所以直线B1C1上的点到平面A1BC的距离相等,又△A1BC的面积为定值,所以三棱锥P﹣A1BC的体积为定值,故选项B正确;对于C,当λ=时,取线段BC,B1C1的中点分别为M,M1,连结M1M,因为,即,所以,则点P在线段M1M上,当点P在M1处时,A1M1⊥B1C1,A1M1⊥B1B,又B1C1∩B1B=B1,所以A1M1⊥平面BB1C1C,又BM1⊂平面BB1C1C,所以A1M1⊥BM1,即A1P⊥BP,同理,当点P在M处,A1P⊥BP,故选项C错误;对于D,当μ=时,取CC1的中点D1,BB1的中点D,因为,即,所以,则点P在线的DD1上,当点P在点D1处时,取AC的中点E,连结A1E,BE,因为BE⊥平面ACC1A1,又AD1⊂平面ACC1A1,所以AD1⊥BE,在正方形ACC1A1中,AD1⊥A1E,又BE∩A1E=E,BE,A1E⊂平面A1BE,故AD1⊥平面A1BE,又A1B⊂平面A1BE,所以A1B⊥AD1,在正方体形ABB1A1中,A1B⊥AB1,又AD1∩AB1=A,AD1,AB1⊂平面AB1D1,所以A1B⊥平面AB1D1,因为过定点A与定直线A1B垂直的平面有且只有一个,故有且仅有一个点P,使得A1B⊥平面AB1P,故选项D正确.故选:BD.【点评】本题考查了动点轨迹,线面平行与线面垂直的判定,锥体的体积问题等,综合性强,考查了逻辑推理能力与空间想象能力,属于难题.三.填空题(共4小题)13.(2021•上海)已知圆柱的底面圆半径为1,高为2,AB为上底面圆的一条直径,C是下底面圆周上的一个动点,则ABC的面积的取值范围为.【分析】上顶面圆心记为O,下底面圆心记为O',连结OC,过点C作CM⊥AB,垂足为点M,由于AB为定值,则S△ABC的大小随着CM的长短变化而变化,分别求解CM的最大值和最小值,即可得到答案.【解答】解:如图1,上底面圆心记为O,下底面圆心记为O',连结OC,过点C作CM⊥AB,垂足为点M,则,根据题意,AB为定值2,所以S△ABC的大小随着CM的长短变化而变化,如图2所示,当点M与点O重合时,CM=OC=,此时S△ABC取得最大值为;如图3所示,当点M与点B重合,CM取最小值2,此时S△ABC取得最小值为.综上所述,S△ABC的取值范围为.故答案为:.【点评】本题考查了空间中的最值问题,将三角形面积的最值问题转化为求解线段CM 的最值问题进行求解是解题的关键,考查了空间想象能力与逻辑推理能力,属于中档题.14.(2021•甲卷)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为39π.【分析】由题意,设圆锥的高为h,根据圆锥的底面半径为6,其体积为30π求出h,再求得母线的长度,然后确定圆锥的侧面积即可.【解答】解:由圆锥的底面半径为6,其体积为30π,设圆锥的高为h,则,解得,所以圆锥的母线长,所以圆锥的侧面积.故答案为:39π.【点评】本题考查了圆锥的侧面积公式和圆锥的体积公式,考查了方程思想,属于基础题.15.(2021•乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为②⑤或③④(写出符合要求的一组答案即可).【分析】通过观察已知条件正视图,确定该正视图的长和高,结合长、高、以及侧视图视图中的实线、虚线来确定俯视图图形.【解答】解:观察正视图,推出正视图的长为2和高1,②③图形的高也为1,即可能为该三棱锥的侧视图,④⑤图形的长为2,即可能为该三棱锥的俯视图,当②为侧视图时,结合侧视图中的直线,可以确定该三棱锥的俯视图为⑤,当③为侧视图时,结合侧视图虚线,虚线所在的位置有立体图形的轮廓线,可以确定该三棱锥的俯视图为④.故答案为:②⑤或③④.【点评】该题考查了三棱锥的三视图,需要学生掌握三视图中各个图形边长的等量关系,以及对于三视图中特殊线条能够还原到原立体图形中,需要较强空间想象,属于中等题.16.(2021•上海)已知圆柱的底面半径为1,高为2,则圆柱的侧面积为4π.【分析】根据圆柱的侧面积公式计算即可.【解答】解:圆柱的底面半径为r=1,高为h=2,所以圆柱的侧面积为S侧=2πrh=2π×1×2=4π.故答案为:4π.【点评】本题考查了圆柱的侧面积公式应用问题,是基础题.四.解答题(共11小题)17.(2021•天津)如图,在棱长为2的正方体ABCD﹣A1B1C1D1中,E,F分别为棱BC,CD的中点.(1)求证:D1F∥平面A1EC1;(2)求直线AC1与平面A1EC1所成角的正弦值;(3)求二面角A﹣A1C1﹣E的正弦值.【分析】(1)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,利用待定系数法求出平面A1EC1的法向量,利用直线的方向向量与平面的法向量垂直,即可证明;(2)利用(1)中的结论,由向量的夹角公式求解,即可得到答案;(3)利用待定系数法求出平面AA1C1的法向量,然后利用向量的夹角公式求解即可.【解答】(1)证明:以点A为坐标原点,建立空间直角坐标系如图所示,则A1(0,0,2),E(2,1,0),C1(2,2,2),故,设平面A1EC1的法向量为,则,即,令z=1,则x=2,y=﹣2,故,又F(1,2,0),D1(0,2,2),所以,则,又D1F⊄平面A1EC,故D1F∥平面A1EC1;(2)解:由(1)可知,,则==,故直线AC1与平面A1EC1所成角的正弦值为;(3)解:由(1)可知,,设平面AA1C1的法向量为,则,即,令a=1,则b=﹣1,故,所以==,故二面角A﹣A1C1﹣E的正弦值为=.【点评】本题考查了空间向量在立体几何中的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.18.(2021•新高考Ⅱ)在四棱锥Q﹣ABCD中,底面ABCD是正方形,若AD=2,QD=QA =,QC=3.(Ⅰ)求证:平面QAD⊥平面ABCD;(Ⅱ)求二面角B﹣QD﹣A的平面角的余弦值.【分析】(Ⅰ)由CD2+QD2=QC2证明CD⊥QD,再由CD⊥AD,证明CD⊥平面QAD,即可证明平面QAD⊥平面ABCD.(Ⅱ)取AD的中点O,在平面ABCD内作Ox⊥AD,以OD为y轴,OQ为z轴,建立空间直角坐标系,求出平面ADQ的一个法向量,平面BDQ的一个法向量,再求cos<,>即可.【解答】(Ⅰ)证明:△QCD中,CD=AD=2,QD=,QC=3,所以CD2+QD2=QC2,所以CD⊥QD;又CD⊥AD,AD∩QD=D,AD⊂平面QAD,QD⊂平面QAD,所以CD⊥平面QAD;又CD⊂平面ABCD,所以平面QAD⊥平面ABCD.(Ⅱ)解:取AD的中点O,在平面ABCD内作Ox⊥AD,以OD为y轴,OQ为z轴,建立空间直角坐标系O﹣xyz,如图所示:则O(0,0,0),B(2,﹣1,0),D(0,1,0),Q(0,0,2),因为Ox⊥平面ADQ,所以平面ADQ的一个法向量为=(1,0,0),设平面BDQ的一个法向量为=(x,y,z),由=(﹣2,2,0),=(0,﹣1,2),得,即,令z=1,得y=2,x=2,所以=(2,2,1);所以cos<,>===,所以二面角B﹣QD﹣A的平面角的余弦值为.【点评】本题考查了空间中的垂直关系应用问题,也考查了利用空间向量求二面角的余弦值应用问题,也可以直接利用二面角的定义求二面角的余弦值,是中档题.19.(2021•上海)如图,在长方体ABCD﹣A1B1C1D1中,已知AB=BC=2,AA1=3.(1)若P是棱A1D1上的动点,求三棱锥C﹣P AD的体积;(2)求直线AB1与平面ACC1A1的夹角大小.【分析】(1)直接由三棱锥的体积公式求解即可;(2)易知直线AB1与平面ACC1A1所成的角为∠OAB1,求出其正弦值,再由反三角表示即可.【解答】解:(1)如图,在长方体ABCD﹣A1B1C1D1中,=;(2)连接A1C1∩B1D1=O,∵AB=BC,∴四边形A1B1C1D1为正方形,则OB1⊥OA1,又AA1⊥OB1,OA1∩AA1=A1,∴OB1⊥平面ACC1A1,∴直线AB1与平面ACC1A1所成的角为∠OAB1,∴.∴直线AB1与平面ACC1A1所成的角为.【点评】本题考查三棱锥体积的求法,考查线面角的求解,考查推理能力及运算能力,属于中档题.20.(2021•北京)已知正方体ABCD﹣A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE 于点F.(1)求证:点F为B1C1中点;(2)若点M为棱A1B1上一点,且二面角M﹣CF﹣E的余弦值为,求.【分析】(1)连结DE,利用线面平行的判定定理证明CD∥平面A1B1C1D1,从而可证明CD∥EF,即可证明四边形A1B1FE为平行四边形,四边形EFC1D1为平行四边形,可得A1E=B1F,ED1=FC1,即可证明B1F=FC1,故点F为B1C1的中点;(2)建立合适的空间直角坐标系,设点M(m,0,0),且m<0,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面CMF与CDEF的法向量,由向量的夹角公式列出关于m的关系式,求解即可得到答案.【解答】(1)证明:连结DE,在正方体ABCD﹣A1B1C1D1中,CD∥C1D1,C1D1⊂平面A1B1C1D1,CD⊄平面A1B1C1D1,则CD∥平面A1B1C1D1,因为平面A1B1C1D1∩平面CDEF=EF,所以CD∥EF,则EF∥C1D1,故A1B1∥EF∥C1D1,又因为A1D1∥B1C1,所以四边形A1B1FE为平行四边形,四边形EFC1D1为平行四边形,所以A1E=B1F,ED1=FC1,而点E为A1D1的中点,所以A1E=ED1,故B1F=FC1,则点F为B1C1的中点;(2)解:以点B1为原点,建立空间直角坐标系,如图所示,设正方体边长为2,设点M(m,0,0),且m<0,则C(0,2,﹣2),E(﹣2,1,0),F(0,1,0),故,设平面CMF的法向量为,则,即,所以,b=2,故,设平面CDEF的法向量为,则,即,所以x=0,y=2,故,因为二面角M﹣CF﹣E的余弦值为,则==,解得m=±1,又m<0,所以m=﹣1,故=.【点评】本题考查了立体几何的综合应用,涉及了线面平行的性质定理的应用,二面角的应用,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.21.(2021•甲卷)已知直三棱柱ABC﹣A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,BF⊥A1B1.(1)求三棱锥F﹣EBC的体积;(2)已知D为棱A1B1上的点,证明:BF⊥DE.【分析】(1)先证明AB⊥平面BCC1B1,即可得到AB⊥BC,再根据直角三角形的性质可知,最后根据三棱锥的体积公式计算即可;(2)取BC中点G,连接EG,B1G,先证明EG∥AB∥B1D,从而得到E、G、B1、D四点共面,再由(1)及线面垂直的性质定理可得BF⊥EG,通过角的正切值判断出∠CBF=∠BB1G,再通过角的代换可得,BF⊥B1G,再根据线面垂直的判定定理可得BF ⊥平面EGB1D,进而得证.【解答】解:(1)在直三棱柱ABC﹣A1B1C1中,BB1⊥A1B1,又BF⊥A1B1,BB1∩BF=B,BB1,BF⊂平面BCC1B1,∴A1B1⊥平面BCC1B1,∵AB∥A1B1,∴AB⊥平面BCC1B1,∴AB⊥BC,又AB=BC,故,∴,而侧面AA1B1B为正方形,∴,∴,即三棱锥F﹣EBC的体积为;(2)证明:如图,取BC中点G,连接EG,B1G,设B1G∩BF=H,∵点E是AC的中点,点G时BC的中点,∴EG∥AB,∴EG∥AB∥B1D,∴E、G、B1、D四点共面,由(1)可得AB⊥平面BCC1B1,∴EG⊥平面BCC1B1,∴BF⊥EG,∵,且这两个角都是锐角,∴∠CBF=∠BB1G,∴∠BHB1=∠BGB1+∠CBF=∠BGB1+∠BB1G=90°,∴BF⊥B1G,又EG∩B1G=G,EG,B1G⊂平面EGB1D,∴BF⊥平面EGB1D,又DE⊂平面EGB1D,∴BF⊥DE.【点评】本题主要考查三棱锥体积的求法以及线线,线面间的垂直关系,考查运算求解能力及逻辑推理能力,属于中档题.22.(2021•乙卷)如图,四棱锥P﹣ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC中点,且PB⊥AM.(1)求BC;(2)求二面角A﹣PM﹣B的正弦值.【分析】(1)连结BD,利用线面垂直的性质定理证明AM⊥PD,从而可以证明AM⊥平面PBD,得到AM⊥BD,证明Rt△DAB∽Rt△ABM,即可得到BC的长度;(2)建立合适的空间直角坐标系,求出所需点的坐标和向量的坐标,然后利用待定系数法求出平面的法向量,由向量的夹角公式以及同角三角函数关系求解即可.【解答】解:(1)连结BD,因为PD⊥底面ABCD,且AM⊂平面ABCD,则AM⊥PD,又AM⊥PB,PB∩PD=P,PB,PD⊂平面PBD,所以AM⊥平面PBD,又BD⊂平面PBD,则AM⊥BD,所以∠ABD+∠ADB=90°,又∠ABD+∠MAB=90°,则有∠ADB=∠MAB,所以Rt△DAB∽Rt△ABM,则,所以,解得BC=;(2)因为DA,DC,DP两两垂直,故以点D位坐标原点建立空间直角坐标系如图所示,则,P(0,0,1),所以,,设平面AMP的法向量为,则有,即,令,则y=1,z=2,故,设平面BMP的法向量为,则有,即,令q=1,则r=1,故,所以=,设二面角A﹣PM﹣B的平面角为α,则sinα==,所以二面角A﹣PM﹣B的正弦值为.【点评】本题考查了空间中线段长度求解以及二面角的求解,在求解有关空间角问题的时候,一般会建立合适的空间直角坐标系,将空间角问题转化为空间向量问题进行研究,属于中档题.23.(2021•浙江)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠ABC=120°,AB=1,BC=4,P A=,M,N分别为BC,PC的中点,PD⊥DC,PM⊥MD.(Ⅰ)证明:AB⊥PM;(Ⅱ)求直线AN与平面PDM所成角的正弦值.【分析】(Ⅰ)由已知求解三角形可得CD⊥DM,结合PD⊥DC,可得CD⊥平面PDM,进一步得到AB⊥PM;(Ⅱ)由(Ⅰ)证明PM⊥平面ABCD,由已知求解三角形可得AM,PM,取AD中点E,连接ME,以M为坐标原点,分别以MD、ME、MP为x、y、z轴建立空间直角坐标系,求出的坐标及平面PDM的一个法向量,由两法向量所成角的余弦值可得直线AN与平面PDM所成角的正弦值.【解答】(Ⅰ)证明:在平行四边形ABCD中,由已知可得,CD=AB=1,CM=BC=2,∠DCM=60°,∴由余弦定理可得,DM2=CD2+CM2﹣2CD×CM×cos60°=,则CD2+DM2=1+3=4=CM2,即CD⊥DM,又PD⊥DC,PD∩DM=D,∴CD⊥平面PDM,而PM⊂平面PDM,∴CD⊥PM,∵CD∥AB,∴AB⊥PM;(Ⅱ)解:由(Ⅰ)知,CD⊥平面PDM,又CD⊂平面ABCD,∴平面ABCD⊥平面PDM,。

