2020年淮安市初中毕业暨中等学校招生文化统一考试初中数学

合集下载

2020年淮安市中考数学试题、试卷(解析版)

2020年淮安市中考数学试题、试卷(解析版)

2020年淮安市中考数学试题、试卷(解析版)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−122.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 53.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是( )A .10B .9C .11D .87.(3分)(2020•淮安)如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .27°C .36°D .108° 8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=.10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)(2020•淮安)方程3x−1+1=0的解为.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ).18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF (填“是”或“不是”)平行四边形.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB(参考数据:√2≈1.4,√3≈1.7,=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.结果精确到1千米).24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB 于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.27.(14分)(2020•淮安)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.2020年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−12【解答】解:2的相反数为:﹣2.故选:B .2.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 5【解答】解:t 3÷t 2=t .故选:B .3.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°【解答】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C .5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8【解答】解:一组数据9、10、10、11、8的众数是10,故选:A.7.(3分)(2020•淮安)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°【解答】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=12×(180°﹣∠AOB)=36°,故选:C.8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=2014,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为3×106.【解答】解:3000000=3×106,故答案为:3×106.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=6.【解答】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.12.(3分)(2020•淮安)方程3x−1+1=0的解为x=﹣2.【解答】解:方程3x−1+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为8.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=12AB=8,故答案为:8.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为5.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5.即这个菱形的边长为:5.故答案为:5.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为(﹣1,4).【解答】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=1.【解答】解:把A(﹣1,﹣4)代入y=k1x中得,k1=4,∴反比例函数y =k 1x 为y =4x , ∵A (﹣1,﹣4)、B (﹣4,﹣1),∴AB 的垂直平分线为y =x ,联立方程驵{y =4x y =x,解得{x =−2y =−2,或{x =2y =2, ∵AC =BC ,CD ⊥AB ,∴CD 是AB 的垂直平分线,∵CD 与反比例函数y =k1x (x <0)的图象于点D , ∴D (﹣2,﹣2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =k2x (x >0)图象上一点,∴设移动后的点P 的坐标为(m ,m )(m >﹣2),则(x +2)2+(x +2)2=(3√2)2,∴x =1,∴P (1,1),把P (1,1)代入y =k2x (x >0)中,得k 2=1, 故答案为:1.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ). 【解答】解:(1)|﹣3|+(π﹣1)0−√4=3+1﹣2=2;(2)x+12x ÷(1+1x ) =x+12x ÷x+1x=x+12x ⋅x x+1=12.18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 A (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.【解答】解:(1)去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A .19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?【解答】解:设中型汽车有x 辆,小型汽车有y 辆,依题意,得:{x +y =3015x +8y =324, 解得:{x =12y =18. 答:中型汽车有12辆,小型汽车有18辆.20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF 是 (填“是”或“不是”)平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠OAF =∠OCE ,在△AOF 和△COE 中,{∠OAF =∠OCEAO =CO ∠AOF =∠COE,∴△AOF ≌△COE (ASA )(2)解:四边形AECF 是平行四边形,理由如下:由(1)得:△AOF ≌△COE ,∴FO =EO ,又∵AO =CO ,∴四边形AECF 是平行四边形;故答案为:是.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了 60名 学生,扇形统计图中C 选项对应的圆心角为 108度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?【解答】解:(1)24÷40%=60(名),360°×1860=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×360=60(人), 答:该校1200名学生中选择“不了解”的有60人.22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A 、O 、K .搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A 的概率为 13 ;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK ”的概率.【解答】解:(1)共有3种可能出现的结果,其中是A 的只有1种,因此第1次摸到A 的概率为13, 故答案为:13; (2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=1 9.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB =30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).【解答】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4√3千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 80 千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则:{1.5k +b =803.5k +b =240,解得{k =80b =−40, ∴线段DE 所表示的y 与x 之间的函数表达式为:y =80x ﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时), 12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.(10分)(2020•淮安)如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB=√OC2−BC2=√3,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=12×1×√3−30⋅π×(√3)2360=√32−π4.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC ,∴CN =BN ,∵∠MNB =∠ACB =90°,∴MN ∥AC ,∵CN =BN ,∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6,∴∠A =∠B ,由题意MN 垂直平分线段BC ,∴BM =CM ,∴∠B =∠MCB ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC BA =BM BC , ∴610=BM 6,∴BM =185, ∴AM =AB ﹣BM =10−185=325,∴AM BM =325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC AB=BM BC =CM AC ∴69=BM 6,∴BM =4,∴AM =CM =5,∴69=5AC ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′,∴△PF A ′∽△MFC ,∴PF FM =PA′CM ,∵CM =5,∴PF FM =PA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32,∴32≤P A ′≤154, ∴310≤PF FM ≤34.27.(14分)(2020•淮安)如图①,二次函数y =﹣x 2+bx +4的图象与直线l 交于A (﹣1,2)、B (3,n )两点.点P 是x 轴上的一个动点,过点P 作x 轴的垂线交直线1于点M ,交该二次函数的图象于点N ,设点P 的横坐标为m .(1)b = 1 ,n = ﹣2 ;(2)若点N 在点M 的上方,且MN =3,求m 的值;(3)将直线AB 向上平移4个单位长度,分别与x 轴、y 轴交于点C 、D (如图②). ①记△NBC 的面积为S 1,△NAC 的面积为S 2,是否存在m ,使得点N 在直线AC 的上方,且满足S 1﹣S 2=6?若存在,求出m 及相应的S 1,S 2的值;若不存在,请说明理由. ②当m >﹣1时,将线段MA 绕点M 顺时针旋转90°得到线段MF ,连接FB 、FC 、OA .若∠FBA +∠AOD ﹣∠BFC =45°,直接写出直线OF 与该二次函数图象交点的横坐标.【解答】解:(1)将点A (﹣1,2)代入二次函数y =﹣x 2+bx +4中,得﹣1﹣b +4=2, ∴b =1,∴二次函数的解析式为y =﹣x 2+x +4,将点B (3,n )代入二次函数y =﹣x 2+x +4中,得n =﹣9+3+4=﹣2, 故答案为:1,﹣2;(2)设直线AB 的解析式为y =kx +a ,由(1)知,点B (3,﹣2), ∵A (﹣1,2),∴{−k +a =23k +a =−2, ∴{k =−1a =1, ∴直线AB 的解析式为y =﹣x +1,由(1)知,二次函数的解析式为y =﹣x 2+x +4,∵点P (m ,0),∴M (m ,﹣m +1),N (m ,﹣m 2+m +4),∵点N 在点M 的上方,且MN =3,∴﹣m 2+m +4﹣(﹣m +1)=3,∴m =0或m =2;(3)①如图1,由(2)知,直线AB 的解析式为y =﹣x +1, ∴直线CD 的解析式为y =﹣x +1+4=﹣x +5,令y =0,则﹣x +5=0,∴x =5,∴C (5,0),∵A (﹣1,2),B (3,﹣2),∴直线AC 的解析式为y =−13x +53,直线BC 的解析式为y =x ﹣5, 过点N 作y 轴的平行线交AC 于K ,交BC 于H ,∵点P (m ,0), ∴N (m ,﹣m 2+m +4),K (m ,−13m +53),H (m ,m ﹣5),∴NK =﹣m 2+m +4+13m −53=−m 2+43m +73,NH =﹣m 2+9,∴S 2=S △NAC =12NK ×(x C ﹣x A )=12(﹣m 2+43m +73)×6=﹣3m 2+4m +7, S 1=S △NBC =12NH ×(x C ﹣x B )=﹣m 2+9,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+√3(由于点N在直线AC上方,所以,舍去)或m=1−√3;∴S2=﹣3m2+4m+7=﹣3(1−√3)2+4(1−√3)+7=2√3−1,S1=﹣m2+9=﹣(1−√3)2+9=2√3+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),设点F (n ,﹣2n +10),∴FS =﹣2n +10+m ﹣1=﹣2n +m +9, 由旋转知,AM =MF ,∠AMF =90°,∴∠MAQ +∠AMQ =90°=∠AMQ +∠FMS , ∴∠MAQ =∠FMS ,∴△AQM ≌△MSF (AAS ),∴FS =MQ ,∴﹣2n +m +9=m +1,∴n =4,∴F (4,2),∴直线OF 的解析式为y =12x ①,∵二次函数的解析式为y =﹣x 2+x +4②,联立①②解得,{x =1+√654y =1+√658或{x =1−√654y =1−√658, ∴直线OF 与该二次函数图象交点的横坐标为1+√654或1−√654.。

2020年江苏省淮安市中考数学试卷含答案

2020年江苏省淮安市中考数学试卷含答案

2020年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−122.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 53.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是( )A .10B .9C .11D .87.(3分)(2020•淮安)如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .27°C .36°D .108° 8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=.10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)(2020•淮安)方程3x−1+1=0的解为.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ).18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF (填“是”或“不是”)平行四边形.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB(参考数据:√2≈1.4,√3≈1.7,=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.结果精确到1千米).24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB 于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.27.(14分)(2020•淮安)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.参考答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−12【解答】解:2的相反数为:﹣2.故选:B .2.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 5【解答】解:t 3÷t 2=t .故选:B .3.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°【解答】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C .学习Q 群11316493755.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8【解答】解:一组数据9、10、10、11、8的众数是10,故选:A.7.(3分)(2020•淮安)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°【解答】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=12×(180°﹣∠AOB)=36°,故选:C.8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=2014,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为3×106.【解答】解:3000000=3×106,故答案为:3×106.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=6.【解答】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.12.(3分)(2020•淮安)方程3x−1+1=0的解为x=﹣2.【解答】解:方程3x−1+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为8.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=12AB=8,故答案为:8.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为5.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5.即这个菱形的边长为:5.故答案为:5.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为(﹣1,4).【解答】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=1.【解答】解:把A(﹣1,﹣4)代入y=k1x中得,k1=4,∴反比例函数y =k 1x 为y =4x , ∵A (﹣1,﹣4)、B (﹣4,﹣1),∴AB 的垂直平分线为y =x ,联立方程驵{y =4x y =x,解得{x =−2y =−2,或{x =2y =2, ∵AC =BC ,CD ⊥AB ,∴CD 是AB 的垂直平分线,∵CD 与反比例函数y =k1x (x <0)的图象于点D , ∴D (﹣2,﹣2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =k2x (x >0)图象上一点,∴设移动后的点P 的坐标为(m ,m )(m >﹣2),则(x +2)2+(x +2)2=(3√2)2,∴x =1,∴P (1,1),把P (1,1)代入y =k2x (x >0)中,得k 2=1, 故答案为:1.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ). 【解答】解:(1)|﹣3|+(π﹣1)0−√4=3+1﹣2=2;(2)x+12x ÷(1+1x ) =x+12x ÷x+1x=x+12x ⋅x x+1=12.18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 A (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.【解答】解:(1)去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A .19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?【解答】解:设中型汽车有x 辆,小型汽车有y 辆,依题意,得:{x +y =3015x +8y =324, 解得:{x =12y =18. 答:中型汽车有12辆,小型汽车有18辆.20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF 是 (填“是”或“不是”)平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠OAF =∠OCE ,在△AOF 和△COE 中,{∠OAF =∠OCEAO =CO ∠AOF =∠COE,∴△AOF ≌△COE (ASA )(2)解:四边形AECF 是平行四边形,理由如下:由(1)得:△AOF ≌△COE ,∴FO =EO ,又∵AO =CO ,∴四边形AECF 是平行四边形;故答案为:是.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了 60名 学生,扇形统计图中C 选项对应的圆心角为 108度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?【解答】解:(1)24÷40%=60(名),360°×1860=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×360=60(人), 答:该校1200名学生中选择“不了解”的有60人.22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A 、O 、K .搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A 的概率为 13 ;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK ”的概率.【解答】解:(1)共有3种可能出现的结果,其中是A 的只有1种,因此第1次摸到A 的概率为13, 故答案为:13; (2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=1 9.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB =30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).【解答】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4√3千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 80 千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则:{1.5k +b =803.5k +b =240,解得{k =80b =−40, ∴线段DE 所表示的y 与x 之间的函数表达式为:y =80x ﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时), 12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.(10分)(2020•淮安)如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB=√OC2−BC2=√3,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=12×1×√3−30⋅π×(√3)2360=√32−π4.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC ,∴CN =BN ,∵∠MNB =∠ACB =90°,∴MN ∥AC ,∵CN =BN ,∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6,∴∠A =∠B ,由题意MN 垂直平分线段BC ,∴BM =CM ,∴∠B =∠MCB ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC BA =BM BC , ∴610=BM 6,∴BM =185, ∴AM =AB ﹣BM =10−185=325,∴AM BM =325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC AB=BM BC =CM AC ∴69=BM 6,∴BM =4,∴AM =CM =5,∴69=5AC ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′,∴△PF A ′∽△MFC ,∴PF FM =PA′CM ,∵CM =5,∴PF FM =PA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32,∴32≤P A ′≤154, ∴310≤PF FM ≤34.27.(14分)(2020•淮安)如图①,二次函数y =﹣x 2+bx +4的图象与直线l 交于A (﹣1,2)、B (3,n )两点.点P 是x 轴上的一个动点,过点P 作x 轴的垂线交直线1于点M ,交该二次函数的图象于点N ,设点P 的横坐标为m .(1)b = 1 ,n = ﹣2 ;(2)若点N 在点M 的上方,且MN =3,求m 的值;(3)将直线AB 向上平移4个单位长度,分别与x 轴、y 轴交于点C 、D (如图②). ①记△NBC 的面积为S 1,△NAC 的面积为S 2,是否存在m ,使得点N 在直线AC 的上方,且满足S 1﹣S 2=6?若存在,求出m 及相应的S 1,S 2的值;若不存在,请说明理由. ②当m >﹣1时,将线段MA 绕点M 顺时针旋转90°得到线段MF ,连接FB 、FC 、OA .若∠FBA +∠AOD ﹣∠BFC =45°,直接写出直线OF 与该二次函数图象交点的横坐标.【解答】解:(1)将点A (﹣1,2)代入二次函数y =﹣x 2+bx +4中,得﹣1﹣b +4=2, ∴b =1,∴二次函数的解析式为y =﹣x 2+x +4,将点B (3,n )代入二次函数y =﹣x 2+x +4中,得n =﹣9+3+4=﹣2, 故答案为:1,﹣2;(2)设直线AB 的解析式为y =kx +a ,由(1)知,点B (3,﹣2), ∵A (﹣1,2),∴{−k +a =23k +a =−2, ∴{k =−1a =1, ∴直线AB 的解析式为y =﹣x +1,由(1)知,二次函数的解析式为y =﹣x 2+x +4,∵点P (m ,0),∴M (m ,﹣m +1),N (m ,﹣m 2+m +4),∵点N 在点M 的上方,且MN =3,∴﹣m 2+m +4﹣(﹣m +1)=3,∴m =0或m =2;(3)①如图1,由(2)知,直线AB 的解析式为y =﹣x +1, ∴直线CD 的解析式为y =﹣x +1+4=﹣x +5,令y =0,则﹣x +5=0,∴x =5,∴C (5,0),∵A (﹣1,2),B (3,﹣2),∴直线AC 的解析式为y =−13x +53,直线BC 的解析式为y =x ﹣5, 过点N 作y 轴的平行线交AC 于K ,交BC 于H ,∵点P (m ,0), ∴N (m ,﹣m 2+m +4),K (m ,−13m +53),H (m ,m ﹣5),∴NK =﹣m 2+m +4+13m −53=−m 2+43m +73,NH =﹣m 2+9,∴S 2=S △NAC =12NK ×(x C ﹣x A )=12(﹣m 2+43m +73)×6=﹣3m 2+4m +7, S 1=S △NBC =12NH ×(x C ﹣x B )=﹣m 2+9,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+√3(由于点N在直线AC上方,所以,舍去)或m=1−√3;∴S2=﹣3m2+4m+7=﹣3(1−√3)2+4(1−√3)+7=2√3−1,S1=﹣m2+9=﹣(1−√3)2+9=2√3+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),设点F (n ,﹣2n +10),∴FS =﹣2n +10+m ﹣1=﹣2n +m +9, 由旋转知,AM =MF ,∠AMF =90°,∴∠MAQ +∠AMQ =90°=∠AMQ +∠FMS , ∴∠MAQ =∠FMS ,∴△AQM ≌△MSF (AAS ),∴FS =MQ ,∴﹣2n +m +9=m +1,∴n =4,∴F (4,2),∴直线OF 的解析式为y =12x ①,∵二次函数的解析式为y =﹣x 2+x +4②,联立①②解得,{x =1+√654y =1+√658或{x =1−√654y =1−√658, ∴直线OF 与该二次函数图象交点的横坐标为1+√654或1−√654.。

2020年中考数学参考答案和试题解析-江苏省淮安市

2020年中考数学参考答案和试题解析-江苏省淮安市
原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数. 解 解:将384000用科学记数法表示为:3.84×105. 答: 故选:C. 点 此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a| 评: <10,n为整数,表示时关键要正确确定a的值以及n的值.
4.(3分)(2020•淮安)小华同学某体育项目7次测试成绩如下(单位:
10出现了3次,出现的次数最多,则众数是10; 故选D. 点 此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列 评: 后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是 一组数据中出现次数最多的数.
5.(3分)(2020•淮安)如图,在边长为1个单位长度的小正方形组成的网格中,点A、B 都是格点,则线段AB的长度为( )
A.56°
B.44°
C.34°
D.28°
考 平行线的性质. .
点:
分 由平角的定义得到∠3=34°;然后根据“两直线平行,内错角相等”求出∠2的度 析: 数. 解 解:如图,依题意知∠1+∠3=90°. 答: ∵∠1=56°,
∴∠3=34°. ∵直尺的两边互相平行, ∴∠2=∠3=34°, 故选C.
故答案为:4. 点 此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边 评: 的差,而小于两边的和.
12.(3分)(2020•淮安)一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外
都相同,搅匀后从中任意摸出1个球,则摸出红球的概率为 .
考 概率公式. .
点: 分 由一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同,直接利用 析: 概率公式求解即可求得答案. 解 解:∵一只不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同, 答:

