判断超静定次数

合集下载

超静定次数题目

超静定次数题目

超静定次数题目
超静定次数是指在某问题的解答过程中,需要进行超过问题本身要求的次数的尝试或计算。

一般来说,超静定次数越多,则解答问题所需的时间和工作量越大。

这类问题常见于数学、物理、工程等领域。

以下是一个超静定次数的例子:
问题:有一根长度为1米的木棍,要把它等分成n段,每段长度相等,且所得的段长为正整数。

求n的取值范围。

解答:根据题意,我们可以得出等式:1/n = k,其中k为正整数。

等式两边同时乘以n,得到1 = kn,即n为1的约数。

那么,我们就需要求解1的约数的个数。

假设1有m个约数,那么根据约数的性质,m个约数可以两两配对组合,得到m/2
个相互不等的数。

根据题意,所得段长为正整数,所以m/2
为正整数,即m为偶数。

我们知道,正整数1只有一个约数,即1本身,所以m的最
小值为2。

而1的约数按照从小到大的顺序排列为:1,1*2,
1*2*2,1*2*2*2...,即1,2,4,8...。

可以观察到,1的约数
是2的幂次方。

因此,我们可以得出结论:n的取值范围是2的幂次方之间,
即n∈[2^0, 2^1, 2^2, 2^3, ...]。

所以,n的取值范围为{1, 2, 4, 8, ...}。

在这个问题的解答过程中,我们需要进行无限次的尝试和计算,直到找到满足条件的解答。

因此,这个问题的超静定次数为无穷大。

结构的超静定次数.

结构的超静定次数.
说明:力法计算刚架时,力法方程中 系数和自由 项只考虑弯曲变形的影 响: dii = ∑∫l (Mi2 /EI)ds dij = ∑∫l (MiM j /EI)ds DiP= ∑∫l (Mi MP /EI)ds
例7-4-2
计算图示桁架的内力,各杆EA=常数。
解:1)力法基本体系,基本方程:d11x1+ D1P
x2
x3
x4
x3
x1 x2
x5
x6
x4
x5 x7
x6
§7-2
力法基本概念
一、力法基本思路 有多余约束是超静定与静定的根本区别,因此,解决多余约束中的 多余约束力是解超静定的关键。
D1=0 D11=d11x1
D11 + D1P =0 d11x1+ D1P =0
1、力法基本未知量 结构的多余约束中产生的多余未知力(简称多余力)。 2、力法基本体系 力法基本结构,是原结构拆除多余约束后得到的静定结构;力法基 本体系,是原结构拆除多余约束后得到的基本结构在荷载(原有各种 因素)和多余力共同作用的体系。 3、力法基本方程 力法基本体系在多余力位置及方向与原结构位移一致的条件。 方程中的系数和自由项均是静定结构的位移计算问题,显然,超静 定转化为静定问题。
(a)
d11x1+ d12x2+ D1P + D1D =0
d21x1+ d22x2+ D2P + D2D = - DB
有支座移动因素时,力法方程的右边项可能不为零。
(a)
该式为两次超静定结构在荷载和支座位移共同作用下的力法方程。
根据位移互等定理,有:d12=d21
二、力法典型方程 n次超静定结构的力法方程: d11x1+ d12x2+…d1ixi+ d1jxj+… d1nxn+ D1P + D1D= D1 d21x1+ d22x2+…d2ixi+ d2jxj+… d2nxn+ D2P + D2D= D2 … … di1x1+ di2x2 +…diixi + dijxj+ …dinxn + DiP + DiD = Di dj1x1+ dj2x2 +…djixi + djjxj+… djnxn + DjP + DjD = Dj … … dn1x1+dn2x2+…dnixi+ dnjxj+… dnnxn+ DnP + DnD= Dn 系数、自由项的物理意义: dii —基本结构在xi= 1作用下,沿xi 方向的位移; dij —基本结构在xj= 1作用下,沿xi 方向的位移; DiP —基本结构在荷载作用下,沿xi 方向的位移; DiD —基本结构在支座移动下,沿xi 方向的位移; Di —基本结构沿xi 方向的总位移=原结构在xi 方向上的实际位 移。

超静定结构的概念及超静定次数的确定(PPT)

超静定结构的概念及超静定次数的确定(PPT)

