第一章线性规划
第一章 线性规划
例 1.5 (汽油混合问题) 一种汽油的特性可用两个指标描述:其点火性用“辛烷数” 描述,其挥发性用“蒸汽压力”描述,某炼油厂有四种标准汽油,设其标号分别为 1,2, 3,4,其特性及库存量见表 1.5,将上述标准汽油适量混合,可得到两种飞机汽油,其标 号分别为 1,2,这两种飞机汽油的性能指标及产量需求见表 1.6,问应如何根据库存情况 适量混合各种标准汽油,使既满足飞机汽油的性能指标,而产量又为最高。
注:前苏联的尼古拉也夫斯克城住宅兴建计划采用了上述模型,共用了 12 个变量,10 个约束条件。
表 1.2 资源 住宅体系 砖混住宅 壁板住宅 大模住宅 资源限量 造价 (元/m2) 105 135 120 110000 (千元 钢材 (公斤/m2) 12 30 25 20000 (吨) 例 1.2 的数据表 水泥 (公斤/m2) 110 190 180 150000 (吨) 砖 (块/m2) 210 —— —— 147000 (千块) 人工 (工日/m2) 4.5 3.0 3.5 4000 (千工日)
3.线性规划模型的一般形式 以 MAX 型、≤约束为例 决策变量: x1 ,
(1-4)
, xn
目标函数: Maxz = c1 x1 +
+ cn x n
⎧a11 x1 + + a1n x n ≤ b1 ⎪ ⎪ 约束条件: s.t.⎨ ⎪a m1 x1 + + a mn x n ≤ bm ⎪ ⎩ x1 , , x n ≥ 0
2
Maxz = x1 + x 2 + x3 ⎧0.105 x1 + 0.135 x 2 + 0.120 x3 ≤ 110000 ⎪0.012 x1 + 0.030 x 2 + 0.025 x3 ≤ 20000 数学模型为: ⎪0.110 x1 + 0.190 x 2 + 0.180 x 3 ≤ 150000 (1-3) s.t ⎨ 0.210 x ≤ 147000 ⎪0.00451 x + 0.003x 2 + 0.0035 x 3 ≤ 4000 ⎪x , x , x 1 ≥ 0 ⎩ 1 2 3
第一章线性规划
一、线性规划问题及其数学模型 1、问题的提出
例1 某工厂用A,B,C,D四种设备生产I,II两种产品, 已知生产单位产品所需各种设备的数量、在计划期内 各种设备的拥有量以及每单位产品I,II的利润见下表 所示,问应如何安排生产才能使总利润最大?
设 备
A 2 2 12
B 1 2 8
C 4 0 16
D 0 4 12
线性规划介绍
历史悠久,理论成熟,应用广泛 运筹学的最基本的方法之一,网络规划、整 数规划、目标规划和多目标规划都是以线性规 划为基础的。 解决稀缺资源最优分配的有效方法,使付出
的费用最小或获得的收益最大。
线性规划理论的发展: 1939年前苏联康托洛维奇(KOHTOPOBUZ) 《生产组织与计划中的 数学方法》提出 “解乘数法”。
产 品
单件利润 (元)
Ⅰ Ⅱ
有效台数
2 3
建立该问题的数学模型 解(1)决策变量:设生产产品I x1个单位,产品II x2个 单位; (2)目标:总利润最大,于是记成max z=2x1+3x2, z 称为目标函数; (3)限制条件 (约束条件) a:各种设备的数量有限,无论如何安排生产,x1,x2 均应满足如下条件:2 x 2 x 1 2
设司乘人员在各时间段一开始时上班,并连续 工作8小时,问该公司线路至少应配备多少司乘人 员。列出该问题的数学模型
设x1,x2,…,x6为各班新上班人数,考虑到在每个时间 段工作的人数既包括该时间段新上班的人又包括上一 个时间段上班的人员,按所需人员最少的要求可列出 本例的数学模型:
目标函数:
m in z x 1 x 2 x 3 x 4 x 5 x 6
min z 1000 x 1 800 x 2
第一章线性规划
x11 + x12 + x13 + x14 = 2000 x21 + x22 + x23 + x24 = 1100 x11 + x21 = 1700 x12 + x22 = 1100 x13 + x23 = 200 x14 + x24 = 100 xij ≥ 0(i = 1,2;j = 1,2,3,4).