专题15 立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

专题15  立体几何多选、填空题(理科)(原卷版)-十年(2014-2023)高考数学真题分项汇编

十年(2014-2023)年高考真题分项汇编立体几何填空、多选目录题型一:立体几何结构特征 (1)题型二:立体几何三视图 (2)题型三:立体几何的表面积与体积 (3)题型四:立体几何中的球的问题 (9)题型五:立体几何线面位置关系 (9)题型六:立体几何中的角度与距离 (10)题型一:立体几何结构特征1.(2023年全国甲卷理科·第15题)在正方体1111ABCD A B C D -中,E ,F 分别为AB ,11C D 的中点,以EF 为直径的球的球面与该正方体的棱共有____________个公共点.2.(2020年高考课标Ⅲ卷理科·第15题)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.3.(2019·全国Ⅱ·理·第16长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有个面,其棱长为(本题第一空2分,第二空3分).4.(2017年高考数学上海(文理科)·第11题)如图,以长方体1111ABCD A B C D -的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若1DB 的坐标为(4,3,2),则1AC 的坐标为________.5.(2015高考数学江苏文理·第9题)现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积和高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为_______.二、多选题1.(2023年新课标全国Ⅰ卷·第12题)下列物体中,能够被整体放入棱长为1(单位:m )的正方体容器(容器壁厚度忽略不计)内的有()A .直径为0.99m 的球体B .所有棱长均为1.4m 的四面体C .底面直径为0.01m ,高为1.8m 的圆柱体D .底面直径为1.2m ,高为0.01m 的圆柱体2.(2021年新高考Ⅰ卷·第12题)在正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+ ,其中[]0,1λ∈,[]0,1μ∈,则()A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 题型二:立体几何三视图1.(2021年高考全国乙卷理科·第16题)以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).2.(2019·北京·理·第11题)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.3.(2017年高考数学上海(文理科)·第8题)已知球的体积为36π,则该球主视图的面积等于________.4.(2017年高考数学山东理科·第13题)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为__________.则该棱台的体积为________.2.(2023年新课标全国Ⅱ卷·第14题)底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为______.3.(2020年新高考全国Ⅰ卷(山东)·第15题)某中学开展劳动实习,学生加工制作零件,零件的截面如图所示.O 为圆孔及轮廓圆弧AB 所在圆的圆心,A 是圆弧AB 与直线AG 的切点,B 是圆弧AB 与直线BC 的切点,四边形DEFG 为矩形,BC ⊥DG ,垂足为C ,tan ∠ODC =35,BH DG ∥,EF =12cm ,DE=2cm ,A 到直线DE 和EF 的距离均为7cm ,圆孔半径为1cm ,则图中阴影部分的面积为________cm 2.4.(2020年新高考全国卷Ⅱ数学(海南)·第13题)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为____________5.(2020天津高考·第15题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=- ,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN = ,则DM DN ⋅ 的最小值为_________.6.(2020江苏高考·第9题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半轻为0.5cm,则此六角螺帽毛坯的体积是____cm.7.(2019·天津·理·第11题)个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.8.(2019·全国Ⅲ·理·第16题)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O EFGH -后所得的几何体,其中O 为长方体的中心,,,,E F G H 分别为所在棱的中点16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为30.9g /cm ,不考虑打印损耗,制作该模型所需原料的质量为___________g .9.(2019·江苏·第9题)如图,长方体1111ABCD A B C D -的体积是120,E 是1CC 的中点,则三棱椎-E BCD 的体积是______.10.(2018年高考数学江苏卷·第10题)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为.11.(2018年高考数学天津(理)·第11题)已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为.12.(2018年高考数学课标Ⅱ卷(理)·第16题)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为,则该圆锥的侧面积为__________.13.如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点1C 到直线AB 的距离为.1A 1B 1C AB C14.(2014高考数学天津理科·第10题)已知一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________3m.15.(2014高考数学山东理科·第13题)三棱锥P ABC -中,D ,E 分别为PB ,PC 的中点,记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V =.16.(2014高考数学江苏·第8题)设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且1294S S =,则12V V 的值是.17.(2015高考数学天津理科·第10题)一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m.18.(2015高考数学上海理科·第4题)若正三棱柱的所有棱长均为a ,且其体积为,则a =.19.(2017年高考数学江苏文理科·第6题)如图,在圆柱12,O O 内有一个球O ,该球与圆柱的上、下面及母线均相切.记圆柱12,O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是_______.20.(2016高考数学浙江理科·第14题)如图,在ABC ∆中,2,120AB BC ABC ==∠= .若平面ABC 外的点P 和线段AC 上的点D ,满足,PD DA PB BA ==,则四面体PBCD 的体积的最大值是.21.(2016高考数学浙江理科·第11题)某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是2cm ,体积是3cm .OO 1O 2(第6题)⋅⋅⋅22.(2016高考数学天津理科·第11题)已知一个四棱锥的底面是平行四边形,该四棱锥的三视图如图所示(单位:m ),则该四棱锥的体积为_____________3m .23.(2016高考数学四川理科·第13题)已知三棱锥的四个面都是腰长为2的等腰三角形,该三棱锥的正视图如图所示,则三棱锥的体积为_______.二、多选题1.(2022新高考全国II 卷·第11题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则()A .322V V =B .31V V =C .312V V V =+D .3123V V =题型四:立体几何中的球的问题1.(2020年新高考全国Ⅰ卷(山东)·第16题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D BCC 1B 1的交线长为________.2.(2017年高考数学天津理科·第10题)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝2.(2019·北京·理·第12题)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l m ⊥;②m ∥α;③l α⊥.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【3.(2016高考数学课标Ⅱ卷理科·第14题),αβ是两个平面,,m n 是两条直线,有下列四个命题:(1)如果m n ⊥,m α⊥,//n β,那么αβ⊥.(2)如果m α⊥,//n α,那么m n ⊥.(3)如果//αβ,m α⊂,那么//m β.(4)如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)二、多选题1.(2021年新高考全国Ⅱ卷·第10题)如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP ⊥的是()A .B .C .D ._____________.(结果用反三角函数值表示)2.(2015高考数学浙江理科·第13题)如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是.3.(2015高考数学四川理科·第14题)如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面相互垂直,动点M 在线段PQ 上,,E F 分别为AB ,BC 中点,设异面直线EM 与AF 所成的角为θ,则cos θ的最大值为________4.(2015高考数学上海理科·第6题)若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为.5.(2017年高考数学课标Ⅲ卷理科·第16题),a b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与,a b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60︒角时,AB 与b 成30︒角;②当直线AB 与a 成60︒角时,AB 与b 成60︒角;③直线AB 与a 所成角的最小值为45︒;④直线AB 与a 所成角的最大值为60︒.其中正确的是.(填写所有正确结论的编号)6.(2016高考数学上海理科·第6题)如图,在正四棱柱1111D C B A ABCD -中,底面ABCD 的边长为3,1BD 与底面所成角的大小为32arctan ,则该正四棱柱的高等于____________.二、多选题1.(2023年新课标全国Ⅱ卷·第9题)已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A .该圆锥的体积为πB .该圆锥的侧面积为C .AC =D .PAC △2.(2022新高考全国I 卷·第9题)已知正方体1111ABCD A B C D -,则()A .直线1BC 与1DA 所成的角为90︒B .直线1BC 与1CA 所成的角为90︒C .直线1BC 与平面11BBD D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒。

2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)

2024年高考数学压轴题专项训练:立体几何压轴题十大题型汇总(解析版)(共65页)(1)

立体几何压轴题十大题型汇总命题预测本专题考查类型主要涉及点立体几何的内容,主要涉及了立体几何中的动点问题,外接球内切球问题,以及不规则图形的夹角问题,新定义问题等。