04 超静定结构的实际应用
桥梁工程
桥梁工程中,超静定结构的应用可以增加结构的稳定性和安全性,提高桥梁的承 载能力。例如,连续梁桥采用超静定结构形式,可以减小梁体的振动和变形,提 高行车舒适性和安全性。
此外,超静定结构在桥梁工程中还可以用于抵抗风、地震等自然灾害的影响,提 高桥梁的抗震性能和抗风能力。
ቤተ መጻሕፍቲ ባይዱ
渐进法
总结词
通过逐步逼近的方法求解超静定结构的位移和内力的方法。
详细描述
渐进法是一种基于迭代思想的求解方法,通过逐步逼近的方法求解超静定结构的位移和内力。该方法首先假设一 组初始解,然后逐步修正解的近似值,直到满足精度要求或达到预设的迭代次数为止。渐进法可以处理复杂的超 静定结构问题,具有较高的计算效率和精度。
建筑工程
在建筑工程中,超静定结构的应用可以提高结构的稳定性和 刚度,增强建筑物的承载能力和抗震性能。例如,高层建筑 采用超静定结构形式,可以减小风力、地震等外部荷载对建 筑物的影响,保证建筑物的安全性和稳定性。
此外,超静定结构在建筑工程中还可以用于优化建筑物的空 间布局和结构形式,提高建筑物的美观性和实用性。
超静定结构
在任何一组确定的平衡力系作用 下,需要用多余的约束条件才能 确定结构的平衡状态的体系。
超静定结构的特性
具有多余的约束
超静定结构有多余的约束,这些 多余的约束可以提供额外的稳定 性,使结构在受到外力作用时具
有更好的抵抗变形的能力。
存在内力
由于超静定结构的约束多余,当 受到外力作用时,会在结构内部 产生内力,这些内力有助于抵抗
判别准则二
如果一个结构的支座反力数目小于其约束数目, 则该结构为超静定结构。
判别准则三
如果一个结构的受力状态不能由静力平衡方程完 全确定,则该结构为超静定结构。

判断几次超静定简单方法

判断几次超静定简单方法

判断几次超静定简单方法
一、定义超静定
超静定是一种可以定量描述流体动态特性的工程应用力学理论。

它是一种涉及流体动力、声学、热流体等学科间复杂耦合作用的力学描述。

二、简单方法
1.用计算流体动力学(CFD)模拟法。

计算流体动力学(CFD)模拟法是一种使用计算技术来描述流体动力学中特性及性能的技术。

它可以帮助我们精确地估算物体在流体中的动态行为,进而帮助我们进行超静定判断。

2.用颗粒动力学模拟法。

颗粒动力学模拟法是一种模拟流体动力学中复杂流动特性的技术,它可以建模实际的流体流动行为,如超静定性能分析,对比实验结果,可以快速准确地判断流体的超静定性能。

3.用声学模拟法来进行超静定判断。

声学模拟法是一种传统的超静定判断方法,它可以在大范围内快速模拟流体在超静定条件下的动态行为,从而帮助我们准确地进行超静定性能的判断。

计算结构超静定次数的公式

计算结构超静定次数的公式

计算结构超静定次数的公式
结构超静定次数(SDOF,即单自由度系统)是一种描述动力学特性的重要工程
物理指标,它是对结构特性的重要衡量指标,也是在设计结构时明确可能受到的外力的一种有用的参考。

由于结构超静定次数的重要性,因此非常重要的就是计算每个结构的SDOF,即计算结构超静定次数的公式。

一般情况下,结构超静定次数的公式可分为定位法和统计法。

定位法的公式是:SDOF= 1/k+1/c+1/m,这里K为模态弹性系数,C为模态阻尼系数,M为模态质量系数。

统计法的公式涉及谱强度概率计算等方法,是一种自动计算方式,该方法可以精确地表达自动除去局部谐振的自激阻尼的系统的超静定次数,从而得出结构超静定次数。

尽管定位法和统计法都具有计算精确、效率高的优势,但由于计算结构超静定
次数时涉及模态参数摸索和较为复杂的反向计算,所以在实施计算过程中往往需要考虑多个利益相关方的功能要求,以便在整个过程中取得最优折中结果。