其中c =(c1,c2,…,cn)为行向量,称为价值向量,
a11 a A = 21 a m1 a12 a22 am 2
C
单500
75
解:(1) 确定决策变量:设x1,x2为下一个 生产周期产品甲和乙的产量;
(2) 所满足的约束条件:
对资源A的限制:3x1 + 2x2 ≤ 65 对资源B的限制:2x1 + x2 ≤ 40
对资源C的限制: 3x2 ≤ 75
基本要求:x1,x2 ≥ 0 ; (3) 明确目标函数: 获利最大,即求Z= 1500x1 + 2500x2的最大值,用 max表示最大值,s.t.(subject to的简写)表示约束条件,则该模型 可记为: max Z = 1500 x1 + 2500 x2 s.t. 3 x1 + 2 x2 ≤ 65 2 x1 + x2 ≤ 40 3 x2 ≤ 75
标准形式
max z = c1 x1 + c2 x2 + … + cn xn (1.2a)
第一章 线性规划
第1章线性规划Chapter 1 Linear Programming本章内容提要线性规划是运筹学的重要内容。
本章介绍线性规划数学模型、线性规划的基本概念以及求解线性规划数学模型的基本算法——单纯形法。
学习本章要求掌握以下内容:⏹线性规划模型的结构⏹线性规划的标准形式,非标准形式转化为标准形式⏹线性规划的图解以及相应的概念。
包括:约束直线,可行半空间,可行解,可行域,凸集,极点,目标函数等值线,最优解⏹线性规划的基本概念。
包括:基,基础解,基础可行解,基变量,非基变量,进基变量,离基变量,基变换⏹单纯形法原理。
包括:基变量和目标函数用非基变量表出,检验数,选择进基变量的原则,确定离基变量的方法,主元,旋转运算⏹单纯形表。
包括初始单纯形表的构成,单纯形表运算方法⏹初始基础可行解,两阶段法⏹退化的基础可行解§1.1 运筹学和线性规划1.1.1 运筹学运筹学(Operations Research)是二十世纪三十年代二次大战期间由于战争的需要发展起来的一门学科。
当时,英国组织了一批自然科学和工程科学的学者,和军队指挥员一起,研究大规模战争提出的一些问题。
如轰炸战术的评价和改进、反潜艇作战研究等,研究结果在战争实践中取得了明显得效果。
这些研究当时在英国称为Operational Research,直译为作战研究。
战争结束以后,这些研究方法不断发展完善,并逐步形成学科理论体系,其中一些主要的理论和方法包括:线性规划,网络流,整数规划,动态规划,非线性规划,排队论,决策分析,对策论,计算机模拟等。
这些理论和方法在经济管理领域也得到了广泛应用,Operations Research也转义成为“作业研究”。
我国将Operations Research译成“运筹学”,非常贴切地将Operations Research这一英文术语所包含的作战研究和作业研究两方面的涵义都体现了出来。
现在,运筹学已经成为管理科学重要的基础理论和应用方法,是管理科学专业基本的必修课程之一。
第一章_线性规划
第 一 节 线性规划问题及其数学模型
一、线性规划问题的数学模型
线性规划问题主要解决以下两类问题: 1、任务确定后,如何统筹安排,做到应用尽量少的人 力和物力资源来完成任务; 2、在一定量的人力、物力资源的条件下,如何安排、 使用他们,使完成的任务最多。
在生产管理和经济活动中,经常会遇到线性规划问 题,如何利用线性规划的方法来进行分析,下面举例 来加以说明。
表1-2
成分
产品来源
分析:很明显,该厂可以有多种不同的方案从A,B 两处采购原油,但最优方案应是使购买成本最小的一 个,即在满足供应合同单位的前提下,使成本最小的 一个采购方案。
解:设分别表示从A,B两处采购的原油量(单位:万 吨),建立的数学模型为:
m in S 200 x1 290 x2
3. 若存在无非负要求的变量。即有某一个变 量 xj 取正值或负值都可以。这时为了满足标准型 对变量的非负要求,可令 xj = xjˊ- xj〞, 其中: xjˊ、 xj〞 0 ,由于xjˊ可能大于也可能小于xj〞,故 xj 可以为正也可以为负。
上述的标准型具有如下特点: (1)目标函数求最大值; (2)所求的变量都要求是非负的; (3)所有的约束条件都是等式; (4)常数项非负。 综合以上的讨论可以说明任何形式的线
max Z x1 2x2 3x4 3x5 0x6 0x7
x1 x2 x4 x5 x6 7
x13x1x2
x4 x2
x5 2x4
x7 2 2x5 5
x1, x2, x4, , x7 0
第二节 线性规划问题的图解法及几何意义
例1-1:(计划安排问题)某工厂在计划期内安排 生产Ⅰ、Ⅱ两种产品,已知生产单位产品所占用的 设备A、B的台时、原材料的消耗及两种产品每件 可获利润见表所示:
运筹学第1章-线性规划
下一页 返回
图解法步骤:
(1)建立坐标系; (2)将约束条件在图上表示; (3)确立满足约束条件的解的范围; (4)绘制出目标函数的图形 (5)确定最优解
用图解法求解下列线性规划问题
max z 2x1 3x2
4x1 0x2 16
s.t
10xx11
4x2 2x2
12 8
x1, x2 0
1. 1.1问题举例
(1)生产计划问题。 生产计划问题是典型的已知资源求利润最大化的问题,对于此类
问题通常有三个假设:①在某一计划期内对生产做出的安排;②生产 过程的损失忽略不计;③市场需求无限制,即假设生产的产品全部 卖出。
下一页 返回
1.一般线性规划问题的数学模型
例1 用一块连长为a的正方形铁皮做一个容 器,应如何裁剪,使做成的窗口的容积为最 大?
