2011年广州市普通高中毕业班综合测试文科数2011

合集下载

2011年广州市高三第二次模拟考试试题答案

2011年广州市高三第二次模拟考试试题答案

2011年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题. 11.3 12.2 13.①③ 14.23715.sin 13πρθ⎛⎫-=⎪⎝⎭或cos 16πρθ⎛⎫+= ⎪⎝⎭或4sin 13πρθ⎛⎫-= ⎪⎝⎭cos sin 20θρθ--= 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查概率与统计的概念,考查运算求解能力等.)解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人. 记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, …………………………………………………………………………………4分 解得6a =. ………………………………………………………………………………………………5分因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………………………………………………………………………7分 (2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.………………………9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…………………12分 17.(本小题满分12分)(本小题主要考查方位角、正弦定理、余弦定理等基础知识,考查运算求解能力等.)解:(1)依题意,120BAC ∠=,12AB =,10220AC =⨯=,BCA α∠=.………………………2分在△ABC 中,由余弦定理,得2222cos BC AB AC AB AC BAC =+-⨯⨯∠ ……………………4分22122021220cos120784=+-⨯⨯⨯=.解得28BC =.………………………………………………………6分所以渔船甲的速度为142BC=海里/小时. 答:渔船甲的速度为14海里/小时.…………………………………7分(2)方法1:在△ABC 中,因为12AB =,120BAC ∠=,28BC =,BCA α∠=,由正弦定理,得sin sin120AB BCα=.……………………………………………………………………9分即12sin1202sin 28AB BCα===. 答:sin α.………………………………………………………………………………12分 方法2:在△ABC 中,因为12AB =,20AC =,28BC =,BCA α∠=,由余弦定理,得222cos 2AC BC AB AC BC α+-=⨯.…………………………………………………………9分即22220281213cos 2202814α+-==⨯⨯. 因为α为锐角,所以sin α===答:sin α.………………………………………………………………………………12分 18.(本小题满分14分)60ABC东南西北 α(本小题主要考查等差数列、等比数列、不等式等基础知识,考查方程思想以及运算求解能力.) 解:(1)设等差数列{}n a 的公差为d ,则()112n n n S na d -=+.………………………………………1分 由已知,得111091055,2201920210.2a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩………………………………………………………………………3分 即112911,21921.a d a d +=⎧⎨+=⎩解得11,1.a d =⎧⎨=⎩…………………………………………………………………………5分所以1(1)n a a n d n =+-=(n *∈N ).………………………………………………………………6分 (2)假设存在m 、k ()2,,k m m k >≥∈N ,使得1b 、m b 、k b 成等比数列,则21m k b bb =.……………………………………………………………………………………………7分 因为11n n n a nb a n +==+,…………………………………………………………………………………8分 所以11,,211m k m k b b b m k ===++. 所以21121m k m k ⎛⎫=⨯ ⎪++⎝⎭.……………………………………………………………………………9分 整理,得22221m k m m =-++.…………………………………………………………………………10分 以下给出求m ,k 的三种方法:方法1:因为0k >,所以2210m m -++>.………………………………………………………11分解得11m <<12分 因为2,m m ≥∈*N , 所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………………………………………14分方法2:因为k m >,所以22221m k m m m =>-++.…………………………………………………11分 即221021mm m +<--,即221021m m m -<--.解得11m -<<11m <<………………………………………………………………12分 因为2,m m ≥∈*N , 所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………………………………………14分方法3:因为2k m >≥,所以222221m k m m =>-++.……………………………………………11分 即221021m m m +<--,即22221021m m m m --<--.解得1m <<1m <<12分 因为2,m m ≥∈*N , 所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………………………………………14分19.(本小题满分14分)(本小题主要考查锥体体积,空间线线、线面关系,三视图等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.)(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以EA AC ⊥,即ED AC ⊥.又因为AC AB ⊥,AB ED A =,所以AC ⊥平面EBD .因为BD EBD ⊂平面,所以AC BD ⊥.………………………………………………………………4分 (2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以BC 为圆O 的直径.设圆O 的半径为r ,圆柱高为h ,根据正(主)视图、侧(左)视图的面积可得,12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩…………………………………………6分 解得2,2.r h =⎧⎨=⎩所以4BC =,AB AC ==8分以下给出求三棱锥E BCD -体积的两种方法: 方法1:由(1)知,AC ⊥平面EBD ,AD 1A 1EBCOD所以13E BCD C EBD EBD V V S CA --∆==⨯.………………………………………………………………10分 因为EA ABC ⊥平面,AB ABC ⊂平面, 所以EA AB ⊥,即ED AB ⊥.其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422EBD S ED AB ∆=⨯⨯=⨯⨯=.…………………………………………………13分所以11633E BCD V -=⨯=.…………………………………………………………………14分方法2:因为EA ABC ⊥平面,所以111333E BCD E ABC D ABC ABC ABC ABC V V V S EA S DA S ED ---∆∆∆=+=⨯+⨯=⨯.…………………10分其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422ABC S AC AB ∆=⨯⨯=⨯=.…………………………………………………13分 所以1164433E BCDV -=⨯⨯=.…………………………………………………………………………14分20.(本小题满分14分)(本小题主要考查分段函数、导数、函数的单调性和最值等基础知识,考查分类讨论思想,以及运算求解能力和推理论证能力等.) 解:(1)因为函数()2f x x =的定义域(),F =-∞+∞,函数()lng x a x =的定义域()0,G =+∞,所以()22ln ,0,,0.x a x x h x x x ⎧+>⎪=⎨⎪⎩≤……………………………………………………………………4分(2)当0x ≤时,函数()2h x x =单调递减,所以函数()h x 在(],0-∞上的最小值为()00h =.……………………………………………………5分 当0x >时,()2ln h x x a x =+.若0a =,函数()2h x x =在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………6分若0a >,因为()2220a x ah x x x x+'=+=>,………………………………………………………7分 所以函数()2ln h x x a x =+在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………8分若0a <,因为()222x x x a h x x x⎛- +⎝⎭⎝⎭'==,……………………………………9分所以函数()2ln h x x a x =+在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.此时,函数()h x的最小值为h .…………………………………………………………………………………10分因为ln 1ln 222222a a a a a a h a ⎡⎤⎛⎫⎛⎫=-+=-+-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,………………………11分 所以当2e 0a -<≤时,0h ≥,当2e a <-时,0h <.…………………………13分 综上可知,当0a >时,函数()h x 没有最小值;当2e 0a -≤≤时,函数()h x 的最小值为()00h =;当2e a <-时,函数()h x的最小值为1ln 22a a h ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.……………………………14分21.(本小题满分14分)(本小题主要考查圆、双曲线、直线方程和不等式等基础知识,考查运算求解能力和推理论证能力,以及分类讨论思想与创新意识等.)解:(1)因为0a b >>,所以1b a <,所以c e a===<1分 由90APB ∠=及圆的性质,可知四边形PAOB是正方形,所以OP .因为OP a =≥,所以b a ≥,所以c e a ===≥.……………3分故双曲线离心率e的取值范围为⎣.…………………………………………………………4分(2)方法1:因为22222200PA OP OA x y b =-=+-,所以以点P 为圆心,PA 为半径的圆P 的方程为()()222220000x x y y x y b -+-=+-.………5分因为圆O 与圆P 两圆的公共弦所在的直线即为直线AB ,……………………………………………6分所以联立方程组()()222222220000,.x y b x x y y x y b ⎧+=⎪⎨-+-=+-⎪⎩………………………………………………7分 消去2x ,2y ,即得直线AB 的方程为200x x y y b +=.………………………………………………8分 方法2:设()11,A x y ()22,B x y ,已知点()00,P x y ,则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为PA OA ⊥,所以1PA OA k k =-,即0110111y y y x x x -⨯=--.…………………………………………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.……………………………………………………………6分 因为OA OB =,PA PB =,根据平面几何知识可知,AB OP ⊥. 因为00OP y k x =,所以00AB xk y =-.………………………………………………………………………7分 所以直线AB 方程为()0110x y y x x y -=--. 即000101x x y y x x y y +=+.所以直线AB 的方程为200x x y y b +=.………………………………………………………………8分 方法3:设()()1122,,,A x y B x y ,已知点()00,P x y , 则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为PA OA ⊥,所以1PA OA k k =-,即0110111y y y x x x -⨯=--.…………………………………………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.……6分这说明点A 在直线200x x y y b +=上. …………7分同理点B 也在直线200x x y y b +=上.所以200x x y y b +=就是直线AB 的方程. ……8分 (3)由(2)知,直线AB 的方程为200x x y y b +=,所以点O 到直线AB 的距离为2d =因为AB ===, 所以三角形OAB 的面积0012S AB d =⨯⨯=……………………………………10分以下给出求三角形OAB 的面积S 的三种方法:方法1:因为点()00,P x y 在双曲线22221x y a b-=上,所以2200221x y a b -=,即22222002b x a b y a-=()220x a ≥.设t ==≥所以322b tS t b=+.………………………………………………………………………………………11分 因为()()()3222b t b t b S tb-+-'=+,所以当0t b <<时,0S '>,当t b >时,0S '<.所以322b tS t b =+在()0,b 上单调递增,在(),b +∞上单调递减.……………………………………12分b ≤,即b a <≤时,322212b b S b b b ⨯==+最大值,…………………………………13分b >,即a >时,()3222b b S a b ==+最大值综上可知,当b a <≤时,212S b =最大值;当a >时,S =最大值.………14分 方法2:设t =33222b t b S b t b t t==++.…………………………………………11分 因为点()00,P x y 在双曲线22221x y a b -=上,即2200221x y a b -=,即22222002b x a b y a-=()220x a ≥.所以t ==≥令()2b g t t t =+,则()()()2221t b t b b g t t t +-'=-=. 所以当0t b <<时,()0g t '<,当t b >时,()0g t '>.所以()2b g t t t=+在()0,b 上单调递减,在(),b +∞上单调递增.…………………………………12分b ≤,即b a <≤时,32212b S b b b b==+最大值,……………………………………13分b >,即a >时,32b S ==最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,S =最大值.………14分 方法3:设2200t x y =+,则S b ==11分 因为点()00,P x y 在双曲线22221x y a b -=上,即2200221x y a b -=,即22222002b x a b y a-=()220x a ≥. 所以22222200021b t x y x b a a ⎛⎫=+=+-≥ ⎪⎝⎭.令()2222221124g u b u u b u b b ⎛⎫=-+=--+ ⎪⎝⎭,所以()g u 在21,2b ⎛⎫-∞ ⎪⎝⎭上单调递增,在21,2b ⎛⎫+∞ ⎪⎝⎭上单调递减.………………………………12分 因为t a ≥,所以2110,u t a ⎛⎤=∈ ⎥⎝⎦, 当22112b a ≤,即b a <≤时,()22max 1124g u g b b ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时321122S b b b =⨯=最大值. ………………………………13分当22112b a >,即a >时,()2224max 1a bg u g a a -⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时S =最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,S =最大值.………14分。

2011年广东高考数学试题(文科)试题(附答案)

2011年广东高考数学试题(文科)试题(附答案)

2011年普通高等学校招生全国统一考试(广东卷)数学(文科)参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高。

线形回归方程ˆˆˆybx a =+中系数计算公式121()()ˆˆˆ,,()niii ni i x x y y b ay bx x x ==--==--∑∑ 其中,x y 表示样本均值。

n 是正整数,则1221()(...)n n n n n n a b a b a a b ab b -----=-++++一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设复数z 满足iz = 1,其中i 为虚数单位,则z =()A .- iB .iC .- 1D .12.已知集合{}{}22(,),1,(,),1A x y x y x y B x y x y x y =+==+=为实数,且为实数,且,则A B 的元素个数为()A .4B .3C .2D . 1 3.已知向量(1,2),(1,0),(3,4)a b c ===.若λ为实数,()//,a b c λλ+=则()A .14B .12C .1D . 2 4.函数1()lg(1)1f x x x=++-的定义域是() A .(,1)-∞-B .(1,)+∞ C .(1,1)(1,)-+∞ D . (,)-∞+∞ 5.不等式2210x x -->的解积是()A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞+∞D . 1(,)(1,)2-∞-+∞6.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧≤≤⎪≤⎨⎪≤⎩给定,若(,)M x y 为D 上的动点,点A的坐标为z OM OA =则的最大值为()A .3B .4 C. D. 7.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱的对角线条数共有()A .20B .15C .12D . 108.设圆22(3)10C x y y C +-==与圆外切,与直线相切,则圆的圆心轨迹为()A .抛物线B .双曲线C .椭圆D . 圆9.如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为A..4 C. D . 210.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()()()():f g x f g x ∙ 和对任意,()()(());()()()(),x R f g x f g x f g x f x g x ∈=∙= 则下列等式恒成立的是() A .(())()(()())()f g h x f h g h x ∙=∙∙ B .(())()(()())()f g h x f h g h x ∙=∙ C .(())()(()())()f g h x f h g h x = D .(())()(()())()f g h x f h g h x ∙∙=∙∙∙二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2011 4月广州二模数学(文科)试题