因此,在实际应用中,一般更合理采用可靠的统计法,以得出满足实际要求的最优超静定次数。

总的来说,结构超静定次数的公式不仅对合理设计结构十分重要,也为了保证
在极端情况下结构的可靠性而设计有重要意义。

因此,在实施结构设计时应首先确定结构超静定次数,以保证结构稳定,安全可靠。

超静定结构的超静定次数

超静定结构的超静定次数

超静定结构的超静定次数超静定结构是指在外力作用下,结构内部的约束力大于外力的个数,从而使得结构处于静定状态的一种结构形式。

即结构内部的约束力可以完全抵消外力的作用,使得结构保持平衡。

超静定结构的超静定次数是指结构内部的约束力多于外力的个数。

超静定次数越高,结构的稳定性越好。

超静定结构的超静定次数取决于结构的约束性质和约束方式。

常见的超静定结构有悬挑梁、连续梁和桁架等。

这些结构的超静定次数可以通过力平衡方程和几何关系进行计算。

在设计超静定结构时,需要合理选择约束方式和约束点的位置,以提高结构的稳定性和承载能力。

悬挑梁是一种常见的超静定结构。

它由一根悬挑在空中的梁组成,一端固定在墙上,另一端悬空。

在外力作用下,悬挑梁的约束力可以完全抵消外力的作用,使得梁保持平衡。

悬挑梁的超静定次数为1,即悬挑梁有一个多余的约束力。

连续梁是另一种常见的超静定结构。

它由多个梁段组成,梁段之间通过铰接连接。

在外力作用下,连续梁的约束力可以完全抵消外力的作用,使得梁保持平衡。

连续梁的超静定次数为2,即连续梁有两个多余的约束力。

桁架是一种由杆件和节点组成的超静定结构。

杆件之间通过节点连接,形成一个刚性的空间网格结构。

在外力作用下,桁架的约束力可以完全抵消外力的作用,使得结构保持平衡。

桁架的超静定次数取决于节点的个数和杆件的个数。

一般情况下,桁架的超静定次数为3,即桁架有三个多余的约束力。

超静定结构的超静定次数越高,结构的稳定性越好。

在实际工程中,超静定结构常用于悬挑梁、连续梁和桁架等场合。

例如,在大跨度桥梁的设计中,常采用连续梁结构,以提高桥梁的稳定性和承载能力。

此外,在高层建筑的设计中,常采用悬挑梁结构,以增加建筑物的空间利用率。

超静定结构的设计需要考虑结构的约束性质和约束方式。

合理选择约束方式和约束点的位置,可以提高结构的稳定性和承载能力。

同时,超静定结构的设计还需要考虑结构的材料性质和施工工艺。

选择合适的材料和采用适当的施工方法,可以确保结构的安全性和经济性。

超静定结构计算力法

超静定结构计算力法

第十章超静定结构计算力法一.超静定次数确定1、 超静定结构的特性:与静定结构比较,超静定结构有如下特性:静定结构 超静定结构 几何特性 无多余约束的几何不变体系 有多余约束的几何不变体系静力特性满足平衡条件内力解答是唯一的,即仅由平衡条件就可求出全部内力和反力。

超静定结构满足平衡条件内力解答有无穷多种,即仅由平衡条件求不出全部内力和反力,还必须考虑变形条件。

非荷载外因的影响 不产生内力 产生了自内力内力与刚度的关系 无关荷载引起的内力与各杆刚度的比值有关,非载载外因引起的内力与各杆刚度的绝对值有关。

内力超静定,约束有多余,是超静定结构区别于静定结构的基本特点。

2、超静定次数的确定: 结构的超静定次数为其多余约束的数目,因此上,结构的超静定次数等于将原结构变成静定结构所去掉多余约束的数目。

在超静定结构上去掉多余约束的基本方式,通常有如下几种:(1)断一根链杆、去掉一个支杆、将一刚接处改为单铰联接、将一固定端改为固定铰支座,相当于去掉一个约束。

(2)断一根弯杆、去掉一个固定端,相当于去掉三个约束(3)开一个单铰、去掉一个固定铰支座、去掉一个定向支座,相当于去掉两个约束。

3、几点注意:①由图10-1结构的分析可得出结论:一个无铰闭合框有三个多余约束,其超静定次数等于三。

对于无铰闭合框结构其超静定次数=3×闭合框数。

如图10-2 所示结构的超静定次数为3×5=15次;对于带铰闭合框结构其超静定次数=3×闭合框数-结构中的单铰数(复铰要折算成单铰)如图10-3所示结构的超静 定次数为3×5-(1+1+3)=15次。