解:设 x1, x2分别表示从A,B两处采购的原油量(单
位:吨),则所有的采购方案的最优方案为:
min z 200x1 290x2
0.15x1 0.50x2 150000
s.t
0.20x1 0.50x1
0.30x2 0.15x2
120000 120000
x1 0, x2 0
1. 1线性规划问题与模型
也可以写成模型(1-6)和模型(1-7)的形式,其中模型(1-7)较为常用。
第一章 线性规划
星期 一 二 三 四
需要人数 300 300 350 400
星期 五 六 日
需要人数 480 600 550
第二节 线性规划问题解的图解法
• 一、线性规划标问题的标准形式:
– 1、所有变量必须是非负的 – 2、所有的约束条件(不包括非负限制)必须 是等式 – 3、目标函数必须是最小值
序号
食品 名称
热量
(大卡) 大卡)
蛋白质
(克)
钙
(毫克) 毫克)
脂肪
价格
(克) (元/千克) 千克) 千克
1 2 3 4 5 6 7 8
猪肉 牛肉 芝麻 鸡蛋 大米 白菜 面粉 豆角
395 125 517 144 346 17 344 30
50 19.9 18.4 13.3 7.4 1.5 11.2 2.5
产品 消耗 原料
原料总量(千克)
甲
乙
丙
A B C
产品单价(百元)
1 5 0 2
4 2 2 4
2 3 5 5
4500 6300 3800
• 例2.某工厂熔炼一种新型不锈钢,需要用四种 合金ABCD为原料,经测这四种原料关于元素 铬、锰和镍的含量、单价,以及这种不锈钢所 需铬、锰和镍的最低含量,如表所示:
产品 消耗 原料
A
B
C
D 2.67 4.66 1.37 9.91
不秀钢所需各元素 的最低含量
1.89 3.57 5.32 单价(万元/吨) 13.6 铬 锰 镍
3.46 4.26 2.11 1.45 4.25 2.72 15.8 10.02
3.25 2.15 4.55
二、线性规划问题的数学模型的一般形式
第一节线性规划问题及其数学模型
第一章 线性规划
线性规划
【开篇案例】
一、人力资源分配的问题
某旅行社为了迎接旅 游黄金周的到来,对一日 游导游人员的需求经过统 计分析如表所示。为了保 证导游充分休息,导游每 周工作 5天,休息两天, 并要求休息的两天是连续 的。问应该如何安排导游 人员的作息,既满足工作 需要,又使配备的导游人
下午5时14分
什么是规划?
• 以上问题无一例外都属于规划问题,涉及到求解最大值 和最小值
• 人们经常谈规划,比如国家有5年规划、10年规划、城市 有城市规划,个人有自己的人生规划.
• 规划是在现有的人力、物力水平下,使得目标达到最优 的全面、理性的计划
下午5时14分
线性规划
• 线性规划简介: • 运筹学中最成熟的一个分支 • 静态规划:单周期决策
第一节 下午5时14分 线性规划的一般模型
三、线性规划模型的特征
1. 模型隐含假定
作为严密的数学模型,线性规划蕴含着以下假定: (1)线性化假定
函数关系式f(x)= c1x1+c2x2+… +cnxn,称线性函数。 经济学中大多数函数都是非线性,通过偏导求最优。但在企业
运营决策中,经常考虑比较短时间内的计划安排,通过线性化 更便于应用。
乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?