2011 4月广州二模数学(文科)试题

试卷类型:A 2011年广州市普通高中毕业班综合测试(二)数 学(文科)2011.4本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式, 其中是锥体的底面积, 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数的实部记作,则A. B. C. D.2.函数的定义域为集合,函数的定义域为集合,则A. B. C. D.3.已知向量,,若,则的值为A. B.4 C. D.4.已知数列的通项公式是,则A. B. C.5 D.555.在区间内任取两个实数,则这两个实数的和大于的概率为A. B. C. D.6.设,为正实数,则“”是“”成立的A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件7.已知,是的导函数,即,,…,,,则A. B. C. D.8.一条光线沿直线入射到直线后反射,则反射光线所在的直线方程为A. B. C. D.9.点是棱长为1的正方体内一点,且满足,则点到棱的距离为A. B. C. D.10.如果函数没有零点,则的取值范围为A. B.C. D.二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题)11.若,则的值为 .12.若关于的不等式的解集为,则实数的值为 .13.将正整数12分解成两个正整数的乘积有,,三种,其中是这三种分解中,两数差的绝对值最小的,我们称为12的最佳分解.当是正整数的最佳分解时,我们规定函数,例如.关于函数有下列叙述:①,②,③,④.其中正确的序号为 (填入所有正确的序号).(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)在梯形中,,,,点、分别在、上,且,若,则的长为 .15.(坐标系与参数方程选做题)设点的极坐标为,直线过点且与极轴所成的角为,则直线的极坐标方程为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.16.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.视觉视觉记忆能力偏低中等偏高超常听觉记忆能力偏低0751中等183偏高201超常0211听觉由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为.(1)试确定、的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率.ABC东南西北17.(本小题满分12分)如图1,渔船甲位于岛屿的南偏西方向的处,且与岛屿相距12海里,渔船乙以10海里/小时的速度从岛屿出发沿正北方向航行,若渔船甲同时从处出发沿北偏东的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求的值.18.(本小题满分14分)图1已知等差数列{a n}的前项和为,且,.(1)求数列的通项公式;(2)设,是否存在、,使得、、成等比数列.若存在,求出所有符合条件的、的值;若不存在,请说明理由.19.(本小题满分14分)一个几何体是由圆柱和三棱锥组合而成,点、、在圆的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中,,,.(1)求证:;(2)求三棱锥的体积.AODEEA侧(左)视图A1D1AD11A11EBCOD图220.(本小题满分14分)对定义域分别是、的函数、,规定:函数已知函数,.(1)求函数的解析式;(2)对于实数,函数是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.21.(本小题满分14分)已知双曲线:和圆:(其中原点为圆心),过双曲线上一点引圆的两条切线,切点分别为、.(1)若双曲线上存在点,使得,求双曲线离心率的取值范围;(2)求直线的方程;(3)求三角形面积的最大值.。

2011广东高考文科数学试题,有答案

2011广东高考文科数学试题,有答案

雄风天 FD2011年普通高等学校招生全国统一考试(广东B 卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

注意事项:11.答卷前,考生务必用黑色字迹的钢笔或签字笔将字迹的姓名和考生号、实施号、座位号填写在答题卡上用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

12.选择题每小题选出答案后,用2B 铅笔把大题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

13.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须卸载答题卡个题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

14.作答选做题时,请先用2B 铅笔填涂选作题地题号对应的信息点,再作答,漏凃,错涂、多涂。

答案无效。

15.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。

参考公式:锥体体积公式V=13Sh,其中S 为锥体的底面积,h 为锥体的高。

线性回归方程^^^y b x a =+中系数计算公式^^^121(1)(1),(1)ni n i x x y y b a y b x x ==--==--∑∑ 样本数据x 1,x 2,……,xa 的标准差,211()2(2)()n x x x x x x n +-+-+- 其中,x y 表示样本均值。

N 是正整数,则1221()(ab )n n n n n n a b a b a a b b -----=-+++……一、 选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)设复数z 满足iz=1,其中i 为虚数单位,则A.-iB.iC.-1D.1(2).已知集合A=(,),x y x y 为实数,B=(,),x y x y 为实数,且1x y +=则A ⋂B 的元素个数为A.4B.3C.2D.1(3)已知向量a=(1,2),b=(1,0),c=(3,4)。

广州市2011年普通高中毕业班综合测试(二)数学(文)

广州市2011年普通高中毕业班综合测试(二)数学(文)

数学(文科)试题A 第 1 页 共 11 页2011年广州市普通高中毕业班综合测试(二)数 学(文科)参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i z a b =+(),a b ∈R 的实部记作()Re z a =,则1Re 2i ⎛⎫= ⎪+⎝⎭A .23 B .25C .15-D .13-2.函数y =A ,函数()ln 21y x =+的定义域为集合B ,则A B = A .11,22⎛⎤-⎥⎝⎦ B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞-⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭3.已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为 A .2 B .4 C .2± D .4±4.已知数列{}n a 的通项公式是()()11nn a n =-+,则12310a a a a ++++=A .55-B .5-C .5D .555.在区间()0,1内任取两个实数,则这两个实数的和大于13的概率为 A .1718 B .79 C .29 D .1186.设a ,b 为正实数,则“a b <”是“11a b a b-<-”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7.已知()1s i n c o s f x x x =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,n ∈*N ,则()2011f x =A .sin cos x x +B .sin cos x x -C .sin cos x x -+D .sin cos x x -- 8.一条光线沿直线220x y -+=入射到直线50x y +-=后反射,则反射光线所在的直线方程为 A .260x y +-= B .290x y +-= C .30x y -+= D .270x y -+=9.点P 是棱长为1的正方体1111ABCD A BC D -内一点,且满足1312423AP AB AD AA =++,则点P 到棱AB 的距离为数学(文科)试题A 第 2 页 共 11 页A .56 B .34 C.4D.1210.如果函数()f x x =+()0a >没有零点,则a 的取值范围为A .()0,1B .()0,1)+∞C .()0,1()2,+∞ D.(()2,+∞ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题) 11.若1tan 2α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为 . 12.若关于x 的不等式()21m x x x ->-的解集为{}12x x <<,则实数m 的值为 .13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯三种,其中34⨯是这三种分解中,两数差的绝对值最小的,我们称34⨯为12的最佳分解.当()*,p q p q p q ⨯≤∈N 且是正整数n 的最佳分解时,我们规定函数()pf n q=,例如()3124f =.关于函数()f n 有下列叙述:①()177f =,②()3248f =,③()4287f =,④()914416f =.其中正确的序号为 (填入所有正确的序号). (二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)在梯形ABCD 中,AD BC ,2AD =,5BC =,点E 、F 分别在AB 、CD 上,且EF AD ,若34AE EB =,则EF 的长为 . 15.(坐标系与参数方程选做题)设点A 的极坐标为2,6π⎛⎫⎪⎝⎭,直线l 过点A 且与极轴所成的角为3π,则直线l 的极坐..标.方程为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.数学(文科)试题A 第 3 页 共 11 页中等以上的概率为25. (1)试确定a 、b 的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率. 17.(本小题满分12分)如图1,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度;(2)求sin α的值.18.(本小题满分14分) 已知等差数列{a n }的前n 项和为n S ,且1055S =,20210S =. (1)求数列{}n a 的通项公式; (2)设1n n n a b a +=,是否存在m 、k ()2,,k m k m >≥∈*N ,使得1b 、m b 、k b 成等比数列.若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.19.(本小题满分14分)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA ABC ⊥平面, AB AC ⊥,AB AC =,2AE =. (1)求证:AC BD ⊥;(2)求三棱锥E BCD -的体积.20.(本小题满分14分)对定义域分别是F 、G 的函数()y f x =、()y g x =,规定:图1AODE正(主)视图 E A侧(左)视图A 1 D 1 A D 1A 1E BC OD 图260ABC东南西 北 α数学(文科)试题A 第 4 页 共 11 页函数()()()()(),,,,,.f x g x x F x G h x f x x F x G g x x F x G +∈∈⎧⎪=∈∉⎨⎪∉∈⎩当且当且当且已知函数()2f x x =,()ln g x a x =()a ∈R . (1)求函数()h x 的解析式;(2)对于实数a ,函数()h x 是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.21.(本小题满分14分)已知双曲线C :()222210x y a b a b-=>>和圆O :222x y b +=(其中原点O 为圆心),过双曲线上一点()00,P x y 引圆O 的两条切线,切点分别为A 、B .(1)若双曲线C 上存在点P ,使得90APB ∠=,求双曲线离心率e 的取值范围; (2)求直线AB 的方程;(3)求三角形OAB 面积的最大值.数学(文科)试题A 第 5 页 共 11 页2011年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题. 11.3 12.2 13.①③ 14.23715.sin 13πρθ⎛⎫-=⎪⎝⎭或cos 16πρθ⎛⎫+= ⎪⎝⎭或4sin 13πρθ⎛⎫-= ⎪⎝⎭cos sin 20θρθ--= 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人. 记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==,………………4分解得6a =.…………5分 因为3240a b ++=,所以2b =.答:a 的值为6,b 的值为2.……………7分(2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.……9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B ,则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…………………12分17.(本小题满分12分)解:(1)依题意,120BAC ∠= ,12AB =,10220AC =⨯=,BCA α∠=.………………………2分在△ABC 中,由余弦定理,得2222cos BC AB AC AB AC BAC =+-⨯⨯∠…4分22122021220cos120784=+-⨯⨯⨯=. 解得28BC =.………6分,所以渔船甲的速度为142BC=海里/小时. 答:渔船甲的速度为14海里/小时.…………………………………7分(2)方法1:在△ABC 中,因为12AB =,120BAC ∠=,28BC =,BCA α∠=,60ABC东南西北 α数学(文科)试题A 第 6 页 共 11 页由正弦定理,得sin sin120AB BCα=.………………9分即12sin1202sin 2814AB BC α===. 答:sin α12分 方法2:在△ABC 中,因为12AB =,20AC =,28BC =,BCA α∠=,由余弦定理,得222cos 2AC BC AB AC BC α+-=⨯.…………9分 即22220281213cos 2202814α+-==⨯⨯. 因为α为锐角,所以sin α===答:sin α12分 18.(本小题满分14分)解:(1)设等差数列{}n a 的公差为d ,则()112n n n S na d -=+.………1分 由已知,得111091055,2201920210.2a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩…………………3分即112911,21921.a d a d +=⎧⎨+=⎩解得11,1.a d =⎧⎨=⎩…………5分所以1(1)n a a n d n =+-=(n *∈N ).………………6分(2)假设存在m 、k ()2,,k m m k >≥∈N ,使得1b 、m b 、k b 成等比数列,则21m k b bb =.……………7分因为11n n n a nb a n +==+,………8分所以11,,211m k m k b b b m k ===++. 所以21121m k m k ⎛⎫=⨯ ⎪++⎝⎭.……………9分 整理,得22221m k m m =-++.……10分 以下给出求m ,k 的三种方法:方法1:因为0k >,所以2210m m -++>. (11)分解得11m <+12分因为2,m m ≥∈*N ,所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.…14分方法2:因为k m >,所以22221m k m m m =>-++.……11分数学(文科)试题A 第 7 页 共 11 页即221021m m m +<--,即221021m m m -<--.解得11m -<<11m <<12分 因为2,m m ≥∈*N ,所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.……………14分方法3:因为2k m >≥,所以222221m k m m =>-++.…………11分 即221021m m m +<--,即22221021m m m m --<--.解得112m <<或112m +<<12分因为2,m m ≥∈*N ,所以2m =,此时8k =.故存在2m =、8k =,使得1b 、m b 、k b 成等比数列.………………14分19.(本小题满分14分)(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以EA AC ⊥,即ED AC ⊥.又因为AC AB ⊥,AB ED A = ,所以AC ⊥平面EBD . 因为BD EBD ⊂平面,所以AC BD ⊥.………………4分 (2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以BC 为圆O 的直径.设圆O 的半径为r ,圆柱高为h,根据正(主)视图、侧(左)视图的面积可得,12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩…………………………………………6分 解得2,2.r h =⎧⎨=⎩所以4BC =,AB AC ==8分 以下给出求三棱锥E BCD -体积的两种方法: 方法1:由(1)知,AC ⊥平面EBD ,所以13E BCD C EBD EBD V V S CA --∆==⨯.…………10分 因为EA ABC ⊥平面,AB ABC ⊂平面,所以EA AB ⊥,即ED AB ⊥.其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,所以11422EBD S ED AB ∆=⨯⨯=⨯⨯=.……13分所以11633E BCD V -=⨯=.………14分 方法2:因为EA ABC ⊥平面,所以111333E BCD E ABC D ABC ABC ABC ABC V V V S EA S DA S ED ---∆∆∆=+=⨯+⨯=⨯.……………10分其中224ED EA DA =+=+=,因为AB AC ⊥,AB AC ==,AD 1A 1EBCO D数学(文科)试题A 第 8 页 共 11 页所以11422ABC S AC AB ∆=⨯⨯=⨯=.…………13分所以1164433E BCD V -=⨯⨯=.………14分 20.(本小题满分14分)解:(1)因为函数()2f x x =的定义域(),F =-∞+∞,函数()ln g x a x =的定义域()0,G =+∞,所以()22ln ,0,,0.x a x x h x x x ⎧+>⎪=⎨⎪⎩≤……………4分(2)当0x ≤时,函数()2h x x =单调递减,所以函数()h x 在(],0-∞上的最小值为()00h =.………………5分 当0x >时,()2ln h x x a x =+.若0a =,函数()2h x x =在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………6分若0a >,因为()2220a x ah x x x x+'=+=>,…………7分 所以函数()2ln h x x a x =+在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………8分若0a <,因为()222x x x a h x x x⎛+ +⎝⎭⎝⎭'==,………………9分 所以函数()2ln h x x a x =+在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.此时,函数()h x 的最小值为h .…………………………………10分因为ln 1ln 222222a a a a a a h a ⎡⎤⎛⎫⎛⎫=-+=-+-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,………………11分 所以当2e 0a -<≤时,0h ≥,当2e a <-时,0h <.………………13分 综上可知,当0a >时,函数()h x 没有最小值;当2e 0a -≤≤时,函数()h x 的最小值为()00h =;当2e a <-时,函数()h x的最小值为1ln 22a a h ⎡⎤⎛⎫=--- ⎪⎢⎥⎝⎭⎣⎦.……………………14分 21.(本小题满分14分)数学(文科)试题A 第解:(1)因为0a b >>,所以1ba <,所以c e a===<1分 由90APB ∠=及圆的性质,可知四边形PAOB 是正方形,所以OP =.因为OP a =≥,所以b a ≥,所以c e a ===≥.……………3分故双曲线离心率e 的取值范围为⎣.………………4分(2)方法1:因为22222200PA OP OA x y b =-=+-,所以以点P 为圆心,PA 为半径的圆P 的方程为()()222220000x x y y x y b -+-=+-.………5分因为圆O 与圆P 两圆的公共弦所在的直线即为直线AB ,……………………6分所以联立方程组()()222222220000,.x y b x x y y x y b ⎧+=⎪⎨-+-=+-⎪⎩………………7分 消去2x ,2y ,即得直线AB 的方程为200x x y y b +=.…………………8分方法2:设()11,A x y ()22,B x y ,已知点()00,P x y ,则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为PA OA ⊥,所以1PA OA k k =-,即0110111y y y x x x -⨯=--.…………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.………6分 因为OA OB =,PA PB =,根据平面几何知识可知,AB OP ⊥. 因为00OP y k x =,所以00AB x k y =-.……………7分 所以直线AB 方程为()0110xy y x x y -=--.即000101x x y y x x y y +=+.所以直线AB 的方程为200x x y y b +=……………8分 方法3:设()()1122,,,A x y B x y ,已知点()00,P x y ,则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为PA OA ⊥,所以1PA OA k k =-,即0110111y y y x x x -⨯=--.…………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=.……6分这说明点A 在直线200x x y y b +=上. …………7分 同理点B 也在直线200x x y y b +=上.所以200x x y y b +=就是直线AB 的方程. ……8分数学(文科)试题A 第 10 页 共 11 页(3)由(2)知,直线AB 的方程为200x x y y b +=,所以点O 到直线AB的距离为2d =.因为AB ==, 所以三角形OAB的面积0012S AB d =⨯⨯=10分以下给出求三角形OAB 的面积S 的三种方法:方法1:因为点()00,P x y 在双曲线22221x y a b -=上,所以2200221x y a b-=,即22222002b x a b y a -=()220x a ≥.设t ==322b t S t b =+.………11分 因为()()()3222b t b t b S tb-+-'=+,所以当0t b <<时,0S '>,当t b >时,0S '<.所以322b tS t b=+在()0,b 上单调递增,在(),b +∞上单调递减.………12分b ≤,即b a <≤时,322212b b S b b b ⨯==+最大值,……………13分b >,即a >时,()3222b b S a b==+最大值综上可知,当b a <≤时,212S b =最大值;当a >时,2b S a =最大值.………14分 方法2:设t =33222b t b S b t b t t==++.…………11分因为点()00,P x y 在双曲线22221x y a b -=上,即2200221x y a b-=,即22222002b x a b y a -=()220x a ≥.所以t ==≥令()2b g t t t =+,则()()()2221t b t b b g t t t +-'=-=.所以当0t b <<时,()0g t '<,当t b >时,()0g t '>. 所以()2b g t t t=+在()0,b 上单调递减,在(),b +∞上单调递增.……………12分数学(文科)试题A 第 11 页 共 11 页b ≤,即b a <≤时,32212b S b b b b ==+最大值,…………13分b >,即a >时,32b S ==最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,S =最大值.………14分 方法3:设2200t x y =+,则S b ==.…………11分 因为点()00,P x y 在双曲线22221x y a b -=上,即2200221x y a b-=,即22222002b x a b y a -=()220x a ≥. 所以22222200021b t x y x b a a ⎛⎫=+=+-≥ ⎪⎝⎭.令()2222221124g u b u u b u b b ⎛⎫=-+=--+ ⎪⎝⎭,所以()g u 在21,2b ⎛⎫-∞ ⎪⎝⎭上单调递增,在21,2b ⎛⎫+∞ ⎪⎝⎭上单调递减.………12分因为t a ≥,所以2110,u t a ⎛⎤=∈ ⎥⎝⎦,当22112b a ≤,即b a b <≤时,()22max 1124g u g b b ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时321122S b b b =⨯=最大值.………13分 当22112b a >,即a >时,()2224max 1a b g u g a a -⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时S =最大值.综上可知,当b a <≤时,212S b =最大值;当a >时,S =最大值.………14分。