2020年江苏省淮安市淮安区初中毕业暨中等学校招生文化统一考试模拟数学试题

2020年江苏省淮安市淮安区初中毕业暨中等学校招生文化统一考试模拟数学试题

淮安区2020年初中毕业暨中等学校招生文化统一考试数学模拟试题本卷分为第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分,考试时间120分钟.第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给的四个选项中恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.2020的相反数是( )A. 2020B. ﹣2020C. 12020D. 12020- B直接利用相反数的定义得出答案.解:2020的相反数是:﹣2020.故选:B .2.下列运算正确的是( )A. -(2a )2=-2a 2B. 2(a -1)=2a -1C. (a +b )2=a 2+b 2D. 3a 2-2a 2=a 2 D根据积的乘方,单项式乘多项式,完全平方公式,合并同类项进行计算,逐个判断.解:A. -(2a)2=-4a 2,故此选项错误;B. 2(a-1)=2a-2,故此选项错误;C. (a+b)2=a 2+2ab+b 2,故此选项错误;D. 3a 2-2a 2=a 2,正确故选:D .3.岂日无衣,与子同袍新冠肺炎()19COVID -疫情暴发以来,全国共有346支医疗队,4.26万医护人员驰援湖北愈是在危难时刻,愈加体现中华民族强大的凝聚力和国家制度的优越性.数据4.26万用科学记数法表示为( )A. 40.42610⨯B. 44.2610⨯C. 54.2610⨯D. 242610⨯B科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.解:4.26万=4.26×104,故选:B .4.如图放置的几何体的主视图是()A. B. C. D.A根据主视图的定义即可得.由主视图的定义得:这个几何体的主视图由一个矩形构成,但矩形最上一条边的中间部分向里凹观察四个选项可知,只有选项A符合故选:A.5.小王在清点本班为偏远贫困地区的捐款时发现,全班同学捐款的钞票情况如下:100元的3 张,50元的9张,10元的23张,5元的10张.在这些不同面额的钞票中,众数是()A. 10B. 23C. 50D. 100A根据众数就是一组数据中,出现次数最多的数,即可得出答案.∵100元的有3 张,50元的有9张,10元的有23张,5元的有10张,其中10元的最多,∴众数是10元.故答案为A.6.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是()A. 9B. 11C. 13D. 14C分析:易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.解答:解:解方程x2-6x+8=0得,x=2或4,∴第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,∴三角形的周长为3+4+6=13,故选C.点评:此题主要考查了因式分解法解一元二次方程以及三角形的三边关系,求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯.7.反比例函数y=kx图象经过A(1,2),B(n,﹣2)两点,则n=()A. 1B. 3C. ﹣1D. ﹣3 C根据反比例函数图象上点的坐标特征得到:k=1×2=-2n,然后解方程即可.解:∵反比例函数y=kx图象经过A(1,2),B(n,﹣2)两点,∴k=1×2=﹣2n.解得n=﹣1.故选C.8.如图,沿AE折叠矩形纸片ABCD,使点D落在BC边的点F处已知AB=8,BC=10,则tan∠EFC的值为()A. 34B.43C.35D.45A试题解析:根据题意可得:在Rt△ABF中,有AB=8,AF=AD=10,BF=6,而Rt△ABF∽Rt△EFC,故有∠EFC=∠BAF,故tan∠EFC=tan∠BAF=6384=.故选A.第Ⅱ卷(非选择题共126分)二、填空题(本大题共有8小题,每小题3分,共24分.请将答案填写在答题卡相应位置上)9.因式分解:24a a-=_________.a(a-4)直接把公因式a提出来即可.a2﹣4a=a(a﹣4).故答案为a(a﹣4).10.方程32x-= 1的解是________________.x=5分析:根据分式方程的解法,先化为整式方程,然后解整式方程,再检验即可.详解:32x-= 13=x-2解得x=5检验:把x=5代入x-2≠0,所以x=5是原分式方程的解.故答案为x=5点睛:此题主要考查了分式方程的解法,关键是把分式方程化为整式方程,解整式方程,并检验即可. 11.正八边形的每个外角为_________度.45根据正多边形的每个外角相等且外角和等于360度列式计算即可.解:∵正多边形∴有8个相等的外角且外角和为360°∴正八边形的每个外角为360°÷8=45°.故答案为45.12.如图,在平行四边形ABCD 中,6AB =,8AD =,120BAD ∠=︒,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点P 、Q ,作直线PQ ,交AB 于点E ,交BC 于点F ,则CF 的长为_______.2根据两圆相交两圆心的连线垂直平分公共弦,又因为以点A ,B 为圆心的圆半径相等,因此,PF 垂直平分AB ,即AE=BE=3,由已知条件可知,30BFE ∠=︒,BF=2BE=6,即可得出CF=8-6=2.解:由两圆相交我们可知:两圆心的连线垂直平分公共弦,由题意可得,,3AB PO AE BE ⊥==又∵8,18060BC AD B BAD ==∠=︒-∠=︒∴30,90BFE BEF ∠=︒∠=︒∴26BFBE == ∴862CF =-=故答案为:2.13.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且3AB =,4BC =,4.8EF =,则DE 的长为__________.3.6根据平行线分线段成比例定理即可得.【详解】由平行线分线段成比例定理得:AB DE BC EF= 3AB =,4BC =, 4.8EF =34 4.8DE ∴= 解得 3.6DE =故答案为:3.6.14.已知扇形的弧长为2π,圆心角为60°,则它的半径为________. 6.分析: 设扇形的半径为r ,根据扇形的面积公式及扇形的面积列出方程,求解即可. 详解: 设扇形的半径为r , 根据题意得:60r =2180ππ, 解得 :r=6 故答案为6.点睛: 此题考查弧长公式,关键是根据弧长公式解答.15.不等式组()263125x x x -<⎧⎪⎨+≤+⎪⎩①②的解集为__________. 32x -<≤先分别求出不等式①和②的解,再找出其公共部分即为不等式组的解集.解不等式①得:3x >-解不等式②得:2x ≤则不等式组的解集为32x -<≤ 故答案为:32x -<≤.16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)()43n -分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形. 分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.三、解答题(本大题共11小题,共102分,解答应写出文字说明、证明过程或演算步骤)17.计算:(1)101(3)2sin 6092-⎛⎫+-︒ ⎪⎝⎭(2)解方程组:384x y x y +=⎧⎨-=⎩(1)3-(2)31x y =⎧⎨=-⎩. (1)先计算负整数指数幂、零指数幂、特殊角的正弦值、算术平方根,再计算实数的混合运算即可; (2)直接利用加减消元法解二元一次方程组即可.(1)原式321232=+-⨯- 2133=+-3=(2)384x y x y +=⎧⎨-=⎩①②①+②得:412x =解得3x =将3x =代入②得:34y -=解得1y =- 则方程组的解为31x y =⎧⎨=-⎩. 18.先化简,再求值:233111a a a a ++-÷--,其中2a =. 1a a +,23. 先根据分式的除法、减法进行化简,再将2a =代入求值即可. 原式311(1)(1)3a a a a a +--⋅+-+= 111a =-+ 1111a a a +=-++ 1a a =+ 将2a =代入得:原式22213==+. 19.据媒体报道,我国2017年公民出境旅游总人数5000万人次,2019年公民出境旅游总人数7200万人次,求这两年我国公民出境旅游总人数的年平均增长率是多少?这两年我国公民出境旅游总人数的年平均增长率为20%设这两年我国公民出境旅游总人数的年平均增长率为x ,根据我国2017年及2019年公民出境旅游的人数,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.解:设这两年我国公民出境旅游总人数的年平均增长率为x ,由题意得:25000(1)7200x +=,解得:10.220%x ==,2 2.2x =-(舍去)答:这两年我国公民出境旅游总人数的年平均增长率为20%.20.如图,将ABC ∆沿着AC 边翻折,得到ADC ∆,且//AB CD .(1)判断四边形ABCD 的形状,并说明理由;(2)若16AC =,10BC =,求四边形ABCD 的面积. (1)四边形ABCD 是菱形,见解;(2)四边形ABCD 的面积96=(1)由折叠的性质得出AB AD =,BC CD =,BAC DAC ∠=∠,BCA DCA ∠=∠,由平行线的性质得出BCA DCA ∠=∠,得出BAC DAC BCA DCA ∠=∠=∠=∠,证出//AD BC ,AB AD BC CD ===,即可得出结论;(2)连接BD 交AC 于O ,由菱形的性质得出ACBD ⊥,182OA OB AC ===,OB OD =,由勾股定理求出226OB BC OC =-=,得出212BD OB ==,由菱形面积公式即可得出答案.解:(1)四边形ABCD 是菱形;理由如下:∵ABC ∆沿着AC 边翻折,得到ADC ∆,∴AB AD =,BC CD =,BAC DAC ∠=∠,BCA DCA ∠=∠,∵//AB CD , ∴BCA DCA ∠=∠, ∴BAC DAC BCA DCA ∠=∠=∠=∠,∴//AD BC ,AB AD BC CD ===,∴四边形ABCD 是菱形;(2)连接BD 交AC 于O ,如图所示:∵四边形ABCD 是菱形,∴AC BD ⊥,182OA OB AC ===,OB OD =, ∴22221086OB BC OC =-=-=, ∴212BD OB ==,∴四边形ABCD 的面积1116129622AC BD =⨯=⨯⨯=.21.延迟开学期间,学校为了全面分析学生的网课学习情况,进行了一次抽样调查(把学习情况分为三个层次,A :能主动完成老师布置的作业并合理安排课外时间自主学习;B :只完成老师布置的作业;C :不能完成老师布置的作业),并将调查结果绘制成图1和图2的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了__________名学生;(2)将条形图补充完整;(3)图2中C 所占的圆心角的度数为__________度;(4)如果学校开学后对A 层次的学生进行奖励,根据抽样调查结果,请你估计该校1600名学生中大约有多少名学生能获得奖励?(1)200;(2)见解析;(3)54°;(4)375名.(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A 的有50人,占调查学生的25%,即可求得总人数;(2)由(1)可知:C 人数为:200-120-50=30人,将图①补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以求出:360°×(1-25%-60%)=54°; (4)从扇形统计图可知,A 层次的学生数占得百分比为25%,再估计该市近1500名初中生中能获得奖励学生数就很容易了.解:(1)50÷25%=200(人)答:共调查了200名学生,故答案为:200;(2)C 人数:200-120-50=30(人).条形统计图如图所示:(3)∵C 所占的比例为:1-25%-60%=15%,∴C 所占圆心角度数=360°×15%=54°,故答案为:54°. (4)∵A 层次的学生占比为25%,∴该校1600名学生中大约有1500×25%=375人能获得奖励,故答案为:375(人).答:该校学生中大约有375名学生能获得奖励.22.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A ,B ,C ,D 四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A 小区的概率是多少;(2)请用列表或画树状图的方法求甲组抽到A 小区,同时乙组抽到C 小区的概率.(1)甲组抽到A 小区的概率是14;(2)甲组抽到A 小区,同时乙组抽到C 小区的概率为112. (1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,根据概率公式求解可得.(1)甲组抽到A 小区的概率是14, 故答案为14. (2)画树状图为:共有12种等可能的结果数,其中甲组抽到A 小区,同时乙组抽到C 小区的结果数为1,∴甲组抽到A 小区,同时乙组抽到C 小区的概率为112. 23.淮安华联商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式自动扶梯,如图所示,已知原阶梯式自动扶梯AB 长为10m ,坡角ABD ∠为45︒,改造后的斜坡式自动扶梯的坡角ACB ∠为15︒,改造后的斜坡式自动扶梯水平距离增加了BC ,请你计算BC 的长度.(结果精确到1m ,参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈2 1.41≈)19m .【分析】先根据等腰直角三角形的判定与性质可得AD 、BD 的长,再解直角三角形即可得.由题意的:AD CD ⊥,10AB m = 45ABD ∠=︒9045BAD ABD ∴∠=︒-∠=︒,即ABD BAD ∠=∠ ABD ∴是等腰直角三角形,且252AD BD AB m === 设BC xm =在Rt ACD 中,tan AD AD ACD CD BC BD ∠==+,即52tan1552x =︒+ 解得52(1tan15)x -︒=经检验,52(1tan15)x -︒=是所列分式方程的解 则BC 的长度为52(1tan15)5 1.41(10.27)19()0.27m -︒⨯⨯-≈≈ 答:BC 的长度约为19m .24.如图,已知Rt ABC 中,60CAB ∠=︒ ,点O 为斜边AB 上一点,且2OA =,以OA 为半径的O 与BC 相切于D ,与AC 交于点E ,连接AD .(1)求线段CD 的长;(2)求O 与Rt ABC 重叠部分的面积.(结果保留准确值)(1)3CD =(2433π; (1)连接OD ,由切线的性质和直角三角形的性质得出OB =2OD =4,BD 3=23AB =OA +OB=6,AC=12AB=3,BC=3AC=33,即可得出结果;(2)连接OE,证出△OAE是等边三角形,得出∠AOE=60°,∠EOG=120°,作EF⊥OA于F,则OF=1,EF =3OF=3,⊙O与Rt△ABC重叠部分的面积=△AOE的面积+扇形OEDG的面积,即可得出结果.解:(1)连接OD,如图1所示:∵以OA为半径的⊙O与BC相切于D,∴∠ODB=90°,∵OD=OA=2,∠C=90°,∠CAB=60°,∴∠B=30°,∴OB=2OD=4,BD=3OD=23,∴AB=OA+OB=6,∴AC=12AB=3,∴BC=3AC=33,∴CD=BC−BD=3;(2)连接OE,如图2所示:则OA=OE,∵∠CAB=60°,∴△OAE是等边三角形,∴∠AOE=60°,∴∠EOG=120°,作EF⊥OA于F,则OF=1,EF=3OF=3,∴⊙O与Rt△ABC重叠部分的面积=△AOE的面积+扇形OEDG的面积=3112024 23+3 23603ππ⨯⨯⨯=+.25.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.(1)家与图书馆之间路程为4000m,小玲步行速度为100m/s;(2)自变量x的范围为0≤x≤403;(3)两人相遇时间为第8分钟.(1)认真分析图象得到路程与速度数据;(2)采用方程思想列出小东离家路程y与时间x之间的函数关系式;(3)两人相遇实际上是函数图象求交点.解:(1)结合题意和图象可知,线段CD为小东路程与时间函数图象,折现O﹣A﹣B为小玲路程与时间图象则家与图书馆之间路程为4000m,小玲步行速度为(4000-2000)÷(30-10)=100m/s(2)∵小东从离家4000m处以300m/min的速度返回家,则xmin时,∴他离家的路程y=4000﹣300x,自变量x的范围为0≤x≤403,(3)由图象可知,两人相遇是在小玲改变速度之前,∴4000﹣300x=200x解得x=8∴两人相遇时间为第8分钟.故答案为(1)4000,100;(2)y=4000﹣300x ,0≤x ≤403;(3)第8分钟. 26.定义:在平行四边形中,若有一条对角线是一边的两倍,则称这个平行四边形为两倍四边形,其中这条对角线叫做两倍对角线,这条边叫做两倍边.如图1,四边形ABCD 是平行四边形,//BE AC ,延长DC 交BE 于点E ,连结AE 交BC 于点F ,1AB =, AD m =.(1)若90ABC ∠=︒,如图2.①当2m =时,试说明四边形ABEC 是两倍四边形;②是否存在值m ,使得四边形ABCD 是两倍四边形,若存在,求出m 的值,若不存在,请说明理由;(2)如图1,四边形ABCD 与四边形ABEC 都是两倍四边形,其中BD 与AE 为两倍对角线,AD 与AC 为两倍边,求m 的值.(1)①证明见解析;②存在,m 33(2)6m =. (1)①证明四边形ABEC 是平行四边形,2BC AB =,即可得到结论;②当AC=2CD 时,四边形ABCD 是两倍四边形,此时 3当AC=2AD 时,四边形ABCD 是两倍四边形,由勾股定理得出方程m 2+12=(2m )2,解方程即可;(2)由两边四边形的定义得出AD=DG ,得出∠DAG=∠AGD ,同理AC=AF ,得出∠ACF=∠AFC ,证出∠ADG=∠CAF ,AD AC BD AE=,得出△ADB ∽△ACE ,由AB=CE ,得出△ADB ≌△ACE ,由全等三角形的性质得出AC=AD ,作DM ⊥AC 于M ,设AM=x ,则AC=AD=4x ,由勾股定理得:15x ,CD=26x ,由CD=AB=1得出方程,解方程即可.(1)①证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,BC=AD=2,∵//BE AC ,AB ∥CE ,∴四边形ABEC 是平行四边形,2BC AB =,∴四边形ABEC 是两倍四边形;②存在,理由如下:当AC=2AB 时,则AC=2,∵90ABC ∠=︒,∴BC ,∴当AC=2AD 时,则AC=2m ,∴2221(2)m m +=,解得m=3或m=-3(舍去),∴m 3ABCD 是两倍四边形; (2)∵四边形ABCD 是两倍四边形,BD 为两倍对角线,AD 为两倍边,∴AD=DG ,∴∠DAG=∠AGD ,∵四边形ABEC 是两倍四边形,AE 为两倍对角线,AC 为两倍边,∴AC=AF ,∴∠ACF=∠AFC ,又∵∠DAG=∠ACF ,∴∠DAG=∠AGD=∠ACF=∠AFC ,∴∠ADG=∠CAF , 又∵12AD BD =,12AC AE =, ∴AD AC BD AE =, ∴△ADB ∽△ACE ,又∵AB=CE ,∴相似比为1,∴△ADB ≌△ACE ,∴AC=AD ,作DM ⊥AC 于M ,如图1,设AM=x ,则AC=AD=4x ,在Rt △ADM 中,由勾股定理得:DM=15x , 在Rt △DMC 中,由勾股定理得:CD=26x ,∵CD=AB=1,∴ 26x =1,∴x=6, ∴AD=4x=6, 即63m =.27.如图,抛物线23y ax bx =+-与x 轴交于()1,0A-,()3,0B 两点,与y 轴交于点C ,点D 是抛物线的顶点.(1)求抛物线的解析式.(2)点N 是y 轴负半轴上的一点,且2ON =Q 在对称轴右侧的抛物线上运动,连接QO ,QO 与抛物线的对称轴交于点M ,连接MN ,当MN 平分OMD ∠时,求点M 的坐标.(3)直线BC 交对称轴于点E ,P 是坐标平面内一点,请直接写出PCE 与ACD 全等时点P 的坐标__________.(1)223y x x =--;(2)(1,1) M 或()1,1M -;(3)(3,4)P --或 (1,6)P --或(2,1)P 或(4,1)P -. (1)直接利用待定系数法即可得;(2)先根据角平分线的定义可得OMNDMN ∠=∠,再根据平行线的判定与性质可得ONM DMN ∠=∠,从而可得OMNONM ∠=∠,然后根据等腰三角形的性质可得OM ON =最后根据两点之间的距离公式即可得;(3)先根据抛物线的解析式求出点C 的坐标,从而根据两点之间的距离公式分别求出AC 、AD 、CD 的长,再利用待定系数法求出直线BC 的解析式,从而可得点E 的坐标,然后根据两点之间的距离公式可求出CE 的长,最后根据三角形全等的性质分两种情况,分别建立方程组求解即可得. (1)由题意,将点()1,0A -,()3,0B 代入抛物线的解析式得:309330a b a b --=⎧⎨+-=⎩解得12a b =⎧⎨=-⎩ 则抛物线的解析式为223y x x =--;(2)223y x x =--的顶点式为2(1)4y x =--则其对称轴为1x =,顶点D 的坐标为(1,4)D -可设点M 的坐标为(1,)M m MN 平分OMD ∠OMN DMN ∴∠=∠DM x ⊥轴,ON x ⊥轴//DM ON ∴ONM DMN ∴∠=∠OMN ONM ∴∠=∠OM ON ∴==由两点之间的距离公式得:OM ==解得1m =± 故点M 的坐标为(1,1)M 或(1,1)M -;(3)对于223y x x =--当0x =时,3y =-,则点C 的坐标为(0,3)C - 由两点之间的距离公式得:22(10)(03)10AC =--++=22(11)(04)25AD =--++=22(01)(34)2CD =-+-+=设直线BC 的解析式为y kx c =+将点(3,0),(0,3)B C -代入得303k c c +=⎧⎨=-⎩,解得13k c =⎧⎨=-⎩ 则直线BC 的解析式为3y x =-当1x =时,132y =-=-,即点E 的坐标为(1,2)E -设点P 的坐标为(,)P s t 由两点之间的距离公式得:22(01)(32)2CE =-+-+=22(0)(3)CP s t =-+--22(1)(2)EP s t =-+--则2CE CD ==因此,要使PCE 与ACD 全等,有以下两种情况: ①,CP AC EP AD ==即==34s t =-⎧⎨=-⎩或16s t =-⎧⎨=-⎩ 则此时,点P 的坐标为(3,4)P --或(1,6)P --②,CP AD EP AC ==即==21s t =⎧⎨=⎩或41s t =⎧⎨=-⎩ 则此时,点P 的坐标为(2,1)P 或(4,1)P -综上,所求的点P 的坐标为(3,4)P --或(1,6)P --或(2,1)P 或(4,1)P -.。