D点是连接四个刚片的复铰,相当于(4-1)=3个单铰。

②一结构的超静定次数是确定不变的,但去掉多余约束的方式是多种多样的。

如图10-1结构。

③在确定超静定次数时,要将内外多余约束全部去掉。

如图10-4结构外部1次超静定,内部6次超静定,结构的超静定次数是7。

超静定结构的概念及超静定次数的确定ppt课件

超静定结构的概念及超静定次数的确定ppt课件
➢力法基本未知量与基本结构是一一对应的,基本未知量确定后,对应 的基本结构也就确定了。
➢力法基本未知量数目(超静定次数)是唯一的,而基本结构不唯一。
简支梁作为基本结构
原结构
X2
X1
还可以选择哪些 基本结构?
Strucural Analysis
.
School of Civil Engineering, Tongji8Univ.
➢土木工程专业的力学可分为两大类,即“结构力学类”和“弹性力学 类”。
“结构力学类”包括理论力学、材料力学和结构力学,其分析方法具有 强烈的工程特征,简化模型是有骨架的体系(质点、杆件或杆系), 其力法基本未知量一般是“力”,方程形式一般是线性方程。
“弹性力学类”包括弹塑性力学和岩土力学,其思维方式类似于高等数
§9-1 超静定结构的概念
❖ “力法”的发展
➢法国的纳维于1829年提出了求解超静定结构问题的一般方法(基本方 程)。
➢19世纪30年代,由于桥梁跨度的增长,出现了金属桁架结构。从1847 年开始的数十年间,学者们应用图解法、解析法等研究静定桁架的受 力,这奠定了桁架理论的基础。1894年英国的麦克斯韦创立了单位荷 载法和位移互等定理,并用单位荷载法求出桁架的位移,由此学者们 终于得到了求解超静定问题的方法——力法。
(√)
X2
多体悬臂刚 架作为基本
结构
(√)
瞬变体系不 能作为基本
结构
(×)
一个超静定结构可能有多种形式的基本结构,不同基本结构带来不同的计算工作量。
Strucural Analysis
.
School of Civil Engineering, Tong1ji3Univ.
§9-1 超静定次数和力法基本结构

结构力学 力法 超静定次数的确定

结构力学 力法 超静定次数的确定

1 0
变形条件
在变形条件成立条件下,基本体系的内力和 位移与原结构等价.
湖南交职院
退出
返回
00:19
§7-3 力法的基本概念
A B
结构力学
基本结构(悬臂梁)
超静定结构计算
基本结构
静定结构计算
对静定结构进行内力、位移计算,已经很掌握。
A
q
△ 11
B
△1P
A
B
X1
湖南交职院
退出
返回
00:19
§7-3 力法的基本概念
湖南交职院
退出
返回
00:19
§7-1 超静定结构概述
思考:多余约束是多余的吗?
结构力学
从几何角度与结构的受力特性和使用要求两方面讨论。
q q B l
A
q 8 l2
A
A C
0.5l 0.5l
2
B
B
A
ql
2
ql 32
C
B
ql
2
64
64
超静定结构的优点为: 1. 内力分布均匀 2. 抵抗破坏的能力强
退出 返回
结构力学
在荷载作用下B 点产生向下的位移为⊿1P, 未知力 的作用将使B点产生的向上的位移为⊿1X 。 要使体系的受力情况与原结构一样, 则必须B 的 位移也与原结构一样,要求: 位移协调条件Δ1=Δ1X+Δ1P=0 (a)
静定悬臂刚架
静定三铰刚架
(5)去掉一个连接n个杆件的铰结点,等于拆掉2(n-1) 个约束。 (6)去掉一个连接n个杆件的刚结点,等于拆掉3(n-1) 个约束。
湖南交职院
退出
返回
00:19

快速准确判断结构超静定次数的新方法研究

快速准确判断结构超静定次数的新方法研究

快速准确判断结构超静定次数的新方法研究本文讨论的主题是快速准确判断结构超静定次数的新方法研究,它是研究结构超静定响应、振动及其控制原理的重要基础。

结构超静定次数(SN)是描述结构分析中振动特性和振动控制的重要参数,也是描述结构静定性的重要指标。

由于结构超静定次数的测量和判断存在困难,近年来各类结构超静定次数判断方法应运而生。

为了更快更准确地判断结构超静定次数,本文将分析研究不同振动模态定义下的结构超静定次数判断方法,探讨其在结构超静定性分析中的应用,并提出可行的结构超静定次数测量方法。