2011年广东省高考数学试卷(文科)答案与解析

2011年广东省高考数学试卷(文科)答案与解析

2011年广东省高考数学试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2011•广东)设复数z满足iz=1,其中i为虚数单位,则z=()A.﹣i B.i C.﹣1 D.1【考点】复数代数形式的乘除运算.【专题】数系的扩充和复数.【分析】我们可以利用待定系数法求出Z,我们设Z=x+yi,结合已知中iz=1,结合复数相等的充要条件,我们易构造出一个关于x,y的方程组,解方程组即可求出满足条件的复数Z的值.【解答】解:设Z=x+yi∵iz=1,∴i(x+yi)=﹣y+xi=1故x=0,y=﹣1∴Z=﹣i故选A【点评】本题考查的知识点是复数代数形式的乘除运算,其中利用复数相等的充要条件,构造出一个关于x,y的方程组,是解答本题的关键.2.(5分)(2011•广东)已知集合A={(x,y)|x,y为实数,且x2+y2=1},B=|(x,y)|x,y为实数,且x+y=1},则A∩B的元素个数为()A.4 B.3 C.2 D.1【考点】交集及其运算.【专题】集合.【分析】观察两集合发现,两集合表示两点集,要求两集合交集元素的个数即为求两函数图象交点的个数,所以联立两函数解析式,求出方程组的解,有几个解就有几个交点即为两集合交集的元素个数.【解答】解:联立两集合中的函数关系式得:,由②得:x=1﹣y,代入②得:y2﹣y=0即y(y﹣1)=0,解得y=0或y=1,把y=0代入②解得x=1,把y=1代入②解得x=0,所以方程组的解为或,有两解,则A∩B的元素个数为2个.故选C【点评】此题考查学生理解交集的运算,考查了求两函数交点的方法,是一道基础题.本题的关键是认识到两集合表示的是点坐标所构成的集合即点集.3.(5分)(2011•广东)已知向量=(1,2),=(1,0),=(3,4).若λ为实数,(+λ)∥,则λ=()A.B.C.1 D.2【考点】平面向量共线(平行)的坐标表示.【专题】平面向量及应用.【分析】根据所给的两个向量的坐标,写出要用的+λ向量的坐标,根据两个向量平行,写出两个向量平行的坐标表示形式,得到关于λ的方程,解方程即可.【解答】解:∵向量=(1,2),=(1,0),=(3,4).∴=(1+λ,2)∵(+λ)∥,∴4(1+λ)﹣6=0,∴故选B.【点评】本题考查两个向量平行的坐标表示,考查两个向量坐标形式的加减数乘运算,考查方程思想的应用,是一个基础题.4.(5分)(2011•广东)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞)D.(﹣∞,+∞)【考点】函数的定义域及其求法.【专题】函数的性质及应用.【分析】根据题意,结合分式与对数函数的定义域,可得,解可得答案.【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.【点评】本题考查函数的定义域,首先牢记常见的基本函数的定义域,如果涉及多个基本函数,取它们的交集即可.5.(5分)(2011•广东)不等式2x2﹣x﹣1>0的解集是()A.(﹣,1)B.(1,+∞)C.(﹣∞,1)∪(2,+∞)D.(﹣∞,﹣)∪(1,+∞)【考点】一元二次不等式的解法.【专题】不等式的解法及应用.【分析】将不等式的左边分解因式得到相应的方程的根;利用二次方程解集的形式写出解集.【解答】解:原不等式同解于(2x+1)(x﹣1)>0∴x>1或x<故选:D【点评】本题考查二次不等式的解法:判断相应的方程是否有根;若有根求出两个根;据二次不等式解集的形式写出解集.6.(5分)(2011•广东)已知平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为,则z=•的最大值为()A.3 B.4 C.3D.4【考点】二元一次不等式(组)与平面区域;数量积的坐标表达式.【专题】不等式的解法及应用.【分析】首先做出可行域,将z=•的坐标代入变为z=,即y=﹣x+z,此方程表示斜率是﹣的直线,当直线与可行域有公共点且在y轴上截距最大时,z有最大值.【解答】解:首先做出可行域,如图所示:z=•=,即y=﹣x+z做出l0:y=﹣x,将此直线平行移动,当直线y=﹣x+z经过点B时,直线在y轴上截距最大时,z有最大值.因为B(,2),所以z的最大值为4故选:B【点评】本题考查线性规划、向量的坐标表示,考查数形结合思想解题.7.(5分)(2011•广东)正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A.20 B.15 C.12 D.10【考点】棱柱的结构特征.【专题】立体几何.【分析】抓住上底面的一个顶点,看从此顶点出发的对角线有多少条即可解决.【解答】解:由题意正五棱柱对角线一定为上底面的一个顶点和下底面的一个顶点的连线,因为不同在任何侧面内,故从一个顶点出发的对角线有2条.正五棱柱对角线的条数共有2×5=10条.故选D【点评】本题考查计数原理在立体几何中的应用,考查空间想象能力.8.(5分)(2011•广东)设圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切,则C的圆心轨迹为()A.抛物线B.双曲线C.椭圆 D.圆【考点】圆的切线方程;圆与圆的位置关系及其判定;抛物线的定义.【专题】直线与圆.【分析】由动圆与定圆相外切可得两圆圆心距与半径的关系,然后利用圆与直线相切可得圆心到直线的距离与半径的关系,借助等量关系可得动点满足的条件,即可的动点的轨迹.【解答】解:设C的坐标为(x,y),圆C的半径为r,圆x2+(y﹣3)2=1的圆心为A,∵圆C与圆x2+(y﹣3)2=1外切,与直线y=0相切∴|CA|=r+1,C到直线y=0的距离d=r ∴|CA|=d+1,即动点C定点A的距离等于到定直线y=﹣1的距离由抛物线的定义知:C的轨迹为抛物线.故选A【点评】本题考查了圆的切线,两圆的位置关系及抛物线的定义,动点的轨迹的求法,是个基础题.9.(5分)(2011•广东)如图,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为()A.B.4 C. D.2【考点】由三视图求面积、体积.【专题】立体几何.【分析】根据已知中的三视图及相关视图边的长度,我们易判断出该几何体的形状及底面积和高的值,代入棱锥体积公式即可求出答案.【解答】解:由已知中该几何中的三视图中有两个三角形一个菱形可得这个几何体是一个四棱锥由图可知,底面两条对角线的长分别为2,2,底面边长为2故底面棱形的面积为=2侧棱为2,则棱锥的高h==3故V==2故选C【点评】本题考查的知识点是由三视图求面积、体积其中根据已知求出满足条件的几何体的形状及底面面积和棱锥的高是解答本题的关键.10.(5分)(2011•广东)设f(x),g(x),h(x)是R上的任意实值函数,如下定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g (x),则下列等式恒成立的是()A.((f°g)•h)(x)=((f•h)°(g•h))(x)B.((f•g)°h)(x)=((f°h)•(g°h))(x)C.((f°g)°h)(x)=((f°h)°(g°h))(x)D.((f•g)•h)(x)=((f•h)•(g•h))(x)【考点】抽象函数及其应用.【专题】函数的性质及应用.【分析】根据定义两个函数(f°g)(x)和((f•g)(x)对任意x∈R,(f°g)(x)=f(g(x));(f•g)(x)=f(x)g(x),然后逐个验证即可找到答案.【解答】解:A、∵(f°g)(x)=f(g(x)),(f•g)(x)=f(x)g(x),∴((f°g)•h)(x)=(f°g)(x)h(x)=f(g(x))h(x);而((f•h)°(g•h))(x)=(f•h)((g•h)(x))=f(g(x)h(x))h(g(x)h(x));∴((f°g)•h)(x)≠((f•h)°(g•h))(x)B、∵((f•g)°h)(x)=(f•g)(h(x))=f(h(x))g(h(x))((f°h)•(g°h))(x)=(f°h)•(x)(g°h)(x)=f(h(x))g(h(x))∴((f•g)°h)(x)=((f°h)•(g°h))(x)C、((f°g)°h)(x)=((f°g)(h(x))=f(g(h(x))),((f°h)°(g°h))(x)=f(h(g(h(x))))∴((f°g)°h)(x)≠((f°h)°(g°h))(x);D、((f•g)•h)(x)=f(x)g(x)h(x),((f•h)•(g•h))(x)=f(x)h(x)g(x)h(x),∴((f•g)•h)(x)≠((f•h)•(g•h))(x).故选B.【点评】此题是个基础题.考查学生分析解决问题的能力,和知识方法的迁移能力.二、填空题(共5小题,考生作答4小题每小题5分,满分20分)11.(5分)(2011•广东)已知{a n}是递增等比数列,a2=2,a4﹣a3=4,则此数列的公比q= 2.【考点】等比数列的通项公式.【专题】等差数列与等比数列.【分析】由已知{a n}是递增等比数列,a2=2,我们可以判断此数列的公比q>1,又由a2=2,a4﹣a3=4,我们可以构造出一个关于公比q的方程,解方程即可求出公比q的值.【解答】解:∵{a n}是递增等比数列,且a2=2,则公比q>1又∵a4﹣a3=a2(q2﹣q)=2(q2﹣q)=4即q2﹣q﹣2=0解得q=2,或q=﹣1(舍去)故此数列的公比q=2故答案为:2【点评】本题考查的知识点是等比数列的通项公式,其中利用等比数列的通项公式及a2=2,a4﹣a3=4,构造出一个关于公比q的方程,是解答本题的关键.12.(5分)(2011•广东)设函数f(x)=x3cosx+1,若f(a)=11,则f(﹣a)=﹣9.【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】由于函数f(x)=x3cosx+1,是一个非奇非偶函数,故无法直接应用函数奇偶性的性质进行解答,故可构造函数g(x)=f(x)﹣1=x3cosx,然后利用g(x)为奇函数,进行解答.【解答】解:令g(x)=f(x)﹣1=x3cosx则g(x)为奇函数,又∵f(a)=11,∴g(a)=f(a)﹣1=11﹣1=10∴g(﹣a)=﹣10=f(﹣a)﹣1∴f(﹣a)=﹣9故答案为:﹣9【点评】本题考查的知识点是函数奇偶性的性质,其中构造出奇函数g(x)=f(x)﹣1=x3cosx,是解答本题的关键.13.(5分)(2011•广东)工人月工资y(元)与劳动生产率x(千元)变化的回归方程为=50+80x,下列判断正确的是②①劳动生产率为1千元时,工资为130元;②劳动生产率提高1千元,则工资提高80元;③劳动生产率提高1千元,则工资提高130元;④当月工资为210元时,劳动生产率为2千元.【考点】线性回归方程.【专题】概率与统计.【分析】回归方程═50+80x变量x增加一个单位时,变量产生相应变化,从而对选项一一进行分析得到结果.【解答】解::∵对x的回归直线方程=50+80x,∴=(x+1)+50,∴﹣=80(x+1)+50﹣80x﹣50=80.所以劳动生产率提高1千元,则工资提高80元,②正确,③不正确.①④不满足回归方程的意义.故答案为:②.【点评】主要考查知识点:统计.本题主要考查线性回归方程的应用,考查线性回归方程自变量变化一个单位,对应的预报值是一个平均变化,这是容易出错的知识点.14.(5分)(2011•广东)已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为(1,).【考点】参数方程化成普通方程;直线的参数方程;椭圆的参数方程.【专题】坐标系和参数方程.【分析】利用同角三角函数的基本关系及代入的方法,把参数方程化为普通方程,再利用消去参数t化曲线的参数方程为普通方程,最后解方程组求得两曲线的交点坐标即可.