2020年江苏省淮安市中考数学试卷解析版

2020年江苏省淮安市中考数学试卷解析版

D. 520
二、填空题(本大题共 8 小题,共 24.0 分)
9. 分解因式:m2-4=______.
10. 2020 年 6 月 23 日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟
授时精度高达每隔 3000000 年才误差 1 秒.数据 3000000 用科学记数法表示为
______.
三、解答题(本大题共 11 小题,共 102.0 分) 17. 计算:
(1)|-3|+(π-1)0- ; (2) ÷(1+ ).
18. 解不等式 2x-1> . 解:去分母,得 2(2x-1)>3x-1. … (1)请完成上述解不等式的余下步骤: (2)解题回顾:本题“去分母”这一步的变形依据是______(填“A”或“B”) . A.不等式两边都乘(或除以)同一个正数,不等号的方向不变; B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.
第 1 页,共 20 页
16. 如图,等腰△ABC 的两个顶点 A(-1,-4)、B(-4,-1)在反比例函数 y= (x<0) 的图象上,AC=BC.过点 C 作边 AB 的垂线交反比例函数 y= (x<0)的图象于点 D ,动点 P 从点 D 出发,沿射线 CD 方向运动 3 个单位长度,到达反比例函数 y= ( x>0)图象上一点,则 k2=______.
23. 如图,三条笔直公路两两相交,交点分别为 A、B、C,测得∠CAB=30°,∠ABC=45° ,AC=8 千米,求 A、B 两点间的距离.(参考数据: ≈1.4, ≈1.7,结果精确到 1 千米).
24. 甲、乙两地的路程为 290 千米,一辆汽车早上 8:00 从甲地出发,匀速向乙地行驶 ,途中休息一段时间后.按原速继续前进,当离甲地路程为 240 千米时接到通知, 要求中午 12:00 准时到达乙地.设汽车出发 x 小时后离甲地的路程为 y 千米,图 中折线 OCDE 表示接到通知前 y 与 x 之间的函数关系. (1)根据图象可知,休息前汽车行驶的速度为______千米/小时; (2)求线段 DE 所表示的 y 与 x 之间的函数表达式; (3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.

2020年江苏省淮安市中考数学试卷(word版)

2020年江苏省淮安市中考数学试卷(word版)

2020年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是()A.2B.2-C.12D.12-2.(3分)(2020•淮安)计算32t t÷的结果是()A.2t B.t C.3t D.5t3.(3分)(2020•淮安)下列几何体中,主视图为圆的是()A.B.C.D.4.(3分)(2020•淮安)六边形的内角和为()A.360︒B.540︒C.720︒D.1080︒5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是() A.(2,3)B.(3,2)-C.(3,2)--D.(2,3)--6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.87.(3分)(2020•淮安)如图,点A、B、C在O上,54ACB∠=︒,则ABO∠的度数是( )A.54︒B.27︒C.36︒D.108︒8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是( )A .205B .250C .502D .520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:24m -= . 10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为 .11.(3分)(2020•淮安)已知一组数据1、3、a 、10的平均数为5,则a = .12.(3分)(2020•淮安)方程3101x +=-的解为 . 13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为 .14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为 .15.(3分)(2020•淮安)二次函数223y x x =--+的图象的顶点坐标为 .16.(3分)(2020•淮安)如图,等腰ABC ∆的两个顶点(1,4)A --、(4,1)B --在反比例函数1(0)k y x x =<的图象上,AC BC =.过点C 作边AB 的垂线交反比例函数1(0)k y x x=<的图象于点D ,动点P 从点D 出发,沿射线CD 方向运动32个单位长度,到达反比例函数2(0)k y x x=>图象上一点,则2k = .三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)0|3|(1)4π-+--;(2)11(1)2x x x+÷+. 18.(8分)(2020•淮安)解不等式31212x x -->. 解:去分母,得2(21)31x x ->-.⋯(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ” ). A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)(2020•淮安)如图,在ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO CO =.(1)求证:AOF COE ∆≅∆;(2)连接AE 、CF ,则四边形AECF (填“是”或“不是” )平行四边形.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了名学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得≈,30∠=︒,8AC=千米,求A、B两点间的距离.(参考数据:2 1.4 ABCCAB∠=︒,45≈,结果精确到1千米).3 1.724.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)(2020•淮安)如图,AB 是O 的弦,C 是O 外一点,OC OA ⊥,CO 交AB 于点P ,交O 于点D ,且CP CB =.(1)判断直线BC 与O 的位置关系,并说明理由;(2)若30A ∠=︒,1OP =,求图中阴影部分的面积.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC 中,90ACB ∠=︒,将ABC ∆折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ;[思考说理](2)如图②,在三角形纸片ABC 中,6AC BC ==,10AB =,将ABC ∆折叠,使点B 与点C 重合,折痕为MN ,求AM BM的值; [拓展延伸](3)如图③,在三角形纸片ABC 中,9AB =,6BC =,2ACB A ∠=∠,将ABC ∆沿过顶点C 的直线折叠,使点B 落在边AC 上的点B '处,折痕为CM .①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB '上的一个动点,将APM ∆沿PM 折叠得到△A PM ',点A 的对应点为点A ',A M '与CP 交于点F ,求PF MF 的取值范围.27.(14分)(2020•淮安)如图①,二次函数24y x bx =-++的图象与直线l 交于(1,2)A -、(3,)B n 两点.点P 是x 轴上的一个动点,过点P 作x 轴的垂线交直线l 于点M ,交该二次函数的图象于点N ,设点P 的横坐标为m .(1)b = ,n = ;(2)若点N 在点M 的上方,且3MN =,求m 的值;(3)将直线AB 向上平移4个单位长度,分别与x 轴、y 轴交于点C 、D (如图②). ①记NBC ∆的面积为1S ,NAC ∆的面积为2S ,是否存在m ,使得点N 在直线AC 的上方,且满足126S S -=?若存在,求出m 及相应的1S ,2S 的值;若不存在,请说明理由.②当1m >-时,将线段MA 绕点M 顺时针旋转90︒得到线段MF ,连接FB 、FC 、OA .若45FBA AOD BFC ∠+∠-∠=︒,直接写出直线OF 与该二次函数图象交点的横坐标.。

