磁场对运动电荷的作用力
9.2 磁场对运动电荷的作用
9.2 磁场对运动电荷的作用概念梳理:一、洛伦兹力1.洛伦兹力:磁场对运动电荷的作用力叫洛伦兹力. 2.洛伦兹力的方向 (1)判定方法左手定则:掌心——磁感线穿过掌心;四指——指向正电荷运动的方向或负电荷运动的反方向; 拇指——指向洛伦兹力的方向.(2)方向特点:F ⊥B ,F ⊥v ,即F 垂直于B 和v 决定的平面(注意:洛伦兹力不做功). 3.洛伦兹力的大小(1)v ∥B 时,洛伦兹力F =0.(θ=0°或180°) (2)v ⊥B 时,洛伦兹力F =q v B .(θ=90°) (3)v =0时,洛伦兹力F =0. 二、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子不受洛伦兹力,在匀强磁场中做匀速直线运动.2.若v ⊥B ,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v 做匀速圆周运动.(1)向心力由洛伦兹力提供:q v B =Rv m 2=2 mR ;(2)轨道半径公式:R =m vqB;(3)周期:T =2πR v =2πmqB ;(周期T 与速度v 、轨道半径R 无关)(4)角速度:ω=2πT =mqB.考点精析:考点一 带电粒子在匀强磁场中的运动一、带电粒子在磁场中做匀速圆周运动的四个特点研究带电粒子在磁场中做匀速圆周运动的关键是圆心、半径、运动时间的确定.在洛伦兹力作用下,做匀速圆周运动的带电粒子,不论沿顺时针方向还是沿逆时针方向,均具有四个重要特点.1.圆心的确定(1)已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图1所示,P 为入射点,M 为出射点,O 为轨道圆心. 图1 图2(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心.如图2所示,P 为入射点,M 为出射点,O 为轨道圆心.2.半径的确定和计算结合几何知识,通过解三角形计算半径,同时注意以下几何特点: (1)粒子速度的偏向角φ等于回旋角α(圆心角α),并等于AB 弦与切线的夹角(弦切角θ)的2倍.如图3所示.即φ=α=2θ.(2)相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°. 图3 3.粒子在磁场中运动时间的确定(1)利用回旋角α(圆心角α)与弦切角的关系,或者利用四边形的内角和等于360°计算圆心角的大小.若α用角度表示,则t =α360°T .若α用弧度表示,则t =α2πT ,可求出粒子在磁场中的运动时间.(2)若粒子在磁场中运动的弧长s 和速率已知,运动时间 t =sv .4.带电粒子在磁场中运动,速度方向的改变可用角度来表示,如图3所示.速度方向改变 的角度φ等于图中的α角.二、带电粒子在有界磁场中运动的几种常见情形 图4图5(1)直线边界(进出磁场具有对称性,如图4所示)(2)平行边界(存在临界条件,如图5所示)(3)圆形边界(沿径向射入必沿径向射出,如图6所示)图6题型一 带电粒子在直线边界磁场中的运动 【例1】质量和电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场, 运行的半圆轨迹如图中虚线所示.下列表述正确的是( A )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运行时间大于N 的运行时间【练习】如图所示,质量为m ,电荷量为+q 的带电粒子,以不同的初速度两次从O 点垂直于磁感线和磁场边界向上射入匀强磁场,在洛伦兹力作用下分别从M 、N 两点射出磁场,测得OM ∶ON =3∶4,则下列说法中错误的是( AD )A .两次带电粒子在磁场中经历的时间之比为3∶4B .两次带电粒子在磁场中运动的路程长度之比为3∶4C .两次带电粒子在磁场中所受的洛伦兹力大小之比为3∶4D .