甲
乙
丙
资源限制
铸造工时(小时/件)
5
10
7
8000
机加工工时(小时/件)
6
4
8
12000
装配工时(小时/件)
3
2
2
10000
自产铸件成本(元/件)
3
5
4
外协铸件成本(元/件)
第1章 线性规划
第1章线性规划本章介绍了什么是线性规划,线性规划数学模型的概念及其建立数学模型方法;阐述了线性规划的图解法、解的概念及解的形式;详细介绍了普通单纯形法、人工变量单纯形法及单纯形法计算公式。
1.考核知识点(1) 基本概念:数学模型、决策变量、目标函数、约束条件、标准型、图解法、基矩阵、基变量、非基变量、可行解、基解、基可行解、最优解、基最优解、唯一解、多重解、无界解、无可行解、单纯形法、最小比值、入基变量、出基变量、解的判断、大M法、两阶段法、改进单纯形法。
(2) 建立简单的线性规划数学模型。
(3) 求解线性规划的图解法。
(4) 基、可行基及最优基的定义。
(5) 可行解、基本解、基可行解、最优解、基本最优解的定义及其相互关系。
(6) 有唯一解、有无穷多解、无界解、无可行解的判断。
(7) 求解线性规划的单纯形法。
(8) 求解线性规划的人工变量法。
(9) 单纯形法中的5个计算公式。
2.学习要求(1) 深刻领会线性规划的各种基与解的基本概念,它们之间的相互关系。
(2)掌握图解法的计算步骤,注意怎样将目标函数表达成一条直线,这条直线如何平移使得目标函数值上升或下降。
(3) 熟练掌握单纯形法计算的全过程,特别应注意如何列出单纯形表,如何由一个基可行解换到另一个基可行解,基可行解是最优解、无界解或多重解的判断准则。
(4) 理解在什么情况下加入人工变量,人工变量起何作用,用大M法计算时目标函数的变化,两阶段法计算时目标函数的构成,掌握这两种计算方法的全过程,在什么情形下线性规划无可行解。
(5) 理解用矩阵形式代替单纯形表,并用矩阵公式求解线性规划。
3.重点建立线性规划数学模型,有关线性规划解的概念、解的形式,单纯形法计算、大M法、两阶段法。
4.难点解析(1)建立线性规划数学模型建立数学模型是学习线性规划的第一步也是关键的一步。
建立正确的数学模型要掌握3个要素:研究的问题是求什么,即设置决策变量;问题要达到的目标是什么即建立目标函数,目标函数一定是决策变量的线性函数并且求最大值或求最小值;限制达到目标的条件是什么,即建立约束条件。
第1章 线性规划问题
7连续加工问题
一工厂在第一车间用一单位M可加工成3单位产品 A,2单位产品B,A可以按每单位售价8元出售, 也可以在第二车间继续加工,每单位生产费用增 加6元,加工后每单位售价为16元;B可以按每 单位售价7元出售,也可以在第三车间继续加工, 每单位生产费用增加4元,加工后每单位售价为 12元.原料M的单位购入价为2元。上述生产费用 不包括工资在内.三个车间每月最多有20万工时, 每工时工资0.5元.每加工一单位M需1.5工时,如 A继续加工,每单位需3工时;如B继续加工,每 单位需1工时。每月最多能得到的原料M为10万 单位。问如何安排生产,使工厂获利最大?
23
管
理
运
筹
学
三、线性规划标准型及解的概念
• 线性规划的一般形式 max (min) z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn ≤ ( =, ≥ )b1 a21 x1 + a22 x2 + … + a2n xn ≤ ( =, ≥ )b2
xj 0
x j ; j 1,2,...,n
c (c1 , c 2 , , c n )
( j 1,2, , n)
为待定的决策变量,
为价值向量, c j ; j 1, 2,...,n 为价值系数,
b ( b1 , b 2 ,...,b m ) 为右端向量,
矩阵
a 11 a 21 A a m1 a 12 a 22 am2 a mn a1n a 2n
线性规划理论与模型应用
授课人 葛金辉
第一章 线性规划
欢迎阅读第一章 线性规划§1 线性规划在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。
此类问题构成了运筹学的一个重要分支—数学规划,而线性规划(Linear Programming 简记LP)则是数学规划的一个重要分支。
自从1947年G . B. Dantzig 提出求解线性规划的单纯形方法以来,线性规划在理论上趋向成熟,在实用中日益广泛与深入。