预计2024年后命题会继续在以上几个方面进行。

高频考法题型01几何图形内切球、外接球问题题型02立体几何中的计数原理排列组合问题题型03立体几何动点最值问题题型04不规则图形中的面面夹角问题题型05不规则图形中的线面夹角问题题型06几何中的旋转问题题型07立体几何中的折叠问题题型08不规则图形表面积、体积问题题型09立体几何新定义问题题型10立体几何新考点题型01几何图形内切球、外接球问题解决与球相关的切、接问题,其通法是作出截面,将空间几何问题转化为平面几何问题求解,其解题思维流程如下:(1)定球心:如果是内切球,球心到切点的距离相等且为球的半径;如果是外接球,球心到接点的距离相等且为半径;(2)作截面:选准最佳角度做出截面(要使这个截面尽可能多的包含球、几何体的各种元素以及体现这些元素的关系),达到空间问题平面化的目的;(3)求半径下结论:根据作出截面中的几何元素,建立关于球的半径的方程,并求解.1(多选)(23-24高三下·浙江·开学考试)如图,八面体的每个面都是正三角形,并且4个顶点A ,B ,C ,D 在同一个平面内,如果四边形ABCD 是边长为2的正方形,则()A.异面直线AE 与DF 所成角大小为π3B.二面角A -EB -C 的平面角的余弦值为13C.此八面体一定存在外接球D.此八面体的内切球表面积为8π3【答案】ACD=|OA |=|OB |=|OC |=|OD |可判断C 项,运用等体积法求得内切球的半径,进而可求得内切球的表面积即可判断D 项.【详解】连接AC 、BD 交于点O ,连接OE 、OF ,因为四边形ABCD 为正方形,则AC ⊥BD ,又因为八面体的每个面都是正三角形,所以E 、O 、F 三点共线,且EF ⊥面ABCD ,所以以O 为原点,分别以OB 、OC 、OE 为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,如图所示,则O (0,0,0),A (0,-2,0),B (2,0,0),C (0,2,0),D (-2,0,0),E (0,0,2),F (0,0,-2),对于A 项,AE =(0,2,2),DF=(2,0,2),设异面直线AE 与DF 所成角为θ,则cos θ=|cos AE ,DF |=|AE ⋅DF||AE ||DF |=22×2=12,所以θ=π3,即异面直线AE 与DF 所成角大小为π3,故A 项正确;对于B 项,BE =(-2,0,2),BA =(-2,-2,0),BC=(-2,2,0),设面ABE 的一个法向量为n=(x 1,y 1,z 1),则n ⋅BE=0n ⋅BA =0 ⇒-2x 1+2z 1=0-2x 1-2y 1=0,取x 1=1,则y 1=-1,z 1=1,则n=(1,-1,1),设面BEC 的一个法向量为m=(x 2,y 2,z 2),则n ⋅BE=0n ⋅BC =0⇒-2x 2+2z 2=0-2x 2+2y 2=0,取x 2=1,则y 2=1,z 2=1,则m=(1,1,1),所以cos n ,m =n ⋅m |n ||m |=1-1+13×3=13,又因为面ABE 与BEC 所成的二面角的平面角为钝角,所以二面角A -EB -C 的平面角的余弦值为-13,故B 项错误;对于C 项,因为|OE |=|OF |=|OA |=|OB |=|OC |=|OD |=2,所以O 为此八面体外接球的球心,即此八面体一定存在外接球,故C 项正确;对于D 项,设内切球的半径为r ,则八面体的体积为V =2V E -ABCD =2×13S ABCD ⋅EO =2×13×2×2×2=823,又八面体的体积为V =8V E -ABO =8V O -ABE =8×13S EAB ⋅r =8×13×12×22×sin π3×r =833r ,所以833r =823,解得r =63,所以内切球的表面积为4πr 2=4π×632=8π3,故D 项正确.故选:ACD .2(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9πB.16πC.25πD.36π【答案】C【分析】根据勾股定理求解棱台的高MN =1,进而根据相切,由勾股定理求解球半径R =52,即可由表面积公式求解.【详解】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD ,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C3(2024·河北石家庄·二模)已知正方体的棱长为22,连接正方体各个面的中心得到一个八面体,以正方体的中心O 为球心作一个半径为233的球,则该球O 的球面与八面体各面的交线的总长为()A.26πB.463π C.863π D.46π【答案】B【分析】画出图形,求解正方体的中心与正八面体面的距离,然后求解求与正八面体的截面圆半径,求解各个平面与球面的交线、推出结果.【详解】如图所示,M 为EF 的中点,O 为正方体的中心,过O 作PM 的垂线交于点N ,正八面体的棱长为2,即EF =2,故OM =1,OP =2,PM =3,则ON =63,设球与正八面体的截面圆半径为r ,如图所示,则r =2332-ON 2=2332-632=63,由于MN =ZN =33,NJ =NI =63,所以IJ =233,则∠INJ =π2,平面PEF 与球O 的交线所对应的圆心角恰为π2,则该球O 的球面与八面体各面的交线的总长为8×14×2π×63 =463π故选:B 4(多选)(2022·山东聊城·二模)用与母线不垂直的两个平行平面截一个圆柱,若两个截面都是椭圆形状,则称夹在这两个平行平面之间的几何体为斜圆柱.这两个截面称为斜圆柱的底面,两底面之间的距离称为斜圆柱的高,斜圆柱的体积等于底面积乘以高.椭圆的面积等于长半轴与短半轴长之积的π倍,已知某圆柱的底面半径为2,用与母线成45°角的两个平行平面去截该圆柱,得到一个高为6的斜圆柱,对于这个斜圆柱,下列选项正确的是()A.底面椭圆的离心率为22B.侧面积为242πC.在该斜圆柱内半径最大的球的表面积为36πD.底面积为42π【答案】ABD【分析】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,作出过斜圆柱底面椭圆长轴的截面,截斜圆柱得平行四边形,截圆柱得矩形,如图,由此截面可得椭圆面与圆柱底面间所成的二面角的平面角,从而求得椭圆长短轴之间的关系,得离心率,并求得椭圆的长短轴长,得椭圆面积,利用椭圆的侧面积公式可求得斜椭圆的侧面积,由斜圆柱的高比圆柱的底面直径大,可知斜圆柱内半径最大的球的直径与圆柱底面直径相等,从而得其表面积,从而可关键各选项.【详解】不妨过斜圆柱的最高点D 和最低点B 作平行于圆柱底面的截面圆,夹在它们之间的是圆柱,如图,矩形ABCD 是圆柱的轴截面,平行四边形BFDE 是斜圆柱的过底面椭圆的长轴的截面,由圆柱的性质知∠ABF =45°,则BF =2AB ,设椭圆的长轴长为2a ,短轴长为2b ,则2a =2⋅2b ,a =2b ,c =a 2-b 2=a 2-22a 2=22a ,所以离心率为e =c a =22,A 正确;EG ⊥BF ,垂足为G ,则EG =6,易知∠EBG =45°,BE =62,又CE =AF =AB =4,所以斜圆柱侧面积为S =2π×2×(4+62)-2π×2×4=242π,B 正确;2b =4,b =2,2a =42,a =22,椭圆面积为πab =42π,D 正确;由于斜圆锥的两个底面的距离为6,而圆柱的底面直径为4,所以斜圆柱内半径最大的球的半径为2,球表面积为4π×22=16π,C 错.故选:ABD .5(21-22高三上·湖北襄阳·期中)在正方体ABCD -A 1B 1C 1D 1中,球O 1同时与以A 为公共顶点的三个面相切,球O 2同时与以C 1为公共顶点的三个面相切,且两球相切于点F .若以F 为焦点,AB 1为准线的抛物线经过O 1,O 2,设球O 1,O 2的半径分别为r 1,r 2,则r1r 2=.【答案】2-3/-3+2【分析】首先根据抛物线的定义结合已知条件得到球O 2内切于正方体,设r 2=1,得到r 1=2-3,即可得到答案.【详解】如图所示:根据抛物线的定义,点O 2到点F 的距离与到直线AB 1的距离相等,其中点O 2到点F 的距离即半径r 2,也即点O 2到面CDD 1C 1的距离,点O 2到直线AB 1的距离即点O 2到面ABB 1A 1的距离,因此球O 2内切于正方体.不妨设r 2=1,两个球心O 1,O 2和两球的切点F 均在体对角线AC 1上,两个球在平面AB 1C 1D 处的截面如图所示,则O 2F =r 2=1,AO 2=AC 12=22+22+222=3,所以AF =AO 2-O 2F =3-1.因为r 1AO 1=223,所以AO 1=3r 1,所以AF =AO 1+O 1F =3r 1+r 1,因此(3+1)r 1=3-1,得r 1=2-3,所以r1r 2=2- 3.故答案为:2-3题型02立体几何中的计数原理排列组合问题1(2024·浙江台州·二模)房屋建造时经常需要把长方体砖头进行不同角度的切割,以契合实际需要.已知长方体的规格为24cm ×11cm ×5cm ,现从长方体的某一棱的中点处作垂直于该棱的截面,截取1次后共可以得到12cm ×11cm ×5cm ,24cm ×112cm ×5cm ,24cm ×11cm ×52cm 三种不同规格的长方体.按照上述方式对第1次所截得的长方体进行第2次截取,再对第2次所截得的长方体进行第3次截取,则共可得到体积为165cm 3的不同规格长方体的个数为()A.8B.10C.12D.16【答案】B【分析】根据原长方体体积与得到的体积为165cm 3长方体的关系,分别对长宽高进行减半,利用分类加法计数原理求解即可.【详解】由题意,V 长方体=24×11×5=8×165,为得到体积为165cm 3的长方体,需将原来长方体体积缩小为原来的18,可分三类完成:第一类,长减半3次,宽减半3次、高减半3次,共3种;第二类,长宽高各减半1次,共1种;第三类,长宽高减半0,1,2 次的全排列A 33=6种,根据分类加法计数原理,共3+1+6=10种. 故选:B2(2023·江苏南通·模拟预测)在空间直角坐标系O -xyz 中,A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,则三棱锥O -ABC 内部整点(所有坐标均为整数的点,不包括边界上的点)的个数为()A.C 310B.C 39C.C 210D.C 29【答案】B【分析】先利用空间向量法求得面ABC 的一个法向量为n =1,1,1 ,从而求得面ABC 上的点P a ,b ,c 满足a +b +c =10,进而得到棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,再利用隔板法与组合数的性质即可得解.【详解】根据题意,作出图形如下,因为A 10,0,0 ,B 0,10,0 ,C 0,0,10 ,所以AB =-10,10,0 ,AC=-10,0,10 ,设面ABC 的一个法向量为n=x ,y ,z ,则AB ⋅n=-10x +10y =0AC ⋅n=-10x +10z =0,令x =1,则y =1,z =1,故n=1,1,1 ,设P a ,b ,c 是面ABC 上的点,则AP=a -10,b ,c ,故AP ⋅n=a -10+b +c =0,则a +b +c =10,不妨设三棱锥O -ABC 内部整点为Q s ,t ,r ,则s ,t ,r ∈N *,故s ≥1,t ≥1,r ≥1,则s +t +r ≥3,易知若s +t +r =10,则Q 在面ABC 上,若s +t +r >10,则Q 在三棱锥O -ABC 外部,所以3≤s +t +r ≤9,当s +t +r =n ,n ∈N *且3≤n ≤9时,将n 写成n 个1排成一列,利用隔板法将其隔成三部分,则结果的个数为s ,t ,r 的取值的方法个数,显然有C 2n -1个方法,所有整点Q s ,t ,r 的个数为C 22+C 23+⋯+C 28,因为C r n +C r -1n =n !r !n -r !+n !r -1 !n +1-r !=n +1-r n !+rn !r !n +1-r !=n +1 !r !n +1-r!=C rn +1,所以C 22+C 23+⋯+C 28=C 33+C 23+⋯+C 28=C 34+C 24+⋯+C 28=⋯=C 38+C 28=C 39.故选:B .【点睛】关键点睛:本题解决的关键是求得面ABC 上的点P a ,b ,c 满足a +b +c =10,从而确定三棱锥O -ABC 内部整点为Q s ,t ,r 满足3≤s +t +r ≤9,由此得解.3(2024·重庆·模拟预测)从长方体的8个顶点中任选4个,则这4个点能构成三棱锥的顶点的概率为()A.2736B.2935C.67D.3235【答案】B【分析】首先求出基本事件总数,再计算出这4个点在同一个平面的概率,最后利用对立事件的概率公式计算可得.【详解】根据题意,从长方体的8个顶点中任选4个,有C 48=70种取法,“这4个点构成三棱锥的顶点”的反面为“这4个点在同一个平面”,而长方体有2个底面和4个侧面、6个对角面,一共有12种情况,则这4个点在同一个平面的概率P =1270=635,所以这4个点构成三棱锥的概率为1-635=2935.故选:B .4(多选)(2024·重庆·模拟预测)如图,16枚钉子钉成4×4的正方形板,现用橡皮筋去套钉子,则下列说法正确的有(不同的图形指两个图形中至少有一个顶点不同)()A.可以围成20个不同的正方形B.可以围成24个不同的长方形(邻边不相等)C.可以围成516个不同的三角形D.可以围成16个不同的等边三角形【答案】ABC【分析】利用分类计算原理及组合,结合图形,对各个选项逐一分析判断即可得出结果.【详解】不妨设两个钉子间的距离为1,对于选项A ,由图知,边长为1的正方形有3×3=9个,边长为2的正方形有2×2=4个,边长为3的正方形有1个,边长为2的正方形有2×2=4个,边长为5的有2个,共有20个,所以选项A 正确,对于选项B ,由图知,宽为1的长方形有3×3=9个,宽为2的长方形有4×2=8个,宽为3的长方形有5个,宽为2的有2个,共有24个,所以选项B 正确,对于选项C ,由图知,可以围成C 316-10C 34-4C 33=516个不同的三角形,所以选项C 正确,对于选项D ,由图可知,不存在等边三角形,所以选项D 错误,故选:ABC .5(2024·上海浦东新·模拟预测)如图ABCDEF -A B C D E F 为正六棱柱,若从该正六棱柱的6个侧面的12条面对角线中,随机选取两条,则它们共面的概率是.【答案】611【分析】根据题意,相交时分为:在侧面内相交,两个相邻面相交于一个点,相隔一个面中相交于对角线延长线上,分别分析几种情况下对角线共面的个数,再利用古典概型的概率计算公式,计算结果即可.【详解】由题意知,若两个对角线在同一个侧面,因为有6个侧面,所以共有6组,若相交且交点在正六棱柱的顶点上,因为有12个顶点,所以共有12组,若相交且交点在对角线延长线上时,如图所示,连接AD ,C D ,E D ,AB ,AF ,先考虑下底面,根据正六边形性质可知EF ⎳AD ⎳BC ,所以E F ⎳AD ⎳B C ,且B C =E F ≠AD ,故ADC B 共面,且ADE F 共面,故AF ,DE 相交,且C D ,AB 相交,故共面有2组,则正六边形对角线AD 所对应的有2组共面的面对角线,同理可知正六边形对角线BE ,CF 所对的分别有两组,共6组,故对于上底面对角线A D ,B E ,C F 同样各对两组,共6组,若对面平行,一组对面中有2组对角线平行,三组对面共有6组,所以共面的概率是6+12+12+6C 212=611.故答案为:611.题型03立体几何动点最值问题空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,结合空间距离,确定动点的轨迹形状;结合等体积法求得点到平面的距离,结合线面角的定义求解.1(多选)(2024·浙江台州·二模)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为平面ABCD 内一动点,且直线D 1P 与平面ABCD 所成角为π3,E 为正方形A 1ADD 1的中心,则下列结论正确的是()A.点P 的轨迹为抛物线B.正方体ABCD -A 1B 1C 1D 1的内切球被平面A 1BC 1所截得的截面面积为π6C.直线CP 与平面CDD 1C 1所成角的正弦值的最大值为33D.点M 为直线D 1B 上一动点,则MP +ME 的最小值为11-266【答案】BCD【分析】对于A ,根据到D 点长度为定值,确定动点轨迹为圆;对于B ,理解内切球的特点,计算出球心到平面的距离,再计算出截面半径求面积;对于C ,找到线面所成角的位置,再根据动点的运动特点(相切时)找到正弦的最大值;对于D ,需要先找到P 点位置,再将立体问题平面化,根据三点共线距离最短求解.【详解】对于A ,因为直线D 1P 与平面ABCD 所成角为π3,所以DP =1tan π3=33.P 点在以D 为圆心,33为半径的圆周上运动,因此运动轨迹为圆.故A 错误.对于B ,在面BB 1D 1D 内研究,如图所示O 为内切球球心,O 1为上底面中心,O 2为下底面中心,G 为内切球与面A 1BC 1的切点.已知OG ⊥O 1B ,OG 为球心到面A 1BC 1的距离.在正方体中,O 1B =62,O 2B =22,O 1O 2=1.利用相似三角形的性质有OG O 2B =OO 1O 1B,即OG 22=1262,OG =36.因此可求切面圆的r 2=122-362=16,面积为π6.故B 正确.对于C ,直线CP 与平面CDD 1C 1所成角即为∠PCD ,当CP 与P 点的轨迹圆相切时,sin ∠PCD 最大.此时sin ∠PCD =13=33.故C 正确.对于D ,分析可知,P 点为BD 和圆周的交点时,MP 最小.此时可将面D 1AB 沿着D 1B 翻折到面BB 1D 1D 所在平面.根据长度关系,翻折后的图形如图所示.当E ,M ,P 三点共线时,MP +ME 最小.因为O 2P =33-22,O 1O 2=1,所以最小值为12+33-222=11-266,故D 正确.故选:BCD2(多选)(2024·江苏扬州·模拟预测)如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为平面ABCD 内一动点,则()A.若M 在线段AB 上,则D 1M +MC 的最小值为4+22B.平面ACD 1被正方体内切球所截,则截面面积为π6C.若C 1M 与AB 所成的角为π4,则点M 的轨迹为椭圆D.对于给定的点M ,过M 有且仅有3条直线与直线D 1A ,D 1C 所成角为60°【答案】ABD迹方程判断C ,合理转化后判断D 即可.【详解】对于A ,延长DA 到E 使得AE =2,则D 1M +MC =EM +MC ≥EC =4+22,等号在E ,M ,C 共线时取到;故A 正确,对于B ,由于球的半径为12,球心到平面ACD 1的距离为36,故被截得的圆的半径为14-112 =66,故面积为π66 2=π6,故B 正确,对于C ,C 1M 与AB 所成的角即为C 1M 和C 1D 1所成角,记CM =xCD +yCB ,则x 2+y 2+1=2(y 2+1),即x 2-y 2=1,所以M 的轨迹是双曲线;故C 错误,对于D ,显然过M 的满足条件的直线数目等于过D 1的满足条件的直线l 的数目,在直线l 上任取一点P ,使得D 1P =D 1A =D 1C ,不妨设∠PD 1A =π3,若∠PD 1C =π3,则AD 1CP 是正四面体,所以P 有两种可能,直线l 也有两种可能,若∠PD 1C =2π3,则l 只有一种可能,就是与∠AD 1C 的角平分线垂直的直线,所以直线l 有三种可能.