【解答】解:曲线参数方程(0≤θ<π)的直角坐标方程为:;曲线(t∈R)的普通方程为:;解方程组:得:∴它们的交点坐标为(1,).故答案为:(1,).【点评】本题考查同角三角函数的基本关系,参把数方程化为普通方程的方法,以及求两曲线的交点坐标的方法,考查运算求解能力.属于基础题.15.(2011•广东)如图,在梯形ABCD中,AB∥CD,AB=4,CD=2.E,F分别为AD,BC上点,且EF=3,EF∥AB,则梯形ABFE与梯形EFCD的面积比为7:5.【考点】相似三角形的性质.【专题】解三角形.【分析】根据EF的长度和与上下底平行知是梯形的中位线,设出中位线分成的两个梯形的高,根据梯形的面积公式写出两个梯形的面积,都是用含有高的代数式来表示的,求比值得到结果.【解答】解:∵E,F分别为AD,BC上点,且EF=3,EF∥AB,∴EF是梯形的中位线,设两个梯形的高是h,∴梯形ABFE的面积是,梯形EFCD的面积∴梯形ABFE与梯形EFCD的面积比为=,故答案为:7:5【点评】本题考查梯形的中位线,考查梯形的面积公式是一个基础题,解题的时候容易出的一个错误是把两个梯形看成相似梯形,根据相似多边形的面积之比等于相似比的平方.三、解答题(共6小题,满分80分)16.(12分)(2011•广东)已知函数f(x)=2sin(x﹣),x∈R.(1)求f(0)的值;(2)设α,β∈,f(3)=,f(3β+)=.求sin(α+β)的值.【考点】两角和与差的正弦函数.【专题】三角函数的图像与性质.【分析】(1)把x=0代入函数解析式求解.(2)根据题意可分别求得sinα和sinβ的值,进而利用同角三角函数基本关系求得cosα和cosβ的值,最后利用正弦的两角和公式求得答案.【解答】解:(1)∵f(x)=2sin(x﹣),x∈R,∴f(0)=2sin(﹣)=﹣1(2)∵f(3)=2sinα=,f(3β+)=2sinβ=.∴sinα=,sinβ=∵α,β∈,∴cosα==,cosβ==∴sin(α+β)=sinαcosβ+cosαsinβ=【点评】本题主要考查了两角和与差的正弦函数.考查了对三角函数基础公式的熟练记忆.17.(13分)(2011•广东)在某次测验中,有6位同学的平均成绩为75分.用x n表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:编号n 1 2 3 4 5成绩x n70 76 72 70 72(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.【考点】极差、方差与标准差;古典概型及其概率计算公式.【专题】概率与统计.【分析】(1)根据平均数公式写出这组数据的平均数表示式,在表示式中有一个未知量,根据解方程的思想得到结果,求出这组数据的方差,再进一步做出标准差.(2)本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41种结果,根据概率公式得到结果.【解答】解:(1)根据平均数的个数可得75=,∴x6=90,这六位同学的方差是(25+1+9+25+9+225)=49,∴这六位同学的标准差是7(2)由题意知本题是一个古典概型,试验发生包含的事件是从5位同学中选2个,共有C52=10种结果,满足条件的事件是恰有一位成绩在区间(68,75)中,共有C41=4种结果,根据古典概型概率个数得到P==0.4.【点评】本题考查一组数据的平均数公式的应用,考查求一组数据的方差和标准差,考查古典概型的概率公式的应用,是一个综合题目.18.(13分)(2011•广东)如图所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的,A,A′,B,B′分别为的中点,O1,O1′,O2,O2′分别为CD,C′D′,DE,D′E′的中点.(1)证明:O1′,A′,O2,B四点共面;(2)设G为A A′中点,延长A′O1′到H′,使得O1′H′=A′O1′.证明:BO2′⊥平面H′B′G.【考点】直线与平面垂直的判定;棱柱的结构特征;平面的基本性质及推论.【专题】空间位置关系与距离;立体几何.【分析】(1)要证O1′,A′,O2,B四点共面,即可证四边形BO2A′O1′为平面图形,根据A′O1′与B′O2′在未平移时属于同一条直径知道A′O1′∥B′O2′即BO2∥A′O1′再根据BO2=A′O1′=1即可得到四边形BO2A′O1′是平行四边形,则证.(2)建立空间直角坐标系,要证BO2′⊥平面H′B′G只需证,,根据坐标运算算出•,的值均为0即可【解答】证明:(1)∵B′,B分别是中点∴BO2∥B′O2′∵A′O1′与B′O2′在未平移时属于同一条直径∴A′O1′∥B′O2′∴BO2∥A′O1′∵BO2=A′O1′=1∴四边形BO2A′O1′是平行四边形即O1′,A′,O2,B四点共面(2)以D为原点,以向量DE所在的直线为X轴,以向量DD′所在的直线为Z轴,建立如图空间直角坐标系,则B(1,1,0),O2′(0,1,2),H′(1,﹣1,2),A(﹣1,﹣1,0),G(﹣1,﹣1,1),B′(1,1,2)则=(﹣1,0,2),=(﹣2,﹣2,﹣1),=(0,﹣2,0)∵•=0,=0∴BO2′⊥B′G,BO2′⊥B′H′即,∵B′H′∩B′G=B′,B′H′、B′G⊂面H′GB′∴BO2′⊥平面H′B′G【点评】本题考查了直线与平面垂直的判定,棱柱的结构特征,平面的基本性质及推论以及空间向量的基本知识,属于中档题.19.(14分)(2011•广东)设a>0,讨论函数f(x)=lnx+a(1﹣a)x2﹣2(1﹣a)x的单调性.【考点】利用导数研究函数的单调性.【专题】导数的综合应用.【分析】求出函数的定义域,求出导函数,设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞),讨论a=1,a>1与0<a<1三种情形,然后利用函数的单调性与导函数符号的关系求出单调性.【解答】解:定义域{x|x>0}f′(x)==设g(x)=2a(1﹣a)x2﹣2(1﹣a)x+1,x∈(0,+∞)①若a=1,则g(x)=1>0∴在(0,+∞)上有f'(x)>0,即f(x)在(0,+∞)上是增函数.②若a>1则2a(1﹣a)<0,g(x)的图象开口向下,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)>0方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根为x1=,x2=且x1<0<x2∴在(0,)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,+∞)上g(x)<0,即f'(x)<0,f(x)是减函数;③若0<a<1则2a(1﹣a)>0,g(x)的图象开口向上,此时△=[﹣2(1﹣a)]2﹣4×2a(1﹣a)×1=4(1﹣a)(1﹣3a)可知当≤a<1时,△≤0,故在(0,+∞)上,g(x)≥0,即f'(x)≥0,f(x)是增函数;当0<a<时,△>0,方程2a(1﹣a)x2﹣2(1﹣a)x+1=0有两个不等的实根不等的实根满足>>0故在(0,)和(,+∞)上g(x)>0,即f'(x)>0,f(x)是增函数;在(,)上g(x)<0,即f'(x)<0,f(x)是减函数.【点评】本题考查利用导函数讨论函数的单调性:导函数为正函数递增;导函数为负,函数递减,同时考查了分类讨论的数学思想方法,属于难题.20.(14分)(2011•广东)设b>0,数列{a n}满足a1=b,a n=(n≥2)(1)求数列{a n}的通项公式;(2)证明:对于一切正整数n,2a n≤b n+1+1.【考点】数列递推式;数列与不等式的综合.【专题】等差数列与等比数列.【分析】(1)由题设形式可以看出,题设中给出了关于数列a n的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【解答】解:(1)∵(n≥2),∴(n≥2),当b=1时,(n≥2),∴数列{}是以为首项,以1为公差的等差数列,∴=1+(n﹣1)×1=n,即a n=1,当b>0,且b≠1时,(n≥2),即数列{}是以=为首项,公比为的等比数列,∴=×=,即a n=,∴数列{a n}的通项公式是(2)证明:当b=1时,不等式显然成立当b>0,且b≠1时,a n=,要证对于一切正整数n,2a n≤b n+1+1,只需证2×≤b n+1+1,即证∵==(b n+1+1)×(b n﹣1+b n﹣2+…+b+1)=(b2n+b2n﹣1+…+b n+2+b n+1)+(b n﹣1+b n﹣2+…+b+1)=b n[(b n+b n﹣1+…+b2+b)+(++…+)]≥b n(2+2+…+2)=2nb n所以不等式成立,综上所述,对于一切正整数n,有2a n≤b n+1+1,【点评】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.21.(14分)(2011•广东)在平面直角坐标系xOy中,直线l:x=﹣2交x轴于点A,设P 是l上一点,M是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP.(1)当点P在l上运动时,求点M的轨迹E的方程;(2)已知T(1,﹣1),设H是E上动点,求|HO|+|HT|的最小值,并给出此时点H的坐标;(3)过点T(1,﹣1)且不平行与y轴的直线l1与轨迹E有且只有两个不同的交点,求直线l1的斜率k的取值范围.【考点】轨迹方程;直线与圆锥曲线的综合问题.【专题】综合题;压轴题;转化思想.【分析】(1)由于直线l:x=﹣2交x轴于点A,所以A(﹣2,0),由于P是l上一点,M 是线段OP的垂直平分线上一点,且满足∠MPO=∠AOP,可以设点P,由于满足∠MPO=∠AOP,所以分析出MN∥AO,利用相关点法可以求出动点M的轨迹方程;(2)由题意及点M的轨迹E的方程为y2=4(x+1),且已知T(1,﹣1),又H是E 上动点,点O及点T都为定点,利用图形即可求出;(3)由题意设出过定点的直线方程l1并与点M的轨迹E的方程联立,利用有两个交点等价与联立之后的一元二次方程的判别式大于0,即可得到所求.【解答】解:(1)如图所示,连接OM,则|PM|=|OM|,∵∠MPO=∠AOP,∴动点M满足MP⊥l或M在x的负半轴上,设M(x,y)①当MP⊥l时,|MP|=|x+2|,|om|=,|x+2|=,化简得y2=4x+4 (x≥﹣1)②当M在x的负半轴上时,y=0(x≤﹣1),综上所述,点M的轨迹E的方程为y2=4x+4(x≥﹣1)或y=0(x<﹣1).(2)由题意画出图形如下:∵由(1)知道动点M 的轨迹方程为:y2=4(x+1).是以(﹣1,0)为顶点,以O(0,0)为焦点,以x=﹣2为准线的抛物线,由H引直线HB垂直准线x=﹣2与B点,则利用抛物线的定义可以得到:|HB|=|HO|,∴要求|HO|+|HT|的最小值等价于求折线|HB|+|HT|的最小值,由图可知当由点T直接向准线引垂线是与抛物线相交的H使得HB|+|HT|的最小值,故|HO|+|HT|的最小值时的H.(3)如图,设抛物线顶点A(﹣1,0),则直线AT的斜率,∵点T(1,﹣1)在抛物线内部,∴过点T且不平行于x,y轴的直线l1必与抛物线有两个交点,则直线l1与轨迹E的交点个数分以下四种情况讨论:①当K时,直线l1与轨迹E有且只有两个不同的交点,②当时,直线l1与轨迹E有且只有一个不同的交点,③当K=0时,直线l1与轨迹E有且只有一个交点,④当K>0时,直线l1与轨迹E有且只有两个不同的交点.综上所述,直线l1的斜率K的取值范围是(﹣]∪(0,+∞).【点评】此题重点考查了利用相关点法求动点的轨迹方程,还考查了利用抛物线的定义求出HO|+|HT|的最小值时等价转化的思想,还考查了直线与曲线有两个交点的等价转化思想.。