二、结构超静定次数及其定义结构超静定次数是指结构在进行超静定分析时的特定振动模态的临界振动次数,大于该次数结构会发生危险的超静定现象,失去自支撑能力,本文将其定义为:在固定荷载条件下,结构在特定振动模态状态下,其产生振动加速度峰值达“a”时,结构超静定次数SN被定义为“f/2π√a”,其中“f”为结构振动模态的频率。

三、不同振动模态定义下的结构超静定次数判断方法(1)基于只有一种振动模态的结构超静定次数判断:当结构存在只有一种振动模态时,可以根据其相应的振动加速度峰值以及振动频率求解结构超静定次数,该方法可使用灵敏度分析和二分法求解。

(2)基于多种振动模态的结构超静定次数判断:当结构存在多种振动模态时,需要有办法判断结构超静定次数。

本文将介绍一种基于比较分析的判断方法,即先求解不同振动模态的结构超静定次数,然后比较各个振动模态的超静定次数,取最小的振动模态次数作为结构超静定次数,该方法可以更快更准确地判断结构超静定次数。

四、结构超静定次数测量方法由于结构超静定次数受外界影响较大,可能存在误差,因此在实际应用中需要采用合理的测量方法来准确测量结构超静定次数。

比较常用的测量方法有重力法和激励法。

重力法是利用结构自重在结构上产生的合外力,采用试探法来测量超静定次数,而激励法是利用外加到结构的外力作为激励类振动手段,通过调节外力的大小及激励模式获得结构超静定次数。

14.1 超静定结构概述

14.1 超静定结构概述
(3)去掉一个固定支座相当于 解除三个约束; (4)将固定支座改为不动铰支 座相当于解除一个约束。
2、去掉中间约束的情况 (1)切断一根链杆相当于解除 一个约束;
(2)去掉一个单铰相当于解除
两个约束; (3)切断一根梁式杆件相当于 解除三个约束;
(4)将梁式杆件中某截面改成
铰结相当于解除一个约束。
原则:①不能去掉必要约束,必须使剩余部分是几何不变体系; ②应去掉全部多余约束,不要遗漏。
正确
错误
错误
(3)
(6)
(4)
(5)
(7)
封闭框架: N=3M-H
例:判定下列结构的超静定次数。
Байду номын сангаас(1)
(2)
2、结构超静定次数的判定方法——解除多余约束法 即: 将原结构的多余约束去掉,直到结构成为一 个(或几个)静定结构,则去掉的多余约束的数 目就是原结构的超静定次数。
例:
三、去掉多余约束的情况
1、去掉支承约束的情况 (1)去掉一根支杆相当于解除 一个约束; (2)去掉一个不动铰支座相当
于解除两个约束;
第十四章 超静定结构
§14.1 超静定结构概述
一、超静定结构 1、超静定结构 — 有多余约束、反力和内力不能完 全由静力平衡条件确定的结构
2、超静定杆件结构的类型
BACK
超静定梁
超静定刚架
超静定拱
超静定桁架
超静定组合结构
超静定组合结构
二、超 静 定 次 数 的 确 定
1、超静定次数——结构中多余约束的数目称为超静定次数。 即: 超静定次数 = 结构的多余约束数目