故选:ABD3(多选)(2023·安徽芜湖·模拟预测)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,棱AB 的中点为M ,过点M 作正方体的截面α,且B 1D ⊥α,若点N 在截面α内运动(包含边界),则()A.当MN 最大时,MN 与BC 所成的角为π3B.三棱锥A 1-BNC 1的体积为定值23C.若DN =2,则点N 的轨迹长度为2πD.若N ∈平面A 1BCD 1,则BN +NC 1 的最小值为6+23【答案】BCD【分析】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,构建空间直角坐标系,证明M ,F ,H ,G ,F ,E 共面,且DB 1⊥平面MEFGHI ,由此确定平面α,找到MN 最大时N 的位置,确定MN 与BC 所成角的平面角即可判断A ,证明A 1BC 1与平面α平行,应用向量法求M 到面A 1BC 1的距离,结合体积公式,求三棱锥A 1-BNC 1的体积,判断B ;根据球的截面性质确定N 的轨迹,进而求周长判断C ,由N ∈平面A 1BCD 1确定N 的位置,通过翻折为平面图形,利用平面几何结论求解判断D .【详解】记BC ,CC 1,C 1D ,D 1A 1,A 1A 的中点分别为F ,H ,G ,F ,E ,连接EF ,FG ,GH ,HI ,IM ,ME ,连接GM ,FI ,因为FG ∥A 1C 1,A 1C 1∥AC ,AC ∥MI ,又FG =12A 1C 1 =12AC =MI 所以FG ∥MI ,FG =MI ,所以四边形FGIM 为平行四边形,连接FI ,MG ,记其交点为S ,根据正方体性质,可构建如下图示的空间直角坐标系,则A (2,0,0),A 1(2,0,2),B (2,2,0),C 1(0,2,2),B 12,2,2 ,M (2,1,0),E (2,0,1),F (1,0,2),G (0,1,2),H (0,2,1),I (1,2,0),S 1,1,1 ,因为DB 1 =2,2,2 ,SM =1,0,-1 ,SI =0,1,-1 ,SH =-1,1,0 ,SG =-1,0,1 ,SF =0,-1,1 ,SE =1,-1,0 ,所以DB 1 ⋅SM =0,DB 1 ⋅SI =0,DB 1 ⋅SH =0,DB1 ⋅SG =0,DB 1 ⋅SF =0,DB 1 ⋅SE =0所以M ,E ,F ,G ,H ,I 六点共面,因为DB 1 =2,2,2 ,MI =-1,1,0 ,ME =0,-1,1 ,所以DB 1 ⋅MI =-2+2+0=0,DB 1 ⋅ME =0-2+2=0,所以DB 1 ⊥MI ,DB 1 ⊥ME ,所以DB 1⊥MI ,DB 1⊥ME ,又MI ,ME ⊂平面MEFGHI ,所以DB 1⊥平面MEFGHI ,故平面MEFGHI 即为平面α,对于A ,N 与G 重合时,MN 最大,且MN ⎳BC 1,所以MN 与BC 所成的角的平面角为∠C 1BC ,又BC =CC 1 ,∠BCC 1=90°,所以∠C 1BC =π4,故MN 与BC 所成的角为π4,所以A 错误;对于B ,因为所以DB 1 =2,2,2 ,A 1C 1 =-2,2,0 ,BC 1=-2,0,2 ,所以DB 1 ⋅A 1C 1 =-4+4+0=0,DB 1 ⋅BC 1 =-4+0+4=0,所以DB 1 ⊥A 1C 1 ,DB 1 ⊥BC 1 ,所以DB 1⊥A 1C 1,DB 1⊥BC 1,又A 1C 1,BC 1⊂平面A 1BC 1,所以DB 1⊥平面A 1BC 1,又DB 1⊥平面MEFGHI ,所以平面A 1BC 1∥平面MEFGHI ,所以点N 到平面A 1BC 1的距离与点M 到平面A 1BC 1的距离相等,所以V A 1-BNC 1=V N -A 1BC 1=V M -A 1BC 1,向量DB 1 =2,2,2 为平面A 1BC 1的一个法向量,又MB =(0,1,0),所以M 到面A 1BC 1的距离d =DB 1 ⋅MB DB 1=33,又△A 1BC 1为等边三角形,则S △A 1BC 1=12×(22)2×32=23,所以三棱锥A 1-BNC 1的体积为定值13×d ×S △A 1BC 1=23,B 正确;对于C :若DN =2,点N 在截面MEFGHI 内,所以点N 的轨迹是以D 为球心,半径为2的球体被面MEFGHI 所截的圆(或其一部分),因为DS =1,1,1 ,DB 1 =2,2,2 ,所以DB 1 ∥DS ,所以DS ⊥平面MEFGHI ,所以截面圆的圆心为S ,因为DB 1 =2,2,2 是面MEFGHI 的法向量,而DF =(1,0,2),所以D 到面MEFGHI 的距离为d =m ⋅DFm=3,故轨迹圆的半径r =22-(3)2=1,又SM =2,故点N 的轨迹长度为2πr =2π,C 正确.对于D ,N ∈平面A 1BCD 1,N ∈平面MEFGHI ,又平面A 1BCD 1与平面MEFGHI 的交线为FI ,所以点N 的轨迹为线段FI ,翻折△C 1FI ,使得其与矩形A 1BIF 共面,如图,所以当B ,N ,C 1三点共线时,BN +NC 1 取最小值,最小值为BC 1 ,由已知C 1I =C 1F =5,BI =1,FI =22,过C 1作C 1T ⊥BI ,垂足为T ,则C 1T =2,所以IT=C 1I2-C 1T 2=3=BT 2+C T 2=3+12+2=6+23,所以BN +NC 1 的最小值为6+23,D 正确;故选:BCD【点睛】关键点点睛:本题解决的关键在于根据截面的性质确定满足条件的过点M 的截面位置,再结合异面直线夹角定义,锥体体积公式,球的截面性质,空间图形的翻折判断各选项.4(多选)(2024·福建厦门·一模)如图所示,在五面体ABCDEF 中,四边形ABCD 是矩形,△ABF 和△DCE 均是等边三角形,且AB =23,EF =x (x >0),则()A.EF ⎳平面ABCDB.二面角A -EF -B 随着x 的减小而减小C.当BC =2时,五面体ABCDEF 的体积V (x )最大值为272D.当BC =32时,存在x 使得半径为32的球能内含于五面体ABCDEF 【答案】ACD【分析】A 由线面平行的判定证明;B 设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,分析取最小值的对应情况即可判断;C 把五面体ABCDEF 补成直三棱柱FGI -EKJ ,取AB ,GI 的中点M ,H ,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,结合V (x )=V FGI -EKJ -2V F -ABIG 并应用导数研究最值;D 先分析特殊情况:△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,再借助左视图、正视图研究内切圆半径分析一般情况判断.【详解】A :由题设BC ⎳AD ,AD ⊂面ADEF ,BC ⊄面ADEF ,则BC ⎳面ADEF ,由面BCEF ∩面ADEF =EF ,BC ⊂面BCEF ,则BC ⎳EF ,BC ⊂面ABCD ,EF ⊄面ABCD ,则EF ⎳平面ABCD ,对;B :设二面角A -EF -B 的大小为2α,点F 到面ABCD 的距离为h ,则tan α=3h,点F 到面ABCD 的距离,仅在面FAB ⊥面ABCD 时取得最大值,当EF =x =BC 时tan α取最小值,即α取最小值,即二面角A -EF -B 取最小值,所以EF =x ∈(0,+∞),二面角先变小后变大,错;C :当BC =2,如图,把五面体ABCDEF 补成直三棱柱FGI -EKJ ,分别取AB ,GI 的中点M ,H ,易得FH ⊥面ABCD ,FM =3,设∠FMH =θ0<θ≤π2,则MH =3cos θ,FH =3sin θ,V (x )=V ABCDEF =V FGI -EKJ -2V F -ABIG =12×23×3sin θ×(2+6cos θ)-2×13×3sin θ×23×3cos θ=63sin θ+63sin θcos θ,令f (θ)=0⇒2cos 2θ+cos θ-1=0,可得cos θ=12或cos θ=-1(舍),即θ=π3,0<θ<π3,f (θ)>0,f (θ)递增,π3<θ≤π2,f(θ)<0,f (θ)递减,显然θ=π3是f (θ)的极大值点,故f (θ)max =63×32+63×32×12=272.所以五面体ABCDEF 的体积V (x )最大值为272,C 对;D :当BC =32时,△ABF 和△DCE 所在平面均垂直于面ABCD 时构成正三棱柱ABF -DCE ,此时正三棱柱内最大的求半径r =34<32,故半径为32的球不能内含于五面体ABCDEF ,对于一般情形,如下图示,左图为左视图,右图为正视图,由C 分析结果,当五面体ABCDEF 体积最大时,其可内含的球的半径较大,易知,当∠FMH =π3时,FH =332,IH =3,IF =392,设△FIG 的内切圆半径为r 1,则12×332×23=12r 1×23+2×392 ,可得r 1=332+13>32,另外,设等腰梯形EFMN 中圆的半径为r 2,则r 2=34tan π3=334>r 1=332+13,所以,存在x 使半径为32的球都能内含于五面体ABCDEF ,对.故选:ACD【点睛】关键点点睛:对于C 通过补全几何体为棱柱,设∠FMH =θ0<θ≤π2得到五面体ABCDEF 的体积关于θ的函数;对于D 从特殊到一般,结合几何体视图研究内切圆判断最大半径是否大于32为关键.5(多选)(2024·广西南宁·一模)在边长为2的正方体ABCD -A 1B 1C 1D 1中,动点M 满足AM =xAB+yAD +zAA 1 ,(x ,y ,z ∈R 且x ≥0,y ≥0,z ≥0),下列说法正确的是()A.当x =14,z =0,y ∈0,1 时,B 1M +MD 的最小值为13B.当x =y =1,z =12时,异面直线BM 与CD 1所成角的余弦值为105C.当x +y +z =1,且AM =253时,则M 的轨迹长度为42π3D.当x +y =1,z =0时,AM 与平面AB 1D 1所成角的正弦值的最大值为63【答案】AD【分析】对于A ,确定M 的位置,利用侧面展开的方法,求线段的长,即可判断;对于B ,利用平移法,作出异面直线所成角,解三角形,即可判断;对于C ,结合线面垂直以及距离确定点M 的轨迹形状,即可确定轨迹长度;对于D ,利用等体积法求得M 点到平面AB 1D 1的距离,结合线面角的定义求得AM 与平面AB 1D 1所成角的正弦值,即可判断.【详解】对于A ,在AB 上取点H ,使AH =14AB ,在DC 上取点K ,使DK =14DC ,因为x =14,z =0,y ∈0,1 ,即AM =14AB +yAD ,故M 点在HK 上,将平面B 1HKC 1与平面AHKD 沿着HK 展开到同一平面内,如图:连接B 1D 交HK 于P ,此时B ,P ,D 三点共线,B 1M +MD 取到最小值即B 1D 的长,由于AH =14AB =12,∴BH =32,则B 1H =22+32 2=52,故AB 1=52+12=3,∴B 1D =(B 1A )2+AD 2=32+22=13,即此时B 1M +MD 的最小值为13,A 正确;对于B ,由于x =y =1,z =12时,则AM =AB +AD +12AA 1 =AC +12CC 1 ,此时M 为CC 1的中点,取C 1D 1的中点为N ,连接BM ,MN ,BN ,则MN ∥CD 1,故∠BMN 即为异面直线BM 与CD 1所成角或其补角,又MN =12CD 1=2,BM =22+12=5,BN =(BC 1)2+(C 1N )2=8+1=3,故cos ∠BMN =BM 2+MN 2-BN 22BM ⋅MN =5 2+2 2-3225⋅2=-1010,而异面直线所成角的范围为0,π2,故异面直线BM 与CD 1所成角的余弦值为1010,B 错误;对于C ,当x +y +z =1时,可得点M 的轨迹在△A 1BD 内(包括边界),由于CC 1⊥平面ABCD ,BD ⊂平面ABCD ,故CC 1⊥BD ,又BD ⊥AC ,AC ∩CC 1=C ,AC ,CC 1⊂平面ACC 1,故BD ⊥平面ACC 1,AC 1⊂平面ACC 1,故BD ⊥AC 1,同理可证A 1B ⊥AC 1,A 1B ∩BD =B ,A 1B ,BD ⊂平面A 1BD ,故AC 1⊥平面A 1BD ,设AC 1与平面A 1BD 交于点P ,由于V A -A 1BD =V A 1-ABD =13×12×2×2×2=43,△A 1BD 为边长为22的正三角形,则点A 到平面A 1BD 的距离为AP =4313×34×22 2=233,若AM =253,则MP =AM 2-AP 2=223,即M 点落在以P 为圆心,223为半径的圆上,P 点到△A 1BD 三遍的距离为13×32×22=63<223,即M 点轨迹是以P 为圆心,223为半径的圆的一部分,其轨迹长度小于圆的周长42π3,C 错误;因为当x +y =1,z =0时,AM =AB +AD,即M 在BD 上,点M 到平面AB 1D 1的距离等于点B 到平面AB 1D 1的距离,设点B 到平面AB 1D 1的距离为d ,则V B -AB 1D 1=V D 1-ABB 1=13S △ABB 1⋅A 1D 1=13×12×2×2×2=43,△AB 1D 1为边长为22的正三角形,即13S △A 1BD ⋅d =13×34×22 2×d =43,解得d =233,又M 在BD 上,当M 为BD 的中点时,AM 取最小值2,设直线AM 与平面AB 1D 1所成角为θ,θ∈0,π2,则sin θ=d AM =233AM≤2332=63,即AM 与平面AB 1D 1所成角的正弦值的最大值为63,D 正确,故选:AD【点睛】难点点睛:本题考查了空间几何体中线段和差最值以及几何体中的轨迹问题,以及线线角和线面角的求解,综合性较强,难度较大,解答时要发挥空间想象,明确空间的位置关系,难点在于C ,D 选项的判断,对于C ,要结合空间距离,确定动点的轨迹形状;对于D ,要结合等体积法求得点到平面的距离,结合线面角的定义求解.题型04不规则图形中的面面夹角问题利用向量法解决立体几何中的空间角问题,关键在于依托图形建立合适的空间直角坐标系,将相关向量用坐标表示,通过向量的坐标运算求空间角,其中建系的关键在于找到两两垂直的三条直线.1(2024·浙江台州·二模)如图,已知四棱台ABCD -A 1B 1C 1D 1中,AB =3A 1B 1,AB ∥CD ,AD ⊥AB ,AB =6,CD =9,AD =6,且AA 1=BB 1=4,Q 为线段CC 1中点,(1)求证:BQ ∥平面ADD 1A 1;(2)若四棱锥Q -ABB 1A 1的体积为3233,求平面ABB 1A 1与平面CDD 1C 1夹角的余弦值.【答案】(1)证明见解析(2)217【分析】(1)分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD ,取DD 1的中点E ,连接QE ,AE ,由四边形ABQE 为平行四边形,得到BQ ∥AE ,然后利用线面平行的判定定理证明;(2)先证明AD ⊥平面ABB 1A 1,再以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,求得平面CDD 1C 1的法向量为m =x ,y ,z ,易得平面ABB 1A 1的一个法向量为n=0,1,0 ,然后由cos m ,n=m ⋅n m n 求解.【详解】(1)证明:如图所示:分别延长线段AA 1,BB 1,CC 1,DD 1交于点P ,将四棱台补成四棱锥P -ABCD .∵A 1B 1=13AB ,∴PC 1=13PC ,∴CQ =QC 1=C 1P ,取DD 1的中点E ,连接QE ,AE ,∵QE ⎳CD ⎳AB ,且QE =123+9 =6=AB ,∴四边形ABQE 为平行四边形.∴BQ ∥AE ,又AE ⊂平面ADD 1A 1,BQ ⊄平面ADD 1A 1,∴BQ ∥平面ADD 1A 1;(2)由于V Q -ABB 1A 1=23V C -ABB 1A 1,所以V C -ABB 1A 1=163,又梯形ABB 1A 1面积为83,设C 到平面ABB 1A 1距离为h ,则V C -ABB 1A 1=13S 梯形ABB 1A 1⋅h =163,得h =6.而CD ∥AB ,AB ⊂平面ABB 1A 1,CD ⊄平面ABB 1A 1,所以CD ∥平面ABB 1A 1,所以点C 到平面ABB 1A 1的距离与点D 到平面ABB 1A 1的距离相等,而h =6=AD ,所以AD ⊥平面ABB 1A 1.以A 为坐标原点,以直线AB 为x 轴,以直线AD 为y 轴,建立空间直角坐标系,易得△PAB 为等边三角形,所以A 0,0,0 ,B 6,0,0 ,C 9,6,0 ,D 0,6,0 ,P 3,0,33设平面CDD 1C 1的法向量为m=x ,y ,z ,则m ⋅DP=x ,y ,z ⋅3,-6,33 =3x -6y +33z =0m ⋅DC=x ,y ,z ⋅9,0,0 =9x =0,得x =0,y =32z ,不妨取m =0,3,2 ,又平面ABB 1A 1的一个法向量为n=0,1,0 .则,平面ABB 1A 1与平面CDD 1C 1夹角的余弦值为217.2(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,∠DAB =60°,BC=2PQ =4AB =4,M 为BC 的中点,PQ ∥BC ,PD ⊥DC ,QB ⊥MD .(1)证明:∠ABQ =90°;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.【答案】(1)证明见解析;(2)31010.【分析】(1)根据余弦定理求解DM =3,即可求证DM ⊥DC ,进而根据线线垂直可证明线面垂直,即可得线线垂直,(2)根据体积公式,结合棱柱与棱锥的体积关系,结合等体积法可得PM =h =33,即可建立空间直角坐标系,求解法向量求解.【详解】(1)在△DCM 中,由余弦定理可得DM =DC 2+MC 2-2DC ⋅MC cos60°=3,所以DM 2+DC 2=CM 2,所以∠MDC =90°,所以DM ⊥DC .又因为DC ⊥PD ,DM ∩PD =D ,DM ,DP ⊂平面PDM ,所以DC ⊥平面PDM ,PM ⊂平面PDM .所以DC ⊥PM .由于PQ ⎳BM ,PQ =BM =2,所以四边形PQBM 为平行四边形,所以PM ∥QB .又AB ∥DC ,所以AB ⊥BQ ,所以∠ABQ =90°.(2)因为QB ⊥MD ,所以PM ⊥MD ,又PM ⊥CD ,DC ∩MD =D ,DC ,MD ⊂平面ABCD ,所以PM ⊥平面ABCD .取AD 中点E ,连接PE ,设PM =h .设多面体ABCDPQ 的体积为V ,则V =V 三棱柱ABQ -PEM +V 四棱锥P -CDEM =3V A -PEM +V 四棱锥P -CDEM =3V P -AEM +V 四棱锥P -CDEM=S △AEM ×h +13S 四边形CDEM ×h =S △AEM ×h +132S △AEM ×h =53S △AEM ×h =53×12×2×1×sin 2π3h =152.解得PM =h =33.建立如图所示的空间直角坐标系,则A -3,2,0 ,B -3,1,0 ,C 3,-1,0 ,D 3,0,0 ,P 0,0,33 ,Q -3,1,33 ,M 0,0,0 .则平面QAB 的一个法向量n=1,0,0 .所以CD =0,1,0 ,PD=3,0,-33 ,设平面PCD 的一个法向量m=x ,y ,z ,则m ⋅CD=0,n ⋅PD =0,即y =0,3x -33z =0, 取m=3,0,1 .所以cos θ=m ⋅n m ⋅n=31010.。