2020年江苏省淮安中考数学试卷-答案

2020年江苏省淮安中考数学试卷-答案

2020年江苏省淮安市初中毕业暨中等学校招生文化统一考试数学答案解析第Ⅰ卷一、 1.【答案】B【解析】直接利用相反数的定义解答即可.解:2的相反数是2-.故选B . 【考点】相反数的概念 2.【答案】B【解析】根据同底数幂的除法法则计算即可.原式32t t -==故选:B . 【考点】同底数幂的除法运算 3.【答案】C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D 、的主视图是三角形,故D 不符合题意;故选C . 【考点】简单几何体的三视图 4.【答案】C【解析】n 边形的内角和等于(n 2)°180-⨯,所以六边形内角和为(62)18°02°70-⨯=.根据多边形内角和定理得:(62)18°02°70-⨯=.故选C .5.【答案】C【解析】根据坐标系中对称点与原点的关系判断即可.关于原点对称的一组坐标横纵坐标互为相反数,所以(3,2)关于原点对称的点是(3,2)--,故选C . 【考点】原点对称的性质 6.【答案】A【解析】根据众数的定义进行判断即可.在这组数据中出现最多的数是10,∴众数为10,故选:A . 【考点】众数的定义 7.【答案】C【解析】先由圆周角定理得到AOB ∠,再利用等腰三角形的性质求解即可.在圆O 中,54ACB ∠=︒,2108AOB ACB ∴∠=∠=︒,OA OB =,180108362OAB OBA ︒-∴∠=∠==︒︒,故选:C .【考点】圆周角定理,等腰三角形的性质 8.【答案】D【解析】设两个连续奇数中的一个奇数为x ,则另一个奇数为2x +,先得出由这两个奇数得到的“幸福数”为4(1)x +,再看四个选项中,能够整除4的即为答案.设两个连续奇数中的一个奇数为x ,则另一个奇数为2x +由这两个奇数得到的“幸福数”为22(2)2(22)4(1)x x x x +-=+=+观察四个选项可知,只有选项D 中的520能够整除4,即5204130÷=故选:D . 【考点】平方差公式应用第Ⅱ卷二、9.【答案】()()+22x x -【解析】先把式子写成222x -,符合平方差公式的特点,再利用平方差公式分解因式.22242(2)(2)x x x x -=-=+-.故答案为()()22x x +-.【考点】利用公式法因式分解 10.【答案】6310⨯【解析】先将3 000 000写成n a 10⨯的形式,其中1||10a ≤<,n 为3 000 000写成a 时小时点向左移动的位数.解:63 000 000=310⨯.故答案为6310⨯. 【考点】科学记数法 11.【答案】6【解析】根据平均数的计算方法,列出方程然后计算即可.解:依题意有()131045a +++÷=,解得6a =,故答案为:6.【考点】算术平均数 12.【答案】2x =-【解析】先用异分母分式加法法则运算,然后利用分式为零的条件解答即可. 解:3101x +=- 31011x x x -+=-- 201x x +=- 则:2010x x +=⎧⎨-≠⎩,解得2x =-.故答案为2x =-.【考点】异分母分式加法法则 13【答案】8【解析】直接根据直角三角形斜边中线定理可以得出本题答案.直角三角形斜边的长为16,∴直角三角形斜边上的中线长是:116=82⨯,故答案为:8. 的【考点】直角三角形斜边中线定理 14.【答案】5【解析】根据菱形对角线垂直平分,再利用勾股定理即可求解.解:因为菱形的对角线互相垂直平分,根据5=.故答案为5. 【考点】菱形的性质及勾股定理的运用 15.【答案】(1,4)-【解析】把二次函数解析式配方转化为顶点式解析式,即可得到顶点坐标. 解:2223(1)4y x x x =--+=-++,∴顶点坐标为(1,4)-.故答案为(1,4)-.【考点】二次函数的性质 16.【答案】1 【解析】AC BC =,CD AB ⊥,ABC ∴△是等腰三角形,CD 是AB 的垂直平分线,CD ∴是反比例函数1k y x=的对称轴,则直线CD 的关系式是y x =,A ∴点的坐标是(1,4)A --,代入反比例函数1k y x =,得()()1144xy k ==-⨯-=,则反比例函数关系式为4y x =,又直线CD 与反比例函数4y x=(0x <)的图象于点D ,则有4y xy x =⎧⎪⎨=⎪⎩,解之得:22x y =-⎧⎨=-⎩(D 点在第三象限),D ∴点的坐标是(2,2)--,OD ∴=,点P 从点D 出发,沿射线CD方向运动2k y x=图象上,OP ∴=P 点的坐标是(1,1)(P 点在第一象限),将(1,1)P 代入反比例函数2k y x=,得2111xy k ==⨯=,故答案为:1.【考点】用待定系数法求出反比例函数 三、17.【答案】(1)根据绝对值、零指数幂、二次根式的计算方法计算即可.0|3|(1)3122π-+--=+-=(2)根据分式的混合运算法则计算即可.111111122212x x x x x x x x x x x ++++⎛⎫÷+=÷=⋅= ⎪+⎝⎭. 【解析】具体解题过程参照答案.【考点】分式的混合运算和绝对值,零指数幂,二次根式的计算18.【答案】(1)按照去括号、移项、合并同类项的步骤进行补充即可,31212x x -->,去分母,得2(21)31x x -->,去括号,得4231x x -->,移项,得4312x x --+>,合并同类项,得1x >.(2)A【解析】(1)具体解题过程参照答案.(2)根据不等式的性质即可得.不等式的性质:不等式两边都乘(或除以)同一个正数,不等号的方向不变,31212x x -->两边同乘以正数2,不等号的方向不变,即可得到2(21)31x x -->,故选:A . 【考点】解一元一次不等式,不等式的性质19.【答案】根据题意设中型x 辆,小型y 辆,即可列出方程组求出答案. 设中型x 辆,小型y 辆,根据题意可得:30158324x y x y +=⎧⎨+=⎩,解得1218x y =⎧⎨=⎩,故中型汽车12辆,小型汽车18辆.【解析】具体解题过程参照答案. 【考点】方程组20.【答案】(1)根据平行四边形的对边平行可得到内错角相等,再根据已知条件可利用ASA 得到全等.四边形ABCD 平行四边形,AD BC ∴∥,FAO ECO ∴∠=∠,根据题可知AO CO =,AOF COE ∠=∠,在AOF △和COE △中,FAO ECOAO COAOF COE ∠=∠⎧⎪=⎨⎪∠=∠⎩,()AOF COE ASA ∴△≌△. (2)是,由(1)可得到AF EC =,根据一组对边平行且相等的四边形式平行四边形即可得到答案. 如图所示.由(1)得AOF COE △≌△,可得:AF CE =,又AF CE ∥,∴四边形AECF 是平行四边形.【解析】具体解题过程参照答案. 【考点】平行四边形的判定和性质 21.【答案】(1)60 108(2)先根据(1)的结论,求出A 选项学生的人数,再补全条形统计图即可.A 选项学生的人数为6025%15⨯=(名)因此补全条形统计图如下所示:(3)先求出选择“不了解”的学生的占比,再乘以1 200即可得.选择“不了解”的学生的占比为3100%5%60⨯=则12005%60⨯=(人)答:该校选择“不了解”的学生有60人. 【解析】(1)先根据B 选项的条形统计图和扇形统计图的信息可得调查的总人数,再求出C 选项学生人数的占比,然后乘以360︒即可得.本次问卷共随机调查的学生人数为2440%60÷=(名)C 选项学生人数的占比为18100%30%60⨯=则30%360108⨯︒=︒故答案为:60,108. (2)具体解题过程参照答案. (3)具体解题过程参照答案.【考点】条形统计图和扇形统计图的信息关联,画条形统计图 22.【答案】(1)13(2)先画出树状图求出所有等可能情况数,然后找出两个方格中的字母从左往右恰好组成“OK ”的情况数,再根据概率公式解答. 所有可能的情况如图所示:由图可知:共有9种等可能的情况,其中两个方格中的字母从左往右恰好组成“OK ”的情况数只有1种,所以两个方格中的字母从左往右恰好组成“OK ”的概率1=9. 【解析】(1)用标有字母A 的情况数除以总的情况数解答即可,第一次摸到字母A 的概率=13.故答案为:13. (2)具体解题过程参照答案. 【考点】求两次事件的概率23.【答案】如图(见解析),先根据直角三角形的性质、勾股定理可求出CD 、AD 的长,再根据等腰直角三角形的判定与性质可得BD 的长,然后根据线段的和差即可得.如图,过点C 作CD AB ⊥于点D . 在Rt ACD △中,30CAD ∠=︒,8AC =千米118422CD AC ∴==⨯=(千米),AD == 在Rt BCD △中,45DBC ∠=︒Rt BCD ∴△是等腰直角三角形4BD CD ∴==千米44 1.7410.811AB AD BD ∴=+=≈⨯+=≈(千米)答:A 、B 两点间的距离约为11千米.【解析】具体解题过程参照答案.【考点】直角三角形的性质,等腰直角三角形的判定与性质 24.【答案】(1)80(2)根据题意求出点E 的横坐标,再利用待定系数法解答即可.休息后按原速继续前进行驶的时间为:()24080802-÷=(小时),∴点E 的坐标为3.5240(,),设线段DE 所表示的y 与x 之间的函数表达式为y kx b =+,则: 1.5803.5240k b k b +=⎧⎨+=⎩,解得8040k b =⎧⎨=-⎩,∴线段DE 所表示的y 与x 之间的函数表达式为8040y x =-.(3)不能,接到通知后,汽车仍按原速行驶,则全程所需时间为:290800.5 4.125÷+=(小时),从早上8点到中午12点需要1284-=(小时), 4.1254>,所以接到通知后,汽车仍按原速行驶不能准时到达.【解析】(1)观察图象即可得出休息前汽车行驶的速度.由图象可知,休息前汽车行驶的速度为80180÷=千米/小时;故答案为:80. (2)具体解题过程参照答案.(3)求出到达乙地所行驶的时间即可解答.具体解题过程参照答案. 【考点】一次函数的应用 25.【答案】(1)直线BC 与O 相切,理由为:连接OB ,OA OB =,A OBA ∴∠=∠,CP CB =,CPB CBP ∴∠=∠,又APO CPB ∠=∠,CBP APO =∠∠,OA OC ⊥,90A APO ︒∴∠+∠=,90OBA CBP ︒∴∠+∠=即90OBC ︒∠=,OB BC ∴⊥,∴直线BC 与O 相切.(2)易证得CPD △为等边三角形,则有60,30OCB BOC ︒︒∠=∠=,用含30︒角的直角三角形求得OA 、BC 的长,然后用公式求得OBC △的面积和扇形OBD 的面积,相加即可解得阴影面积.,30,1OA OC A OP ︒⊥∠==,tan 30OPOA ︒∴==60APO ︒∠=即60CPB ︒∠=,CP CB =,PCB ∴△为等边三角形,60PCB ︒∴∠=,90OBC ︒∠=,30BOD ︒∴∠=,tan301BC OB ︒∴=⋅=,11==124OBCS S S π∴--△阴影扇形OBD .答:图中阴影部分的面积为124π-.【解析】(1)连接OB ,由等腰三角形的性质分别证出,A OBA CPB CBP ∠=∠∠=∠,再利用直角三角形性质和对顶角可证得90OBC ︒∠=,即OB BC ⊥,可判断直线BC 与O 相切.(2)具体解题过程参照答案.【考点】等腰三角形的性质,直角三角形的性质,切线的判定定理,等边三角形的判定与性质,扇形的面积26.【答案】(1)AM BM = (2)解:6AC BC ==,B A ∴∠=∠,由折叠的性质得:B MCN ∠=∠,MCN A ∴∠=∠,即MCB A ∠=∠.在BCM △和BAC △中,MCB A B B∠=∠⎧⎨∠=∠⎩,BCM BAC ∴~△△,BM BCBC AB ∴=,即6610BM =,解得185BM =,18321055AM AB BM ∴=-=-=,321651895AM BM ∴==. (3)①解:由折叠的性质得:12BCM ACM ACB ∠=∠=∠,2ACB A ∠=∠,即12A ACB ∠=∠,BCM ACM A ∠=∠=∠∴,AM CM ∴=.在BCM △和BAC △中,BCM AB B ∠=∠⎧⎨∠=∠⎩,BCM BAC ∴~△△,BM BC CM BC AB AC ∴==,即669BM CMAC==,解得4BM =.945AM AB BM ∴=-=-=,5CM AM ∴==,659AC ∴=,解得152AC =. ②解:如图,由折叠的性质可知,6B C BC '==,A P AP '=,A A ∠'=∠,153622AB AC B C ''∴=-=-=.点O 是边AC 的中点,11524OA AC ∴==,1539424OB OA AB ''∴=-=-=,设B P x '=,则32A P AP AB B P x '''==+=+.点P 为线段OB '上的一个动点,0B P OB ''∴≤≤,其中当点P 与点B '重合时,0B P '=;当点P 与点O 重合时,B P OB ''=,904x ∴≤≤,,A A ACM A '∠=∠∠=∠,A ACM '∴∠=∠,即A FCM '∠=∠,在A FP '△和CFM △中,A FCM A FP CFM ∠=∠⎧⎨∠=∠''⎩,A FP CFM '∴~△△,33125105x PF A P x MF CM +'∴===+.904x ≤≤,3313101054x ∴+≤≤,则33104PF MF ≤≤.【解析】(1)先根据折叠的性质可得,90CN BN CNM BNM =∠=∠=︒,再根据平行线的判定可得//AC MN ,然后根据三角形中位线的判定与性质即可得.解:AM BM =,理由如下:由折叠的性质得:,90CN BN CNM BNM =∠=∠=︒.90ACB ∠=︒,90ACB BNM ∴∠=∠=︒,//AC MN ∴,MN ∴是ABC △的中位线,∴点M 是AB中点,则AM BM =,故答案为:AM BM =.(2)先根据等腰三角形的性质可得B A ∠=∠,再根据折叠的性质可得B MCN ∠=∠,从而可得MCN A ∠=∠,然后根据相似三角形的判定与性质可得BM BCBC AB=,从而可求出BM 的长,最后根据线段的和差可得AM 的长,由此即可得出答案. (3)①先根据折叠的性质可得12BCM ACM ACB ∠=∠=∠,从而可得BCM A M A C ∠=∠=∠,再根据等腰三角形的定义可得AM CM =,然后根据相似三角形的判定与性质可得BM BC CMBC AB AC==,从而可得BM 、AM 、CM 的长,最后代入求解即可得.②先根据折叠的性质、线段的和差求出AB ',OB '的长,设B P x '=,从而可得32A P x '=+,再根据相似三角形的判定与性质可得31105PF A P x MF CM '==+,然后根据x 的取值范围即可得. 【考点】折叠的性质,三角形的中位线定理,等腰三角形的定义,相似三角形的判定与性质 27.【答案】(1)12-(2)解:设直线l 的解析式是y kx a =+,把点()1,2A -、()3,2B -两点代入,得:232k a k a -+=⎧⎨+=-⎩,解得:11k a =-⎧⎨=⎩,∴直线l 的解析式是1y x =-+,如图1,点(,0)P m ,()2(,1),,4M m m N m m m ∴-+-++点,当点N 在点M的上方时,则的()()224123MN m m m m m =-++--+=-++,当3MN =时,2233m m -++=,解得:0m =或2.(3)①解:①直线AB 向上平移4个单位长度后的解析式为5y x =-+,∴点C 、D 的坐标分别是(5,0)、(0,5),则由()1,2A -、(5,0)C 可得直线AC 的解析式为1533y x =-+,由()2,4N m m m -++、(5,0)C 可得直线NC 的解析式为()2254455m m m m y x m m----=---,设直线MN 交AC 于点F ,过点B 作BE x ⊥轴交直线NC 于点E ,如图2,当3x =时,()()()222345424555m m m m m m y m m m ------=-=----,()224 3,5m m E m ⎛⎫-- ⎪∴- ⎪-⎝⎭点,()22154743333FN m m m m m ⎛⎫=-++--+=-++ ⎪⎝∴⎭,()2224218255m m m BE m m---+=-+=--,()2211121859225m S BE PC m m m ⎛⎫-+∴=⋅=⋅-=-+ ⎪-⎝⎭,222114763472233C A S FN x x m m m m ⎛⎫=⋅-=-++⨯=-++ ⎪⎝⎭,126S S -=,()()2293476m m m ∴-+--++=,解得:1m =±1m =+((211410N y =-+++=,此时点N 在直线AC的下方,故1m =+1m =(21195S =--+=+,21S =;∴存在1m =126S S -=,且此时15S =+21S =.②解:当旋转后点F 在点C 左侧时,过点B 作BQ x ⊥轴于点Q ,过点M 作GH x ∥轴,作AG GH ⊥于点G ,作FH GH ⊥于点H ,交x 轴于点K ,如图3,直线AB 的解析式为1y x =-+,45AMG ︒∴∠=,将线段MA 绕点M 顺时针旋转90︒得到线段MF ,90,AMF MA MF ︒∴∠==,AMG ∴△和FMH △是全等的两个等腰直角三角形,1AG GM MH FH m ∴====+,(,1)M m m -+,1KH PM m ∴==-,(1)(1)2FK m m ∴=+--=,45FBA AOD BFC ︒∠+∠-∠=,45FBA QBA QBF QBF ︒∠=∠+∠=+∠,4545QBF AOD BFC ︒︒∴+∠+∠-∠=,QBF AOD BFC BFK CFK ∴∠+∠=∠=∠+∠,FK BQ ∥,QBF BFK ∴∠=∠,AOD CFK ∴∠=∠,1tan tan 2AOD CFK ∴∠=∠=,112CK FK ∴==,4OK =,∴点F 的坐标是(4,2),∴直线OF 的解析式是12y x =,解方程:2142x x x -++=,得121144x x +==;当旋转后点F 在点C 右侧时,满足45FBA AOD BFC ∠+∠-∠=︒的点F 不存在;综上,直线OF 与该二.【解析】(1)把点A 的坐标代入抛物线解析式即可求出b ,于是可得抛物线的解析式,再把点B 的坐标代入抛物线的解析式即可求出n .解:把()1,2A -代入抛物线24y x bx =-++,得()2214b =---+,解得:1b =,∴抛物线的解析式是:24y x x =-++,点(3,)B n 在抛物线上,23342n ∴=-++=-,故答案为:1,2-.(2)先利用待定系数法求出直线AB 的解析式,由点(m,0)P ,则点M 、N 的坐标可得,于是MN 的长可用含m 的代数式表示,由3MN =可得关于m 的方程,解方程即可求出m 的值.(3)①易求出平移后直线CD 的解析式,进而可得点C 坐标,然后利用待定系数法分别求出直线AC 和直线NC 的解析式,设直线MN 交AC 于点F ,过点B 作BE x ⊥轴交直线NC 于点E ,如图2,然后即可用含m 的代数式表示出1S 和2S ,由126S S -=可得关于m 的方程,解方程即可求出m ,进一步即可求出结果.②当旋转后点F 在点C 左侧时,过点B 作BQ x ⊥轴于点Q ,过点M 作GH x ∥轴,作AG GH ⊥于点G ,作FH GH ⊥于点H ,交x 轴于点K ,如图3,根据直线AB 的特点和旋转的性质可得AMG △和FMH △是全等的两个等腰直角三角形,进一步即可根据等腰直角三角形的性质和直线上点的坐标特点求得2FK =,由条件45FBA AOD BFC ∠+∠-∠=︒,根据角的和差和平行线的性质可得AOD CFK ∠=∠,然后根据两个角的正切相等即可求出AOD CFK ∠=∠的长,于是可得点F 的坐标,进而可求出直线OF 的解析式,进一步即可求出直线OF 与抛物线交点的横坐标;当旋转后点F 在点C 右侧时,易得满足45FBA AOD BFC ∠+∠-∠=︒的点F 不存在,从而可得答案.【考点】二次函数的图象与性质,二次函数图象上点的坐标特征,一元二次方程的解法,等腰直角三角形的判定和性质,一次函数与二次函数的交点以及三角函数。

2020年江苏省淮安市中考数学试卷及答案

2020年江苏省淮安市中考数学试卷及答案

2020年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−122.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 53.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是( )A .10B .9C .11D .87.(3分)(2020•淮安)如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .27°C .36°D .108°8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=.10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)(2020•淮安)方程3x−1+1=0的解为.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ).18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF (填“是”或“不是”)平行四边形.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB(参考数据:√2≈1.4,√3≈1.7,=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.结果精确到1千米).24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB 于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.27.(14分)(2020•淮安)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.2020年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−12【解答】解:2的相反数为:﹣2.故选:B .2.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 5【解答】解:t 3÷t 2=t .故选:B .3.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°【解答】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C .5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8【解答】解:一组数据9、10、10、11、8的众数是10,故选:A.7.(3分)(2020•淮安)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°【解答】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=12×(180°﹣∠AOB)=36°,故选:C.8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=2014,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为3×106.【解答】解:3000000=3×106,故答案为:3×106.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=6.【解答】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.12.(3分)(2020•淮安)方程3x−1+1=0的解为x=﹣2.【解答】解:方程3x−1+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为8.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=12AB=8,故答案为:8.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为5.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5.即这个菱形的边长为:5.故答案为:5.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为(﹣1,4).【解答】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=1.【解答】解:把A(﹣1,﹣4)代入y=k1x中得,k1=4,∴反比例函数y =k 1x 为y =4x ,∵A (﹣1,﹣4)、B (﹣4,﹣1), ∴AB 的垂直平分线为y =x ,联立方程驵{y =4x y =x,解得{x =−2y =−2,或{x =2y =2,∵AC =BC ,CD ⊥AB , ∴CD 是AB 的垂直平分线,∵CD 与反比例函数y =k1x (x <0)的图象于点D ,∴D (﹣2,﹣2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =k2x (x>0)图象上一点,∴设移动后的点P 的坐标为(m ,m )(m >﹣2),则 (x +2)2+(x +2)2=(3√2)2, ∴x =1, ∴P (1,1),把P (1,1)代入y =k2x (x >0)中,得k 2=1,故答案为:1.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(10分)(2020•淮安)计算: (1)|﹣3|+(π﹣1)0−√4; (2)x+12x÷(1+1x ).【解答】解:(1)|﹣3|+(π﹣1)0−√4 =3+1﹣2 =2; (2)x+12x÷(1+1x )=x+12x ÷x+1x =x+12x ⋅xx+1=12.18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1. …(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 A (填“A ”或“B ”). A .不等式两边都乘(或除以)同一个正数,不等号的方向不变; B .不等式两边都乘(或除以)同一个负数,不等号的方向改变. 【解答】解:(1)去分母,得:4x ﹣2>3x ﹣1, 移项,得:4x ﹣3x >2﹣1, 合并同类项,得:x >1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变; 故答案为A .19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?【解答】解:设中型汽车有x 辆,小型汽车有y 辆, 依题意,得:{x +y =3015x +8y =324,解得:{x =12y =18.答:中型汽车有12辆,小型汽车有18辆.20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO . (1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF 是 (填“是”或“不是”)平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠OAF =∠OCE ,在△AOF 和△COE 中,{∠OAF =∠OCEAO =CO ∠AOF =∠COE ,∴△AOF ≌△COE (ASA )(2)解:四边形AECF 是平行四边形,理由如下: 由(1)得:△AOF ≌△COE , ∴FO =EO , 又∵AO =CO ,∴四边形AECF 是平行四边形; 故答案为:是.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了 60名 学生,扇形统计图中C 选项对应的圆心角为 108度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人? 【解答】解:(1)24÷40%=60(名),360°×1860=108°, 故答案为:60名,108; (2)60×25%=15(人), 补全条形统计图如图所示:(3)1200×360=60(人), 答:该校1200名学生中选择“不了解”的有60人.22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A 、O 、K .搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A 的概率为13;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK ”的概率.【解答】解:(1)共有3种可能出现的结果,其中是A 的只有1种, 因此第1次摸到A 的概率为13,故答案为:13;(2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=1 9.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB =30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).【解答】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4√3千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系. (1)根据图象可知,休息前汽车行驶的速度为 80 千米/小时; (2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时; 故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时), ∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则: {1.5k +b =803.5k +b =240,解得{k =80b =−40, ∴线段DE 所表示的y 与x 之间的函数表达式为:y =80x ﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时), 12:00﹣8:00=4(小时), 4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.(10分)(2020•淮安)如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB 于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB=√OC2−BC2=√3,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=12×1×√3−30⋅π×(√3)2360=√32−π4.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC , ∴CN =BN ,∵∠MNB =∠ACB =90°, ∴MN ∥AC , ∵CN =BN , ∴AM =BM . 故答案为AM =BM .(2)如图②中,∵CA =CB =6, ∴∠A =∠B ,由题意MN 垂直平分线段BC , ∴BM =CM , ∴∠B =∠MCB , ∴∠BCM =∠A , ∵∠B =∠B , ∴△BCM ∽△BAC , ∴BC BA =BM BC ,∴610=BM 6,∴BM =185, ∴AM =AB ﹣BM =10−185=325, ∴AM BM=325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A , ∴∠BCM =∠A , ∵∠B =∠B , ∴△BCM ∽△BAC , ∴BC AB =BM BC =CM AC∴69=BM6,∴BM =4, ∴AM =CM =5, ∴69=5AC,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′,∴△PF A ′∽△MFC ,∴PF FM =PA′CM ,∵CM =5,∴PF FM =PA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32,∴32≤P A ′≤154, ∴310≤PF FM ≤34.27.(14分)(2020•淮安)如图①,二次函数y =﹣x 2+bx +4的图象与直线l 交于A (﹣1,2)、B (3,n )两点.点P 是x 轴上的一个动点,过点P 作x 轴的垂线交直线1于点M ,交该二次函数的图象于点N ,设点P 的横坐标为m .(1)b = 1 ,n = ﹣2 ;(2)若点N 在点M 的上方,且MN =3,求m 的值;(3)将直线AB 向上平移4个单位长度,分别与x 轴、y 轴交于点C 、D (如图②). ①记△NBC 的面积为S 1,△NAC 的面积为S 2,是否存在m ,使得点N 在直线AC 的上方,且满足S 1﹣S 2=6?若存在,求出m 及相应的S 1,S 2的值;若不存在,请说明理由. ②当m >﹣1时,将线段MA 绕点M 顺时针旋转90°得到线段MF ,连接FB 、FC 、OA .若∠FBA +∠AOD ﹣∠BFC =45°,直接写出直线OF 与该二次函数图象交点的横坐标.【解答】解:(1)将点A (﹣1,2)代入二次函数y =﹣x 2+bx +4中,得﹣1﹣b +4=2, ∴b =1,∴二次函数的解析式为y =﹣x 2+x +4,将点B (3,n )代入二次函数y =﹣x 2+x +4中,得n =﹣9+3+4=﹣2, 故答案为:1,﹣2;(2)设直线AB 的解析式为y =kx +a ,由(1)知,点B (3,﹣2), ∵A (﹣1,2),∴{−k +a =23k +a =−2, ∴{k =−1a =1, ∴直线AB 的解析式为y =﹣x +1,由(1)知,二次函数的解析式为y =﹣x 2+x +4,∵点P (m ,0),∴M (m ,﹣m +1),N (m ,﹣m 2+m +4),∵点N 在点M 的上方,且MN =3,∴﹣m 2+m +4﹣(﹣m +1)=3,∴m =0或m =2;(3)①如图1,由(2)知,直线AB 的解析式为y =﹣x +1, ∴直线CD 的解析式为y =﹣x +1+4=﹣x +5,令y =0,则﹣x +5=0,∴x =5,∴C (5,0),∵A (﹣1,2),B (3,﹣2),∴直线AC 的解析式为y =−13x +53,直线BC 的解析式为y =x ﹣5, 过点N 作y 轴的平行线交AC 于K ,交BC 于H ,∵点P (m ,0), ∴N (m ,﹣m 2+m +4),K (m ,−13m +53),H (m ,m ﹣5),∴NK =﹣m 2+m +4+13m −53=−m 2+43m +73,NH =﹣m 2+9,∴S 2=S △NAC =12NK ×(x C ﹣x A )=12(﹣m 2+43m +73)×6=﹣3m 2+4m +7, S 1=S △NBC =12NH ×(x C ﹣x B )=﹣m 2+9,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+√3(由于点N在直线AC上方,所以,舍去)或m=1−√3;∴S2=﹣3m2+4m+7=﹣3(1−√3)2+4(1−√3)+7=2√3−1,S1=﹣m2+9=﹣(1−√3)2+9=2√3+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),设点F (n ,﹣2n +10),∴FS =﹣2n +10+m ﹣1=﹣2n +m +9, 由旋转知,AM =MF ,∠AMF =90°,∴∠MAQ +∠AMQ =90°=∠AMQ +∠FMS , ∴∠MAQ =∠FMS ,∴△AQM ≌△MSF (AAS ),∴FS =MQ ,∴﹣2n +m +9=m +1,∴n =4,∴F (4,2),∴直线OF 的解析式为y =12x ①,∵二次函数的解析式为y =﹣x 2+x +4②,联立①②解得,{x =1+√654y =1+√658或{x =1−√654y =1−√658, ∴直线OF 与该二次函数图象交点的横坐标为1+√654或1−√654.。