两次带电粒子在磁场中所受的洛伦兹力大小之比为4∶3【练习】如图所示的虚线框为一长方形区域,该区域内有一垂直于纸面向里的匀强磁场,一 束电子以不同的速率从O 点垂直于磁场方向、沿图中方向射入磁场后,分别从a 、b 、c 、d 四点射出磁场,比较它们在磁场中的运动时间t a 、t b 、t c 、t d ,其大小关系是( D ) A .ta <tb <tc <td B .t a =t b =t c =t d C .t a =t b >t d >t cD .t a =t b >t c >t d【练习】如图所示,在一矩形区域内,不加磁场时,不计重力的带电粒子以某一初速度垂直 左边界射入,穿过此区域的时间为t .若加上磁感应强度为B 、垂直纸面向外的匀强磁场,带 电粒子仍以原来的初速度入射,粒子飞出磁场时偏离原方向60°,利用以上数据可求出下列 物理量中的( AB )A .带电粒子的比荷B .带电粒子在磁场中运动的周期C .带电粒子的初速度D .带电粒子在磁场中运动的半径题型二 带电粒子在圆形边界磁场中的运动【例1】如图所示,半径为r 的圆形空间内,存在着垂直于纸面向里的匀强磁场,一个带电粒子(不计重力)从A 点以速度v 0垂直于磁场方向射入磁场中,并从B 点射出,若∠AOB =120°,则该带电粒子在磁场中运动的时间为( D )A.2πr 3v 0B.23πr 3v 0C.πr 3v 0D.3πr 3v 0【练习】如图所示,一半径为R 的圆形区域内有垂直于纸面向里的匀强磁场,一质量为m , 电荷量为q 的正电荷(重力忽略不计)以速度v 沿正对着圆心O 的方向射入磁场,从磁场中射 出时速度方向改变了θ角.磁场的磁感应强度大小为( B )A.m v qR tan θ2B.m v qR cotθ2C.m v qR sin θ2D.m v qR cosθ2【练习】如图所示,在某空间实验室中,有两个靠在一起的等大的圆柱形区域,分别存在着等大反向的匀强磁场,磁感应强度B =0.10 T ,磁场区域半径r =23 3m ,左侧区圆心为O 1,磁场向里,右侧区圆心为O 2,磁场向外,两区域切点为C .今有质量m =3.2×10-26kg 、带电荷量q =1.6×10-19C 的某种离子,从左侧区边缘的A 点以速度v =1×106 m/s 正对O 1的方向垂直射入磁场,它将穿越C 点后再从右侧区穿出.求:(1)该离子通过两磁场区域所用的时间;(2)离子离开右侧区域的出射点偏离最初入射方向的侧移距离多大?(侧移距离指在垂直初速度方向上移动的距离)【练习】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( B ) A.12ΔtB .2ΔtC.13ΔtD .3Δt考点二 洛伦兹力和电场力的比较力内容对应项目洛伦兹力电场力性质 磁场对在其中运动的电荷的作用力 电场对放入其中电荷的作用力 产生条件 v ≠0且v 不与B 平行电场中的电荷一定受到电场力作用 大小 F =q v B (v ⊥B ) F =qE力方向与场 方向的关系 一定是F ⊥B ,F ⊥v ,与电荷电性无关 正电荷受力与电场方向相同,负电荷受力与电场方向相反 做功情况 任何情况下都不做功 可能做正功、负功,也可能不做功力为零时 场的情况 F 为零,B 不一定为零 F 为零,E 一定为零 作用效果只改变电荷运动的速度方向,不改变速度大小既可以改变电荷运动的速度大小,也可以改变电荷运动的方向【注意】①洛伦兹力对电荷不做功;安培力对通电导线可做正功,可做负功,也可不做功.②只有运动电荷才会受到洛伦兹力,静止电荷在磁场中所受洛伦兹力一定为零.【例1】带电粒子以初速度v 0从a 点进入匀强磁场,如图所示.