全国卷立体几何题型总结

全国卷立体几何题型总结

全国卷立体几何题型总结
全国卷的立体几何题型总结如下:
1.空间直线和面的位置关系:包括确定直线和平面的位置关系,求平面与直线的交点、垂足等。

2.空间向量:涉及确定向量的方向、模长和坐标,求向量的数量积、向量积和混合积。

3.空间几何体积:主要考察确定几何体的形状和大小,求立体图形的表面积和体积。

4.立体几何相似:这部分可能涉及判断命题的真假,或者计算几何体的体积等。

此外,还有可能考察到判断或计算几何体的表面积、体积,以及利用三视图还原几何体等题型。

高考数学专题20 立体几何大题(解析版)

高考数学专题20 立体几何大题(解析版)

高考数学专题20 立体几何大题(解析版)立体几何是高考中必考的题型,占12分,通常考察考生对立体几何知识的掌握情况和解题技巧,如线面垂直、面面垂直、线面平行、线面角、二面角等问题。

在解答立体几何题目时,容易出现以下易错点:1.求两条异面直线所成的角、直线与平面所成的角和二面角时,如果所求的角为90°,还有一种求角的方法,即用证明它们垂直的方法。

2.线面平行的判定定理和性质定理在应用时都是三个条件,但这三个条件易混为一谈。

面面平行的判定定理易把条件错误地记为“一个平面内的两条相交直线与另一个平面内的两条相交直线分别平行”,导致证明过程跨步太大。

3.作出二面角的平面角的主要方法有哪些?(定义法、三垂线法、垂面法)其中,三垂线法是一定平面,二作垂线,三作斜线,射影可见。

4.求点到面的距离的常规方法有哪些?(直接法、等体积法、换点法、向量法)5.求多面体体积的常规方法有哪些?(割补法、等积变换法)6.两条异面直线所成的角的范围:0°<α≤90°;直线与平面所成的角的范围:0°≤α≤90°;二面角的平面角的取值范围:0°≤α≤180°。

7.用向量法求线面角得到的是正弦值,而不是余弦值。

8.用向量法求二面角时,最后一步要判断二面角的平面角是钝角还是锐角,否则结果会出错。

题组一1.(2015新课标Ⅱ)如图,长方体ABCD—A1B1C1D1中,AB=16,BC=10,AA 18,点E,F分别在A1B1D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形。

1)画出交线围成的正方形;2)求直线AF与平面α所成的角的正弦值。

解析】Ⅰ)交线围成的正方形EHGF如图:Ⅱ)作EM⊥AB,垂足为M,则AM=4,EM=8.因为EHGF为正方形,所以EH=EF=BC=10.由勾股定理可得,EH^2-EM^2=6,所以AH=10.以D为坐标原点,DA的方向为x轴正方向。

2024届高考数学专项立体几何大题含答案

2024届高考数学专项立体几何大题含答案

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).2024届高考数学专项立体几何大题含答案模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.3(22·23·张家口·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为菱形,∠CBB1=60°,AB= BC=2,AC=AB1=2.(1)证明:平面ACB1⊥平面BB1C1C;(2)求平面ACC1A1与平面A1B1C1夹角的余弦值.4(22·23·湛江·二模)如图1,在五边形ABCDE中,四边形ABCE为正方形,CD⊥DE,CD=DE,如图2,将△ABE沿BE折起,使得A至A1处,且A1B⊥A1D.(1)证明:DE⊥平面A1BE;(2)求二面角C-A1E-D的余弦值.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.8(22·23下·温州·二模)已知三棱锥D-ABC中,△BCD是边长为3的正三角形,AB=AC=AD, AD与平面BCD所成角的余弦值为33.(1)求证:AD⊥BC;(2)求二面角D-AC-B的平面角的正弦值.9(22·23下·浙江·二模)如图,四面体ABCD,AD⊥CD,AD=CD,AC=2,AB=3,∠CAB=60°,E为AB上的点,且AC⊥DE,DE与平面ABC所成角为30°,(1)求三棱锥D-BCE的体积;(2)求二面角B-CD-E的余弦值.10(22·23下·襄阳·三模)如图,在三棱柱ABC-A1B1C1中,侧面BB1C1C为矩形,∠BAC=90°,AB= AC=2,AA1=4,A1在底面ABC的射影为BC的中点N,M为B1C1的中点.(1)求证:平面A1MNA⊥平面A1BC;(2)求平面A1B1BA与平面BB1C1C夹角的余弦值.11(22·23·唐山·二模)如图,在三棱柱ABC-A1B1C1中,△ABC是等边三角形,侧面ACC1A1⊥底面ABC,且AA1=AC,∠AA1C1=120°,M是CC1的中点.(1)证明:A1C⊥BM.(2)求二面角A1-BC-M的正弦值.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G为弧CD的中点,且C,E,D,G四点共面.(1)证明:平面BDF⊥平面BCG;(2)若平面BDF与平面ABG所成二面角的余弦值为155,且线段AB长度为2,求点G到直线DF的距离.13(22·23下·江苏·三模)如图,圆锥DO中,AE为底面圆O的直径,AE=AD,△ABC为底面圆O的内接正三角形,圆锥的高DO=18,点P为线段DO上一个动点.(1)当PO=36时,证明:PA⊥平面PBC;(2)当P点在什么位置时,直线PE和平面PBC所成角的正弦值最大.14(22·23下·镇江·三模)如图,四边形ABCD是边长为2的菱形,∠ABC=60°,四边形PACQ为矩形,PA=1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP,DP与平面ABCD所成角相等;②三棱锥P-ABD体积为33;③cos∠BPA=55(1)平面PACQ⊥平面ABCD;(2)求二面角B-PQ-D的大小;(3)求点C到平面BPQ的距离.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.17(22·23·汕头·三模)如图,圆台O1O2的轴截面为等腰梯形A1ACC1,AC=2AA1=2A1C1=4,B为底面圆周上异于A,C的点.(1)在平面BCC1内,过C1作一条直线与平面A1AB平行,并说明理由;(2)若四棱锥B-A1ACC1的体积为23,设平面A1AB∩平面C1CB=l,Q∈l,求CQ的最小值.18(19·20下·临沂·二模)如图①,在Rt△ABC中,B为直角,AB=BC=6,EF∥BC,AE=2,沿EF将△AEF折起,使∠AEB=π3,得到如图②的几何体,点D在线段AC上.(1)求证:平面AEF⊥平面ABC;(2)若AE⎳平面BDF,求直线AF与平面BDF所成角的正弦值.19(22·23下·广州·三模)如图,四棱锥P-ABCD的底面为正方形,AB=AP=2,PA⊥平面ABCD,E,F分别是线段PB,PD的中点,G是线段PC上的一点.(1)求证:平面EFG⊥平面PAC;(2)若直线AG与平面AEF所成角的正弦值为13,且G点不是线段PC的中点,求三棱锥E-ABG体积.20(22·23下·长沙·一模)斜三棱柱ABC-A1B1C1的各棱长都为2,∠A1AB=60°,点A1在下底面ABC 的投影为AB的中点O.(1)在棱BB1(含端点)上是否存在一点D使A1D⊥AC1若存在,求出BD的长;若不存在,请说明理由;(2)求点A1到平面BCC1B1的距离.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.22(22·23·衡水·一模)如图所示,A ,B ,C ,D 四点共面,其中∠BAD =∠ADC =90°,AB =12AD ,点P ,Q 在平面ABCD 的同侧,且PA ⊥平面ABCD ,CQ ⊥平面ABCD .(1)若直线l ⊂平面PAB ,求证:l ⎳平面CDQ ;(2)若PQ ⎳AC ,∠ABP =∠DAC =45°,平面BPQ ∩平面CDQ =m ,求锐二面角B -m -C 的余弦值.23(22·23下·湖北·三模)已知平行六面体(底面是平行四边形的四棱柱)ABCD-A1B1C1D1的各条棱长均为2,且有∠AA1D1=∠AA1B1=∠D1A1B1=60°.(1)求证:平面AA1C1C⊥平面A1B1C1D1;(2)求直线B1D与平面AA1C1C所成角的正弦值.24(22·23下·武汉·三模)如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥平面ABCD,PA=AB=2,E为线段PB的中点,F为线段BC上的动点.(1)求证:平面AEF⊥平面PBC;(2)求平面AEF与平面PDC夹角的最小值.25(22·23下·黄冈·三模)如图1,在四边形ABCD中,BC⊥CD,AE∥CD,AE=BE=2CD=2,CE =3.将四边形AECD沿AE折起,使得BC=3,得到如图2所示的几何体.(1)若G为AB的中点,证明:DG⊥平面ABE;(2)若F为BE上一动点,且二面角B-AD-F的余弦值为63,求EFEB的值.26(22·23·德州·三模)图1是直角梯形ABCD,AB⎳CD,∠D=90°,AD=3,AB=2,CD=3,四边形ABCE为平行四边形,以BE为折痕将△BCE折起,使点C到达C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)在线段BE上存在点P使得PA与平面ABC1的正弦值为365,求平面BAC1与PAC1所成角的余弦值.27(22·23·山东·二模)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB⎳CD,AB⊥BC,PA =AB=BC=2,CD=4.(1)证明:AD⊥PC;(2)若M为线段PB的靠近B点的四等分点,判断直线AM与平面PDC是否相交?如果相交,求出P到交点H的距离,如果不相交,说明理由.28(22·23·黄山·三模)如图,在直角梯形ABCD中,AD⎳BC,AD⊥CD,四边形CDEF为平行四边形,对角线CE和DF相交于点H,平面CDEF⊥平面ABCD,BC=2AD,∠DCF=60°,G是线段BE上一动点(不含端点).(1)当点G为线段BE的中点时,证明:AG⎳平面CDEF;(2)若AD=1,CD=DE=2,且直线DG与平面CDEF成45°角,求二面角E-DG-F的正弦值.29(22·23·菏泽·三模)已知在直三棱柱ABC-A1B1C1中,其中AA1=2AC=4,AB=BC,F为BB1的中点,点E是CC1上靠近C1的四等分点,A1F与底面ABC所成角的余弦值为2 2.(1)求证:平面AFC⊥平面A1EF;(2)在线段A1F上是否存在一点N,使得平面AFC与平面NB1C1所成的锐二面角的余弦值为277,若存在,确定点N的位置,若不存在,请说明理由.30(22·23·福州·三模)如图,在三棱锥P-ABC中,PA⊥底面ABC,PA=2,AB=AC=1,将△PAB绕着PA逆时针旋转π3到△PAD的位置,得到如图所示的组合体,M为PD的中点.(1)当∠BAC为何值时,该组合体的体积最大,并求出最大值;(2)当PC⎳平面MAB时,求直线PC与平面PBD所成角的正弦值.31(22·23·福州·二模)如图1,在△ABC 中,AB =AC =2,∠BAC =2π3,E 为BC 的中点,F 为AB 上一点,且EF ⊥AB .将△BEF 沿EF 翻折到△B EF 的位置,如图2.(1)当AB =2时,证明:平面B AE ⊥平面ABC ;(2)已知二面角B -EF -A 的大小为π4,棱AC 上是否存在点M ,使得直线B E 与平面B MF 所成角的正弦值为1010?若存在,确定M 的位置;若不存在,请说明理由.32(22·23·三明·三模)如图,平面五边形ABCDE 由等边三角形ADE 与直角梯形ABCD 组成,其中AD ∥BC ,AD ⊥DC ,AD =2BC =2,CD =3,将△ADE 沿AD 折起,使点E 到达点M 的位置,且BM =a .(1)当a =6时,证明AD ⊥BM 并求四棱锥M -ABCD 的体积;(2)已知点P 为棱CM 上靠近点C 的三等分点,当a =3时,求平面PBD 与平面ABCD 夹角的余弦值.33(22·23·宁德·一模)如图①在平行四边形ABCD 中,AE ⊥DC ,AD =4,AB =3,∠ADE =60°,将△ADE 沿AE 折起,使平面ADE ⊥平面ABCE ,得到图②所示几何体.(1)若M 为BD 的中点,求四棱锥M -ABCE 的体积V M -ABCE ;(2)在线段DB 上,是否存在一点M ,使得平面MAC 与平面ABCE 所成锐二面角的余弦值为235,如果存在,求出DMDB的值,如果不存在,说明理由.34(22·23·龙岩·二模)三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,AB =AC =2,侧面A 1ACC 1为矩形,∠A 1AB =2π3,三棱锥C 1-ABC 的体积为233.(1)求侧棱AA 1的长;(2)侧棱CC 1上是否存在点E ,使得直线AE 与平面A 1BC 所成角的正弦值为55?若存在,求出线段C 1E 的长;若不存在,请说明理由.35(22·23下·浙江·二模)如图,在多面体ABC-A1B1C1中,AA1⎳BB1⎳CC1,AA1⊥平面A1B1C1,△A1B1C1为等边三角形,A1B1=BB1=2,AA1=3,CC1=1,点M是AC的中点.(1)若点G是△A1B1C1的重心,证明;点G在平面BB1M内;(2)求二面角B1-BM-C1的正弦值.36(22·23下·浙江·三模)如图,三棱台ABC-A1B1C1中,A1C1=4,AC=6,D为线段AC上靠近C的三等分点.(1)线段BC上是否存在点E,使得A1B⎳平面C1DE,若不存在,请说明理由;若存在,请求出BEBC的值;(2)若A1A=AB=4,∠A1AC=∠BAC=π3,点A1到平面ABC的距离为3,且点A1在底面ABC的射影落在△ABC内部,求直线B1D与平面ACC1A1所成角的正弦值.37(22·23下·苏州·三模)如图,在三棱锥P-ABC中,△ABC是边长为62的等边三角形,且PA= PB=PC=6,PD⊥平面ABC,垂足为D,DE⊥平面PAB,垂足为E,连接PE并延长交AB于点G.(1)求二面角P-AB-C的余弦值;(2)在平面PAC内找一点F,使得EF⊥平面PAC,说明作法及理由,并求四面体PDEF的体积.38(22·23·沧州·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成.C,E,D,G在同一平面内,且CG=DG.(1)证明:平面BFD⊥平面BCG;(2)若直线GC与平面ABG所成角的正弦值为105,求平面BFD与平面ABG所成角的余弦值.39(23·24上·永州·一模)如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,侧面PAD为正三角形,且AD=2AB=4,M、N分别为PD、BC的中点,H在线段PC上,且PC=3PH.(1)求证:MN⎳平面PAB;(2)当AM⊥PC时,求平面AMN与平面HMN的夹角的余弦值.40(22·23·潍坊·三模)如图,P为圆锥的顶点,O是圆锥底面的圆心,AC为底面直径,△ABD为底面圆O的内接正三角形,且边长为3,点E在母线PC上,且AE=3,CE=1.(1)求证:PO∥平面BDE;(2)求证:平面BED⊥平面ABD(3)若点M为线段PO上的动点.当直线DM与平面ABE所成角的正弦值最大时,求此时点M到平面ABE的距离.立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | (n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),22所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,。