2011广东高考文科数学试卷及答案

2011广东高考文科数学试卷及答案

绝密★启用前 试卷类型:B2011年普通高等学校招生全国统一考试(广东卷)数学(文科)本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高.线性回归方程 y bxa =+ 中系数计算公式121()()()nii i nii xx y y b xx ==--=-∑∑ , ay b x =- , 样本数据12,,,n x x x 的标准差,222121[()()()]n s x x x x x x n=-+-++- ,其中x ,y 表示样本均值. n 是正整数,则1221()()nnn n n n a b a b aab abb-----=-++++ .一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A .i -B .iC .1-D .1 【解析】A.由题得1()i z i i i i -===-⨯-所以选A.2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B ⋂的元素个数为A .4B .3C .2D .1【解析】C.方法一:由题得⎩⎨⎧==⎩⎨⎧==∴⎩⎨⎧=+=+10011122y x y x y x y x 或,)}1,0(),0,1(|),{(y x B A = ,所以选C.方法二:直接作出单位圆221x y +=和直线1=+y x ,观察得两曲线有两个交点,所以选C. 3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ=A .14B .12C .1D .2【解析】B.)2,1()0,()2,1(λλλ+=+=+b a ,()//a b c λ+210324)1(=∴=⨯-⨯+∴λλ所以选B. 4.函数1()lg(1)1f x x x=++-的定义域是A .(,1)-∞-B .(1,)+∞C .(1,1)(1,)-⋃+∞D .(,)-∞+∞【解析】C.由题得),,()函数的定义域为(且∞+∴≠->∴⎩⎨⎧>+≠-11,1-110101 x x x x 所以选C.5.不等式2210x x -->的解集是A .1(,1)2-B .(1,)+∞C .(,1)(2,)-∞⋃+∞D .1(,)(1,)2-∞-⋃+∞【解析】D 由题得21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.已知平面直角坐标系xOy 上的区域D 由不等式组0222x y x y⎧⎪⎨⎪⎩≤≤≤≤给定.若(,)M x y 为D 上的动点,点A 的坐标为(2,1),则z OM OA=⋅的最大值为A .3B .4C .32D .42 【解析】B由题知不等式组表示的平面区域D是如图中的梯形OABC,||||cos 3||cos 3||z O M O A O M O A AO M O M AO M O N =⋅=⋅∠=∠=,所以就是求||ON 的最大值,||ON 表示方向上的投影,在OA OM 数形结合观察得当点M 在点B 的地方时,23正视图 图1侧视图 图22 俯视图 2图3 ||ON 才最大。

2011年广东高考数学试卷及答案(文科)

2011年广东高考数学试卷及答案(文科)

2011年广东普通高等学校招生全国统一考试数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出四个选项中,只有一项符合题目要求。

1.设复数z 满足1=iz ,其中i 为虚数单位,则z =( ) A .i - B .i C .1- D .12.已知集合{}22(,)|,1A x y x y x y =+=为实数,且,{}(,)|,1B x y x y x y =+=为实数,且,则A B 的元素个数为( )A .4B .3C .2D .13.已知向量(1,2)a = ,(1,0)b = ,(3,4)c =,若λ为实数,//a b c λ+ ,则λ=( )A .41 B .21 C .1 D .24.函数)1lg(11)(x xx f ++-=的定义域是( )A .()1,-∞-B .),1(+∞C .),1()1,1(+∞-D .),(+∞-∞5.不等式0122>--x x 的解集是( ) A .⎪⎭⎫ ⎝⎛-1,21B .),1(+∞C .),2()1,(+∞-∞D .),1(21,+∞⎪⎭⎫ ⎝⎛-∞-6.已知平面直角坐标系xOy 上的区域D 由不等式组⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220给定。

若(,)M x y 为D 上的动点,点A 的坐标为),则OA OM z ∙=的最大值为( )A .3B .4C .23D .247.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线A .20B .15C .12D .108.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆9.如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则几何体体积为( )A .34B .4C .32D .210.设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()f g x 和()()f g x ∙:对任意x R ∈,()()(())f g x f g x = ;()()f g x ∙=()()f x g x ,则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ∙∙=∙ B .()()()()()())(x h g h f x h g f ∙=∙ C .()()()()()())(x h g h fx h g f = D .()()()()()())(x h g h fx h g f ∙∙∙=∙∙二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2011广州二模试题答案(数学文)广州市第二次模拟考试 文科数学(含答案)

2011广州二模试题答案(数学文)广州市第二次模拟考试 文科数学(含答案)