判断超静定次数

判断超静定次数

超静定次数及其确定方法
超静定结构中多余约束的个数,称为超静定次数。

确定超静定次数最直接的方法为解除多余约束法。

即解除结构中的多余约束使原超静定结构变成一个几何不变且无多余约束的体系,此时,解除的多余约束的个数即为原结构的超静定次数。

解除多余约束的方法以几何组成分析的基本规则为基础,应注意以下几点:
(1)去掉一根链杆,等于拆掉一个约束。

(2)去掉一个铰支座或一个单铰,等于拆掉两个约束。

(3)去掉一个固定支座或切断一个梁式杆,等于拆掉三个约束。

(4)在梁式杆上加上一个单铰,等于拆掉一个约束。

(5)去掉一个连接n个杆件的铰结点,等于拆掉2(n-1)个约束。

(6)去掉一个连接n个杆件的刚结点,等于拆掉3(n-1)个约束。

(7)只能拆掉原结构的多于约束,不能拆掉必要约束。

(8)只能在原结构中减少约束,不能增加新的约束。

注意:同一超静定结构可有不同的解除多余约束的方式,但解除约束的个数是相同的, 解除约束后的体系必须是几何不变的。

图1
图2。

超静定次数的判定

超静定次数的判定

量的求解方法.
20
(Energy methods)
§14-2 用力法解静不定结构
(Solving statically indeterminate structure by force method)
一、力法的求解过程(Basic procedure for force method)
1.判定超静定次数
减少其变形。卡盘和辅助支撑
构成超静定系统。
19
(Energy methods)
四、超静定次数的判定
(Determine the degree of statically indeterminacy)
(1)外力超静定次数的判定:根据约束性质确定支反力的个
数,根据结构所受力系的类型确定独立平衡方程的个数,二者的差
(Energy methods)
F
B1
1
B
11
A
A
F
B2
B
12
1
A
F B3 1
B
13
Δ1 X1 Δ1 X 2 Δ1 X 3 Δ1F 0
Δ1 X1 11 X 1 Δ1 X 2 12 X 2 Δ1 X 3 13 X 3
11 X 1 12 X 2 13 X 3 Δ1F 0
q
q
B
B
A
A
l
X1
A
B
A
x
1
(4) 用莫尔定理求 11
M(x) x M(x) x
11

1 EI
l
x xdx
l3
0
3EI
B x
1
26
(Energy methods)

超静定结构的超静定次数

超静定结构的超静定次数

超静定结构的超静定次数超静定结构是指在受力平衡条件下,由于约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。

超静定结构的超静定次数是指约束条件数量与自由度数量之差。

一、超静定结构的特点超静定结构具有以下特点:1. 约束条件数量大于自由度数量:超静定结构的约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。

这导致了结构的设计和分析变得更加困难。

2. 结构具有较高的刚度:由于超静定结构的约束条件数量较多,结构具有较高的刚度。

这使得超静定结构在承受荷载时能够更好地保持形状稳定性。

3. 结构能够承受更大的荷载:超静定结构由于具有较高的刚度,能够承受更大的荷载。

这使得超静定结构在工程实践中得到广泛应用。

二、超静定结构的应用超静定结构在工程实践中有着广泛的应用,主要包括以下几个方面:1. 桥梁工程:超静定结构在桥梁工程中得到了广泛应用。

由于桥梁需要承受大量的荷载,超静定结构能够提供更高的刚度和稳定性,保证桥梁在使用过程中不发生塌陷或变形。

2. 建筑结构:超静定结构在建筑结构中也有重要的应用。

例如,高层建筑的框架结构通常采用超静定结构设计,以提高结构的稳定性和抗震性能。

3. 机械设备:超静定结构在机械设备中也有广泛的应用。

例如,汽车的悬挂系统和起重机的支撑结构都是超静定结构,能够提供更高的稳定性和承载能力。

三、超静定结构的分析方法超静定结构的分析方法主要包括以下几个步骤:1. 定义自由度和约束条件:首先确定结构的自由度和约束条件。

自由度是指结构中可以独立变形的数量,约束条件是指结构中限制自由度的条件。

2. 建立平衡方程:根据结构的受力平衡条件,建立结构的平衡方程。

平衡方程是超静定结构分析的基础,通过平衡方程可以求解结构的受力状态。

3. 引入支座反力:由于超静定结构的约束条件数量大于自由度数量,结构中存在未知的支座反力。

通过引入支座反力,可以将超静定结构转化为静定结构进行分析。

4. 求解支座反力:利用平衡方程和约束条件,求解支座反力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超静定次数及其确定方法
超静定结构中多余约束的个数,称为超静定次数。

确定超静定次数最直接的方法为解除多余约束法。

即解除结构中的多余约束使原超静定结构变成一个几何不变且无多余约束的体系,此时,解除的多余约束的个数即为原结构的超静定次数。

解除多余约束的方法以几何组成分析的基本规则为基础,应注意以下几点:
(1)去掉一根链杆,等于拆掉一个约束。

(2)去掉一个铰支座或一个单铰,等于拆掉两个约束。

(3)去掉一个固定支座或切断一个梁式杆,等于拆掉三个约束。

(4)在梁式杆上加上一个单铰,等于拆掉一个约束。

(5)去掉一个连接n个杆件的铰结点,等于拆掉2(n-1)个约束。

(6)去掉一个连接n个杆件的刚结点,等于拆掉3(n-1)个约束。

(7)只能拆掉原结构的多于约束,不能拆掉必要约束。

(8)只能在原结构中减少约束,不能增加新的约束。

注意:同一超静定结构可有不同的解除多余约束的方式,但解除约束的个数是相同的, 解除约束后的体系必须是几何不变的。

图1
图2。

相关文档
最新文档