2020年江苏省淮安市中考数学试卷及答案

2020年江苏省淮安市中考数学试卷及答案

2020年江苏省淮安市中考数学试卷一、单项选择题:认真审题,仔细想一想,然后选出唯一正确答案。

(本大题共有8小题,每小题3分,共24分.)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−122.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 53.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A .(2,3)B .(﹣3,2)C .(﹣3,﹣2)D .(﹣2,﹣3)6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是( )A .10B .9C .11D .87.(3分)(2020•淮安)如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .27°C .36°D .108° 8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=.10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)(2020•淮安)方程3x−1+1=0的解为.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ).18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF (填“是”或“不是”)平行四边形.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB(参考数据:√2≈1.4,√3≈1.7,=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.结果精确到1千米).24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)(2020•淮安)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB 于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.27.(14分)(2020•淮安)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.2020年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)(2020•淮安)2的相反数是( )A .2B .﹣2C .12D .−12【解答】解:2的相反数为:﹣2.故选:B .2.(3分)(2020•淮安)计算t 3÷t 2的结果是( )A .t 2B .tC .t 3D .t 5【解答】解:t 3÷t 2=t .故选:B .3.(3分)(2020•淮安)下列几何体中,主视图为圆的是( )A .B .C .D .【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B .4.(3分)(2020•淮安)六边形的内角和为( )A .360°B .540°C .720°D .1080°【解答】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C .5.(3分)(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.(3分)(2020•淮安)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8【解答】解:一组数据9、10、10、11、8的众数是10,故选:A.7.(3分)(2020•淮安)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°【解答】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=12×(180°﹣∠AOB)=36°,故选:C.8.(3分)(2020•淮安)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=2014,不为整数,不符合题意;若4x+4=250,即x=2464,不为整数,不符合题意;若4x+4=502,即x=4984,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)(2020•徐州)分解因式:m2﹣4=(m+2)(m﹣2).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).10.(3分)(2020•淮安)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为3×106.【解答】解:3000000=3×106,故答案为:3×106.11.(3分)(2020•淮安)已知一组数据1、3、a、10的平均数为5,则a=6.【解答】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.12.(3分)(2020•淮安)方程3x−1+1=0的解为x=﹣2.【解答】解:方程3x−1+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.13.(3分)(2020•淮安)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为8.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=12AB=8,故答案为:8.14.(3分)(2020•淮安)菱形的两条对角线长分别为6和8,则这个菱形的边长为5.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=12AC=3,OB=12BD=4,∴AB=√OA2+OB2=5.即这个菱形的边长为:5.故答案为:5.15.(3分)(2020•淮安)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为(﹣1,4).【解答】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).16.(3分)(2020•淮安)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=k1x(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=k1x(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3√2个单位长度,到达反比例函数y=k2x(x>0)图象上一点,则k2=1.【解答】解:把A(﹣1,﹣4)代入y=k1x中得,k1=4,∴反比例函数y =k 1x 为y =4x , ∵A (﹣1,﹣4)、B (﹣4,﹣1),∴AB 的垂直平分线为y =x ,联立方程驵{y =4x y =x,解得{x =−2y =−2,或{x =2y =2, ∵AC =BC ,CD ⊥AB ,∴CD 是AB 的垂直平分线,∵CD 与反比例函数y =k1x (x <0)的图象于点D , ∴D (﹣2,﹣2),∵动点P 从点D 出发,沿射线CD 方向运动3√2个单位长度,到达反比例函数y =k2x (x >0)图象上一点,∴设移动后的点P 的坐标为(m ,m )(m >﹣2),则(x +2)2+(x +2)2=(3√2)2,∴x =1,∴P (1,1),把P (1,1)代入y =k2x (x >0)中,得k 2=1, 故答案为:1.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2020•淮安)计算:(1)|﹣3|+(π﹣1)0−√4;(2)x+12x ÷(1+1x ). 【解答】解:(1)|﹣3|+(π﹣1)0−√4=3+1﹣2=2;(2)x+12x ÷(1+1x ) =x+12x ÷x+1x=x+12x ⋅x x+1=12.18.(8分)(2020•淮安)解不等式2x ﹣1>3x−12. 解:去分母,得2(2x ﹣1)>3x ﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是 A (填“A ”或“B ”).A .不等式两边都乘(或除以)同一个正数,不等号的方向不变;B .不等式两边都乘(或除以)同一个负数,不等号的方向改变.【解答】解:(1)去分母,得:4x ﹣2>3x ﹣1,移项,得:4x ﹣3x >2﹣1,合并同类项,得:x >1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A .19.(8分)(2020•淮安)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?【解答】解:设中型汽车有x 辆,小型汽车有y 辆,依题意,得:{x +y =3015x +8y =324, 解得:{x =12y =18. 答:中型汽车有12辆,小型汽车有18辆.20.(8分)(2020•淮安)如图,在▱ABCD 中,点E 、F 分别在BC 、AD 上,AC 与EF 相交于点O ,且AO =CO .(1)求证:△AOF ≌△COE ;(2)连接AE 、CF ,则四边形AECF 是 (填“是”或“不是”)平行四边形.【解答】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠OAF =∠OCE ,在△AOF 和△COE 中,{∠OAF =∠OCEAO =CO ∠AOF =∠COE,∴△AOF ≌△COE (ASA )(2)解:四边形AECF 是平行四边形,理由如下:由(1)得:△AOF ≌△COE ,∴FO =EO ,又∵AO =CO ,∴四边形AECF 是平行四边形;故答案为:是.21.(8分)(2020•淮安)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A 、B 、C 、D ,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了 60名 学生,扇形统计图中C 选项对应的圆心角为 108度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?【解答】解:(1)24÷40%=60(名),360°×1860=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×360=60(人), 答:该校1200名学生中选择“不了解”的有60人.22.(8分)(2020•淮安)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A 、O 、K .搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A 的概率为 13 ;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK ”的概率.【解答】解:(1)共有3种可能出现的结果,其中是A 的只有1种,因此第1次摸到A 的概率为13, 故答案为:13; (2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=1 9.23.(8分)(2020•淮安)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB =30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).【解答】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4√3千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.24.(8分)(2020•淮安)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x 小时后离甲地的路程为y 千米,图中折线OCDE 表示接到通知前y 与x 之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为 80 千米/小时;(2)求线段DE 所表示的y 与x 之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E 的坐标为(3.5,240),设线段DE 所表示的y 与x 之间的函数表达式为y =kx +b ,则:{1.5k +b =803.5k +b =240,解得{k =80b =−40, ∴线段DE 所表示的y 与x 之间的函数表达式为:y =80x ﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时), 12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.(10分)(2020•淮安)如图,AB 是⊙O 的弦,C 是⊙O 外一点,OC ⊥OA ,CO 交AB于点P ,交⊙O 于点D ,且CP =CB .(1)判断直线BC 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB=√OC2−BC2=√3,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=12×1×√3−30⋅π×(√3)2360=√32−π4.26.(12分)(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求AMBM的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求PFMF的取值范围.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC ,∴CN =BN ,∵∠MNB =∠ACB =90°,∴MN ∥AC ,∵CN =BN ,∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6,∴∠A =∠B ,由题意MN 垂直平分线段BC ,∴BM =CM ,∴∠B =∠MCB ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC BA =BM BC , ∴610=BM 6,∴BM =185, ∴AM =AB ﹣BM =10−185=325,∴AM BM =325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC ,∴BC AB=BM BC =CM AC ∴69=BM 6,∴BM =4,∴AM =CM =5,∴69=5AC ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′,∴△PF A ′∽△MFC ,∴PF FM =PA′CM ,∵CM =5,∴PF FM =PA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32,∴32≤P A ′≤154, ∴310≤PF FM ≤34.27.(14分)(2020•淮安)如图①,二次函数y =﹣x 2+bx +4的图象与直线l 交于A (﹣1,2)、B (3,n )两点.点P 是x 轴上的一个动点,过点P 作x 轴的垂线交直线1于点M ,交该二次函数的图象于点N ,设点P 的横坐标为m .(1)b = 1 ,n = ﹣2 ;(2)若点N 在点M 的上方,且MN =3,求m 的值;(3)将直线AB 向上平移4个单位长度,分别与x 轴、y 轴交于点C 、D (如图②). ①记△NBC 的面积为S 1,△NAC 的面积为S 2,是否存在m ,使得点N 在直线AC 的上方,且满足S 1﹣S 2=6?若存在,求出m 及相应的S 1,S 2的值;若不存在,请说明理由. ②当m >﹣1时,将线段MA 绕点M 顺时针旋转90°得到线段MF ,连接FB 、FC 、OA .若∠FBA +∠AOD ﹣∠BFC =45°,直接写出直线OF 与该二次函数图象交点的横坐标.【解答】解:(1)将点A (﹣1,2)代入二次函数y =﹣x 2+bx +4中,得﹣1﹣b +4=2, ∴b =1,∴二次函数的解析式为y =﹣x 2+x +4,将点B (3,n )代入二次函数y =﹣x 2+x +4中,得n =﹣9+3+4=﹣2,故答案为:1,﹣2;(2)设直线AB 的解析式为y =kx +a ,由(1)知,点B (3,﹣2),∵A (﹣1,2),∴{−k +a =23k +a =−2, ∴{k =−1a =1, ∴直线AB 的解析式为y =﹣x +1,由(1)知,二次函数的解析式为y =﹣x 2+x +4,∵点P (m ,0),∴M (m ,﹣m +1),N (m ,﹣m 2+m +4),∵点N 在点M 的上方,且MN =3,∴﹣m 2+m +4﹣(﹣m +1)=3,∴m =0或m =2;(3)①如图1,由(2)知,直线AB 的解析式为y =﹣x +1,∴直线CD 的解析式为y =﹣x +1+4=﹣x +5,令y =0,则﹣x +5=0,∴x =5,∴C (5,0),∵A (﹣1,2),B (3,﹣2),∴直线AC 的解析式为y =−13x +53,直线BC 的解析式为y =x ﹣5,过点N 作y 轴的平行线交AC 于K ,交BC 于H ,∵点P (m ,0),∴N (m ,﹣m 2+m +4),K (m ,−13m +53),H (m ,m ﹣5),∴NK =﹣m 2+m +4+13m −53=−m 2+43m +73,NH =﹣m 2+9,∴S 2=S △NAC =12NK ×(x C ﹣x A )=12(﹣m 2+43m +73)×6=﹣3m 2+4m +7,S 1=S △NBC =12NH ×(x C ﹣x B )=﹣m 2+9,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+√3(由于点N在直线AC上方,所以,舍去)或m=1−√3;∴S2=﹣3m2+4m+7=﹣3(1−√3)2+4(1−√3)+7=2√3−1,S1=﹣m2+9=﹣(1−√3)2+9=2√3+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),设点F (n ,﹣2n +10),∴FS =﹣2n +10+m ﹣1=﹣2n +m +9,由旋转知,AM =MF ,∠AMF =90°,∴∠MAQ +∠AMQ =90°=∠AMQ +∠FMS ,∴∠MAQ =∠FMS ,∴△AQM ≌△MSF (AAS ),∴FS =MQ ,∴﹣2n +m +9=m +1,∴n =4,∴F (4,2),∴直线OF 的解析式为y =12x ①,∵二次函数的解析式为y =﹣x 2+x +4②,联立①②解得,{x =1+√654y =1+√658或{x =1−√654y =1−√658, ∴直线OF 与该二次函数图象交点的横坐标为1+√654或1−√654.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。

2020年江苏省淮安市中考数学试题及参考答案(word解析版)

2020年江苏省淮安市中考数学试题及参考答案(word解析版)