(完整版)高中数学立体几何经典常考题型

(完整版)高中数学立体几何经典常考题型

高中数学立体几何经典常考题型题型一:空间点、线、面的位置关系及空间角的计算空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.(1)证明 ∵OB =OC ,又∵∠ABC =π4, ∴∠OCB =π4,∴∠BOC =π2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ⊂平面ABC ,∴PO ⊥OC.又∵PO ,AB ⊂平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ⊂平面COD , ∴平面PDB ⊥平面COD.(2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设OA =1,则PO =OB =OC =2,DA =1.则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD→=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的一个法向量为n =(x ,y ,z ), ∴⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,∴⎩⎨⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD→·n |PD →||n | =⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标.第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角.第六步:反思回顾.查看关键点、易错点和答题规范.【变式训练】 如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C .(2)求二面角E -A 1D ­B 1的余弦值.(1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ⊂面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.(2)解 因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝ ⎛⎭⎪⎫12,12,1.设平面A 1DE 的一个法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝ ⎛⎭⎪⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →,n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设平面A 1B 1CD 的一个法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D ­B 1的余弦值为 |n 1·n 2||n 1|·|n 2|=23×2=63.题型二:立体几何中的探索性问题此类试题一般以解答题形式呈现,常涉及线、面平行、垂直位置关系的探究或空间角的计算问题,是高考命题的热点,一般有两种解决方式: (1)根据条件作出判断,再进一步论证;(2)利用空间向量,先假设存在点的坐标,再根据条件判断该点的坐标是否存在.【例2】如图,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,AB ⊥AD ,AB =1,AD =2,AC =CD = 5. (1)求证:PD ⊥平面PAB ;(2)求直线PB 与平面PCD 所成角的正弦值;(3)在棱PA 上是否存在点M ,使得BM ∥平面PCD ?若存在,求AMAP 的值;若不存在,说明理由.(1)证明 因为平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , 所以AB ⊥平面PAD ,所以AB ⊥PD.又PA ⊥PD ,AB ∩PA =A ,所以PD ⊥平面PAB. (2)解 取AD 的中点O ,连接PO ,CO. 因为PA =PD ,所以PO ⊥AD.因为PO ⊂平面PAD ,平面PAD ⊥平面ABCD , 所以PO ⊥平面ABCD.因为CO ⊂平面ABCD ,所以PO ⊥CO. 因为AC =CD ,所以CO ⊥AD.如图,建立空间直角坐标系O -xyz.由题意得,A(0,1,0),B(1,1,0),C(2,0,0),D(0,-1,0),P(0,0,1).设平面PCD 的一个法向量为n =(x ,y ,z ),则 ⎩⎪⎨⎪⎧n ·PD →=0,n ·PC →=0,即⎩⎨⎧-y -z =0,2x -z =0,令z =2,则x =1,y =-2. 所以n =(1,-2,2).又PB →=(1,1,-1),所以cos 〈n ,PB →〉=n ·PB →|n ||PB →|=-33.所以直线PB 与平面PCD 所成角的正弦值为33.(3)解 设M 是棱P A 上一点,则存在λ∈0,1],使得AM →=λAP →.因此点M (0,1-λ,λ),BM→=(-1,-λ,λ).因为BM ⊄平面PCD ,所以要使BM ∥平面PCD ,则BM →·n =0,即(-1,-λ,λ)·(1,-2,2)=0,解得λ=14. 所以在棱P A 上存在点M ,使得BM ∥平面PCD ,此时AM AP =14.【类题通法】(1)对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等. (2)对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.【变式训练】如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC =10,∠P AD =45°,E 为P A 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.(1)证明 取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .∵CN ⊥AB ,DA ⊥AB ,∴CN ∥DA ,又AB ∥CD ,∴四边形CDAN 为平行四边形, ∴CN =AD =8,DC =AN =6, 在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,∴AB =12,而E ,M 分别为P A ,PB 的中点, ∴EM ∥AB 且EM =6,又DC ∥AB ,∴EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形, ∴DE ∥CM.∵CM ⊂平面PBC ,DE ⊄平面PBC , ∴DE ∥平面BPC.(2)解 由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系D -xyz , 则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8). 假设AB 上存在一点F 使CF ⊥BD , 设点F 坐标为(8,t ,0),则CF→=(8,t -6,0),DB →=(8,12,0), 由CF→·DB →=0得t =23. 又平面DPC 的一个法向量为m =(1,0,0), 设平面FPC 的法向量为n =(x ,y ,z ). 又PC→=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0. 由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0,得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y , 不妨令y =12,有n =(8,12,9). 则cos 〈n ,m 〉=n ·m|n ||m |=81×82+122+92=817. 又由图可知,该二面角为锐二面角, 故二面角F -PC -D 的余弦值为817. 题型三:立体几何中的折叠问题将平面图形沿其中一条或几条线段折起,使其成为空间图形,这类问题称为立体几何中的折叠问题,折叠问题常与空间中的平行、垂直以及空间角相结合命题,考查学生的空间想象力和分析问题的能力. 【例3】如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H .将△DEF 沿EF 折到△D ′EF 的位置,OD ′=10. (1)证明:D ′H ⊥平面ABCD ; (2)求二面角B -D ′A -C 的正弦值.(1)证明 由已知得AC ⊥BD ,AD =CD . 又由AE =CF 得AE AD =CFCD ,故AC ∥EF . 因此EF ⊥HD ,从而EF ⊥D ′H .由AB =5,AC =6得DO =BO =AB 2-AO 2=4. 由EF ∥AC 得OH DO =AE AD =14.所以OH =1,D ′H =DH =3. 于是D ′H 2+OH 2=32+12=10=D ′O 2,故D ′H ⊥OH . 又D ′H ⊥EF ,而OH ∩EF =H , 所以D ′H ⊥平面ABCD .(2)解 如图,以H 为坐标原点,HF →的方向为x 轴正方向,建立空间直角坐标系H -xyz .则H (0,0,0),A (-3,-1,0), B (0,-5,0),C (3,-1,0),D ′(0,0,3),AB →=(3,-4,0),AC →=(6,0,0),AD ′→=(3,1,3). 设m =(x 1,y 1,z 1)是平面ABD ′的一个法向量, 则⎩⎪⎨⎪⎧m ·AB →=0,m ·AD ′→=0,即⎩⎨⎧3x 1-4y 1=0,3x 1+y 1+3z 1=0,所以可取m =(4,3,-5).设n =(x 2,y 2,z 2)是平面ACD ′的一个法向量, 则⎩⎪⎨⎪⎧n ·AC →=0,n ·AD ′→=0,即⎩⎨⎧6x 2=0,3x 2+y 2+3z 2=0,所以可取n =(0,-3,1). 于是cos 〈m ,n 〉=m ·n |m ||n |=-1450×10=-7525.sin 〈m ,n 〉=29525.因此二面角B -D ′A -C 的正弦值是29525.【类题通法】立体几何中的折叠问题,关键是搞清翻折前后图形中线面位置关系和度量关系的变化情况,一般地翻折后还在同一个平面上的性质不发生变化,不在同一个平面上的性质发生变化. 【变式训练】如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 夹角的余弦值.(1)证明 在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC , 从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC . (2)解 由已知,平面A 1BE ⊥平面BCDE , 又由(1)知,BE ⊥OA 1,BE ⊥OC ,所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2.如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝⎛⎭⎪⎫0,22,-22,CD →=BE →=(-2,0,0). 设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧n 1·BC →=0,n 1·A 1C →=0,得⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1);⎩⎪⎨⎪⎧n 2·CD →=0,n 2·A 1C →=0,得⎩⎨⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1),从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 夹角的余弦值为63.。

高考立体几何模型

高考立体几何模型

高考常考立体几何模型模型一:阳马一、选择题1.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A. √6πB. 8√6π3C. 8√6πD. 24π【答案】A【解析】解:如图所示,该几何体为四棱锥P−ABCD,底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的体积:4π3×(√62)3=√6π.2.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为()A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.3.《九章算术》中,将底面是长方形且有一条侧棱与底面垂直的四棱锥称为阳马.在阳马P−ABCD中,PC为阳马中最长的棱,AB=1,AD=2,PC=3,若在阳马P−ABCD的外接球内部随机取一点M,则M位于阳马内的概率为()A. 127πB. 427πC. 827πD. 49π【答案】C【解析】根据题意,PC的长等于其外接球的直径,∵PC=√PA2+AB2+AD2,∴3=√PA2+1+4,∴PA=2,又PA垂直平面ABCD,∴V P−ABCD=13×1×2×2=43,,,4.刘徽《九章算术⋅商功》中将底面为长方形,两个三角面与底面垂直的四棱锥称为“阳马”,.某“阳马”的三视图如图所示,则其外接球的体积为()正视图侧视图俯视图A. √3πB. 3πC. √3π2D. 4π【答案】C【解析】解:由题意可知阳马为四棱锥,且四棱锥的底面为长方体的一个底面,四棱锥的高为长方体的一棱长,且阳马的外接球也是长方体的外接球;由三视图可知四棱锥的底面是边长为1的正方形,四棱锥的高为1,∴长方体的一个顶点处的三条棱长分别为1,1,1,∴长方体的对角线为√3,∴外接球的半径为√32,∴外接球的体积为V=4π3⋅(√32)3=√32π.5.《九章算术》中,将底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”.已知某“阳马”的三视图如图所示,其体积为12,则该“阳马”的侧视图中的x=()A. 1B. 2C. 3D. 4【答案】C【解析】解:根据几何体的三视图可知,该几何体是底面长为4,宽为x的矩形,高为3的四棱锥,∵几何体的体积V=13×4×3x=12,解得x=3,6.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有一阳马,其正视图和侧视图是如图所示的直角三角形.若该阳马的顶点都在同一个球面上,则该球的体积为()A. √6πB. 8√6π3C. 8√6πD. 24π【答案】A【解析】解:如图所示,该几何体为四棱锥P−ABCD.底面ABCD为矩形,其中PD⊥底面ABCD.AB=1,AD=2,PD=1.则该阳马的外接球的直径为PB=√1+1+4=√6.∴该阳马的外接球的体积:4π3×(√62)3=√6π.7.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖孺.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.二、填空题8.我国古代数学名著《九章算术》对立体几何也有深入的研究,从其中的一些数学用语可见,譬如“堑堵”意指底面为直角三角形,且侧棱垂直于底面的三棱柱,“阳马”指底面为矩形且有一侧棱垂直于底面的四棱锥.现有一如图所示的“堑堵”即三棱柱ABC−A1B1C1,其中AC⊥BC,若AA1=AB=2,当“阳马”即四棱锥B−A1ACC1体积最大时,“堑堵”即三棱柱ABC−A1B1C1外接球的体积为________.【答案】8√23π【解析】解:设AC=b,BC=a,则a2+b2=AB2=4,所以四棱锥B−A1ACC1=13×BC×AC×AA1=23ab≤2 3×a2+b22=43,当且仅当a=b=√2时取等,此时三棱柱ABC−A1B1C1外接球的球心为A1B的中点,所以外接球的半径R=A1B2=√AA12+AB22=√4+42=√2,所以三棱柱ABC−A1B1C1外接球的体积为43×πR3=43π×2√2=8√23π.故答案为:8√23π.9.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,PA⊥平面ABCD,PA=4,AB=√3,AD=1,则该“阳马”外接球的表面积为________.【答案】【解析】解:如图:因为平面ABCD,PA⊂平面PAD,PA⊂平面PAB,所以平面PAD⊥平面ABCD,交于AD,平面PAB⊥平面ABCD,交于AB,而ABCD是矩形,因此DC⊥平面PAD,BC⊥平面PAB.而PD⊂平面PAD,PB⊂平面PAB,因此DC⊥PD,BC⊥PB.连接AC,因为平面ABCD,AC⊂平面ABCD,所以,因此该“阳马”外接球是以PC为直径的球.又因为PA=4,AB=√3,AD=1,所以PC=√PA2+AB2+AD2=2√5,即外接球的半径为√5,因此该“阳马”外接球的表面积为.故答案为.10.《九章算术》中把底面为直角三角形,且侧棱垂直于底面的三棱柱称为“堑堵”,把底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”.现有如图所示的“堑堵”ABC−A1B1C1,其中AC⊥BC,若AA1=1,“堑堵”即三棱柱ABC−A1B1C1π,则“阳马”即四棱锥B−A1ACC1体积的最大值为的外接球的体积为√23_________.【答案】16【解析】解:,设AC=x,则BC=√1−x2,时,取等号.,当且仅当x=√22故四棱锥B−A1ACC1体积的最大值为1.611.我国古代数学名著《九章算术⋅商功》中阐述:“斜解立方,得两壍堵.斜解壍堵,其为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:①四个侧面都是直角三角形;②最长的侧棱长为2√6;③四个侧面中有三个侧面是全等的直角三角形;④外接球的表面积为24π.其中正确的为______________【答案】①②④【解析】解:由题目中的三视图可还原几何体如下:下底面为4宽2的矩形,ED⊥平面ABCD,ED=2,∴①四个侧面都是直角三角形,正确;②最长的侧棱长为EB=2√6,正确;③四个侧面不存在全等的直角三角形,故错误;④外接球的球心为EB中点,半径r=√6,表面积为24π,正确.故正确的描述有①②④,模型二:鳖臑一、选择题12. 在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑A −BCD 中,AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,M 为AD 的中点,则二面角M −BC −D 的正弦值为A. √22B. √33C. √63D. 1【答案】C【解析】 解:由题意可以C 为原点,CD 为x 轴,CB 为y 轴,过C 作平面BDC 的垂线为z 轴(与AB 平行),建立空间直角坐标系如图所示,设AB =BC =CD =1,则A(0,1,1),B(0,1,0),C(0,0,0),D(1,0,0),M(12,12,12), 则BM ⃗⃗⃗⃗⃗⃗ =(12,−12,12),CD ⃗⃗⃗⃗⃗ =(1,0,0), 设异面直线BM 与CD 夹角为θ,则cosθ=|BM⃗⃗⃗⃗⃗⃗⃗ ⋅CD ⃗⃗⃗⃗⃗ ||BM⃗⃗⃗⃗⃗⃗⃗ |⋅|CD ⃗⃗⃗⃗⃗ |=12√34=√33.∴二面角M −BC −D 的正弦值为√1−cos2θ=(√33)=√63.13. 在我国古代数学名著《九章算术》中,将四个面都是直角三角形的四面体称为“鳖臑”,在鳖臑A—BCD 中,AB ⊥平面BCD ,BD ⊥CD ,且AB =BD =CD ,M 为AD 的中点,则异面直线BM 与CD 所成角的正弦值为A. 0B. √33C. √63D. 1【答案】D【解析】 解:设AB =BD =CD =1,因为BD ⊥CD ,AB ⊥平面BCD ,所以CD ⊥AB ,AB ∩BD =B ,所以CD ⊥面ABD ,CD ⊥AM ,则异面直线BM 与CD 所成角为90° 异面直线BM 与CD 所成角的正弦值为1,14.刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P−ABCD中,PA⊥平面ABCD,BC=2PA=4,AB=3,E为PD中点.则异面直线AE与BD所成角的余弦值为A. 35B. 25C. 6√525D. 8√525【答案】D【解析】解:如图,取PB中点为F,连接AF,EF,∵E为PD中点,∴FE//BD,∴∠AEF(或补角)为异面直线AE与BD所成的角.由已知,得AE=12PD=√5,AF=12PB=√132,EF=12BD=52,cos∠AEF=AE2+EF2−AF22AE⋅EF=8√525.即AE与BD所成角的余弦值为8√525.15.在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC 与BD所成角的余弦值为().A. 12B. -12C. √32D. -√32【答案】A【解析】解:如图所示,分别取AB,AD,BC,BD的中点E,F,G,O,则EF//BD,EG//AC,FO⊥OG,∴∠FEG为异面直线AC与BD所成角.设AB=2a,则EG=EF=√2a,FG=√a2+a2=√2a,∴∠FEG=60°,∴异面直线AC与BD所成角的余弦值为12,16.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,已知鳖臑P−ABC的三视图如图所示(单位:cm),则该几何体的外接球的表面积为(单位:cm2)()A. 41πB. 16πC. 25πD. 64π【答案】A【解析】解:由题意将三视图还原几何体,看作是长方体(长4,宽3,高4)截得的三棱锥, 所以球O 的直径,2R =√42+32+42=√41, ∴球O 的半径为√412,∴球O 的表面积为4π⋅(√412)2=41π.17. 刘徽注《九章算术·商功》有载:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马P −ABCD 中,PA ⊥平面ABCD ,BC =2PA =4,AB =3,E 为PD 中点.则异面直线AE 与BD 所成角的余弦值为( )A. 35B. 25C. 6√525D. 8√525【答案】D【解析】 解:如图,取PB 中点为F ,连接AF ,EF ,∵E 为PD 中点,∴FE//BD ,∴∠AEF(或补角)为异面直线AE 与BD 所成的角.由已知,得AE =12PD =√5,AF =12PB =√132,EF =12BD =52,cos ∠AEF =AE 2+EF 2−AF 22AE⋅EF=8√525. 即AE 与BD 所成角的余弦值为8√525.18. 《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P -ABC为鳖臑,PA ⊥平面ABC ,PA=3,AB=4,AC=5,三棱锥P -ABC 的四个顶点都在球O 的球面上,则球O 的表面积为( ) A. 17π B. 25π C. 34π D. 50π 【答案】C【解析】解:由题意,PC为球O的直径,∵PC=√PA2+AC2=√9+25=√34,∴球O的半径R=PC2=√342,∴球O的表面积S=4πR2=4π×(√342)2=34π.19.《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵ABC−A1B1C1中,已知AB=3,BC=4,AC=5,若阳马C1−ABB1A1的外接球的表面积等于50π,则鳖臑C1−ABC的所有棱中,最长的棱的棱长为A. 5B. √41C. 5√2D. 8【答案】C【解析】解:由题意知,直三棱柱ABC−A1B1C1中,AA1=AC=5,AB=3,BC=4,四棱锥C1−ABB1A1的外接球即为直三棱柱的外接球,以AB、BC、BB1为共顶点,画出长方体,如图所示,则长方体的最长的棱的棱长为AC1,即外接球的直径,∴外接球的表面积是.∴R=5√2 2∴鳖臑C1−ABC的所有棱中,最长的棱的棱长为AC1=2R=5√2.20.中国古代第一部数学名著《九章算术》中,将一般多面体分为阳马、鳖臑、堑堵三种基本立体图形,其中将四个面都为直角三角形的三棱锥称之为鳖,若三棱锥Q−ABC为鳖臑,QA⊥平面ABC,AB⊥BC,QA=BC=3,AC=5,则三棱锥Q−ABC 外接球的表面积为()A. 16πB. 20πC. 30πD. 34π【答案】D【解析】解:如图,补全为长方体,则2R=√32+42+32=√34,∴R=√342,故外接球得表面积为4πR2=34π,由题意画出图形,补全为长方体,求出长方体的对角线长,可得三棱锥Q−ABC外接球的半径,则答案可求.本题考查多面体外接球的表面积的求法,考查数形结合的解题思想方法,是基础题.二、填空题(本大题共4小题,共20.0分)21.在我国古代的数学专著《九章算术》中,将四个面均为直角三角形的三棱锥称为鳖臑(biēnào),已知鳖臑P−ABC中,PA⊥平面ABC,AB⊥BC,若PA=AB=2√2,BC=2,E,F分别是PB,PC的中点,则三棱锥P−AEF的外接球的表面积为________.【答案】9π【解析】解:PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又因为AB⊥BC,PA∩AB=A,PA,AB⊂面PAB,所以BC⊥面PAB,∵AE⊂面PAB,∴BC⊥AE,∵PA=AB,E为PB的中点,所以AE⊥PB,PB∩BC=B,PB,BC⊂面PBC,所以AE⊥面PBC,∵EF⊂面PBC,所以AE⊥EF,AE⊥PE,又EF//BC,所以EF⊥PE,则EF,PE,AE两两垂直,EF=12BC=1,PE=AE=2,所以三棱锥P−AEF的外接球半径为√1+4+42=32,故球的表面积为4×(94)π=9π,22.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.”这里所谓的“鳖臑(biēnào)”,就是在对长方体进行分割时所产生的四个面都为直角三角形的三棱锥.已知三棱锥A−BCD是一个“鳖臑”,AB⊥平面BCD,AC⊥CD,且AB=BC=CD=2,则三棱锥A−BCD的外接球的表面积为________.【答案】12π【解析】解:∵三棱锥A−BCD是一个“鳖臑”,AB⊥平面BCD,AC⊥CD,且AB=BC=CD=2,∴三棱锥A−BCD的外接球的半径:R=AD2=√AB2+BC2+CD22=√4+4+42=√3∴三棱锥A−BCD的外接球的表面积为:S=4πR2=12π.故答案为12π.23.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P−ABC为鳖臑,PA⊥平面ABC,PA=AB=2,AC=4,三棱锥P−ABC的四个顶点都在球O的球面上,则球O的表面积为_______ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