运动中经过b 点,Oa =Ob , 若撤去磁场加一个与y 轴平行的匀强电场,仍以v 0从a 点进入电场,粒子仍能通过b 点, 那么电场强度E 与磁感应强度B 之比为( ) A .v 0 B .1C .2v 0D .v 02【练习】在如图所示宽度范围内,用场强为E 的匀强电场可使初速度是v 0的某种正粒子偏 转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的匀强磁场(图中未画出),使该粒 子穿过该区域,并使偏转角也为θ(不计粒子的重力),问: (1)匀强磁场的磁感应强度是多大? (2)粒子穿过电场和磁场的时间之比是多大?课后练习一.单项选择题1.电子在匀强磁场中做匀速圆周运动,下列说法正确的是(D)A.速率越大,周期越大B.速率越小,周期越大C.速度方向与磁场方向平行D.速度方向与磁场方向垂直2.质子(p)和α粒子以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和Rα,周期分别为T p和Tα.则下列选项正确的是(A)A.R p∶Rα=1∶2T p∶Tα=1∶2 B.R p∶Rα=1∶1T p∶Tα=1∶1C.R p∶Rα=1∶1T p∶Tα=1∶2 D.R p∶Rα=1∶2T p∶Tα=1∶13.如图所示是某离子速度选择器的原理示意图,在一个半径为R=10 cm的圆柱形筒内有B=1×10-4T的匀强磁场,方向平行于圆筒的轴线,在圆柱形筒的某直径的两端开有小孔,作为入射孔和出射孔.离子束以不同角度入射,最后有不同速度的离子束射出.现有一离子源发射比荷为2×1011 C/kg的正离子,且离子束中速度分布连续.当角θ=45°时,出射离子速度v的大小是(D)A.2×106 m/s B.2×108 m/sC.22×108 m/s D.22×106 m/s4.如图所示为四个带电粒子垂直进入磁场后的径迹,磁场方向垂直纸面向里,四个粒子质量相等,所带电荷量也相等.其中动能最大的负粒子的径迹是(D)A.Oa B.Ob C.Oc D.Od5.如图所示,在x>0、y>0的空间中有恒定的匀强磁场,磁感应强度的方向垂直于xOy平面向里,大小为B.现有一质量为m、电荷量为q的带电粒子,在x轴上到原点的距离为x0的P点,以平行于y轴的初速度射入此磁场,在磁场作用下沿垂直于y轴的方向射出此磁场.不计重力的影响.由这些条件可知(D)A.不能确定粒子通过y轴时的位置B.不能确定粒子速度的大小C.不能确定粒子在磁场中运动所经历的时间D.以上三个判断都不对6.一束质子以不同的速率沿如图所示方向飞入横截面是一个正方形的、方向垂直纸面向里的匀强磁场中,则下列说法中正确的是(C)A .在磁场中运动时间越长的质子,其轨迹线一定越长B .在磁场中运动时间相同的质子,其轨迹线一定重合C .在磁场中运动时间越长的质子,其轨迹所对圆心角一定越大D .速率不同的质子,在磁场中运动时间一定不同二.双项选择题1.如图所示,在两个不同的匀强磁场中,磁感强度关系为B 1=2B 2,当不计重力的带电粒子从B 1磁场区域运动到B 2磁场区域时(在运动过程中粒子的速度始终与磁场垂直),则粒子的( BC ) A .速率将加倍 B .轨道半径将加倍 C .周期将加倍D .做圆击运动的角速度将加倍2.带电粒子进入云室会使云室中的气体电离,从而显示其运动轨迹,下图是在有匀强磁场的云室中观察到的粒子的轨迹,a 和b 是轨迹上的两点,匀强磁场B 垂直纸面向里.该粒子在运动时,其质量和电荷量不变,而动能逐渐减少.下列说法正确的是( AC ) A .粒子先经过a 点,再经过b 点 B .粒子先经过b 点,再经过a 点 C .粒子带负电 D .粒子带正电3.在M 、N 两条长直导线所在的平面内,一带电粒子的运动轨迹示意图如图所示.已知两条导线M 、N 只有一条导线中通有恒定电流,另一条导线中无电流,关于电流、电流方向和粒子带电情况及运动的方向,说法正确的是( BC )A .M 中通有自下而上的恒定电流,带负电的粒子从a 点向b 点运动B .M 中通有自上而下的恒定电流,带正电的粒子从b 点向a 点运动C .N 中通有自下而上的恒定电流,带正电的粒子从b 点向a 点运动D .N 中通有自上而下的恒定电流,带负电的粒子从a 点向b 点运动三.计算题1、如图所示,一束电子(电量为e)以速度v垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为30°. 求 : (1) 电子的质量m =? (2) 电子在磁场中的运动时间t =?dBe θv2、 如图所示,在半径为R 的圆的范围内,有匀强磁场,方向垂直圆所在平面向里。