特别是在计算机能处理成千上万个约束条件和决策变量的线性规划问题之后,线性规划的适用领域更为广泛了,已成为现代管理中经常采用的基本方法之一。
1.1 线性规划的实例与定义C 三B 为其中c 和x 为n 维列向量,b 为m 维列向量,A 为n m ⨯矩阵。
例如线性规划的Matlab 标准型为1.3 线性规划问题的解的概念一般线性规划问题的标准型为∑==nj j j x c z 1min(3) ∑==≤n j ij ij m i b x a 1,,2,1 s.t. (4)可行解 满足约束条件(4)的解),,,(21n x x x x =,称为线性规划问题的可行解,而使目标函数(3)达到最小值的可行解叫最优解。
可行域 所有可行解构成的集合称为问题的可行域,记为R 。
1.4 线性规划的图解法图解法简单直观,有助于了解线性规划问题求解的基本原理。
我们先应用图解法来求解例1。
如上图所示,阴影区域即为LP 问题的可行域R 。
对于每一固定的值z ,使目标函数值等于z 的点构成的直线称为目标函数等位线,当z 变动时,我们得到一族平行直线。
让等位线沿目标函数值减小的方向移动,直到等位线与可行域有交点的最后位置,此时的交点(一个或多个)即为LP 的最优解。
对于例1,显然等位线越趋于右上方,其上的点具有越大的目标函数值。
不难看出,本例的最优解为T x )6,2(*=,最优目标值26*=z 。
从上面的图解过程可以看出并不难证明以下断言:(1)可行域R 可能会出现多种情况。
第01次课--第一章 线性规划
(如果取≥0)
x1 , x2 , , xn (, )0
约束条件 (1-3)
决策变量
30
非负约束条件
国防科技大学
第一节 线性规划的问题及其数学模型
标准形式
max Z c1 x1 c2 x2
cn xn
顶点同时得到最优解,则它们连线上的任意一点都是最
优解,即有无穷最优解。
28
国防科技大学
第一节 线性规划的问题及其数学模型
图解法的优缺点分析
• 直观、简便 • 变量数多于三个以上时,无能为力
通用普遍的 求解方法 (代数方法)
?
单纯形法
模型的标准形式
?
29
国防科技大学
第一节 线性规划的问题及其数学模型 线性规划的数学模型的一般形式:
2
国防科技大学
第一章 线性规划与单纯形法
在军事活动,以及生产、管理、经营等社 会活动中经常提出一类问题,即如何合理地利用 有限的人力、物力、财力等资源,以得到最好的 效果。
3
国防科技大学
第一节 线性规划的问题及其数学模型
例 兵力运送问题 设有A、B两种型号的直升机,每次A能运 载35人,需驾驶员2人,B能运载20人,需驾
目标函数取 最大值
j 1 a11 x1 a12 x2 a1n xn b1 n a21 x1 a22 x2 a2 n xn b2 简记做 aij x j bi (i 1, 2, , m) j 1 x 0 ( j 1, 2, , m) a x a x a x b j mn n m m1 1 m 2 2 约束条件为等式, x , x , , x 0 且右端项为非负 1 2 n 值
第一章 线性规划
常数项bi全为非负。变量xj值非负。
m axz c j x j
j 1
n
s.t.
aij x j bi i 1, , m j 1 x 0 j 1, , n j
n
一般形变成标准形的方法
1、目标函数:求极大值
两边乘以-1,最大变最小。
例
max z x1 2 x2 3x3 3x3 0 x4 0 x5
2 x x x x x 9 1 2 3 3 4 3x x 2 x 2 x x5 4 1 2 3 3 s.t. 3x1 2 x 2 3x3 3x3 6 x1 , x 2 , x3 , x3 , x 4 , x5 0
b
min z 3x1 5 x 2 x3 x1 2 x 2 x3 6 2 x x 3x 16 1 2 3 s.t. x1 x 2 5 x3 10 x1 , x 2 0, x3无约束
1-4线性规划问题的解
1、可行解 2、最优解
一般线性规划的数学模型 线性规划的标准形式 图解法 单纯形法
§ 1、一般线性规划问题的数学模型
1-1 数学模型
例1 用一块边长为a的正 方形铁皮做一个容器, 应如何裁剪,使做成 的容器的容积最大
x
a
v a 2x x,x 0, a 0
2