空间位置关系的判断与证明(1)高考对此部分的命题较为稳定,一般为“一小一大”或“一大”,即一道选择题(或填空题)和一道解答题或只考一道解答题.(2)选择题一般在第9~11题的位置,填空题一般在第14题的位置,多考查线面位置关系的判断,难度较小.(3)解答题多出现在第18或19题的第一问的位置,考查空间中平行或垂直关系的证明,难度中等.考点一 空间点、线、面的位置关系[大稳定——常规角度考双基]1.[命题真假的判定]已知直线m ,l ,平面α,β,且m ⊥α,l ⊂β,给出下列命题: ①若α∥β,则m ⊥l ;②若α⊥β,则m ∥l ;③若m ⊥l ,则α⊥β;④若m ∥l ,则α⊥β.其中正确的命题是( )A .①④B .③④C .①②D .①③解析:选A 对于①,若α∥β,m ⊥α,则m ⊥β,又l ⊂β,所以m ⊥l ,故①正确,排除B.对于④,若m ∥l ,m ⊥α,则l ⊥α,又l ⊂β,所以α⊥β.故④正确.故选A.2.[判断直线与直线的位置关系](2019·全国卷Ⅲ)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线解析:选B 法一:取CD 的中点O ,连接EO ,ON .由△ECD 是正三角形,平面ECD ⊥平面ABCD ,知EO ⊥平面ABCD .∴EO ⊥CD ,EO ⊥ON .又N 为正方形ABCD 的中心,∴ON ⊥CD .以CD 的中点O 为原点, OD ―→方向为x 轴正方向建立空间直角坐标系,如图①所示.不妨设AD =2,则E (0,0,3),N (0,1,0),D (1,0,0),M ⎝⎛⎭⎫12,0,32,B (-1,2,0),∴EN = 12+(-3)2=2,BM = ⎝⎛⎭⎫322+4+34=7, ∴EN ≠BM .连接BD ,BE ,∵点N 是正方形ABCD 的中心,∴点N 在BD 上,且BN =DN ,∴BM ,EN 是△DBE 的中线,∴BM ,EN 必相交.故选B.法二:如图②,取CD 的中点F ,DF 的中点G ,连接EF ,FN ,MG ,GB .∵△ECD 是正三角形,∴EF ⊥CD .∵平面ECD ⊥平面ABCD ,∴EF ⊥平面ABCD .∴EF ⊥FN .不妨设AB =2,则FN =1,EF =3,∴EN = FN 2+EF 2=2.∵EM =MD ,DG =GF ,∴MG ∥EF 且MG =12EF ,∴MG ⊥平面ABCD , ∴MG ⊥BG .∵MG =12EF =32, BG = CG 2+BC 2= ⎝⎛⎭⎫322+22=52, ∴ BM = MG 2+BG 2=7.∴ BM ≠EN .连接BD ,BE ,∵ 点N 是正方形ABCD 的中心,∴ 点N 在BD 上,且BN =DN ,∴ BM ,EN 是△DBE 的中线,∴ BM ,EN 必相交.故选B.3.[线面垂直、面面垂直的判定]如图,在正方形ABCD 中,E ,F 分别是BC ,CD 的中点,G 是EF 的中点,现在沿AE ,AF 及EF 把这个正方形折成一个空间图形,使B ,C ,D 三点重合,重合后的点记为H ,那么,在这个空间图形中必有( )A .AG ⊥平面EFHB .AH ⊥平面EFHC .HF ⊥平面AEFD .HG ⊥平面AEF解析:选B 根据折叠前、后AH ⊥HE ,AH ⊥HF 不变,得AH ⊥平面EFH ,B 正确;∵过A 只有一条直线与平面EFH 垂直,∴A 不正确;∵AG ⊥EF ,EF ⊥GH ,AG ∩GH =G ,∴EF ⊥平面HAG ,又EF ⊂平面AEF ,∴平面HAG ⊥AEF ,过H 作直线垂直于平面AEF ,一定在平面HAG 内,∴C 不正确;由条件证不出HG ⊥平面AEF ,∴D 不正确.故选B.4.[求异面直线所成的角](2018·全国卷Ⅱ)在正方体ABCD ­A 1B 1C 1D 1中,E 为棱CC 1的中点,则异面直线AE 与CD 所成角的正切值为( )A .22B .32C .52D .72解析:选C 如图,连接BE ,因为AB ∥CD ,所以AE 与CD 所成的角为∠EAB .在Rt △ABE 中,设AB =2,则BE =5,则tan ∠EAB =BE AB =52,所以异面直线AE 与CD 所成角的正切值为52.故选C. [解题方略]判断与空间位置关系有关命题真假的3种方法(1)借助空间线面平行、面面平行、线面垂直、面面垂直的判定定理和性质定理进行判断;(2)借助空间几何模型,如从长方体模型、四面体模型等模型中观察线面位置关系,结合有关定理进行判断;(3)借助于反证法,当从正面入手较难时,可利用反证法,推出与题设或公认的结论相矛盾的命题,进而作出判断.[小创新——变换角度考迁移]1.[与充要条件交汇](2019·全国卷Ⅱ)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面解析:选B 若α∥β,则α内有无数条直线与β平行,反之不成立;若α,β平行于同一条直线,则α与β可以平行也可以相交;若α,β垂直于同一平面,则α与β可以平行也可以相交,故A 、C 、D 均不是充要条件.根据平面与平面平行的判定定理知,若一个平面内有两条相交直线与另一个平面平行,则两平面平行,反之成立.因此B 中条件是α∥β的充要条件.故选B.2.[与命题的交汇](2019·北京高考)已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:____________.解析:已知l ,m 是平面α外的两条不同直线,由①l ⊥m 与②m ∥α,不能推出③l ⊥α,因为l 可以与α平行,也可以相交不垂直;由①l ⊥m 与③l ⊥α能推出②m ∥α;由②m ∥α与③l ⊥α可以推出①l ⊥m .故正确的命题是②③⇒①或①③⇒②.答案:②③⇒①或①③⇒②3.[线面角与其他问题的交汇](2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为________.解析:如图,∵SA 与底面成45°角,∴△SAO 为等腰直角三角形.设OA =r ,则SO =r ,SA =SB =2r .在△SAB 中,cos ∠ASB =78,∴sin ∠ASB =158, ∴S △SAB =12SA ·SB ·sin ∠ASB =12×(2r )2×158=515,解得r=210,∴SA=2r=45,即母线长l=45,∴S圆锥侧=πrl=π×210×45=402π.答案:402π考点二空间平行、垂直关系的证明[例1]如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD,E和F分别是CD和PC的中点,求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.[证明](1)∵平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,PA⊂平面PAD,∴PA⊥底面ABCD.(2)∵AB∥CD,CD=2AB,E为CD的中点,∴AB∥DE,且AB=DE.∴四边形ABED为平行四边形.∴BE∥AD.又∵BE⊄平面PAD,AD⊂平面PAD,∴BE∥平面PAD.(3)∵AB⊥AD,且四边形ABED为平行四边形.∴BE⊥CD,AD⊥CD,由(1)知PA⊥底面ABCD.∴PA⊥CD.∵PA∩AD=A,PA⊂平面PAD,AD⊂平面PAD,∴CD⊥平面PAD,又PD⊂平面PAD,∴CD⊥PD.∵E和F分别是CD和PC的中点,∴PD∥EF,∴CD⊥EF.又BE⊥CD且EF∩BE=E,∴CD⊥平面BEF.又CD⊂平面PCD,∴平面BEF⊥平面PCD.[解题方略]1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a ∥α,a ⊂β,α∩β=b ⇒a ∥b .(3)面面平行的判定定理:a ⊂β,b ⊂β,a ∩b =P ,a ∥α,b ∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b .2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m ⊂α,n ⊂α,m ∩n =P ,l ⊥m ,l ⊥n ⇒l ⊥α.(2)线面垂直的性质定理:a ⊥α,b ⊥α⇒a ∥b .(3)面面垂直的判定定理:a ⊂β,a ⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l ,a ⊂α,a ⊥l ⇒a ⊥β.[多练强化]1.如图,在四棱锥P -ABCD 中,平面PAB ⊥平面ABCD ,AD ∥BC ,PA ⊥AB ,CD ⊥AD ,BC =CD =12AD . 求证:(1)PA ⊥CD ;(2)平面PBD ⊥平面PAB .证明:(1)因为平面PAB ⊥平面ABCD ,平面PAB ∩平面ABCD =AB ,又因为PA ⊥AB ,所以PA ⊥平面ABCD ,又CD ⊂平面ABCD ,所以PA ⊥CD .(2)取AD 的中点为E ,连接BE ,由已知得,BC ∥ED ,且BC =ED ,所以四边形BCDE 是平行四边形,又CD ⊥AD ,BC =CD ,所以四边形BCDE 是正方形,连接CE ,所以BD ⊥CE .又因为BC ∥AE ,BC =AE ,所以四边形ABCE 是平行四边形,所以CE ∥AB ,则BD ⊥AB .由(1)知PA ⊥平面ABCD ,所以PA ⊥BD ,又因为PA ∩AB =A ,所以BD ⊥平面PAB ,因为BD ⊂平面PBD ,所以平面PBD ⊥平面PAB .2.如图,四边形ABCD 与四边形ADEF 均为平行四边形,M ,N ,G 分别是AB ,AD ,EF 的中点.求证:(1)BE ∥平面DMF ;(2)平面BDE ∥平面MNG .证明:(1)如图,连接AE ,则AE 必过DF 与GN 的交点O ,连接MO ,则MO 为△ABE 的中位线,所以BE ∥MO ,又BE ⊄平面DMF ,MO ⊂平面DMF ,所以BE ∥平面DMF .(2)因为N ,G 分别为平行四边形ADEF 的边AD ,EF 的中点,所以DE ∥GN ,又DE ⊄平面MNG ,GN ⊂平面MNG ,所以DE ∥平面MNG .又M 为AB 的中点,N 为AD 的中点,所以MN 为△ABD 的中位线,所以BD ∥MN ,又BD ⊄平面MNG ,MN ⊂平面MNG ,所以BD ∥平面MNG ,又DE 与BD 为平面BDE 内的两条相交直线,所以平面BDE ∥平面MNG .考点三 平面图形中的折叠问题[例2] 如图①,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2,E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直,如图②.在图②所示的几何体D ­ABC 中.(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.[解] (1)证明:∵AC = AD 2+CD 2=22,∠BAC =∠ACD =45°,AB =4,∴在△ABC 中,BC 2=AC 2+AB 2-2AC ×AB ×cos 45°=8,∴AB 2=AC 2+BC 2=16,∴AC ⊥BC ,∵平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,BC ⊂平面ABC ,∴BC ⊥平面ACD .(2)∵AD ∥平面BEF ,AD ⊂平面ACD ,平面ACD ∩平面BEF =EF ,∴AD ∥EF ,∵E 为AC 的中点,∴EF 为△ACD 的中位线,由(1)知,V F ­BCE =V B ­CEF =13×S △CEF ×BC , S △CEF =14S △ACD =14×12×2×2=12, ∴V F ­BCE =13×12×22=23. [解题方略] 平面图形折叠问题的求解方法(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量,一般情况下,线段的长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.[多练强化]如图①,在矩形ABCD 中,AB =3,BC =4,E ,F 分别在线段BC ,AD 上,EF ∥AB ,将矩形ABEF 沿EF 折起,记折起后的矩形为MNEF ,且平面MNEF ⊥平面ECDF ,如图②.(1)求证:NC ∥平面MFD ;(2)若EC =3,求证:ND ⊥FC ;(3)求四面体NEFD 体积的最大值.解:(1)证明:∵四边形MNEF 和四边形EFDC 都是矩形,∴MN ∥EF ,EF ∥CD ,MN =EF =CD ,∴MN 綊CD .∴四边形MNCD 是平行四边形,∴NC ∥MD .∵NC ⊄平面MFD ,MD ⊂平面MFD ,∴NC ∥平面MFD .(2)证明:连接ED ,∵平面MNEF ⊥平面ECDF ,且NE ⊥EF ,平面MNEF ∩平面ECDF =EF ,NE ⊂平面MNEF ,∴NE ⊥平面ECDF .∵FC ⊂平面ECDF ,∴FC ⊥NE .∵EC =CD ,∴四边形ECDF 为正方形,∴FC ⊥ED .又∵ED ∩NE =E ,ED ,NE ⊂平面NED ,∴FC ⊥平面NED .∵ND ⊂平面NED ,∴ND ⊥FC .(3)设NE =x ,则FD =EC =4-x ,其中0<x <4,由(2)得NE ⊥平面FEC ,∴四面体NEFD 的体积为V NEFD =13S △EFD ·NE =13×12×3×(4-x )x =12x (4-x ). ∴V 四面体NEFD ≤12⎣⎢⎡⎦⎥⎤x +(4-x )22=2,当且仅当x=4-x,即x=2时,四面体NEFD的体积最大,最大值为2.逻辑推理——转化思想在平行、垂直证明中的应用[典例]如图,在三棱锥A­BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.[证明](1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB,又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.[素养通路]本题(1)证明线面平行的思路是转化为证明线线平行,即证明EF与平面ABC内的一条直线平行,从而得到EF∥平面ABC;(2)证明线线垂直可转化为证明线面垂直,由平面ABD⊥平面BCD,根据面面垂直的性质定理得BC⊥平面ABD,则可证明AD⊥平面ABC,再根据线面垂直的性质,得到AD⊥AC.考查了逻辑推理这一核心素养.[专题过关检测]A组——“6+3+3”考点落实练一、选择题1.设α为平面,a,b为两条不同的直线,则下列叙述正确的是()A.若a∥α,b∥α,则a∥bB.若a⊥α,a∥b,则b⊥αC.若a⊥α,a⊥b,则b∥αD.若a∥α,a⊥b,则b⊥α解析:选B若a∥α,b∥α,则a与b相交、平行或异面,故A错误;易知B正确;若a⊥α,a⊥b,则b∥α或b⊂α,故C错误;若a∥α,a⊥b,则b∥α或b⊂α或b与α相交,故D错误.故选B.2.设l是直线,α,β是两个不同的平面,则下列说法正确的是()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l∥βD.若α⊥β,l∥α,则l⊥β解析:选B对于A,若l∥α,l∥β,则α∥β或α与β相交,故A错误;易知B正确;对于C,若α⊥β,l⊥α,则l∥β或l⊂β,故C错误;对于D,若α⊥β,l∥α,则l与β的位置关系不确定,故D错误.故选B.3.