试卷类型:A2011年广州市普通高中毕业班综合测试(二)数 学(文科)2011.4 本试卷共4页,21小题, 满分150分. 考试用时120分钟. 注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式:锥体的体积公式Sh V 31=, 其中S 是锥体的底面积, h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数i z a b =+(),a b ∈R 的实部记作()Re z a =,则1Re 2i ⎛⎫= ⎪+⎝⎭A .23 B .25C .15-D .13-2.函数y =A ,函数()ln 21y x =+的定义域为集合B ,则A B = A .11,22⎛⎤-⎥⎝⎦ B .11,22⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞-⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭3.已知向量()1,2a =,(),4x b =,若2=b a ,则x 的值为 A .2 B .4 C .2± D .4±4.已知数列{}n a 的通项公式是()()11nn a n =-+,则12310a a a a ++++=A .55-B .5-C .5D .55 5.在区间()0,1内任取两个实数,则这两个实数的和大于13的概率为 A .1718 B .79 C .29 D .1186.设a ,b 为正实数,则“a b <”是“11a b a b-<-”成立的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件7.已知()1s i n c o s f x xx =+,()1n f x +是()n f x 的导函数,即()()21f x f x '=,()()32f x f x '=,…,()()1n n f x f x +'=,n ∈*N ,则()2011f x =A .sin cos x x +B .sin cos x x -C .sin cos x x -+D .sin cos x x --8.一条光线沿直线220x y -+=入射到直线50x y +-=后反射,则反射光线所在的直线方程为A .260x y +-= B .290x y +-= C .30x y -+= D .270x y -+= 9.点P 是棱长为1的正方体1111ABCD A BC D -内一点,且满足1312423A P AB A D A A =++ ,则点P 到棱AB 的距离为A .56 3 C 4 D10.如果函数()f x =)0a >没有零点,则a 的取值范围为A .()0,1B .()0,1)+∞C .()0,1()2,+∞D .(()2,+∞ 二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(11~13题) 11.若1tan 2α=,则tan 4πα⎛⎫+ ⎪⎝⎭的值为 . 12.若关于x 的不等式()21m x x x ->-的解集为{}12x x <<,则实数m 的值为 .13.将正整数12分解成两个正整数的乘积有112⨯,26⨯,34⨯三种,其中34⨯是这三种分解中,两数差的绝对值最小的,我们称34⨯为12的最佳分解.当()*,p q p q p q ⨯≤∈N且是正整数n 的最佳分解时,我们规定函数()pf n q=,例如()3124f =.关于函数()f n 有下列叙述:①()177f =,②()3248f =,③()4287f =,④()914416f =.其中正确的序号为 (填入所有正确的序号).(二)选做题(14~15题,考生只能从中选做一题) 14.(几何证明选讲选做题)在梯形ABCD 中,AD BC ,2AD =,5BC =,点E 、F 分别在AB 、CD 上,且EF AD ,若34AE EB =,则EF 的长为 . 15.(坐标系与参数方程选做题)设点A 的极坐标为2,6π⎛⎫⎪⎝⎭,直线l 过点A 且与极轴所成的角为3π,则直线l 的极坐标...方程为 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)某地区对12岁儿童瞬时记忆能力进行调查.瞬时记忆能力包括听觉记忆能力与视觉记忆能力.某班学生共有40人,下表为该班学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.听觉记忆能力为中等或中等以上的概率为25. (1)试确定a 、b 的值;(2)从40人中任意抽取1人,求此人听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率. 17.(本小题满分12分)如图1,渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上. (1)求渔船甲的速度;(2)求sin α的值.18.(本小题满分14分)图160ABC东南西 北 α已知等差数列{a n }的前n 项和为n S ,且1055S =,20210S =. (1)求数列{}n a 的通项公式; (2)设1n n n a b a +=,是否存在m 、k ()2,,k m k m >≥∈*N ,使得1b 、m b 、k b 成等比数列.若存在,求出所有符合条件的m 、k 的值;若不存在,请说明理由.19.(本小题满分14分)一个几何体是由圆柱11ADD A 和三棱锥E ABC -组合而成,点A 、B 、C 在圆O 的圆周上,其正(主)视图、侧(左)视图的面积分别为10和12,如图2所示,其中EA ABC ⊥平面,AB AC ⊥,AB AC =,2AE =.(1)求证:AC BD ⊥;(2)求三棱锥E BCD -的体积.20.(本小题满分14分)对定义域分别是F 、G 的函数()y f x =、()y g x =,规定:函数()()()()(),,,,,.f x g x x F x G h x f x x F x G g x x F x G +∈∈⎧⎪=∈∉⎨⎪∉∈⎩当且当且当且已知函数()2f x x =,()lng x a x =()a ∈R .(1)求函数()h x 的解析式;(2)对于实数a ,函数()h x 是否存在最小值,如果存在,求出其最小值;如果不存在,请说明理由.侧(左)视图图221.(本小题满分14分)已知双曲线C :()222210x y a b a b-=>>和圆O :222x y b +=(其中原点O 为圆心),过双曲线上一点()00,P x y 引圆O 的两条切线,切点分别为A 、B .(1)若双曲线C 上存在点P ,使得90APB ∠=,求双曲线离心率e 的取值范围; (2)求直线AB 的方程;(3)求三角形OAB 面积的最大值.2011年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题. 11.3 12.2 13.①③ 14.23715.sin 13πρθ⎛⎫-=⎪⎝⎭或cos 16πρθ⎛⎫+=⎪⎝⎭或4sin 13πρθ⎛⎫-= ⎪⎝⎭或cos sin 20θρθ--=三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查概率与统计的概念,考查运算求解能力等.) 解:(1)由表格数据可知视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的学生有()10a +人.记“视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上”为事件A ,则102()405a P A +==, …………………………………………………………………………………4分 解得6a =. ………………………………………………………………………………………………5分因为3240a b ++=,所以2b =.答:a的值为6,b 的值为2.……………………………………………………………………………7分(2)由表格数据可知,听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生有()11b +人,由(1)知,2b =,即听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的学生共有13人.………………………9分记“听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上”为事件B , 则()11134040b P B +==. 答:听觉记忆能力恰为中等,且视觉记忆能力为中等或中等以上的概率为1340.…………………12分 17.(本小题满分12分)(本小题主要考查方位角、正弦定理、余弦定理等基础知识,考查运算求解能力等.)解:(1)依题意,120BAC ∠= ,12AB =,10220AC =⨯=,BCA α∠=.………………………2分在△ABC 中,由余弦定理,得2222cos BC AB AC AB AC BAC =+-⨯⨯∠ ……………………4分22122021220cos120784=+-⨯⨯⨯=.解得28BC =.………………………………………………………6分所以渔船甲的速度为142BC=海里/小时. 答:渔船甲的速度为14海里/小时.…………………………………7分(2)方法1:在△ABC 中,因为12AB =,120BAC ∠=,28BC =,BCA α∠=,由正弦定理,得s in s i n 12A B B Cα=.……………………………………………………………………9分即12sin1202sin 28AB BCα===60ABC东南西北 α答:s α的值为.………………………………………………………………………………12分 方法2:在△ABC 中,因为12AB =,20AC =,28BC =,BCA α∠=, 由余弦定理,得222c o s 2AC B C A B A C B Cα+-=⨯.…………………………………………………………9分 即22220281213cos 2202814α+-==⨯⨯. 因为α为锐角,所以sin α===答:s α的值为.………………………………………………………………………………12分18.(本小题满分14分)(本小题主要考查等差数列、等比数列、不等式等基础知识,考查方程思想以及运算求解能力.) 解:(1)设等差数列{}n a 的公差为d,则()112n n n S na d -=+.………………………………………1分 由已知,得111091055,2201920210.2a d a d ⨯⎧+=⎪⎪⎨⨯⎪+=⎪⎩………………………………………………………………………3分 即112911,21921.a d a d +=⎧⎨+=⎩解得11,1.a d =⎧⎨=⎩…………………………………………………………………………5分所以1(n a a =+(n *∈N ).………………………………………………………………6分 (2)假设存在m 、k ()2,,k m m k >≥∈N ,使得1b 、m b 、k b 成等比数列,则21m k b bb =.……………………………………………………………………………………………7分因为11n n n a nb a n +==+,…………………………………………………………………………………8分所以11,,211m k m k b b b m k ===++. 所以2112m k m k ⎛⎫=⨯ ⎪++⎝⎭.……………………………………………………………………………9分整理,得22221m k m m =-++.…………………………………………………………………………10分以下给出求m ,k 的三种方法: 方法1:因为k >,所以2210m m -++>.………………………………………………………11分解得12m <12分因为2,m m ≥∈*N , 所以2m =,此时8k =. 故存在2m =、8k =,使得1b 、mb 、kb 成等比数列.……………………………………………14分 方法2:因为k m>,所以22221m k m m m =>-++.…………………………………………………11分即221021m m m +<--,即221021m m m -<--.解得112m -<<或11m <<12分因为2,m m ≥∈*N , 所以2m =,此时8k =. 故存在2m =、8k =,使得1b 、mb 、kb 成等比数列.……………………………………………14分 方法3:因为2k m >≥,所以222221m k m m =>-++.……………………………………………11分即221021m m m +<--,即22221021m m m m --<--.得或12<12分 因为2,m m ≥∈*N , 所以2m =,此时8k =. 故存在2m =、8k =,使得1b 、mb 、kb 成等比数列.……………………………………………14分 19.(本小题满分14分)(本小题主要考查锥体体积,空间线线、线面关系,三视图等知识,考查化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.)(1)证明:因为EA ABC ⊥平面,C A ABC ⊂平面,所以EA AC ⊥,即ED AC ⊥.又因为AC AB ⊥,AB ED A = ,所以AC ⊥平面EBD .因为B D ⊂平面,所以AC BD ⊥.………………………………………………………………4分(2)解:因为点A 、B 、C 在圆O 的圆周上,且AB AC ⊥,所以BC 为圆O 的直径.设圆O 的半径为r ,圆柱高为h ,根据正(主)视图、侧(左)视图的面积可得,12210,2122212.2rh r rh r ⎧+⨯=⎪⎪⎨⎪+⨯⨯=⎪⎩…………………………………………6分 解得2,2.r h =⎧⎨=⎩所以4BC =,AB AC ==8分以下给出求三棱锥E BCD -体积的两种方法: 方法1:由(1)知,AC ⊥平面EBD , 所以13E BV V --==.………………………………………………………………10分因为EA ABC ⊥平面,AB ABC ⊂平面, 所以EA AB ⊥,即ED AB ⊥.EDEA =+,因为AB AC ⊥,2AB AC ==,以ED AB ⨯⨯=. (13)分所以11233E BCD V -=⨯=. (14)分方法2:因为EA ABC ⊥平面, 所以13E BV V --=+.…………………10分其中224ED EADA =+=+=,因为AB AC ⊥,AB AC ==, 所以11422ABC S AC AB ∆=⨯⨯=⨯=. (13)分所以114433E BCD V -=⨯⨯=. (14)AD 1A 1EBCO D分 20.(本小题满分14分)(本小题主要考查分段函数、导数、函数的单调性和最值等基础知识,考查分类讨论思想,以及运算求解能力和推理论证能力等.) 解:(1)因为函数()2f x x =的定义域(),F =-∞+∞,函数()ln g x a x =的定义域()0,G =+∞,所以()22l n,x a h x x x ⎧+>⎪=⎨⎪⎩≤……………………………………………………………………4分(2)当0x ≤时,函数()2h x x =单调递减,所以函数()h x 在(],0-∞上的最小值为()00h =.……………………………………………………5分当0x >时,()2ln h x x a x =+.若0a =,函数()2h x x =在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………6分若a >,因为()2220a x ah x x x x+'=+=>,………………………………………………………7分所以函数()2ln h x x a x =+在()0,+∞上单调递增.此时,函数()h x 不存在最小值.……………8分若a <,因为()222x x x a h x x x⎛ +⎝⎭⎝⎭'==,……………………………………9分 所以函数()2ln h x x a x =+在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.此时,函数()h x 的最小值为h .…………………………………………………………………………………10分 因为l n2ah a ⎡⎤⎛⎫⎛⎫=-+-+-=--- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,………………………11分所以当2e 0a -<≤时,0h ≥,当2ea <-时,0h <.…………………………13分 综上可知,当0a >时,函数()h x 没有最小值;当2e 0a -≤≤时,函数()h x 的最小值为()00h =;当2ea <-时,函数()h x 的最小值为1ln 2a ⎤⎛⎫-- ⎪⎢⎥⎝⎭⎣⎦.……………………………14分 分)(本小题主要考查圆、双曲线、直线方程和不等式等基础知识,考查运算求解能力和推理论证能力,以及分类讨论思想与创新意识等.) 解:(1)因为a b >>,所以1ba<,所以c e a ===<1分由90APB ∠=及圆的性质,可知四边形PAOB 是正方形,所以OP =.因为O b a=≥,所以b a ≥,所以c e a a ===≥.……………3分故双曲线离心率e的取值范围为⎣.…………………………………………………………4分 (2)方法1:因为22222200PA OP OA x y b =-=+-,所以以点P为圆心,PA为半径的圆P的方程为()()222220000x x y y x y b -+-=+-.………5分因为圆O与圆P两圆的公共弦所在的直线即为直线AB ,……………………………………………6分所以联立方程组()()222222220000,.x y b x x y y x y b ⎧+=⎪⎨-+-=+-⎪⎩………………………………………………7分 消去2x ,2y ,即得直线AB的方程为200x x y y b +=.………………………………………………8分方法2:设()11,A x y ()22,B x y ,已知点()00,P x y , 则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为P A⊥,所以1P A OAk k =-,即.…………………………………………5分22111y x y =+. 因为211x y b+=,所以20101x x y y b +=.……………………………………………………………6分因为OA OB =,PA PB =,根据平面几何知识可知,AB OP ⊥. 因为00OP y k x =,所以AB x k y =-.………………………………………………………………………7分 所以直线AB 方程为()0110x y y x x y -=--. 即000101x x y y x x y y +=+. 所以直线AB的方程为200x x y y b +=.………………………………………………………………8分方法3:设()()1122,,,A x y B x y ,已知点()00,P x y ,则PA k =0101y y x x --,11OA yk x =()101,0x x x ≠≠其中.因为P A⊥,所以1P A OAk k =-,即0110111y y y x x x -⨯=--.…………………………………………5分整理得22010111x x y y x y +=+.因为22211x y b +=,所以20101x x y y b +=. (6)这说明点A 在直线200x x y y b +=上. …………7分同理点B 也在直线200x x y y b +=上.所以200x x y y b +=就是直线AB 的方程. ……8分 (3)由(2)知,直线AB 的方程为200x x y y b +=,所以点O 到直线AB 的距离为2d =, 的面积220012S AB d =⨯⨯=10分以下给出求三角形OAB 的面积S 的三种方法:方法1:因为点()00,P x y 在双曲线22221x y a b-=上,所以2200221x y a b-=,即22222002b x a b y a -=()220x a ≥. 设t ==所以322b t S t b=+.………………………………………………………………………………………11分因为()()()3222b t b t b S tb-+-'=+,所以当0t b <<时,0S '>,当t b >时,0S '<.所以322b tS t b=+在()0,b 上单调递增,在(),b +∞上单调递减.……………………………………12分当b,即b ab<≤时,322212b b S b b b ⨯==+最大值,…………………………………13分当b >,即a >时,2S b ==+最大值 综上可知,当b a b<≤时,212S b =最大值;当a >时,22b b S a =最大值.………14分方法2:设t =,则33.…………………………………………11分因为点()00,P x y 在双曲线22221x y a b -=上,即2200221x y a b -=,即22222002b x a b y a -=()220x a ≥.所以t ==≥令()2b g t t t =+,则()()()2221t b t b b g t t t+-'=-=. 所以当0t b <<时,()0g t '<,当t b >时,()0g t '>.所以()2b g t tt=+在()0,b 上单调递减,在(),b +∞上单调递增.…………………………………12分当b,即b ab<≤时,32212b S b b b b==+最大值,……………………………………13分当b >,即a >时,322b b S a==最大值. 综上可知,当b a b<≤时,212S b =最大值;当a >时,22b b S a =最大值.………14分方法3:设2200t x y =+,则S b ==11分令()2222221124g u b u u b u b b ⎛⎫=-+=--+ ⎪⎝⎭,所以()g u 在21,2b ⎛⎫-∞ ⎪⎝⎭上单调递增,在21,2b ⎛⎫+∞ ⎪⎝⎭上单调递减.………………………………12分因为t a ≥,所以2110,u t a ⎛⎤=∈ ⎥⎝⎦, 当22112b a ≤,即b a b <≤时,()22max1124g u g b b ⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时321122S b b b =⨯=最大值. ………………………………13分当22112b a >,即a >时,()2224max1a b g u g a a -⎛⎫==⎡⎤ ⎪⎣⎦⎝⎭,此时2b S a=最大值.综上可知,当b a b<≤时,212S b =最大值;当a >时,2b S =最大值.………14分。

2011年高考数学广东卷(文)全解析版

2011年高考数学广东卷(文)全解析版

2011年全国统一考试(广东卷)数学(文科)本试卷共4页,21小题,满分150分。

考试用时120分钟。

参考公式: 锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 为锥体的高.线性回归方程y bx a =+中系数计算公式x b y a x xy y x xb ni ini i i-=---=∑∑==,)())((211样本数据12,,...n x x x 的标准差()()()[]222211xx xxxx ns n -++-+-=,其中y x ,表示样本均值,n 是正整数,则))((1221----++++-=-n n n n nnb abb aa b a b a一、选择题:本大题共10小题,每小题5分,满分50分。

在每小题给出四个选项中,只有一项符合题目要求。

1.设复数z 满足1=iz ,其中i 为虚数单位,则z =( ) A .i - B .i C .1- D .12.已知集合{}22(,)|,1A x y x y x y =+=为实数,且,{}(,)|,1B x y x y x y =+=为实数,且,则A B 的元素个数为( )A .4B .3C .2D .13.已知向量(1,2)a = ,(1,0)b = ,(3,4)c =,若λ为实数,//a b c λ+ ,则λ=( )A .41 B .21 C .1 D .24.函数)1lg(11)(x xx f ++-=的定义域是( )A .()1,-∞-B .),1(+∞C .),1()1,1(+∞-D .),(+∞-∞ 5.不等式0122>--x x 的解集是( ) A .⎪⎭⎫ ⎝⎛-1,21B .),1(+∞C .),2()1,(+∞-∞D .),1(21,+∞⎪⎭⎫ ⎝⎛-∞- 6.已知平面直角坐标系xOy 上的区域D 由不等式组⎪⎩⎪⎨⎧≤≤≤≤yx y x 2220给定。

若(,)M x y 为D 上的动点,点A 的坐标为),则OA OM z ∙=的最大值为( )A .3B .4C .23D .247.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有( )A .20B .15C .12D .108.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为( ) A .抛物线 B .双曲线 C .椭圆 D .圆9.如图1~3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形, 则几何体体积为( )A .34B .4C .32D .210.设()f x ,()g x ,()h x 是R 上的任意实值函数,如下定义两个函数()()f g x 和()()f g x ∙:对任意x R ∈,()()(())f g x f g x = ;()()f g x ∙=()()f x g x ,则下列等式恒成立的是( ) A .()()()()()())(x h g h f x h g f ∙∙=∙ B .()()()()()())(x h g h f x h g f ∙=∙ C .()()()()()())(x h g h fx h g f =D .()()()()()())(x h g h fx h g f ∙∙∙=∙∙二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分。

2011年广州市普通高中毕业班综合测试(二)文科综合(word版)

2011年广州市普通高中毕业班综合测试(二)文科综合(word版)

绝密★启用前试卷类型:A 2011年广州市普通高中毕业班综合测试(二)文科综合2011.4 本试卷共12页,41小题,满分300分。

考试用时150分钟。

注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号,用黑色字迹钢笔或签字笔将自己所在的市、县/区、学校,以及自己的姓名和考生号、试室号、座位号填写在答题忙上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共35小题,每小题4分,共140分。

每小题给出的四个选项中,只有一个选项符合题目要求。

当地时间2011年3月11日14时46分,日本东北地区发生了里氏9级地震,引发了海啸和核泄漏危机。

回答1~3题。

1.右图是全球板块构造剖面示意图,日本的板块交界类型是A.①B.②C.③D.④2.世界核电站主要分布在沿海、沿江地区,影响其分布最主要的区位因子是A.交通B.地质构造C.铀矿资源D.水源3.核辐射危机具有全球性,影响其全球化的因素是A.大气环流和水循环B.水循环和生物循环C.生物循环和地壳物质循环D.地壳物质循环和大气环流下图是某地区某月平均气温分布示意图,完成4~5题。

4.此时,地球在公转轨道上运行到A.近日点附近B.远日点附近C.春分点附近D.秋分点附近5.M处比同纬度大陆(澳大利亚)气温高,其最主要影响因素是A.马达加斯加暖流B.海陆热力性质差异C.西风D.山地下图是我国某地区气温、降水量和蒸发量年内分布示意图,完成6~7题。