江苏省淮安市2020年初中毕业暨中等学校招生文化统一考试数学试题(全卷满分150分,考试时间120分钟)第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.2的相反数是()A.2 B.﹣2 C.D.﹣2.计算t3÷t2的结果是()A.t2B.t C.t3D.t53.下列几何体中,主视图为圆的是()A.B.C.D.4.六边形的内角和为()A.360°B.540°C.720°D.1080°5.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.一组数据9、10、10、11、8的众数是()A.10 B.9 C.11 D.87.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520第Ⅱ卷(非选择题共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程)9.分解因式:m2﹣4=.10.2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.已知一组数据1、3、a、10的平均数为5,则a=.12.方程+1=0的解为.13.已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y 与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为80千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C 的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.答案与解析第Ⅰ卷(选择题共24分)一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的)1.2的相反数是()A.2 B.﹣2 C.D.﹣【知识考点】相反数.【思路分析】根据相反数的定义求解即可.【解题过程】解:2的相反数为:﹣2.故选:B.【总结归纳】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.计算t3÷t2的结果是()A.t2B.t C.t3D.t5【知识考点】同底数幂的除法.【思路分析】根据同底数幂的除法法则计算即可,同底数幂相除,底数不变,指数相减.【解题过程】解:t3÷t2=t.故选:B.【总结归纳】本题主要考查了同底数幂的除法,熟记幂的运算法则是解答本题的关键.3.下列几何体中,主视图为圆的是()A.B.C.D.【知识考点】简单几何体的三视图.【思路分析】根据各个几何体的主视图的形状进行判断.【解题过程】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.【总结归纳】考查简单几何体的三视图,明确各个几何体的三视图的形状是正确判断的前提.4.六边形的内角和为()A.360°B.540°C.720°D.1080°【知识考点】多边形内角与外角.【思路分析】利用多边形的内角和=(n﹣2)•180°即可解决问题.【解题过程】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C.【总结归纳】本题需利用多边形的内角和公式解决问题.5.在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【知识考点】关于原点对称的点的坐标.【思路分析】直接利用关于原点对称点的性质得出答案.【解题过程】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.【总结归纳】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.6.一组数据9、10、10、11、8的众数是()A.10 B.9 C.11 D.8【知识考点】众数.【思路分析】根据在一组数据中出现次数最多的数叫做这组数据的众数解答即可.【解题过程】解:一组数据9、10、10、11、8的众数是10,故选:A.【总结归纳】本题考查众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数.7.如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°【知识考点】圆心角、弧、弦的关系;圆周角定理.【思路分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.【解题过程】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.【总结归纳】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.8.如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205 B.250 C.502 D.520【知识考点】平方差公式.【思路分析】设较小的奇数为x,较大的为x+2,根据题意列出算式,求出解判断即可.【解题过程】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.【总结归纳】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.第Ⅱ卷(非选择题共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程)9.分解因式:m2﹣4=.【知识考点】因式分解﹣运用公式法.【思路分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解题过程】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【总结归纳】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.10.2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解题过程】解:3000000=3×106,故答案为:3×106.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.已知一组数据1、3、a、10的平均数为5,则a=.【知识考点】算术平均数.【思路分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.【解题过程】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.【总结归纳】本题考查了算术平均数,正确理解算术平均数的意义是解题的关键.12.方程+1=0的解为.【知识考点】解分式方程.【思路分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解题过程】解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.【总结归纳】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.【知识考点】直角三角形斜边上的中线.【思路分析】根据直角三角形斜边上的中线性质得出CD=AB,代入求出即可.【解题过程】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=AB=8,故答案为:8.【总结归纳】本题考查了直角三角形斜边上的中线性质,能熟记直角三角形斜边上的中线性质的内容是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.14.菱形的两条对角线长分别为6和8,则这个菱形的边长为.【知识考点】菱形的性质.【思路分析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA =AC=3,OB=BD=4,然后利用勾股定理求得这个菱形的边长.【解题过程】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=AC=3,OB=BD=4,∴AB==5.即这个菱形的边长为:5.故答案为:5.【总结归纳】此题考查了菱形的性质以及勾股定理.注意菱形的对角线互相平分且垂直.15.二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.【知识考点】二次函数的性质.【思路分析】把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.【解题过程】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).【总结归纳】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标是解题的关键.16.如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.【知识考点】反比例函数图象上点的坐标特征;等腰三角形的性质.【思路分析】用待定系数求得反比例函数y=,再与直线y=x联立方程组求得D点坐标,再题意求得运动后P点的坐标,最后将求得的P点坐标代入y=(x>0)求得结果.【解题过程】解:把A(﹣1,﹣4)代入y=中得,k1=4,∴反比例函数y=为,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵,解得,或,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y=(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则=(3)2,∴m=1,∴P(1,1),把P(1,1)代入y=(x>0)中,得k2=1,故答案为:1.【总结归纳】本题主要考查了反比例函数的图象与性质,等腰三角形的性质,求反比例函数图象与一次函数图象的交点坐标,待定系数法,关键是确定直线CD的解析式.三、解答题(本大题共有11小题,共102分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).【知识考点】实数的运算;分式的混合运算;零指数幂;二次根式的化简求值.【思路分析】(1)根据绝对值、零指数幂、二次根式的化简可以解答本题;(2)根据分式的除法和加法可以解答本题.【解题过程】解:(1)|﹣3|+(π﹣1)0﹣=3+1﹣2=2;(2)÷(1+)===.【总结归纳】本题考查分式的混合运算、零指数幂、绝对值的性质、二次根式的化简,解答本题的关键是明确它们各自的计算方法.18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.【知识考点】解一元一次不等式.【思路分析】(1)根据不等式的基本性质去分母、去括号、移项可得不等式的解集;(2)不等式两边都乘(或除以)同一个正数,不等号的方向不变.【解题过程】解:(1)去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A.【总结归纳】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?【知识考点】8A:一元一次方程的应用;9A:二元一次方程组的应用.【思路分析】设中型汽车有x辆,小型汽车有y辆,根据“停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设中型汽车有x辆,小型汽车有y辆,依题意,得:,解得:.答:中型汽车有12辆,小型汽车有18辆.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.【知识考点】全等三角形的判定与性质;平行四边形的判定与性质.【思路分析】(1)由ASA证明△AOF≌△COE即可;(2)由全等三角形的性质得出FO=EO,再由AO=CO,即可得出结论.【解题过程】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.【总结归纳】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)“B比较了解”的有24人,占调查人数的40%,可求出调查人数,进而求出“C 一般了解”所占的百分比,进而计算其相应的圆心角的度数,(2)求出“A非常了解”的人数,即可补全条形统计图;(3)样本估计总体,样本中“D不了解”的占,因此估计总体1200名学生的是“不了解”的人数.【解题过程】解:(1)24÷40%=60(名),360°×=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×=60(人),答:该校1200名学生中选择“不了解”的有60人.【总结归纳】本题考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的关键.22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.【知识考点】列表法与树状图法.【思路分析】(1)共有3种可能出现的结果,其中是A的只有1种,可求出概率;(2)用树状图表示所有可能出现的结果,进而求出相应的概率.【解题过程】解:(1)共有3种可能出现的结果,其中是A的只有1种,因此第1次摸到A的概率为,故答案为:;(2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=.【总结归纳】本题考查树状图或列表法求随机事件发生的概率,列举出所有等可能出现的结果情况是得出正确答案的关键.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).【知识考点】解直角三角形的应用.【思路分析】过点C作CD⊥AB于点D,在Rt△ACD中,通过解直角三角形可求出AD,CD的长,在Rt△BCD中,由∠BDC=90°,∠CBD=45°可得出BD=CD,再结合AB=AD+BD即可求出A、B两点间的距离.【解题过程】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8(千米),∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4(千米),AD=AC•cos∠CAD=4(千米)≈6.8(千米).在Rt△BCD中,CD=4(千米),∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4(千米),∴AB=AD+BD=6.8+4≈11(千米).答:A、B两点间的距离约为11千米.【总结归纳】本题考查了解直角三角形以及等腰直角三角形,通过解直角三角形以及利用等腰直角三角形的性质,找出AD,BD的长是解题的关键.24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y 与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为80千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【知识考点】一次函数的应用.【思路分析】(1)观察图象即可得出休息前汽车行驶的速度;(2)根据题意求出点E的横坐标,再利用待定系数法解答即可;(3)求出到达乙地所行驶的时间即可解答.【解题过程】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=2(小时),∴点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:,解得,∴线段DE所表示的y与x之间的函数表达式为:y=80x﹣40(1.5≤x≤3.5);(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【知识考点】含30度角的直角三角形;圆周角定理;直线与圆的位置关系;扇形面积的计算.【思路分析】(1)根据等边对等角得∠CPB=∠CBP,根据垂直的定义得∠OBC=90°,即OB ⊥CB,则CB与⊙O相切;(2)根据三角形的内角和定理得到∠APO=60°,推出△PBD是等边三角形,得到∠PCB=∠CBP=60°,求得BC=1,根据勾股定理得到OB==,根据三角形和扇形的面积公式即可得到结论.【解题过程】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB==,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=1×﹣=﹣.【总结归纳】本题考查了直线与圆的位置关系,切线的判定,等边三角形的判定和性质,解直角三角形,扇形面积的计算,正确的作出辅助线是解题的关键.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C 的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.【知识考点】几何变换综合题.【思路分析】(1)利用平行线的方向的定理解决问题即可.(2)利用相似三角形的性质求出BM,AM即可.(3)①证明△BCM∽△BAC,推出==,由此即可解决问题.②证明△PFA′∽△MFC,推出=,因为CM=5,推出=即可解决问题.【解题过程】解:(1)如图①中,∵△ABC折叠,使点B与点C重合,折痕为MN,∴MN垂直平分线段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案为AM=BM.(2)如图②中,∵CA=CB=6,∴∠A=∠B,由题意MN垂直平分线段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴=,∴=,∴BM=,∴AM=AB﹣BM=10﹣=,∴==.(3)①如图③中,由折叠的性质可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴==∴=,∴BM=4,∴AM=CM=5,∴=,∴AC=.②如图③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴=,∵CM=5,∴=,∵点P在线段OB上运动,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.【总结归纳】本题属于几何变换综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.【知识考点】二次函数综合题.【思路分析】(1)将点A坐标代入二次函数解析式中,求出b,进而得出二次函数解析式,再将点B坐标代入二次函数中,即可求出n的值;(2)先表示出点M,N的坐标,进而用MN=3建立方程求解,即可得出结论;(3)①先求出点C坐标,进而求出直线AC的解析式,再求出直线BC的解析式,进而表示出S1,S2,最后用S1﹣S2=6建立方程求出m的值;②先判断出CF∥OA,进而求出直线CF的解析式,再利用三垂线构造出△AQM≌△MSF,得出FS=MQ,进而建立方程求出点F的坐标,即可求出直线OF的解析式,最后联立二次函数解析式,解方程组即可得出结论.【解题过程】解:(1)将点A(﹣1,2)代入二次函数y=﹣x2+bx+4中,得﹣1﹣b+4=2,∴b=1,。

2024年江苏省淮安市初中毕业学业暨中等学校招生文化统一考试数学模拟试题(二)

2024年江苏省淮安市初中毕业学业暨中等学校招生文化统一考试数学模拟试题(二)

2024年江苏省淮安市初中毕业学业暨中等学校招生文化统一考试数学模拟试题(二)学校:___________姓名:___________班级:___________考号:___________一、单选题1.有理数2024-的相反数是( )A .12024B .12024-C .2024D .2024- 2.下列图形中,A B C '''V 与ABC V 关于直线MN 成轴对称的是( )A .B .C .D . 3.黄瓜万千,淮阴领“鲜”.淮阴区丁集镇作为淮安市黄瓜主产地,拥有30多年的种植历史,据了解2023年黄瓜产量有16 0000吨,数据16 0000用科学记数法表示为( )A .21.610⨯B .31.610⨯C .41.610⨯D .51.610⨯ 4.下列运算正确的是( )A .235m m m +=B .()325m m =C .532m m m -=D .235m m m ⋅=5.已知点4,M a (),4,N a (-),2,2P a -(-)在同一个函数图象上,则这个函数图象可能是( )A .B .C .D .6.如图,数轴上点,,,A B C D 分别对应实数a b c d ,,,,下列各式的值最小的是( )A .aB .bC .cD .d7.如图,在ABC V 中,90,30,2,B A BC D ︒︒∠=∠==为AB 的中点.若点E 在边AC 上,且AD DE AB BC=,则AE 的长为( )A .1B .2C .1D .1或28.我国南宋数学家杨辉所著的《田亩比类乘除算法》中有这样一道题:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”意思是:一块矩形田地的面积为864平方步,只知道它的宽比长少12步,问它的长和宽各多少步?设这块田地的宽为x 步,则所列的方程正确的是( )A .()12864x x +-=B .()12864x x ++=C .()12864x x -= D .()12864x x +=二、填空题9.若一个三角形的边长均为整数,且两边长分别为3和5,则第三边的长可以为(写出一个即可).10.“五一”假期我市共接待游客约4370000人次,将4370000用科学记数法表示为.11x 的取值范围是 .12.正五边形的一个外角的大小为度.13.关于x 的方程240x x m -+=有两个相等的实数根,则m 的值是.14.如图,在ABC V 中,若,,120,115DE BC FG AC BDE DFG =∠︒∠=︒∥∥,则C ∠=°.15.如图,在O e 中,直径AB 与弦CD 交于点»»,2E AC BD=.连接AD ,过点B 的切线与AD 的延长线交于点F .若68AFB ∠=︒,则DEB ∠=°.16.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形.若母线长l 为6cm ,扇形的圆心角θ为120︒,则圆锥的底面圆的半径r 为cm .三、解答题17.计算:(1)10120246π-⎛⎫-+- ⎪⎝⎭ (2)2111m m m -⎛⎫+÷ ⎪⎝⎭. 18.(1)解方程组41258x y x y =+⎧⎨-=⎩(2)解不等式组45312135x x x -≤⎧⎪-+⎨<⎪⎩ 19.为了解某地区九年级学生的视力情况,从该地区九年级学生中抽查了部分学生,根据调查结果,绘制了如下两幅不完整的统计图.根据以上信息,解决下列问题:(1)此次调查的样本容量为;(2)扇形统计图中A 对应圆心角的度数为°;(3)请补全条形统计图;(4)若该地区九年级学生共有25000人,请估计其中视力正常的人数.20.甲,乙、丙三人到淮海战役烈士纪念塔园林游览,若每人分别从纪念塔、纪念馆这两个景点中选择一个参观,且选择每个景点的机会相等,则三人选择相同景点的概率为多少?21.为了便于劳动课程的开展,学校打算建一个矩形生态园ABCD (如图),生态园一面靠墙(墙足够长),另外三面用18m 的篱笆围成.生态园的面积能否为240m ?如果能,请求出AB 的长;如果不能,请说明理由.22.如图,正方形纸片ABCD 的边长为4,将它剪去4个全等的直角三角形,得到四边形EFGH .设AE 的长为x ,四边形EFGH 的面积为y .(1)求y 关于x 的函数表达式;(2)当AE 取何值时,四边形EFGH 的面积为10?(3)四边形EFGH 的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.23.徐州电视塔为我市的标志性建筑之一,如图,为了测量其高度,小明在云龙公园的点C 处,用测角仪测得塔顶A 的仰角36AFE ∠=︒,他在平地上沿正对电视塔的方向后退至点D 处,测得塔顶A 的仰角30∠=︒AGE .若测角仪距地面的高度1.6m,70m FC GD CD ===,求电视塔的高度AB (精确到0.1m).(参考数据:sin360.59,cos360.81,tan360.73,sin300.50,cos300.87,tan300.58︒︒≈≈≈=≈≈︒︒︒︒)24.两汉文化看徐州,桐桐在徐州博物馆“天工汉玉”展厅参观时了解到;玉壁,玉环为我国的传统玉器,通常为正中带圆孔的扇圆型器物,据《尔雅·释器》记载:“肉倍好,谓之璧;肉好若一,调之环.”如图1,“肉”指边(阴影部分),“好”指孔,其比例关系见图示,以考古发现看,这两种玉器的“肉”与“好”未必符合该比例关系.(1)若图1中两个大圆的直径相等,则璧与环的“肉”的面积之比为;(2)利用圆规与无刻度的直尺,解决下列问题(保留作图痕迹,不写作法). ①图2为徐州狮子山楚王墓出土的“雷纹玉环”及其主视图,试判断该件玉器的比例关系是否符合“肉好若一”?②图3表示一件圆形玉坯,若将其加工成玉璧,且比例关系符合“肉倍好”,请画出内孔. 25.【阅读理解】如图1,在矩形ABCD 中,若,AB a BC b ==,由勾股定理,得222AC a b =+,同理222BD a b =+,故()22222AC BD a b +=+.【探究发现】如图2,四边形ABCD 为平行四边形,若,AB a BC b ==,则上述结论是否依然成立?请加以判断,并说明理由.【拓展提升】如图3,已知BO 为ABC V 的一条中线,,,AB a BC b AC c ===.求证:222224a b c BO +=-. 【尝试应用】如图4,在矩形ABCD 中,若8,12AB BC ==,点P 在边AD 上,则22PB PC +的最小值为_______.26.如图,在平而直角坐标系中,二次函数2y =+的图象与x 轴分别交于点,O A ,顶点为B .连接,OB AB ,将线段AB 绕点A 按顺时针方向旋转60︒得到线段AC ,连接BC .点,D E 分别在线段,OB BC 上,连接,,,AD DE EA DE 与AB 交于点,60F DEA ∠=︒.(1)求点A ,B 的坐标;(2)随着点E 在线段BC 上运动.①EDA ∠的大小是否发生变化?请说明理由;②线段BF 的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由.。

2020年江苏省淮安市中考数学试题和答案

2020年江苏省淮安市中考数学试题和答案

2020年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)2的相反数是()A.2B.﹣2C.D.﹣2.(3分)计算t3÷t2的结果是()A.t2B.t C.t3D.t53.(3分)下列几何体中,主视图为圆的是()A.B.C.D.4.(3分)六边形的内角和为()A.360°B.540°C.720°D.1080°5.(3分)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.(3分)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.87.(3分)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.(3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)分解因式:m2﹣4=.10.(3分)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)方程+1=0的解为.13.(3分)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y=(x<0)的图象上,AC=BC.过点C 作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC 与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP 交于点F,求的取值范围.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A (﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P 作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.答案一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.参考答案:解:2的相反数为:﹣2.故选:B.2.参考答案:解:t3÷t2=t.故选:B.3.参考答案:解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.4.参考答案:解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C.5.参考答案:解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.6.参考答案:解:一组数据9、10、10、11、8的众数是10,故选:A.7.参考答案:解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.8.参考答案:解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.参考答案:解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).10.参考答案:解:3000000=3×106,故答案为:3×106.11.参考答案:解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.12.参考答案:解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.13.参考答案:解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=AB=8,故答案为:8.14.参考答案:解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=AC=3,OB=BD=4,∴AB==5.即这个菱形的边长为:5.故答案为:5.15.参考答案:解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).16.参考答案:解:把A(﹣1,﹣4)代入y=中得,k1=4,∴反比例函数y=为,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵,解得,或,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y=(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则,∴x=1,∴P(1,1),把P(1,1)代入y=(x>0)中,得k2=1,故答案为:1.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.参考答案:解:(1)|﹣3|+(π﹣1)0﹣=3+1﹣2=2;(2)÷(1+)===.18.参考答案:解:(1)去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A.19.参考答案:解:设中型汽车有x辆,小型汽车有y辆,依题意,得:,解得:.答:中型汽车有12辆,小型汽车有18辆.20.参考答案:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.21.参考答案:解:(1)24÷40%=60(名),360°×=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×=60(人),答:该校1200名学生中选择“不了解”的有60人.22.参考答案:解:(1)共有3种可能出现的结果,其中是A的只有1种,因此第1次摸到A的概率为,故答案为:;(2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=.23.参考答案:解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.24.参考答案:解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:,解得,∴线段DE所表示的y与x之间的函数表达式为:y=80x﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.25.参考答案:解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB==,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=1×﹣=﹣.26.参考答案:解:(1)如图①中,∵△ABC折叠,使点B与点C重合,折痕为MN,∴MN垂直平分线段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案为AM=BM.(2)如图②中,∵CA=CB=6,∴∠A=∠B,由题意MN垂直平分线段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴=,∴=,∴BM=,∴AM=AB﹣BM=10﹣=,∴==.(3)①如图③中,由折叠的性质可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴==∴=,∴BM=4,∴AM=CM=5,∴=,∴AC=.②如图③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴=,∵CM=5,∴=,∵点P在线段OB上运动,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.27.参考答案:解:(1)将点A(﹣1,2)代入二次函数y=﹣x2+bx+4中,得﹣1﹣b+4=2,∴b=1,∴二次函数的解析式为y=﹣x2+x+4,将点B(3,n)代入二次函数y=﹣x2+x+4中,得n=﹣9+3+4=﹣2,故答案为:1,﹣2;(2)设直线AB的解析式为y=kx+a,由(1)知,点B(3,﹣2),∵A(﹣1,2),∴,∴,∴直线AB的解析式为y=﹣x+1,由(1)知,二次函数的解析式为y=﹣x2+x+4,∵点P(m,0),∴M(m,﹣m+1),N(m,﹣m2+m+4),∵点N在点M的上方,且MN=3,∴﹣m2+m+4﹣(﹣m+1)=3,∴m=0或m=2;(3)①如图1,由(2)知,直线AB的解析式为y=﹣x+1,∴直线CD的解析式为y=﹣x+1+4=﹣x+5,令y=0,则﹣x+5=0,∴x=5,∴C(5,0),∵A(﹣1,2),B(3,﹣2),∴直线AC的解析式为y=﹣x+,直线BC的解析式为y=x﹣5,过点N作y轴的平行线交AC于K,交BC于H,∵点P(m,0),∴N(m,﹣m2+m+4),K(m,﹣m+),H(m,m﹣5),∴NK=﹣m2+m+4+m﹣=﹣m2+m+,NH=﹣m2+9,∴S2=S△NAC=NK×(x C﹣x A)=(﹣m2+m+)×6=﹣3m2+4m+7,S1=S△NBC=NH×(x C﹣x B)=﹣m2+9,∵S1﹣S2=6,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+(由于点N在直线AC上方,所以,舍去)或m=1﹣;∴S2=﹣3m2+4m+7=﹣3(1﹣)2+4(1﹣)+7=2﹣1,S1=﹣m2+9=﹣(1﹣)2+9=2+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),∴MQ=m+1,设点F(n,﹣2n+10),∴FS=﹣2n+10+m﹣1=﹣2n+m+9,由旋转知,AM=MF,∠AMF=90°,∴∠MAQ+∠AMQ=90°=∠AMQ+∠FMS,∴∠MAQ=∠FMS,∴△AQM≌△MSF(AAS),∴FS=MQ,∴﹣2n+m+9=m+1,∴n=4,∴F(4,2),∴直线OF的解析式为y=x①,∵二次函数的解析式为y=﹣x2+x+4②,联立①②解得,或,∴直线OF与该二次函数图象交点的横坐标为或.。