例2 常山机器厂生产Ⅰ、Ⅱ两种产品。这两 种产品都要分别在A、B、C三种不同设备 上加工.按工艺资料规定,生产每件产品Ⅰ 需占用各设备分别为2h、4h、0h,生产 每件产品Ⅱ,需占用各设备分别为2h、0h、 5h.已知各设备计划期内用于生产这两种 产品的能力分别为12h、16h、15h,又知 每生产一件产品Ⅰ企业能获利2元利润, 每生产一件产品Ⅱ企业能获利3元,问该 企业应安排生产两种产品各多少件,使得 总利润计划期内的产量
第一 线性规划(共188张PPT)
x1 ≥0, x2 ≥0
• 综上所述,该问题的数学模型表示为
maxZ= 3x1 +5 x2
x1
≤8
2x2 ≤12
3x1 +4 x2 ≤36
x1 ≥0, x2 ≥0
5
第一节 线性规划一般模型
• 例2. 运输问题 某名牌饮料在国内有三个生产厂,分布在城市A1、 A2、A3,其一级承销商有4个,分布在城市B1、B2、B3、 B4,已知各厂的产量、各承销商的销售量及从Ai到Bj 的每吨饮料运费为Cij,为发挥集团优势,公司要统 一筹划运销问题,求运费最小的调运方案。
(3)约束条件。产量之和等于销量之和,故要满足:
▪ 供应平衡条件
x11+x12+x13+x14=5 x21+x22+x23+x24=2 x31+x32+x33+x34 =3
§ 销售平衡条件
x11+x21+x31=2 x12+x22+x32=3 x13+x23+x33=1 x14+x24+x34=4
§ 非负性约束
29
第三节 线性规划的标准型
§ 标准化2
minZ= x1 +2 (x2′-x 2〃) +3 x3′
函数。可能是最大化,也可能是最小化。 • 线性规划一般模型的代数式 为:
max(min)Z=c1x1+c2x2+…+cnxn a11x1+a12x2+…+a1nxn ≤(≥,=)b1 a21x1+a22x2+…+a2nxn ≤(≥,=)b2 …………… am1x1+am2x2+…+amnxn≤(≥,=)bm x1,x2,…,xn ≥(≤)0
第一章 线性规划
第一章 线性规划
(Linear Programming, LP)
概述
• 线性规划问题的提出最早是1939年由前苏联 数学家康托洛维奇在研究铁路运输的组织问题、 工业生产的管理问题时提出来的。
(5)若bi < 0,则-bi > 0
举例: 化下列线性规划为标准形
max z=2x1+2x2-4x3 x1 + 3x2-3x3 ≥30 x1 + 2x2-4x3≤80 x1、x2≥0,x3无限制
max z=2x1+2x2-4x3’+4x3” x1 + 3x2-3x3’+3x3” –x4 = 30 x1 + 2x2-4x3+ 4x3” + x5 = 80 x1、x2 、x3’、x3” 、x4、x5 ≥0
称X0为该线性规划对应与基B的一个基本解。
同样,在A中任选m个线性无关的列向量都可以组成一个基, 对应基一个基本解。对于一个LP最多有多少呢?从n个中 选m个进行组合,即:
Cnm=n!/[(n-m)!m!] 因此,基本解是有限的。
举例:找出下列LP所有的基及其对应的基本解 max z=6x1+4x2 2x1 + 3x2≤100 4x1 + 2x2≤120 x1、x2≥0
资源
产品
甲
乙 资源限制
A
1
B
2
C
0
单位产品利润(元/件) 50
1
300kg
1
400kg
1
250kg
100
• 决策变量:x1、x2——分别代表甲、乙两
运筹学 第01章 线性规划问题
线性规划建模步骤
设定决策变量 明确约束条件并用决策变量的线性等式或 不等式表示 用变量的线性函数表示要达到的目标,并 确定是求极小还是求极大 根据变量的物理性质确定变量是否具有非 负性 注:其中最关键是设定决策变量这一步
生产计划问题(1)
某工厂用三种原料生产三种产品,已知的 条件如下表所示,试制订总利润最大的日 生产计划
线性规划问题解的有关概念(2)
基本解:令模型中所有非基变量的值等于零后,由 模型的约束方程组得到的一组解。 基本可行解:满足非负条件的基本解称为基本可行 解。 可行基:对应于基本可行解的基称为可行基。 退化解:基本可行解的非零分量个数小于m时,称 为退化解。 最优基:若对应于基B的基本可行解X是线性规划的 最优解,则称B为线性规划的最优基
人员安排问题(1)
医院护士24小时值班,不同时段需要的护 士人数不等(见下表)。每个护士每天连 续值班8小时,在各时段开始时上班。问最 少需要多少护士?