2011年广东高考数学文科数据 含答案

2011年广东高考数学文科数据 含答案

绝密★启用前 试卷类型:B2011年普通高等学校招生全国统一考试(广东卷)数学(文)试题解析本试题共4页,21小题,满分150分,考试用时120分钟。

注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

参考公式:锥体体积公式13V Sh =,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程 y bxa =+ 中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑ , a y bx =- ,样本数据12,,,n x x x的标准差,s = 其中x ,y 表示样本均值.n 是正整数,则1221()()n n n n n n a b a b a a b ab b -----=-++++ .一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1iz =,其中i 为虚数单位,则z =A .i -B .iC .1-D .1解析:(A ).1()iz i i i i -===-⨯- 2.已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且1}x y +=,则A B ⋂的元素个数为A .4B .3C .2D .1解析:(C ).A B ⋂的元素个数等价于圆221x y +=与直线1x y +=的交点个数,显然有2个交点3.已知向量(1,2),(1,0),(3,4)===a b c .若λ为实数,()λ+a b ∥c ,则λ= A .14 B .12C .1D .2 解析:(B ).(1,2)λλ+=+a b ,由()λ+a b ∥c ,得64(1)0λ-+=,解得λ=124.函数1()lg(1)1f x x x=++-的定义域是 A .(,1)-∞- B .(1,)+∞ C .(1,1)(1,)-⋃+∞ D .(,)-∞+∞解析:(C ).10110x x x -≠⎧⇒>-⎨+>⎩且1x ≠,则()f x 的定义域是(1,1)(1,)-⋃+∞5.不等式2210x x -->的解集是A .1(,1)2- B .(1,)+∞ C .(,1)(2,)-∞⋃+∞ D .1(,)(1,)2-∞-⋃+∞解析:(D ).21210(1)(21)02x x x x x -->⇒-+>⇒<-或1x >,则不等式的解集为1(,)(1,)2-∞-⋃+∞6.已知平面直角坐标系xOy 上的区域D由不等式组02x y x ⎧⎪⎨⎪⎩≤≤给定.若(,)M x y 为D上的动点,点A的坐标为,则z OM OA=⋅的最大值为A .3B .4 C. D.解析:(B ).z y =+,即y z =+,画出不等式组表示的平面区域,易知当直线y z =+经过点时,z取得最大值,max 24z =正视图 图1侧视图 图2图37.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有A .20B .15C .12D .10 解析:(D ).正五棱柱中,上底面中的每一个顶点均可与下底面中的两个顶点构成对角线,所以一个正五棱柱对角线的条数共有5210⨯=条8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,则C 的圆心轨迹为 A .抛物线 B .双曲线 C .椭圆 D .圆解析:(A).依题意得,C 的圆心到点(0,3)的距离与它到直线1y =-的距离相等,则C 的圆心轨迹为抛物线9.如图1 ~ 3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,为 A . B .4 C .D.2解析:(C ).该几何体是一个底面为菱形的四棱锥,菱形的面积122S =⨯⨯=,四棱锥的高为3,则该几何体的体积11333V Sh ==⨯=10.设(),(),()f x g x h x 是R 上的任意实值函数,如下定义两个函数()f g ()x 和()f g ∙()x :对任意x ∈R ,()f g ∙()x =(())f g x ;()f g ∙()x =()()f x g x ,则下列等式恒成立的是A .(()f g ∙ h )()x =(()f h ∙∙ ()g h )()xB .(()f g ∙ h )()x =(()f h ∙ ()g h ∙)()xC .(()f g ∙∙h )()x =(()f g ∙ ∙ ()g h ∙)()x D .(()f g ∙∙ h )()x =(()f g ∙∙ ()g h ∙)()x解析:(B ).对A 选项 (()f g ∙∙ h )()x =()f g ∙()()x h x (())()f g x h x =(()f h ∙∙ ()g h ∙)()x =()f h ∙(()()g h x ∙ )=()f h ∙((()()g x h x ∙)(()())(()())f g x h x h g x h x =∙∙,故排除A对B 选项 (()f g ∙∙ h )()x =()(())f g h x ∙=(())(())f h x g h x(()f h ∙∙ ()g h ∙)()x =()()()()f h x g h x ∙∙(())(())f h x g h x =,故选B对C 选项 (()f g ∙∙h )()x =()(())f g h x ∙((()))f g h x =(()f g ∙ ∙ ()g h ∙ )()x =()(()())()((()))f g g h x f g g h x ∙∙=∙ (((())))f g g h x =,故排除C对D 选项 (()f g ∙∙ h )()x =()()()()()()f g x h x f x g x h x ∙=(()f g ∙∙ ()g h ∙)()x =()()()()()()()()f g x g h x f x g x g x h x ∙∙= ,故排除D二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分.(一)必做题(9 ~ 13题)11.已知{}n a 是递增的等比数列,若22a =,434a a -=,则此数列的公比q = .解析:2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.若()11f a =,则()f a -= .解析:9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,则33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为 ;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为 .解析:0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++= 3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y bx x ==--++++-===-+-+++-∑∑ ,0.47ay bx =-= ∴线性回归方程 0.010.47y x =+,则当6x =时,0.53y = ∴预测小李该月6号打6小时篮球的投篮命中率为0.53(二)选做题(14 ~ 15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254xty t⎧=⎪⎨⎪=⎩ (t ∈)R ,它们的交点坐标为___________.解析:. sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(01)x y ≤≤≤,254x t y t⎧=⎪⎨⎪=⎩表示抛物图4BAC DEF线245y x =22221(01)5450145x y x y x x x y x ⎧+=<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩或5x =-(舍去), 又因为01y ≤≤,所以它们的交点坐标为15.(几何证明选讲选做题)如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =, EF ∥AB ,则梯形ABFE 与梯形EFCD 的面积比为________.解析:75如图,延长,AD BC ,AD BC P =∵23CD EF =,∴49PCD PEF S S ∆∆= ∵24CD AB =,∴416PCD PEF S S ∆∆= ∴75ABEF EFCDS S =梯形梯形三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数1()2sin()36f x x π=-,x∈R .(1)求(0)f 的值;(2)设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值.解:(1)(0)2sin()16f π=-=-BA(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β== ∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 17.(本小题满分13分)在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n = 的(1)求第6位同学的成绩6x ,及这6位同学成绩的标准差s ;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率. 17.解:(1)61(7076727072)756x +++++=,解得690x = 标准差7s == (2)前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠ 则基本事件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种这5位同学中,编号为1、3、4、5号的同学成绩在区间(68,75)中 设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间(68,75)中”则A 中的基本事件有(1,2)、(2,3)、(2,4)、(2,5)共4种,则42()105P A == 18.(本小题满分13分)图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右水平平移后得到的.,,,A A B B ''分别为 CD, C D '', DE , D E ''的中点,EE '图5C C'1122,,,O O O O ''分别为CD ,C D '', DE ,D E ''的中点.(1)证明:12,,,O A O B ''四点共面;(2)设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.证明:(1)连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心 ∴,,,CD C D DE D E ''''是圆柱底面圆的直径∵,,A B B ''分别为 CD '', DE , D E ''的中点 ∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O ',四边形22O O B B ''是平行四边形 ∴2BO ∥2BO ' ∴1A O ''∥2BO∴12,,,O A O B ''四点共面(2)延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB '' ∵11O H A O ''''=∴1O H ''2B '',四边形12O O B H ''''是平行四边形 ∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''= ∴12O O ''⊥面22O O B B ''∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B '' ∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H'''∠=='',1tan 2A G A H G A H '''∠=='' ∴1tan tan 1HO H A H G ''''∠⋅∠= ∴190HO H A H G ''''∠+∠= ∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形 ∴2BO '∥1HO '∴2BO H G ''⊥,H G H B H ''''= ∴2BO '⊥平面H B G ''. 19.(本小题满分14分)设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性.解:函数()f x 的定义域为(0,)+∞212(1)2(1)1()2(1)2(1)a a x a x f x a a x a x x---+'=+---=令2()2(1)2(1)1g x a a x a x =---+224(1)8(1)121644(31)(1)a a a a a a a ∆=---=-+=--① 当103a <<时,0∆>,令()0f x '=,解得x =则当0x <<或x >()0f x '>x <<时,()0f x '< 则()f x在,)+∞上单调递增,在上单调递减② 当113a ≤≤时,0∆≤,()0f x '≥,则()f x 在(0,)+∞上单调递增 ③ 当1a >时,0∆>,令()0f x '=,解得x =∵0x >,∴x =则当0x <<时,()0f x '>当x >时,()0f x '<则()f x在上单调递增,在)+∞上单调递减20.(本小题满分14分)设0b >,数列{}n a 满足1a b =,111n n n nba a a n --=+-(n ≥2).(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,2n a ≤11n b++.解:(1)∵111n n n nba a a n --=+-∴111n n n a ba n a n --=+- ∴1111n n n n a b a b--=⋅+ ① 当1b =时,111n n n n a a ---=,则{}nn a 是以1为首项,1为公差的等差数列 ∴1(1)1nnn n a =+-⨯=,即1n a = ② 当0b >且1b ≠时,11111()11n n n n a b b a b--+=+-- 当1n =时,111(1)n n a b b b +=-- ∴1{}1n n a b+-是以1(1)b b -为首项,1b 为公比的等比数列 ∴111()11n n n a b b b+=⋅-- ∴111(1)1(1)n n nn n b a b b b b b-=-=--- ∴(1)1nn nn b b a b-=- 综上所述(1),01111nn n n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, (2)证明:① 当1b =时,1212n n a b+=+=;② 当0b >且1b ≠时,211(1)(1)nn n b b b bb ---=-++++要证121n n a b+≤+,只需证12(1)11nn nn b b b b+-≤+-,即证2(1)11n nn b b b b -≤+-即证21211n n nn b b b b b--≤+++++ 即证211()(1)2n n n b b b b n b--+++++≥即证21121111()()2n nn n b b b b n b b b b --+++++++++≥∵21121111()()n nn n b b b b b b b b--+++++++++21211111()()()()n n n nb b b b b b bb--=++++++++2n ≥+= ,∴原不等式成立∴对于一切正整数n ,2n a ≤11n b++.21.(本小题满分14分)在平面直角坐标系xOy 上,直线l :2x =-交x 轴于点A .设P 是l 上一点,M 是线段OP 的垂直平分线上一点,且满足MPO AOP ∠=∠.(1)当点P 在l 上运动时,求点M 的轨迹E 的方程;(2)已知(1,1)T -,设H 是E 上动点,求HO HT +的最小值,并给出此时点H 的坐标;(3)过点(1,1)T -且不平行于y 轴的直线1l 与轨迹E 有且只有两个不同的交点,求直线1l 的斜率k 的取值范围.解:(1)如图所示,连接OM ,则PM OM = ∵MPO AOP ∠=∠,∴动点M 满足MP l ⊥或M 在x 的负半轴上,设(,)M xy ① 当MP l ⊥时,2MPx =+,OM =2x +=244y x =+(1)x ≥-② 当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或0y =(1)x <-(2)由(1)知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <-① 若H 是抛物线上的动点,过H 作HN l ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN = 则HO HT HN HT +=+当,,N H T 三点共线时,HN HT +有最小值3TN =求得此时H 的坐标为3(,1)4--② 若H 是x 的负半轴0y =(1)x <-上的动点 显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4-- (3)如图,设抛物线顶点(1,0)A -,则直线AT 的斜率12ATk =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点 则直线1l 与轨迹E 的交点个数分以下四种情况讨论:① 当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点② 当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点③ 当0k =时,直线1l 与轨迹E 有且只有一个交点 ④ 当0k >时,直线1l 与轨迹E 有且只有两个不同的交点 综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。

广州市普通高中2011年高中毕业班综合测试语文

广州市普通高中2011年高中毕业班综合测试语文

广州市普通高中2011年高中毕业班综合测试(一)语文试题本试卷共24小题,满分为150分。

考试用时150分钟。

注意事项:1.答卷前,考生务必用2B铅笔在“考生号”处填涂考生号。

用黑色字迹的钢笔或签字笔将自己所在的市、县/区、学校以及自己的姓名和考生号、试室号、座位号填写在答题卡上。

用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,。

答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答素;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.作答选做题时,请先用2B铅笔填涂选做题题号对应的信息点,再作答:漏涂、错涂、多涂的,答案无效。

5.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、本大题4小题,每小题3分,共12分。

1.下列词语中加点的字,每对读音都不相同的一组是()A.豆豉/奢侈单薄/刻薄赝品/义愤填膺B.即使/觊觎倾轧/轧钢狙击/含英咀华C.慨叹/楷模狼藉/蕴藉炮烙/一丘之貉D.渣滓/恣意倒退/倒影辍学/掇拾旧闻2.下面语段中画线的成语,使用不恰当...的一项是()“翠峰一滴三江水,珠流万里入南洋。

”珠江,孕育了无数的风流人物,见证了中华民族的沧海桑田,叙说着一个又一个脍炙人口的故事。

特别是鸦片战争以来,思想的飓风一直激荡着广袤的华夏大地,珠江流域成为众望所归的中.近现代革命策源地。

A.风流人物.B.沧海桑田,C.脍炙人口D.众望所归3.下列句子中,没有语病....的一项是()A.学习型组织的倡导者美国人比得•圣洁坚持认为,把人看作机器零部件的观念是人和人类组织成长过程中的一大障碍。