2020年江苏省淮安市中考数学试卷(含解析版)

2020年江苏省淮安市中考数学试卷(含解析版)

2020年江苏省淮安市中考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)2的相反数是()A.2B.﹣2C.D.﹣2.(3分)计算t3÷t2的结果是()A.t2B.t C.t3D.t53.(3分)下列几何体中,主视图为圆的是()A.B.C.D.4.(3分)六边形的内角和为()A.360°B.540°C.720°D.1080°5.(3分)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)6.(3分)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.87.(3分)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°8.(3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)分解因式:m2﹣4=.10.(3分)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为.11.(3分)已知一组数据1、3、a、10的平均数为5,则a=.12.(3分)方程+1=0的解为.13.(3分)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为.14.(3分)菱形的两条对角线长分别为6和8,则这个菱形的边长为.15.(3分)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为.16.(3分)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y =(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF(填“是”或“不是”)平行四边形.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了学生,扇形统计图中C选项对应的圆心角为度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O 于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=,n=;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.2020年江苏省淮安市中考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)2的相反数是()A.2B.﹣2C.D.﹣【分析】根据相反数的定义求解即可.【解答】解:2的相反数为:﹣2.故选:B.【点评】本题考查了相反数的知识,属于基础题,掌握相反数的定义是解题的关键.2.(3分)计算t3÷t2的结果是()A.t2B.t C.t3D.t5【分析】根据同底数幂的除法法则计算即可,同底数幂相除,底数不变,指数相减.【解答】解:t3÷t2=t.故选:B.【点评】本题主要考查了同底数幂的除法,熟记幂的运算法则是解答本题的关键.3.(3分)下列几何体中,主视图为圆的是()A.B.C.D.【分析】根据各个几何体的主视图的形状进行判断.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.【点评】考查简单几何体的三视图,明确各个几何体的三视图的形状是正确判断的前提.4.(3分)六边形的内角和为()A.360°B.540°C.720°D.1080°【分析】利用多边形的内角和=(n﹣2)•180°即可解决问题.【解答】解:根据多边形的内角和可得:(6﹣2)×180°=720°.故选:C.【点评】本题需利用多边形的内角和公式解决问题.5.(3分)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)【分析】直接利用关于原点对称点的性质得出答案.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2).故选:C.【点评】此题主要考查了关于原点对称点的性质,正确记忆横纵坐标的符号是解题关键.6.(3分)一组数据9、10、10、11、8的众数是()A.10B.9C.11D.8【分析】根据在一组数据中出现次数最多的数叫做这组数据的众数解答即可.【解答】解:一组数据9、10、10、11、8的众数是10,故选:A.【点评】本题考查众数的概念.在一组数据中出现次数最多的数叫做这组数据的众数.7.(3分)如图,点A、B、C在⊙O上,∠ACB=54°,则∠ABO的度数是()A.54°B.27°C.36°D.108°【分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.【解答】解:∵∠ACB=54°,∴圆心角∠AOB=2∠ACB=108°,∵OB=OA,∴∠ABO=∠BAO=(180°﹣∠AOB)=36°,故选:C.【点评】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.8.(3分)如果一个数等于两个连续奇数的平方差,那么我们称这个数为“幸福数”.下列数中为“幸福数”的是()A.205B.250C.502D.520【分析】设较小的奇数为x,较大的为x+2,根据题意列出方程,求出解判断即可.【解答】解:设较小的奇数为x,较大的为x+2,根据题意得:(x+2)2﹣x2=(x+2﹣x)(x+2+x)=4x+4,若4x+4=205,即x=,不为整数,不符合题意;若4x+4=250,即x=,不为整数,不符合题意;若4x+4=502,即x=,不为整数,不符合题意;若4x+4=520,即x=129,符合题意.故选:D.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接写在答题卡相应位置上)9.(3分)分解因式:m2﹣4=(m+2)(m﹣2).【分析】本题刚好是两个数的平方差,所以利用平方差公式分解则可.平方差公式:a2﹣b2=(a+b)(a﹣b).【解答】解:m2﹣4=(m+2)(m﹣2).故答案为:(m+2)(m﹣2).【点评】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项;符号相反.10.(3分)2020年6月23日,中国北斗全球卫星导航系统提前半年全面完成,其星载原子钟授时精度高达每隔3000000年才误差1秒.数据3000000用科学记数法表示为3×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:3000000=3×106,故答案为:3×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)已知一组数据1、3、a、10的平均数为5,则a=6.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.【解答】解:依题意有(1+3+a+10)÷4=5,解得a=6.故答案为:6.【点评】本题考查了算术平均数,正确理解算术平均数的意义是解题的关键.12.(3分)方程+1=0的解为x=﹣2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程+1=0,去分母得:3+x﹣1=0,解得:x=﹣2,经检验x=﹣2是分式方程的解.故答案为:x=﹣2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(3分)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为8.【分析】根据直角三角形斜边上的中线性质得出CD=AB,代入求出即可.【解答】解:∵在△ACB中,∠ACB=90°,CD是斜边AB上的中线,AB=16,∴CD=AB=8,故答案为:8.【点评】本题考查了直角三角形斜边上的中线性质,能熟记直角三角形斜边上的中线性质的内容是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半.14.(3分)菱形的两条对角线长分别为6和8,则这个菱形的边长为5.【分析】首先根据题意画出图形,由菱形ABCD中,AC=6,BD=8,即可得AC⊥BD,OA=AC=3,OB=BD=4,然后利用勾股定理求得这个菱形的边长.【解答】解:∵菱形ABCD中,AC=6,BD=8,∴AC⊥BD,OA=AC=3,OB=BD=4,∴AB==5.即这个菱形的边长为:5.故答案为:5.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的对角线互相平分且垂直.15.(3分)二次函数y=﹣x2﹣2x+3的图象的顶点坐标为(﹣1,4).【分析】把二次函数解析式转化成顶点式形式,然后写出顶点坐标即可.【解答】解:∵y=﹣x2﹣2x+3=﹣(x2+2x+1﹣1)+3=﹣(x+1)2+4,∴顶点坐标为(﹣1,4).故答案为:(﹣1,4).【点评】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标是解题的关键.16.(3分)如图,等腰△ABC的两个顶点A(﹣1,﹣4)、B(﹣4,﹣1)在反比例函数y =(x<0)的图象上,AC=BC.过点C作边AB的垂线交反比例函数y=(x<0)的图象于点D,动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x>0)图象上一点,则k2=1.【分析】用待定系数求得反比例函数y=,再与直线y=x联立方程组求得D点坐标,再由题意求得运动后P点的坐标,最后将求得的P点坐标代入y=(x>0)求得结果.【解答】解:把A(﹣1,﹣4)代入y=中得,k1=4,∴反比例函数y=为,∵A(﹣1,﹣4)、B(﹣4,﹣1),∴AB的垂直平分线为y=x,联立方程驵,解得,或,∵AC=BC,CD⊥AB,∴CD是AB的垂直平分线,∵CD与反比例函数y=(x<0)的图象于点D,∴D(﹣2,﹣2),∵动点P从点D出发,沿射线CD方向运动3个单位长度,到达反比例函数y=(x >0)图象上一点,∴设移动后的点P的坐标为(m,m)(m>﹣2),则,∴x=1,∴P(1,1),把P(1,1)代入y=(x>0)中,得k2=1,故答案为:1.【点评】本题主要考查了反比例函数的图象与性质,等腰三角形的性质,求反比例函数图象与一次函数图象的交点坐标,待定系数法,关键是确定直线CD的解析式.三、解答题(本大题共有11小题,共102分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)|﹣3|+(π﹣1)0﹣;(2)÷(1+).【分析】(1)根据绝对值、零指数幂可以解答本题;(2)根据分式的除法和加法可以解答本题.【解答】解:(1)|﹣3|+(π﹣1)0﹣=3+1﹣2=2;(2)÷(1+)===.【点评】本题考查分式的混合运算、零指数幂,解答本题的关键是明确它们各自的计算方法.18.(8分)解不等式2x﹣1>.解:去分母,得2(2x﹣1)>3x﹣1.…(1)请完成上述解不等式的余下步骤:(2)解题回顾:本题“去分母”这一步的变形依据是A(填“A”或“B”).A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.【分析】(1)根据不等式的基本性质去分母、去括号、移项可得不等式的解集;(2)不等式两边都乘(或除以)同一个正数,不等号的方向不变.【解答】解:(1)去分母,得:4x﹣2>3x﹣1,移项,得:4x﹣3x>2﹣1,合并同类项,得:x>1,(2)本题“去分母”这一步的变形依据是:不等式两边都乘(或除以)同一个正数,不等号的方向不变;故答案为A.【点评】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.19.(8分)某停车场的收费标准如下:中型汽车的停车费为15元/辆,小型汽车的停车费为8元/辆.现在停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元,求中、小型汽车各有多少辆?【分析】设中型汽车有x辆,小型汽车有y辆,根据“停车场内停有30辆中、小型汽车,这些车共缴纳停车费324元”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设中型汽车有x辆,小型汽车有y辆,依题意,得:,解得:.答:中型汽车有12辆,小型汽车有18辆.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(8分)如图,在▱ABCD中,点E、F分别在BC、AD上,AC与EF相交于点O,且AO=CO.(1)求证:△AOF≌△COE;(2)连接AE、CF,则四边形AECF是(填“是”或“不是”)平行四边形.【分析】(1)由ASA证明△AOF≌△COE即可;(2)由全等三角形的性质得出FO=EO,再由AO=CO,即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA)(2)解:四边形AECF是平行四边形,理由如下:由(1)得:△AOF≌△COE,∴FO=EO,又∵AO=CO,∴四边形AECF是平行四边形;故答案为:是.【点评】本题考查了平行四边形的判定与性质、全等三角形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.21.(8分)为了响应市政府创建文明城市的号召,某校调查学生对市“文明公约十二条”的内容了解情况,随机抽取部分学生进行问卷调查,问卷共设置“非常了解”、“比较了解”、“一般了解”、“不了解”四个选项,分别记为A、B、C、D,根据调查结果绘制了如图尚不完整的统计图.请解答下列问题:(1)本次问卷共随机调查了60名学生,扇形统计图中C选项对应的圆心角为108度;(2)请补全条形统计图;(3)若该校有1200名学生,试估计该校选择“不了解”的学生有多少人?【分析】(1)“B比较了解”的有24人,占调查人数的40%,可求出调查人数,进而求出“C一般了解”所占的百分比,进而计算其相应的圆心角的度数,(2)求出“A非常了解”的人数,即可补全条形统计图;(3)样本估计总体,样本中“D不了解”的占,因此估计总体1200名学生的是“不了解”的人数.【解答】解:(1)24÷40%=60(名),360°×=108°,故答案为:60名,108;(2)60×25%=15(人),补全条形统计图如图所示:(3)1200×=60(人),答:该校1200名学生中选择“不了解”的有60人.【点评】本题考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的关键.22.(8分)一只不透明的袋子中,装有三个大小、质地都相同的乒乓球,球面上分别标有字母A、O、K.搅匀后先从袋中任意摸出一个球,将对应字母记入图中的左边方格内;然后将球放回袋中搅匀,再从袋中任意摸出一个球,将对应字母记入图中的右边方格内.(1)第一次摸到字母A的概率为;(2)用画树状图或列表等方法求两个方格中的字母从左往右恰好组成“OK”的概率.【分析】(1)共有3种可能出现的结果,其中是A的只有1种,可求出概率;(2)用树状图表示所有可能出现的结果,进而求出相应的概率.【解答】解:(1)共有3种可能出现的结果,其中是A的只有1种,因此第1次摸到A的概率为,故答案为:;(2)用树状图表示所有可能出现的结果如下:共有9种可能出现的结果,其中从左到右能构成“OK”的只有1种,∴P(组成OK)=.【点评】本题考查树状图或列表法求随机事件发生的概率,列举出所有等可能出现的结果情况是得出正确答案的关键.23.(8分)如图,三条笔直公路两两相交,交点分别为A、B、C,测得∠CAB=30°,∠ABC=45°,AC=8千米,求A、B两点间的距离.(参考数据:≈1.4,≈1.7,结果精确到1千米).【分析】过点C作CD⊥AB于点D,在Rt△ACD中,通过解直角三角形可求出AD,CD 的长,在Rt△BCD中,由∠BDC=90°,∠CBD=45°可得出BD=CD,再结合AB=AD+BD即可求出A、B两点间的距离.【解答】解:过点C作CD⊥AB于点D,如图所示.在Rt△ACD中,AC=8千米,∠CAD=30°,∠CAD=90°,∴CD=AC•sin∠CAD=4千米,AD=AC•cos∠CAD=4千米≈6.8千米.在Rt△BCD中,CD=4千米,∠BDC=90°,∠CBD=45°,∴∠BCD=45°,∴BD=CD=4千米,∴AB=AD+BD=6.8+4≈11千米.答:A、B两点间的距离约为11千米.【点评】本题考查了解直角三角形以及等腰直角三角形,通过解直角三角形以及利用等腰直角三角形的性质,找出AD,BD的长是解题的关键.24.(8分)甲、乙两地的路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发x小时后离甲地的路程为y千米,图中折线OCDE表示接到通知前y与x之间的函数关系.(1)根据图象可知,休息前汽车行驶的速度为80千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后,汽车仍按原速行驶能否准时到达?请说明理由.【分析】(1)观察图象即可得出休息前汽车行驶的速度;(2)根据题意求出点E的横坐标,再利用待定系数法解答即可;(3)求出到达乙地所行驶的时间即可解答.【解答】解:(1)由图象可知,休息前汽车行驶的速度为80千米/小时;故答案为:80;(2)休息后按原速继续前进行驶的时间为:(240﹣80)÷80=(小时),∴点E的坐标为(3.5,240),设线段DE所表示的y与x之间的函数表达式为y=kx+b,则:,解得,∴线段DE所表示的y与x之间的函数表达式为:y=80x﹣40;(3)接到通知后,汽车仍按原速行驶,则全程所需时间为:290÷80+0.5=4.125(小时),12:00﹣8:00=4(小时),4.125>4,所以接到通知后,汽车仍按原速行驶不能准时到达.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.(10分)如图,AB是⊙O的弦,C是⊙O外一点,OC⊥OA,CO交AB于点P,交⊙O 于点D,且CP=CB.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.【分析】(1)根据等边对等角得∠CPB=∠CBP,根据垂直的定义得∠OBC=90°,即OB⊥CB,则CB与⊙O相切;(2)根据三角形的内角和定理得到∠APO=60°,推出△PBD是等边三角形,得到∠PCB =∠CBP=60°,求得BC=1,根据勾股定理得到OB==,根据三角形和扇形的面积公式即可得到结论.【解答】解:(1)CB与⊙O相切,理由:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)∵∠A=30°,∠AOP=90°,∴∠APO=60°,∴∠BPD=∠APO=60°,∵PC=CB,∴△PBC是等边三角形,∴∠PCB=∠CBP=60°,∴∠OBP=∠POB=30°,∴OP=PB=PC=1,∴BC=1,∴OB==,∴图中阴影部分的面积=S△OBC﹣S扇形OBD=1×﹣=﹣.【点评】本题考查了直线与圆的位置关系,切线的判定,等边三角形的判定和性质,解直角三角形,扇形面积的计算,正确的作出辅助线是解题的关键.26.(12分)[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为AM=BM;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.【分析】(1)利用平行线的方向的定理解决问题即可.(2)利用相似三角形的性质求出BM,AM即可.(3)①证明△BCM∽△BAC,推出==,由此即可解决问题.②证明△PF A′∽△MFC,推出=,因为CM=5,推出=即可解决问题.【解答】解:(1)如图①中,∵△ABC折叠,使点B与点C重合,折痕为MN,∴MN垂直平分线段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案为AM=BM.(2)如图②中,∵CA=CB=6,∴∠A=∠B,由题意MN垂直平分线段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴=,∴=,∴BM=,∴AM=AB﹣BM=10﹣=,∴==.(3)①如图③中,由折叠的性质可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴==∴=,∴BM=4,∴AM=CM=5,∴=,∴AC=.②如图③﹣1中,∵∠A=∠A′=∠MCF,∠PF A′=∠MFC,P A=P A′,∴△PF A′∽△MFC,∴=,∵CM=5,∴=,∵点P在线段OB上运动,OA=OC=,AB′=﹣6=,∴≤P A′≤,∴≤≤.【点评】本题属于几何变换综合题,考查了相似三角形的判定和性质,解直角三角形,等腰三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.27.(14分)如图①,二次函数y=﹣x2+bx+4的图象与直线l交于A(﹣1,2)、B(3,n)两点.点P是x轴上的一个动点,过点P作x轴的垂线交直线1于点M,交该二次函数的图象于点N,设点P的横坐标为m.(1)b=1,n=﹣2;(2)若点N在点M的上方,且MN=3,求m的值;(3)将直线AB向上平移4个单位长度,分别与x轴、y轴交于点C、D(如图②).①记△NBC的面积为S1,△NAC的面积为S2,是否存在m,使得点N在直线AC的上方,且满足S1﹣S2=6?若存在,求出m及相应的S1,S2的值;若不存在,请说明理由.②当m>﹣1时,将线段MA绕点M顺时针旋转90°得到线段MF,连接FB、FC、OA.若∠FBA+∠AOD﹣∠BFC=45°,直接写出直线OF与该二次函数图象交点的横坐标.【分析】(1)将点A坐标代入二次函数解析式中,求出b,进而得出二次函数解析式,再将点B坐标代入二次函数中,即可求出n的值;(2)先表示出点M,N的坐标,进而用MN=3建立方程求解,即可得出结论;(3)①先求出点C坐标,进而求出直线AC的解析式,再求出直线BC的解析式,进而表示出S1,S2,最后用S1﹣S2=6建立方程求出m的值;②先判断出CF∥OA,进而求出直线CF的解析式,再利用三垂线构造出△AQM≌△MSF,得出FS=MQ,进而建立方程求出点F的坐标,即可求出直线OF的解析式,最后联立二次函数解析式,解方程组即可得出结论.【解答】解:(1)将点A(﹣1,2)代入二次函数y=﹣x2+bx+4中,得﹣1﹣b+4=2,∴b=1,∴二次函数的解析式为y=﹣x2+x+4,将点B(3,n)代入二次函数y=﹣x2+x+4中,得n=﹣9+3+4=﹣2,故答案为:1,﹣2;(2)设直线AB的解析式为y=kx+a,由(1)知,点B(3,﹣2),∵A(﹣1,2),∴,∴,∴直线AB的解析式为y=﹣x+1,由(1)知,二次函数的解析式为y=﹣x2+x+4,∵点P(m,0),∴M(m,﹣m+1),N(m,﹣m2+m+4),∵点N在点M的上方,且MN=3,∴﹣m2+m+4﹣(﹣m+1)=3,∴m=0或m=2;(3)①如图1,由(2)知,直线AB的解析式为y=﹣x+1,∴直线CD的解析式为y=﹣x+1+4=﹣x+5,令y=0,则﹣x+5=0,∴x=5,∴C(5,0),∵A(﹣1,2),B(3,﹣2),∴直线AC的解析式为y=﹣x+,直线BC的解析式为y=x﹣5,过点N作y轴的平行线交AC于K,交BC于H,∵点P(m,0),∴N(m,﹣m2+m+4),K(m,﹣m+),H(m,m﹣5),∴NK=﹣m2+m+4+m﹣=﹣m2+m+,NH=﹣m2+9,∴S2=S△NAC=NK×(x C﹣x A)=(﹣m2+m+)×6=﹣3m2+4m+7,S1=S△NBC=NH×(x C﹣x B)=﹣m2+9,∴﹣m2+9﹣(﹣3m2+4m+7)=6,∴m=1+(由于点N在直线AC上方,所以,舍去)或m=1﹣;∴S2=﹣3m2+4m+7=﹣3(1﹣)2+4(1﹣)+7=2﹣1,S1=﹣m2+9=﹣(1﹣)2+9=2+5;②如图2,记直线AB与x轴,y轴的交点为I,L,由(2)知,直线AB的解析式为y=﹣x+1,∴I(1,0),L(0,1),∴OL=OI,∴∠ALD=∠OLI=45°,∴∠AOD+∠OAB=45°,过点B作BG∥OA,∴∠ABG=∠OAB,∴∠AOD+∠ABG=45°,∵∠FBA=∠ABG+∠FBG,∠FBA+∠AOD﹣∠BFC=45°,∴∠ABG+∠FBG+∠AOD﹣∠BFC=45°,∴∠FBG=∠BFC,∴BG∥CF,∴OA∥CF,∵A(﹣1,2),∴直线OA的解析式为y=﹣2x,∵C(5,0),∴直线CF的解析式为y=﹣2x+10,过点A,F分别作过点M平行于x轴的直线的垂线,交于点Q,S,∵∠AQM=∠MSF=90°,∵点M在直线AB上,m>﹣1,∴M(m,﹣m+1),∴A(﹣1,2),设点F(n,﹣2n+10),∴FS=﹣2n+10+m﹣1=﹣2n+m+9,由旋转知,AM=MF,∠AMF=90°,∴∠MAQ+∠AMQ=90°=∠AMQ+∠FMS,∴∠MAQ=∠FMS,∴△AQM≌△MSF(AAS),∴FS=MQ,∴﹣2n+m+9=m+1,∴n=4,∴F(4,2),∴直线OF的解析式为y=x①,∵二次函数的解析式为y=﹣x2+x+4②,联立①②解得,或,∴直线OF与该二次函数图象交点的横坐标为或.【点评】此题是二次函数综合题,主要考查了待定系数法,三角形面积的计算方法,全等三角形的判定和性质,解方程组,构造出全等三角形是解本题的关键.。