序号 1 2 3 4 时段 06—10 10—14 14—18 18—22 最少人数 60 70 60 50
5 6
22—02 02—06
20 30
人员安排问题(2)
设xj为第j时段开始值班的护士人数
目标函数为:使人数最少,则有
min f ( X ) x1 x2 x3 x4 x5 x6 x6 x1 60 x x 70 1 2 x2 x3 60 s.t. x3 x4 50 x x 20 5 4 x5 x6 30 x1 , x2 , x3 , x4 , x5 , x6 0且为整数
运筹学
第一章 线性规划问题
本章重点
线性规划建模 线性规划的图解法 线性规划的标准形式 单纯形法 两阶段法 大M法
运筹学第一章
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。
第一章线性规划-模型和图解法
a22 am2
a1n
a2n amn
(P1,
P2 ,
, Pn )
用向量表示时,上述模型可写为:
max(min)Z CX
s.t
n j 1
Pj x j
(, )b
X 0
线性规划问题可记为矩阵和向量的形式:
max(min)Z CX
s.t
AX
X
(, )b 0
max(min)Z CX
x21 x23
x14
x23
x32
x41
xij 0(i 1, ,4;
15
x22 x31 12
x23 x32
j 1, ,4)
10 20
二。线性规划问题的数学模型 下面从数学的角度来归纳上述三个例子的共同点。 ①每一个问题都有一组变量---称为决策变量,一般记为
x1, x2 , , xn. 对决策变量每一组值:(x1(0) , x2(0) , xn(0) )T 代表了
表1-3
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
表1-4
单位;元/100m2
1个月 2个月 3个月 4个月
2800 4500 6000 7300
表1-2
月份
12
所需仓库面积 15 10
单位:100m2
34 20 12
合同租借期限 合同期内的租费
max(min) Z c1x1 c2 x2 cn xn
a11x1 a12 x2 a1n xn (, )b1
s.t
a21x1
a22 x2
a2n xn
(, )b2
am1x1 am2 x2 amnxn (, )bm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
2
4
2
4
1
—
4
货运成本 (千元/队)
36 36 72 27
货运量 (千吨)
25 20 40 20
船只种类 拖轮 A型驳船 B型驳船
船只数
30 34 52
航线号
1 2
合同货运量
200 400
2020问/3/:4 应如何编队,才能既完成合同任务,又使总货运成本为最小? 6
解:
设:xj为第j号类型船队的队数(j = 1,2,3,4), z 为总货运成本
2x1
+4 x3 +2 x4 =200
3x1 +x2 +x3 +2 x4 ≤180
x1、x2 、x3 、x4 ≥0
2020/3/4
4
(二)数学模型
例 某工厂生产A、B两种产品,有关资料如下表所示:
产品 工序
A
C
工时限
B
销售 报废
制
工序 1
2
3
—
—
12
工序 2
3
4
—
—
24
单位利润 (百元)
4
10
3
-2
5 x1 x2 x3 7
x1 3 x1
x2 x2
4x3 2x3
2 5
x1 , x2 0, x3为无约束(无非负限制)
2020/3/4
20
解: 用 x4 替x换5 ,且x3
引入变量 x6 , x7
x,4 , x5 0
将第3个约束方程两边乘以(-1)
2、线性规划数学模型的一般形式
目标函数: max (min)Z c1x1 c2 x2 cn xn ①
a11x1 a12 x2 a1n xn ( ) b1
②
约束条件:
am1x1 am2 x2 amn xn ( ) bm
量分别为:x1、x2 、x3 、x4
2.目标函数:设总成本为z min z = 5 x1 + 6 x2 + 7 x3 + 8 x4
甲 123
5
乙 201
6
3.约束条件:
丙 141
7
丁 122
8
x1 + 2x2 + x3 + x4 ≥160
要求:生产A种药物至少160 单位;B种药物恰好200单位, C种药物不超过180单位,且 使原料总成本最小。
产品 j
设 备1i
2
m
cj
利润
12 n
有效台时 bi
a11 a1n b1
aij
b2
am1 amn bm
c1 c2 cn
2020/3/4
12
n
max(min) Z
CjX j
j 1
n
j 1
aij
X
j
bi
(i
1,2,
, m)
maxZ'= X1 -2X2 +3X4 -3X5
X1 +X2 +X4 -X5 +X6 =7 X1 -X2 +X4 -X5 - X7 =2
X1 , X2 , X4 , … , X7 0
2020/3/4
返回
25
• 例五:将以下数学模型化为标准形
min z x1 2x2 3x3 s.t.
x1 0 xn 0
③
模型特点
1 都用一组决策变量X = (x1,x2,…,xn)T表示某一方案,且 决策变量取值非负; 2 都有一个要达到的目标,并且目标要求可以表示成 决策变量的线性函数;
3 都有一组约束条件,这些约束条件可以用决策变量 的线性等式或线性不等式来表示。
——满足以上三个条件的数学模型称为线性规划
2020/3/4
27
➢线性规划问题的求解方法
项目
Ⅰ
设备 A(h) 0
设备 B(h) 6 调试工序(h) 1 利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
1
5
1
问:应如何安排生产计划,才 能使总利润最大?