磁场对运动电荷的作用力
V⊥B) ( V⊥B) ( V∥B) V∥B)
(3)当V与B成一角度θ时 成一角度θ
=qVBsinθ F洛=qVBsinθ
注意: 注意: (1)洛伦兹力方向与带电粒子运动方 垂直,所以只改变粒子速度的方向 改变粒子速度的方向, 向垂直,所以只改变粒子速度的方向, 不改变粒子速度的 粒子速度的大小 不改变粒子速度的大小 (2)由于洛伦兹力方向始终与带电粒 子运动方向垂直,所以洛伦兹力对运 子运动方向垂直,所以洛伦兹力对运 动电荷不做功
四、电视显像管的工作原理
1、要是电子打在A点,偏转磁场 应该沿什么方向? 应该沿什么方向? 垂直纸面向外 2、要是电子打在B点,偏转磁场 应该沿什么方向? 应该沿什么方向? 垂直纸面向里 3、要是电子打从A点向B点逐渐移动,偏转磁场应 点逐渐移动, 该怎样变化? 该怎样变化? 先垂直纸面向外并逐渐减小, 先垂直纸面向外并逐渐减小, 然后垂直纸面向里并逐渐增大。 然后垂直纸面向里并逐渐增大。
3.5
磁场对运动电荷 的作用力
一、洛伦兹力(f) 洛伦兹力( )
定义: 1、定义: 运动电荷在磁场中受到的作用力 叫做洛伦兹力 洛伦兹力。 叫做洛伦兹力。 注意:安培力是洛伦兹力的宏观表现。 注意:安培力是洛伦兹力的宏观表现。 宏观表现
二、洛伦兹力的方向
左手定则:伸开左手, 左手定则:伸开左手,使拇指与其余四 个手指垂直,并且都在一个平面内; 个手指垂直,并且都在一个平面内;让 磁感线从掌心穿入,并使四指指向正电 磁感线从掌心穿入,并使四指指向正电 运动的方向, 荷运动的方向,这时拇指所指的方向就 是运动的正电荷在磁场中所受洛伦兹力 的方向。 的方向。
注意(1)四指指向与正电荷运动方向相同,与负电 注意( )四指指向与正电荷运动方向相同, 荷运动方向相反。 荷运动方向相反。
14.1 磁场对运动电荷的作用力 洛仑兹力
3. 形成机制
以载流子为正电荷为例说明, 以载流子为正电荷为例说明 受力分析: 受力分析 洛伦兹力
v。 设载流子速度为
υ
f = qυB
v v v fL = q × B v
(方向向上 方向向上) 方向向上 VH fL Fe
v B
B
洛仑兹力使载流子横向漂移, 洛仑兹力使载流子横向漂移 出现电荷积累。 出现电荷积累。 上端积累了正电荷, 上端积累了正电荷, 下端积累了负电荷。 下端积累了负电荷。 v v 横向电场力: fe = qE 横向电场力: 上下两端形成电势差 VH 。
14
第14章 磁力
绚丽多彩的极光
在地磁两极附近, 在地磁两极附近,由于磁 感线与地面近似垂直, 感线与地面近似垂直,外层空 间入射的带电粒子可直接射入 高空大气层内。 高空大气层内。它们和空气分 子的碰撞产生的辐射就形成 了极光。 了极光。
15 第14章 磁力
3)磁流体船 )
进水
发动机
出水
B
电流
第14章 磁力
讨论
1)霍尔效应的应用 )
IB 由式 V H = υ Bb = nqd
区分半导体材料类型
可测载流子的正负和浓度; 可测载流子的正负和浓度; 可测磁感强度 B 。
研究半导体材料 性质( 性质(浓度随杂 温度等变化) 质、温度等变化)
v
—— 霍尔系数的正负与 载流子电荷性质有关
2)量子霍尔效应 ) 1980年 德国物理学家克里青发现:霍尔电阻与磁场成非 年 德国物理学家克里青发现: 线性关系,这一效应叫量子霍尔效应。 线性关系,这一效应叫量子霍尔效应。 在极低温、 在极低温、强磁场下
h RK = 2 = 25812.80Ω e
磁场对运动电荷的作用
方法:作已知半径的圆,使其与两速度 方向线相切,圆心到两切点的距离即是 半径.