2020年淮安市初中毕业暨中等学校招生文化统一考试初中数学

2020年淮安市初中毕业暨中等学校招生文化统一考试初中数学

2020年淮安市初中毕业暨中等学校招生文化统一考试初中数学数学试题一、选择题(本大题共12小题每题3分共36分以下各题的四个选项中,只有一个选项是符 合题意的)1 •运算3-〔-3〕的结果是〔〕D . -62.温家宝总理在2007年的政府工作报告中指出,今年全国财政安排农村义务教育经费2235亿元,将2235亿元用科学计数法表示为〔3.运算,2D . 166.在厶 ABC 中 Z C =90 °,AB=13,BC=12,那么 sinB 的值为〔〕C . 0 A . 223. 5 X109 元B . 22 . 35 X10 10 元C . 2.235 X1011 元D . 2.235 X1012 元4.在函数y=1--- 中自变量X X -2X M2A . Z C =Z ABEC . Z C =Z ABCD . Z A =Z ABE5A .135 B .1212 C .-1313D .—5的取值范畴是〕5.如图,能判定EB // ACB . Z A = Z EBD 7.以下图是由八个相同的小正方体组合而成的几何体,那么其左视图是〔13.分解因式:a 3-a =&如图,在菱形 ABCD 中,AC 、BD 相交于点O , E 为AB 的中点,假设 OE=3,那么菱 形ABCD 的周长为〔轴旋转一周,得到的几何体的底面积一定是B . 16 n cn 21 11. 关于函数y=-丄的图像,以下讲法错误的选项是x............A .通过点(1,-1)B .在第二象限内,y 随x 的增大而增大C .是轴对称图形,且对称轴是y 轴D .是中心对称图形,且对称中心是坐标原点12. 依照最新规那么,乒乓球竞赛采纳七局四胜制 (谁现赢满四局为胜),2007年5月27日晚9 点十分,第19届世乒赛男单竞赛终止了前四局 ,马琳以3:1领先王励勤,现在甲、乙、丙、丁四 位同学给出了如下讲法:甲:马琳最终获胜是必定事件 乙:马琳最终获胜是随机事件 丙:王励勤最终获胜是不可能事件 丁:王励勤最终获胜是随机事件 四位同学讲法正确的选项是: 〔 〕A .甲和丙、B .乙和丁C .乙和丙D .甲和丁二、填空题〔本大题共 6小题,每题3分,共18分,把正确答案直截了当写在题中的横线上〕D . 309. 巳知一直角三角形的两条直角边长分不为4cm 和3cm ,以其中一条直角边所在的直线为A . 9 n cn 2C . 9 n 品或 25 n cm 2D . 9 n cn 2 或 16n cm 210. 第六次火车大提速后,从北京到上海火车的运行速度提高了 25%,运行时刻缩短了 2h ,北京到上海的铁路全长为 1462km ,设火车原先的速度为xkm/h,那么下面所列方程正确的选项是 〔 C . 14621462- 2 x x (1 25%)1462x (1 - 25%) 14622x 進-胞225%x xD .1462 1462 x 25%B .14•把函数y=x2-1的图像沿y轴向上平移一个单位长度,能够得到函数_____________ 的图像15. 点P的坐标为〔1, 1〕,假设将点P绕著原点旋转45°得到点P i,那么P i点的坐标为16. 如图,在O O中,AB,CD相交于点E,/ BDC=45,/ BED=95° ,那么/ C的度数为17 •写出一个两实数根符号相反的一元二次方程:18. 如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,那么第9个图由多少个圆组成:三.解答题〔本大题共10小题,共96分,解承诺写出必要的运算过程,推演步骤或必要的文字讲明〕19. 〔本大题共2小题,每题6分,共12分〕〔1〕运算:1 -3 I - 〔1〕-1+〔n • 3〕°-2cos60 °22〔2〕先化简,再求值:(—-2a^1),其中a=-3。

2020年江苏省淮安市中考数学试卷

2020年江苏省淮安市中考数学试卷

A.t2
B.t
C.t3
3.(3 分)下列几何体中,主视图为圆的是( )
D.t5
A.
B.
C.
D.
4.(3 分)六边形的内角和为( )
A.360°
B.540°
C.720°
D.1080°
5.(3 分)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是( )
A.(2,3)
B.(﹣3,2)
C.(﹣3,﹣2) D.(﹣2,﹣3)
26.(12 分)[初步尝试]
(1)如图①,在三角形纸片 ABC 中,∠ACB=90°,将△ABC 折叠,使点 B 与点 C 重
合,折痕为 MN,则 AM 与 BM 的数量关系为

[思考说理]
(2)如图②,在三角形纸片 ABC 中,AC=BC=6,AB=10,将△ABC 折叠,使点 B 与
点 C 重合,折痕为 MN,求 的值;
第 9页(共 25页)
【解答】解:∵菱形 ABCD 中,AC=6,BD=8, ∴AC⊥BD,OA= AC=3,OB= BD=4,
∴AB=
=5.
即这个菱形的边长为:5. 故答案为:5.
15.(3 分)二次函数 y=﹣x2﹣2x+3 的图象的顶点坐标为 (﹣1,4) . 【解答】解:∵y=﹣x2﹣2x+3 =﹣(x2+2x+1﹣1)+3 =﹣(x+1)2+4, ∴顶点坐标为(﹣1,4). 故答案为:(﹣1,4).
24.(8 分)甲、乙两地的路程为 290 千米,一辆汽车早上 8:00 从甲地出发,匀速向乙地
行驶,途中休息一段时间后.按原速继续前进,当离甲地路程为 240 千米时接到通知,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年淮安市初中毕业暨中等学校招生文化统一考
试初中数学
数 学 试 题
一、选择题(本大题共12小题每题3分共36分以下各题的四个选项中,只有一个选项是符合题意的)
1.运算3-〔-3〕的结果是〔 〕
A .6
B .3
C .0
D .-6
2.温家宝总理在2007年的政府工作报告中指出,今年全国财政安排农村义务教育经费2235亿元,将2235亿元用科学计数法表示为〔 〕 A .223.5×109 元 B .22.35×10 10元 C .2.235×1011元 D .2.235×1012元
3.运算82 结果为〔 〕 A .2
B .4
C .8
D .16
4.在函数y=
2
-x 1
中自变量x 的取值范畴是 〔 〕 A .x ≠0
B .x ≥2
C .x ≤2
D .x ≠2
5.如图,能判定EB ∥AC 的条件是 〔 〕
A .∠ C =∠ABE
B .∠A =∠EBD
C .∠C =∠ABC
D .∠ A =∠ABE
6.在△ABC 中∠C =90°,AB=13,BC=12,那么sinB 的值为〔 〕
A .
13
5
B .
12
5 C .
13
12 D .
5
13 7.以下图是由八个相同的小正方体组合而成的几何体,那么其左视图是〔 〕
8.如图,在菱形ABCD 中,AC 、BD 相交于点O ,E 为AB 的中点,假设OE=3,那么菱形ABCD 的周长为〔 〕
A .12
B .18
C .24
D .30
9.巳知一直角三角形的两条直角边长分不为4cm 和3cm ,以其中一条直角边所在的直线为轴旋转一周,得到的几何体的底面积一定是〔 〕 A .9πcm 2
B .16πcm 2
C .9πcm 2或25πcm 2
D .9πcm 2或16πcm 2
10.第六次火车大提速后,从北京到上海火车的运行速度提高了25%,运行时刻缩短了2h ,北京到上海的铁路全长为1462km ,设火车原先的速度为xkm/h,那么下面所列方程正确的选项是 〔 〕
A .
225%1x 1462
-x 1462=+)(
B .
2x 1462
-25%-1x 1462=)(
C .2x
1462
-25%x 1462=
D .
225%
1462
-x 1462=
11.关于函数y=-
x
1
的图像,以下讲法错误的选项是......〔 〕 A .通过点(1,-1)
B .在第二象限内,y 随x 的增大而增大
C .是轴对称图形,且对称轴是y 轴
D .是中心对称图形,且对称中心是坐标原点
12.依照最新规那么,乒乓球竞赛采纳七局四胜制(谁现赢满四局为胜),2007年5月27日晚9点十分,第19届世乒赛男单竞赛终止了前四局,马琳以3:1领先王励勤,现在甲、乙、丙、丁四位同学给出了如下讲法:
甲:马琳最终获胜是必定事件 乙:马琳最终获胜是随机事件 丙:王励勤最终获胜是不可能事件 丁:王励勤最终获胜是随机事件 四位同学讲法正确的选项是:〔 〕 A .甲和丙、
B .乙和丁
C .乙和丙
D .甲和丁
二、填空题〔本大题共6小题,每题3分,共18分,把正确答案直截了当写在题中的横线上〕
13.分解因式:a 3-a =
14.把函数y=x 2-1的图像沿y
轴向上平移一个单位长度,能够得到函数 的图像
15.点P 的坐标为〔1,1〕,假设将点P 绕著原点旋转45°,得到点P 1,那么P 1点的坐标为 16.如图,在⊙O 中,AB,CD 相交于点E ,∠BDC=45°,∠BED=95°,那么∠C 的度数为
17.写出一个两实数根符号相反的一元二次方程:
18.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,那么第9个图由多少个圆组成:
三.解答题〔本大题共10小题,共96分,解承诺写出必要的运算过程,推演步骤或必要的文字讲明〕
19.〔本大题共2小题,每题6分,共12分〕 〔1〕运算:∣-3∣- 〔
2
1〕-1
+〔π-3〕0-2cos60° 〔2〕先化简,再求值:2
a 1-a 1-a 1-2a -1-a a 2+÷)(,其中a=-3。

20.(本小题6分) 解不等式组⎩⎨
⎧≥+0
6-2x 1-x 53x <,并把它的解集在所给的数轴上表示出来
2l .(本小题8分)
在宣传〝八荣八耻〞系列活动中,小红、小明和小强通过层层选拔,进入班级〝我爱母亲〞的演讲决赛,主持人决定采纳抽签的方法确定出场顺序。

〔1〕用树状图或表格列出所有可能的出场顺序;
〔2〕求小红和小明出场顺序相邻的概率
22.(本小题8分)
在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过点E作EF BE交AD 于F,
〔1〕求证:∠DEF=∠CBE
〔2〕请找出图中与EB相等的线段〔不另添加辅助线和字母〕,并讲明理由。

23.(本小题8分)
在网格中画出符合以下条件的图形
(1)画出所给图形关于直线BE对称的图形,并标出A、D的对应点A1、D1;
(2)画出一个和直线CA、CA1都相切,且切点分不为A、A1的圆,并标出圆心O
〔保留画图痕迹,不写画图步骤〕
24. (本小题10分)
为了响应环保榜样都市的号召,某中学组织1200名学生参加义务收集废旧电池活动,以下图表是随机抽出的50名学生收集电池情形的统计,
电池个数 3 4 5 6 8
人数10 15 12 7 6
依照图表中的数据回答以下咨询题
〔1〕这50名学生平均每人收集废旧电池个;
〔2〕电池个数的中位数是众数是;
〔3〕估量该校本次活动共收集电池个;
〔4〕据资料显示,一粒纽扣电池可使600吨的水受到污染,相当于一个人一生的饮水量,一粒纽扣电池,一节7号电池,一节5号电池,一节1号电池污染的水量比为1:2:3:5,试咨询:通过本次收集活动,可减少受污染水的总量相当于多少人一生的饮水量?25.(本小题10分)
在高度为2.8m的墙上,预备开凿一个矩形窗户,现用9.5m长的铝合金条制成如下图的窗框,咨询:窗户的宽和高各是多少时,其透光面积为3m2〔铝合金的宽度忽略不计〕
26.(本小题10分)
奥林玩具厂分不安排甲乙两个车间加工1000个同一型号的奥运会吉祥物,每名工人每天加工吉祥物的个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工,开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB和折线ACB分不表示两个车间的加工情形。

依据图中提供的信息,完成以下各题:
〔1〕线段OB反映的是车间的加工情形
〔2〕甲车间加工多少天后,两车间加工吉祥物数相同?
〔3〕依照折线段反映的加工情形,请你提出一个咨询题,并给出解答。

27.(本小题10分)
某班研究性学习小组,到校外进行数学探究活动,发觉一个如下图的支架PAB,因此他们利用手中已有的工具进行一系列操作,得到相关数据,从而可求得支架顶端P到地面的距离。

实验工具:①3米长的卷尺②铅垂线〔一端系着圆锥型铁块的细线〕
实验步骤:
第一步量的支架底部AB两点间的距离
第二步在AP上取一点C,挂上铅垂线CD,点D恰好落在直线AB上,量出CD、AD的长
第三步在BP上取一点E,挂上铅垂线EF,点F恰好落在直线AB上,量出EF、BF的长实验数据:
线段AB CD AD BF EF
长度〔米〕 2.5 1 0.8 1.2 0.6
28. (本小题14分)
在平面直角坐标系中,放置一个如下图的直角三角形纸片AOB,OA=2 ∠AOB=30°,D、E 两点同时从原点O动身,D点以每秒3个单位长度的速度沿x轴的正方向运动,E点以每
秒1个单位长度的速度沿y轴的正方向运动,设D、E两点运动的时刻为t秒。

〔1〕点A的坐标为,点B的坐标为。

〔2〕在点D、E运动的过程中,直线DE与直线OA垂直吗?请讲明理由
(3)当t在什么范畴时,直线DE与线段OA有公共点?
〔4〕将直角三角形纸片AOB在直线DE下方的部分沿直线DE向上折叠,设折叠后重叠部分的面积为s,请写出s与t的函数关系式,并求出s的最大值。

相关文档
最新文档