如图,在三棱锥D-ABC中,若AB=CB,AD=CD,E是AC的中点,则下列命题中正确的是()A.平面ABC⊥平面ABDB.平面ABD⊥平面BCDC.平面ABC⊥平面BDE,且平面ACD⊥平面BDED.平面ABC⊥平面ACD,且平面ACD⊥平面BDE解析:选C因为AB=CB,且E是AC的中点,所以BE⊥AC,同理,DE⊥AC,由于DE∩BE=E,于是AC⊥平面BDE.因为AC⊂平面ABC,所以平面ABC⊥平面BDE.又AC⊂平面ACD,所以平面ACD⊥平面BDE.故选C.4.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m⊥α,m⊥β,则α∥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n∥β,m∥n,则α∥β.其中正确的命题是()A.①②B.②③C .①④D .②④解析:选B 两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.故选B.5.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,则异面直线AD 1与DB 1所成角的余弦值为( )A .15B .56C .55D .22解析:选C 如图,连接BD 1,交DB 1于O ,取AB 的中点M ,连接DM ,OM ,易知O 为BD 1的中点,所以AD 1∥OM ,则∠MOD 为异面直线AD 1与DB 1所成角.因为在长方体ABCD -A 1B 1C 1D 1中,AB =BC =1,AA 1=3,AD 1=AD 2+DD 21=2,DM =AD 2+⎝⎛⎭⎫12AB 2=52,DB 1=AB 2+AD 2+DD 21=5,所以OM =12AD 1=1,OD =12DB 1=52,于是在△DMO 中,由余弦定理,得cos ∠MOD =12+⎝⎛⎭⎫522-⎝⎛⎭⎫5222×1×52=55,即异面直线AD 1与DB 1所成角的余弦值为55.故选C. 6.如图,在矩形ABCD 中,AB =3,BC =1,将△ACD 沿AC 折起,使得D 折起后的位置为D 1,且D 1在平面ABC 上的射影恰好落在AB 上,在四面体D 1ABC 的四个面中,有n 对平面相互垂直,则n 等于( )A .2B .3C .4D .5解析:选B 如图,设D 1在平面ABC 上的射影为E ,连接D 1E ,则D 1E ⊥平面ABC ,因为D 1E ⊂平面ABD 1,所以平面ABD 1⊥平面ABC .因为D 1E ⊥平面ABC ,BC ⊂平面ABC , 所以D 1E ⊥BC ,又AB ⊥BC ,D 1E ∩AB =E , 所以BC ⊥平面ABD 1, 又BC ⊂平面BCD 1,所以平面BCD 1⊥平面ABD 1,因为BC ⊥平面ABD 1,AD 1⊂平面ABD 1, 所以BC ⊥AD 1,又CD 1⊥AD 1,BC ∩CD 1=C , 所以AD 1⊥平面BCD 1,又AD 1⊂平面ACD 1, 所以平面ACD 1⊥平面BCD 1. 所以共有3对平面互相垂直.故选B. 二、填空题7.正方体ABCD -A 1B 1C 1D 1的棱长为2,点M 为CC 1的中点,点N 为线段DD 1上靠近D 1的三等分点,平面BMN 交AA 1于点Q ,则线段AQ 的长为________.解析:如图所示,在线段DD 1上靠近点D 处取一点T ,使得DT =13,因为N 是线段DD 1上靠近D 1的三等分点,故D 1N =23,故NT =2-13-23=1,因为M 为CC 1的中点,故CM =1,连接TC ,由NT ∥CM ,且CM =NT =1,知四边形CMNT 为平行四边形,故CT ∥MN ,同理在AA 1上靠近A 处取一点Q ′,使得AQ ′=13,连接BQ ′,TQ ′,则有BQ ′∥CT ∥MN ,故BQ ′与MN 共面,即Q ′与Q 重合,故AQ =13.答案:138.如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于点E ,AF ⊥DC 交DC 于点F ,且AD =AB =2,则三棱锥D -AEF 体积的最大值为________.解析:因为DA ⊥平面ABC ,所以DA ⊥BC ,又BC ⊥AC ,DA ∩AC=A ,所以BC ⊥平面ADC ,所以BC ⊥AF .又AF ⊥CD ,BC ∩CD =C ,所以AF ⊥平面DCB ,所以AF ⊥EF ,AF ⊥DB .又DB ⊥AE ,AE ∩AF =A ,所以DB ⊥平面AEF ,所以DE 为三棱锥D -AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF 的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D -AEF 的体积V ≤13×12×2=26(当且仅当a =b =1时等号成立).答案:269.在长方体ABCD -A 1B 1C 1D 1中,AB =AD =4,AA 1=2.过点A 1作平面α与AB ,AD 分别交于M ,N 两点,若AA 1与平面α所成的角为45°,则截面A 1MN 面积的最小值是________.解析:如图,过点A 作AE ⊥MN ,连接A 1E ,因为A 1A ⊥平面ABCD ,所以A 1A ⊥MN ,所以MN ⊥平面A 1AE ,所以A 1E ⊥MN ,平面A 1AE ⊥平面A 1MN ,所以∠AA 1E 为AA 1与平面A 1MN 所成的角,所以∠AA 1E =45°,在Rt △A 1AE 中,因为AA 1=2,所以AE =2,A 1E =22,在Rt △MAN 中,由射影定理得ME ·EN =AE 2=4,由基本不等式得MN =ME +EN ≥2ME ·EN =4,当且仅当ME =EN ,即E 为MN 的中点时等号成立,所以截面A 1MN 面积的最小值为12×4×22=4 2.答案:4 2 三、解答题10.(2019·全国卷Ⅲ)图①是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连接DG ,如图②.(1)证明:图②中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图②中的四边形ACGD 的面积.解:(1)证明:由已知得AD ∥BE ,CG ∥BE ,所以AD∥CG,故AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连接EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°,得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM=3,故DM=2.所以四边形ACGD的面积为4.11.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.证明:(1)如图,取CE的中点G,连接FG,BG.因为F为CD的中点,所以GF∥DE且GF=12DE.因为AB⊥平面ACD,DE⊥平面ACD,所以AB∥DE,所以GF∥AB.又因为AB=12DE,所以GF=AB.所以四边形GFAB为平行四边形,则AF∥BG.因为AF⊄平面BCE,BG⊂平面BCE,所以AF∥平面BCE.(2)因为△ACD为等边三角形,F为CD的中点,所以AF⊥CD.因为DE⊥平面ACD,AF⊂平面ACD,所以DE⊥AF.又CD∩DE=D,所以AF⊥平面CDE.因为BG∥AF,所以BG⊥平面CDE.又因为BG⊂平面BCE,所以平面BCE⊥平面CDE.12.如图1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,点E是BC边的中点,将△ABD沿BD折起,使平面ABD⊥平面BCD,连接AE,AC,DE,得到如图2所示的几何体.(1)求证:AB⊥平面ADC;(2)若AD=1,AC与其在平面ABD内的正投影所成角的正切值为6,求点B到平面ADE的距离.解:(1)证明:因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,又DC⊥BD,DC⊂平面BCD,所以DC⊥平面ABD.因为AB⊂平面ABD,所以DC⊥AB.又因为折叠前后均有AD⊥AB,且DC∩AD=D,所以AB⊥平面ADC.(2)由(1)知DC⊥平面ABD,所以AC在平面ABD内的正投影为AD,即∠CAD为AC与其在平面ABD内的正投影所成的角.=6,依题意知tan∠CAD=DCAD因为AD=1,所以DC= 6.设AB =x (x >0),则BD = x 2+1, 易知△ABD ∽△DCB ,所以AB AD =DC BD, 即x 1=6x 2+1,解得x =2,故AB =2,BD =3,BC =3. 由于AB ⊥平面ADC ,所以AB ⊥AC ,又E 为BC 的中点,所以由平面几何知识得AE =BC 2=32,同理DE =BC 2=32,∴S △ADE =12×1×⎝⎛⎭⎫322-⎝⎛⎭⎫122=22,∵DC ⊥平面ABD∴V A ­BCD =13CD ·S △ABD =33,设点B 到平面ADE 的距离为d ,则13d ·S △ADE =V B ­ADE =V A ­BDE =12V A ­BCD =36, ∴d =62,即点B 到平面ADE 的距离为62. B 组——大题专攻强化练1.如图,三棱柱ABC -A 1B 1C 1中,底面ABC 是等边三角形,侧面BCC 1B 1是矩形,AB =A 1B ,N 是B 1C 的中点,M 是棱AA 1上的点,且AA 1⊥CM .(1)证明:MN ∥平面ABC ;(2)若AB ⊥A 1B ,求二面角A -CM -N 的余弦值.解:(1)证明:如图1,在三棱柱ABC -A 1B 1C 1中,连接BM .因为BCC 1B 1是矩形,所以BC ⊥BB 1.因为AA 1∥BB 1,所以AA 1⊥BC . 又AA 1⊥MC ,BC ∩MC =C ,所以AA 1⊥平面BCM , 所以AA 1⊥MB ,又AB =A 1B ,所以M 是AA 1的中点.取BC 的中点P ,连接NP ,AP ,因为N 是B 1C 的中点,所以NP ∥BB 1,且NP =12BB 1,所以NP ∥MA ,且NP =MA ,所以四边形AMNP 是平行四边形,所以MN ∥AP . 又MN ⊄平面ABC ,AP ⊂平面ABC ,所以MN ∥平面ABC .(2)因为AB ⊥A 1B ,所以△ABA 1是等腰直角三角形,设AB =2a , 则AA 1=2a ,BM =AM =a .又在Rt △ACM 中,AC =2a ,所以MC =a . 在△BCM 中,CM 2+BM 2=2a 2=BC 2,所以MC ⊥BM ,所以MA 1,MB ,MC 两两垂直,如图2,以M 为坐标原点, MA 1―→,MB ―→,MC ―→的方向分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则M (0,0,0),C (0,0,a ),B 1(2a ,a ,0),所以MC ―→=(0,0,a ),N ⎝⎛⎭⎫a ,a 2,a 2,则MN ―→=⎝⎛⎭⎫a ,a 2,a 2. 设平面CMN 的法向量为n 1=(x ,y ,z ),则⎩⎪⎨⎪⎧n 1·MC ―→=0,n 1·MN ―→=0,即⎩⎪⎨⎪⎧az =0,ax +a 2y +a 2z =0,得z =0, 取x =1得y =-2.故平面CMN 的一个法向量为n 1=(1,-2,0). 因为平面ACM 的一个法向量为n 2=(0,1,0), 所以cos 〈n 1,n 2〉=n 1·n 2|n 1||n 2|=-255.因为二面角A -CM -N 为钝角, 所以二面角A -CM -N 的余弦值为-255.2.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为菱形,E为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.解:(1)证明:因为PA⊥平面ABCD,所以PA⊥BD.因为底面ABCD为菱形,所以BD⊥AC.又PA∩AC=A,所以BD⊥平面PAC.(2)证明:因为PA⊥平面ABCD,AE⊂平面ABCD,所以PA⊥AE.因为底面ABCD为菱形,∠ABC=60°,且E为CD的中点,所以AE⊥CD.所以AB⊥AE.又AB∩PA=A,所以AE⊥平面PAB.因为AE⊂平面PAE,所以平面PAB⊥平面PAE.(3)棱PB上存在点F,使得CF∥平面PAE.取PB的中点F,PA的中点G,连接CF,FG,EG,则FG∥AB,且FG=12AB.因为底面ABCD为菱形,且E为CD的中点,所以CE∥AB,且CE=12AB.所以FG∥CE,且FG=CE.所以四边形CEGF为平行四边形.所以CF∥EG.因为CF⊄平面PAE,EG⊂平面PAE,所以CF∥平面PAE.3.如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a ,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到图2中△A 1BE 的位置,得到四棱锥A 1­BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1­BCDE 的体积为362,求a 的值. 解:(1)证明:在图1中,因为AB =BC =12AD =a ,E 是AD 的中点,∠BAD =π2,所以BE ⊥AC .即在图2中,BE ⊥A 1O ,BE ⊥OC , 从而BE ⊥平面A 1OC , 又CD ∥BE , 所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE , 且平面A 1BE ∩平面BCDE =BE , 又由(1)知,A 1O ⊥BE , 所以A 1O ⊥平面BCDE , 即A 1O 是四棱锥A 1­BCDE 的高. 由图1知,A 1O =22AB =22a ,平行四边形BCDE 的面积S =BE ·OC =a 2. 从而四棱锥A 1­BCDE 的体积为 V =13×S ×A 1O =13×a 2×22a =26a 3,由26a 3=362,得a =6. 4.(2019·天津高考)如图,在四棱锥P -ABCD 中,底面ABCD 为平行四边形,△PCD 为等边三角形,平面PAC ⊥平面PCD ,PA⊥CD ,CD =2,AD =3.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.解:(1)证明:连接BD ,易知AC ∩BD =H ,BH =DH .又由BG =PG ,故GH ∥PD .又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD .(2)证明:取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC .又因为平面PAC ⊥平面PCD ,平面PAC ∩平面PCD =PC ,所以DN ⊥平面PAC .又PA ⊂平面PAC ,所以DN ⊥PA .又已知PA ⊥CD ,CD ∩DN =D ,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知∠DAN 为直线AD 与平面PAC 所成的角. 因为△PCD 为等边三角形,CD =2且N 为PC 的中点,所以DN = 3.又DN ⊥AN ,在Rt △AND 中,sin ∠DAN =DN AD =33. 所以,直线AD 与平面PAC 所成角的正弦值为33.。

相关文档
最新文档