(2)确定轨迹所对应的圆心角,求运动时间.
先利用圆心角与弦切角的关系,或者是四边 形内角和等于3600(或2π)计算出圆心角θ 的大小,再由公式t=θT/3600(或θT/2π) 可求出运动时间
B、已知轨迹上的两点及其中一点 的速度方向
方法:过已知速度方向的点作速度 方向的垂线,得到一个半径方向; 作两已知点连线的中垂线,得到另 一半径方向,两条方向线的交点即 为圆心.
C、已知轨迹上的一点及其速度方向 和另外一条速度方向线
方法:过已知点作其速度的垂线,得到 一半径方向;作两速度方向线所成角的 平分线,一半径所在的直线,两者交点 即是圆心.
以垂直纸面向里的匀强磁场,粒子仍以
V0入射,恰从C关于中线的对称点D射出, 如图所示,则粒子从D点射出的速度为多 少?
·D
V0
W1=W2。VD= 2V02 - V2
·C
【例2】如图所示,竖直两平行板P、Q,长为L, 两板间电压为U,垂直纸面的匀强磁场的磁感 应强度为B,今有带电量为Q,质量为m的带正电 的油滴,从某高度处由静止落下,从两板正中 央进入两板之间,刚进入时油滴受到的磁场力 和电场力相等,此后油滴恰好从P板的下端点 处离开两板正对的区域,求(1)油滴原来静止 下落的位置离板上端点的高度h.(2)油滴离开 板间时的速度大小.
h=U2/2gB2d2
2g h L qU / m 2g U 2 / 2gB2d 2 L qU / m
【例3】在两块平行金属板A、B中,B板的正中 央有一α粒子源,可向各个方向射出速率不同 的α粒子,如图所示.若在A、B板中加上UAB= U0的电压后,A板就没有α粒子射到,U0是α粒 子不能到达A板的最小电压.若撤去A、B间的 电压,为了使α粒子不射到A板,而在A、B之间 加上匀强磁场,则匀强磁场的磁感强度B必须 符合什么条件(已知α粒子的荷质比 m/q=2.l×10-8kg/C, A、B间的距离d=10cm, 电压U0=4.2×104V)?
高考物理复习:磁场对运动电荷的作用力
3.洛伦兹力和静电力的区别
比较项目
产生条件
洛伦兹力
v≠0 且 v 不与 B 平行
静电力
电荷处在电场中
F=qE
大小
F=qvB(v⊥B)
力方向与场
方向的关系
一定是 F⊥B,F⊥v,与电 正电荷受力与电场方向相同,负电
荷电性无关
荷受力与电场方向相反
做功情况
任何情况下都不做功
可能做正功、负功,也可能不做功
角均为 60°,所以质子运行半径
2
Bqv=m ,即
r=(n=1,2,3,…),由洛伦兹力提供向心力得
v= =Bk·
(n=1,2,3,…),选项
B、D 正确。
方法归纳巧解带电粒子在磁场中运动的多解问题
3
应强度变化后速度的偏向角为 β,根据几何关系有 tan
用时
90°
2π
t=360° ·
(√3)
=
π
,C
2√3
错误,D 正确。
2
=
,则得
'
β=90°,则
规律总结有关带电粒子在有界磁场中做匀速圆周运动问题的解题“三步法”
训练突破
3.在以坐标原点为中心、边长为l的正方形EFGH区域内,存在磁感应强
(2)平行边界(存在临界条件,如图所示)。
(3)圆形边界(沿径向射入必沿径向射出,如图所示)。
【典例1】 (多选)如图所示,在Oxy平面的第一象限内存在方向垂直纸面
向里、磁感应强度大小为B的匀强磁场。一带电粒子从y轴上的M点射入
磁场,速度方向与y轴正方向的夹角θ=45°。粒子经过磁场偏转后在N点(图
里的匀强磁场,B处可认为处在磁场中,一带电小球从A点由静止释放后能
1.2 磁场对运动电荷的作用力
-q v
F
负电荷受力方向与正电荷受力 方向相反
例题1:试判断下图中的带电粒子刚进入磁场时所 受的洛伦兹力的方向
F
B
B
v
v
F垂直于纸面向外
B v
B v
F 甲
总结:
乙
丙
丁
F垂直于纸面向外
1、以相同速度进入同一磁场的
正、负电荷受到的洛伦兹力方向相反
2、洛伦兹力的方向垂直于 v 和 B 组成的平面
F洛
B v
•【安培力与洛伦兹力的关系】
导线中电流的方向与磁场方向垂直时,安培力的大小为 F=ILB。这种情况下,导线中的电荷定向运动的方向也 与磁场方向垂直。既然安培力是洛伦兹力的宏观表现, 那么我们是否可以由安培力的表达式推导出洛伦兹力的 表达式?