B.广州旧河涌的综合整治,要充分考虑拆迁过程中出现的各种困难,设法解决工程复杂、时间紧迫、施工难度大等不利条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

试卷类型:A2011年广州市高三年级调研测试数学(文科)本试卷共4 页,共21 题,满分150 分。

考试用时120 分钟。

2011.01 注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上, 并用2B 铅笔在答题卡上的相应位置填涂考生号。

用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上。

2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4. 作答选做题时,请先用2B 铅笔填涂选做题的题号(或题组号)对应的信息点,再作答。

漏涂、错涂、多涂的,答案无效。

参考公式:锥体的体积公式13V S h =,其中S 是锥体的底面积,h 是锥体的高.一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符 合题目要求的.1. 函数()g x =A .{3x x ≥-}B .{3x x >-}C .{3x x ≤-}D .{3x x <-} 2.已知i 为虚数单位, 则复数z =i (1+i )在复平面内对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限 3.设向量(2,0)=a ,(1,1)=b ,则下列结论中正确的是A .||||=a b B . 12=a b C .//a b D .()-⊥a b b4.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l图2侧视图俯视图正视图的 方程为A.y = B.y =C.3y x =-D.3y x =5.甲、乙、丙、丁四人参加奥运会射击项目选拔赛,四人的平均成绩和方差如下表所示:从这四个人中选择一人参加奥运会射击项目比赛,最佳人选是 A .甲 B . 乙 C . 丙 D .丁6.如果执行图1的程序框图,若输入6,4n m ==,那么输出的p 等于A .720B .360C .240D .1207.“2>x ”是“0232>+-x x ”成立的 图1 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.定义3x y x y ⊗=-, 则()h h h ⊗⊗等于 A .h - B .0 C .h D .3h9. 一空间几何体的三视图如图2所示, 该几何体的体积为123π+,则正视图中x 的值为A .5B .4C .3D .2 10.若把函数()=y f x 的图象沿x 轴向左平移4π个单位,沿y 轴向下平移1个单位,然后再把图象上每个点的 横坐标伸长到原来的2倍(纵坐标保持不变),得到函数s in =y x 的图象,则()=y f x 的解析式为图3NA .s in 214⎛⎫=-+ ⎪⎝⎭y x π B .s in 212⎛⎫=-+ ⎪⎝⎭y x π C .1s in 124⎛⎫=+- ⎪⎝⎭y x π D .1s in 122⎛⎫=+- ⎪⎝⎭y x π二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.已知等比数列{}n a 的公比是2,33a =,则5a 的值是 .12.△A B C 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知2,3a b ==,则s in s in ()A A C =+ .13.设函数()()[)22,,1,,1,.xx f x x x -⎧∈-∞⎪=⎨∈+∞⎪⎩ 若()4f x >,则x 的取值范围是 .(二)选做题(14~15题,考生只能从中选做一题)14.(几何证明选讲选做题)如图3,四边形A B C D 内接于⊙O , B C 是直径,M N 与⊙O 相切, 切点为A ,M A B ∠35︒=,则D ∠= .15.(坐标系与参数方程选讲选做题)已知直线l 的参数方程为:2,14x t y t=⎧⎨=+⎩(t 为参数),圆C 的极坐标方程为in ρθ=,则直线l 与圆C 的位置关系为 . 三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知向量a (sin ,2)θ=,b (c o s ,1)θ=, 且a //b ,其中(0,)2πθ∈.(1)求θsin 和θcos 的值; (2)若3sin (), 052πθωω-=<<,求c o s ω的值.17.(本小题满分12分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数A B CPD 分布)如下表:(1)用分层抽样的方法在35~50岁年龄段的专业技术人员中抽取一个容量为5的样本,将该样本看成一个总体, 从中任取2人, 求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x 、y 的值.18.(本小题满分14分)如图4,在四棱锥P A B C D -中,平面P A D ⊥平面A B C D,A B D C ∥,P A D △是等边三角形,已知24B D A D ==,2A B D C ==(1)求证:B D ⊥平面P A D ;(2)求三棱锥A P C D -的体积.19.(本小题满分14分) 图4 已知椭圆(222:13x yE a a+=>的离心率12e =. 直线x t =(0t >)与曲线E 交于不同的两点,M N ,以线段M N 为直径作圆C ,圆心为C . (1)求椭圆E 的方程;(2)若圆C 与y 轴相交于不同的两点,A B ,求A B C ∆的面积的最大值. 20.(本小题满分14分)已知数列}{n a 的前n 项和为n S ,且满足1(n n S a n =-∈N *).各项为正数的数列}{n b 中,对于一切n ∈N *,有11nk n ==∑且1231,2,3b b b ===.(1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n n a b 的前n 项和为n T ,求证:2n T <.21.(本小题满分14分) 已知函数()(a f x x a x=+∈R ), ()ln g x x =.(1)求函数()()()F x f x g x =+的单调区间;(2)若关于x 的方程()()22gx fx e x=-(e 为自然对数的底数)只有一个实数根, 求a 的值.2011年广州市高三调研测试数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分. 一、选择题:本大题主要考查基本知识和基本运算.共10小题,每小题5分,满分50分.二、填空题:本大题主要考查基本知识和基本运算.本大题共5小题,考生作答4小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.12 12.2313.()(),22,-∞-+∞ 14.125︒15.相交三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(本小题主要考查平面向量, 同角三角函数的基本关系、两角和与差的三角公式等知识, 考查化归与转化的数学思想方法和运算求解能力) (1)解:∵a (sin ,2)θ=,b (c o s ,1)θ=, 且a //b , ∴s in c o s 21θθ=,即θθcos 2sin =. …… 2分∵ 1cos sin 22=+θθ, 0,2πθ⎛⎫∈ ⎪⎝⎭,解得s in c o s 55θθ==,∴55cos ,552sin ==θθ. …… 6分 (2)解:∵02πω<<,20πθ<<,∴22ππθω-<-<.∵3s in (), 5θω-=∴ 4c o s ()5θω-==. …… 8分∴co s co s[()]co s co s()sin sin ()ωθθωθθωθθω=--=-+- …… 10分5=. …… 12分17.(本小题满分12分) (本小题主要考查分层抽样、概率等知识, 考查或然与必然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)(1) 解: 用分层抽样的方法在35~50岁中抽取一个容量为5的样本, 设抽取学历为本科的人数为m , ∴30505m =, 解得3m =. …… 2分∴ 抽取了学历为研究生2人,学历为本科3人,分别记作S 1、S 2 ;B 1、B 2、B 3 .从中任取2人的所有基本事件共10个: (S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2, B 1),(S 2, B 2), (S 2, B 3), (S 1, S 2), (B 1, B 2), (B 2, B 3), (B 1, B 3).OPDC BA其中至少有1人的学历为研究生的基本事件有7个: (S 1, B 1),(S 1, B 2),(S 1, B 3),(S 2, B 1), (S 2, B 2), (S 2, B 3), (S 1, S 2). …… 4分 ∴ 从中任取2人,至少有1人的教育程度为研究生的概率为710. …… 6分(2)解: 依题意得:10539N =,解得78N =. …… 8分∴ 35~50岁中被抽取的人数为78481020--=. ∴482010805020xy==++. …… 10分解得40, 5x y ==.∴40, 5x y ==. …… 12分 18.(本小题满分14分)(本小题主要考查空间线面关系、锥体的体积等知识, 考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) (1)证明:在A B D △中,由于2A D =,4B D =,A B =∴222A DB D A B +=. …… 2分 ∴ A D B D ⊥.又平面P A D ⊥平面A B C D ,平面P A D 平面A B C D A D =,B D ⊂平面A B C D , ∴B D ⊥平面P A D . …… 4分 (2)解:过P 作P O A D ⊥交AD 于O .又平面P A D ⊥平面A B C D , ∴P O ⊥平面A B C D . …… 6分∵P A D △是边长为2的等边三角形,∴P O =.由(1)知,A D B D ⊥,在R t A B D △中, 斜边A B边上的高为5A D B Dh A B ⨯==. …… 8分∵A B D C ∥,∴112225A C D S C D h =⨯=⨯=△. …… 10分∴112333A P C D P A C D A C D V V S P O --==⨯=⨯⨯=△. …… 14分19.(本小题满分14分)(本小题主要考查椭圆、圆、直线与圆的位置关系等知识, 考查数形结合、化归与转化、函数与方程的数学思想方法,以及推理论证能力、运算求解能力和创新意识) (1)解:∵椭圆(222:13x yE a a+=>的离心率12e =,∴12a=. …… 2分解得2a =.∴ 椭圆E 的方程为22143xy+=. …… 4分(2)解法1:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y=⎧⎪⎨+=⎪⎩得221234t y -=. ∴ 圆C的半径为2r =. …… 6分∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴02t <<,即07t <<.∴弦长||A B == ……8分∴A B C ∆的面积12S =⋅ …… 9分)=)221272t +-≤7=…… 12分=7t =.∴ A B C ∆7. …… 14分解法2:依题意,圆心为(,0)(02)C t t <<.由22,1,43x t x y=⎧⎪⎨+=⎪⎩ 得221234t y -=. ∴ 圆C的半径为2r =. …… 6分∴ 圆C 的方程为222123()4tx t y --+=.∵ 圆C 与y 轴相交于不同的两点,A B ,且圆心C 到y 轴的距离d t =,∴02t <<,即07t <<.在圆C 的方程222123()4tx t y --+=中,令0x =,得2y =±,∴弦长||A B =…… 8分∴A B C ∆的面积12S =⋅ …… 9分)=)2212712t +-≤7=……12分=7t =时,等号成立.∴ A B C ∆的面积的最大值为7. (14)分20.(本小题满分14分)(本小题主要考查数列、不等式等知识, 考查化归与转化、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和创新意识) (1)解:∵1n n S a =-,当1n =时,1111a S a ==-, 解得112a =. (1)分当2n ≥时,1n n n a S S -=-()()111n n a a -=---, 得12n n a a -=, 即112n n a a -=. ……3分∴数列}{n a 是首项为12, 公比为12的等比数列.∴1111222n n na -⎛⎫=⨯=⎪⎝⎭. ……4分∵ 对于一切n ∈N *,有11nk n ==∑, ①当2n ≥时, 有1111n k n -=-=∑, ②① - ②=-化简得: 11(1)0n n n b n b b +--+=, ③用1n +替换③式中的n ,得:211(1)0n n n b n b b ++-++=, ④ ……6分③-④ 整理得:211n n n n b b b b +++-=-, ∴当2n ≥时, 数列{}n b 为等差数列. ∵32211b b b b -=-=,∴ 数列{}n b 为等差数列. …… 8分∵ 121,2b b == ∴数列{}n b 的公差1d =.∴()11n b n n =+-=. ……10分(2)证明:∵数列{}n n a b 的前n 项和为n T ,∴231232222n nn T =++++, ⑤ ∴2211122222n n n T +=+++ , ⑥⑤-⑥得:21111122222n nn n T +=+++- (12)分1111221212nn n +⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=--1212n n ++=-.∴2222n nn T +=-<. ……14分21.(本小题满分14分)(本小题主要考查函数、导数等知识, 考查函数与方程、分类与整合的数学思想方法,以及抽象概括能力、推理论证能力、运算求解能力和应用意识) (1)解: 函数()()()ln a F x f x g x x x x=+=++的定义域为()0,+∞.∴()'211a F x xx=-+22x x ax+-=.① 当140a ∆=+≤, 即14a ≤-时, 得20x x a +-≥,则()'0F x ≥.∴函数()F x 在()0,+∞上单调递增. ……2分② 当140a ∆=+>, 即14a >-时, 令()'0,F x = 得20x x a +-=,解得12110,22x x ---+=<=.(ⅰ) 若104a -<≤,则2102x -+=≤.∵()0,x ∈+∞, ∴()'0F x >,∴函数()F x 在()0,+∞上单调递增. …… 4分(ⅱ)若0a >,则0,2x ⎛∈ ⎝⎭时, ()'0F x <;12x ⎛⎫-+∈+∞⎪⎪⎝⎭时, ()'0Fx >,∴函数()F x 在区间10,2⎛-+ ⎪⎝⎭上单调递减, 在区间1,2⎛⎫-++∞ ⎪ ⎪⎝⎭上单调递增. …… 6分 综上所述, 当0a ≤时, 函数()F x 的单调递增区间为()0,+∞;当0a >时, 函数()F x 的单调递减区间为10,2⎛⎫-+⎪⎪⎝⎭, 单调递增区间为2⎛⎫+∞ ⎪ ⎪⎝⎭. …… 8分 (2) 解: 由()()22gx fx e x=-, 得2ln 2x a x e xx=+-, 化为2ln 2x xe x a x=-+.令()ln x h x x=, 则()'21ln x h x x-=.令()'0h x =, 得x e =.当0x e <<时, ()'0h x >; 当x e >时, ()'0h x <.∴函数()h x 在区间()0,e 上单调递增, 在区间(),e +∞上单调递减. ∴当x e =时, 函数()h x 取得最大值, 其值为()1h e e=. (10)分而函数()()2222m x x ex a x e a e =-+=-+-,当x e =时, 函数()m x 取得最小值, 其值为()2m e a e =-. ……12分∴ 当21a e e-=, 即21a e e=+时, 方程()()22gx fx e x=-只有一个根. ……14分。

相关文档
最新文档