2020/3/4
解:
1.决策变量:设产品I、II的产量
分别为 x1、x2
2.目标函数:设总利润为z,则有: max z = 2 x1 + x2
3.约束条件:
x1 ,x3 ,x4 , x5 ,x6 0
2020/3/4
22
例三、将线性规划问题化为标准型
Min f= -3 x1 + 5 x2 + 8 x3 - 7 x4
s.t. 2 x1 - 3 x2 + 5 x3 + 6 x4 ≤ 28
4 x1 + 2 x2 + 3 x3 - 9 x4 ≥ 39
注:每生产单位产品 B 可得到 4 单位副产品 C,
据预测,市场上产品 C 的最大销量为 5 单位,若
产品 C 销售不出去,则报废。
设:总成本为z,A、B产品销量为x1、 x2,产品C的销售量为x3,报废量为 x4,则:
max z = 4 x1 + 10 x2 + 3 x3 - 2 x4
2x1 + 3x2
将极小值问题反号,变为求极大值
标准形式如下:
max Z 2 x1 x2 3( x4 x5 ) 0 x6 0 x7
5 x1 x2 ( x4 x5 ) x6 7
x1 x2 ( 5 x1 x2
x4 2(
x4
x5
) x5
)
x7 2 5
则: min z = 36x1 + 36x2 + 72x3 + 27x4
x1 + x2 + 2x3 + x4 ≤ 30
2x1
+ 2x3
≤ 34
4x2 + 4x3 + 4x4 ≤ 52
25x1+20x2
=200
40x3+20x4 =400
xj ≥ 0 ( j = 1,2,3,4)Biblioteka 2020/3/47
(二)数学模型
x1 ,x2’,x2”,x3 ,x4 ,x5 ,x6 ,x7 ≥ 0
2020/3/4
23
例四:将 min Z = -X1+2X2 -3X3
X1+X2 +X3 7 X1 -X2 +X3 2 X1,X20,X3无限制
化为标准型
2020/3/4
24
解:① 令X3 =X4 - X5 ② 加松弛变量X6 ③ 加剩余变量X7 ④ 令Z'= -Z
X
j
0( j
1,2,
, n)
目标函数 价值系数
技术系数 右端项常数
2020/3/4
决策变量
13
向 量 形 式: C ( c1 c2 cn )
x1
X
xn
pj
a1 j
amj
b1
b
bm
1 问题中总有未知的变量,需要我们去解决。
要求:有目标函数及约束条件,一般有非负条件 存在,由此组成规划数学模型。
如果在规划问题的数学模型中,变量是连续的 (数值取实数)其目标函数是有关线性函数(一次 方),约束条件是有关变量的线性等式或不等式,这 样,规划问题的数学模型是线性的。反之,就是非线 性的规划问题(其中一个条件符合即可)。
将模型的一般形式变成标准形式,再根据标准型模型, 从可行域中找一个基本可行解,并判断是否是最优。如果 是,获得最优解;如果不是,转换到另一个基本可行解, 当目标函数达到最大时,得到最优解。
1、标准形式
max Z c j x j
x j
aij x j 0
bi
(i 1 2 m) (j1 2 n )
2020/3/4
10
也可以记为如下形式:
目标函数: 约束条件:
n
max (min) Z c j x j j1
n
aij x j ( ) bi (i 1 2 m)
j1
xj 0
(j 1 2 n)
2020/3/4
11
如将上例用表格表示如下:
设变量
x j ( j 1 2 n)
线性规划
(Linear Programming)
线性规划问题及其数学模型
线性规划的图解法 线性规划的单纯形法 单纯形法计算步骤
单纯形法的进一步讨论
2020/3/4
线性规划模型的应用
1
一、线性规划问题及其数学模型
(一)问题的提出
例1.1 某厂生产两种产品, 下表给出了单位产品所需资源 及单位产品利润
6 x2 + 2 x3 + 3 x4 ≤ - 58
x1 , x3 , x4 ≥ 0; x2无约束
解: Max z = 3x1–5x2’+5x2”–8x3 +7x4
s.t. 2x1–3x2’+3x2”+5x3+6x4+x5= 28
4x1+2x2’-2x2”+3x3-9x4-x6= 39
-6x2’+6x2”-2x3-3x4-x7 = 58
≤ 12
3x1 + 4x2
≤ 24