设有一段长为L,横截面积为S的直导线,单位体积内的 自由电荷数为n,每个自由电荷的电荷量为q,自由电荷 定向移动的速率为 v。这段通电导线垂直磁场方向放入 磁感应强度为B的匀强磁场中,求
分子碰撞并激发,从而释放能量,同时产 生光芒,形成围绕磁场的大圆圈,它是一 种绚丽多彩的发光现象。
阴极射线管——观察电子束运动轨迹的装置
现象:磁场方向改变时,电子束的偏转也发生改变。 结论:洛伦兹力的方向与磁场方向有关
左手定则:
• 伸开左手,使拇指与其 余四个手指垂直,并且 都与手掌在同一个平面 内;让磁感线从掌心垂 直进入,并使四指指向 正电荷的运动方向,这 时拇指所指的方向就是 运动的正电荷在磁场中 所受洛伦兹力的方向。
从图1.2-7中可以看出,没有磁场时电子束 打在荧光屏正中的O点,为使电子束偏转, 由安装在管颈的磁偏转线圈产生偏转磁场。 1.要使电子束在水平方向偏离中心,打在 荧光屏上的A点,偏转磁场应该沿什么方向? 2.要使电子束打在B点,磁场应该沿什么方 向? 3.要使电子束打在荧光屏上的位置由B点逐 渐向A点移动,偏转磁场应该怎样变化?
磁场对运动电荷的作用
F
× × ×
× ×
×
× ×
× ×
+
× ×v × ×
× × v
× × ×
×
-
× ×
×
B
×
× ×
× ×B ×
二:洛伦兹力的应用
洛伦兹力的方向: 电性;相对速度。 例题:用绝缘细线悬挂一个质量为m,带电荷量为+q的小球, 让它处于图示的磁感应强度为B的匀强磁场中。由于磁场的运 动,小球静止在图中位臵,这时悬绳与竖直方向的夹角为, 并被拉紧,则磁场的运动速度和方向是( ) A、v=mg/Bq,水平向左 B、v=mgtan/Bq,竖直向下 C、v=mgtan/Bq,竖直向上 +q D、v=mg/Bq,水平向右
磁场对运动电荷的作用
一:洛伦兹力
1、定义:磁场对运动电荷的作用力叫洛轮兹力。 2、大小: ⑴当vB时,F洛=qvB
B
-q
v
一:洛伦兹力
1、定义:磁场对运动电荷的作用力叫洛轮兹力。 2、大小: ⑴当vB时,F洛=qvB ⑵当v B时,F洛=0
B -q v
一:洛伦兹力
1、定义:磁场对运动电荷的作用力叫洛轮兹力。 2、大小: ⑴当vB时,F洛=qvB ⑵当v B时,F洛=0 ⑶当v与B夹角时,F洛=qvBsin
例题:一垂直纸面、磁感应强度为B的匀强磁场(如图)。一 不计重力的粒子,从坐标原点 y o处以速度v进入磁场,且速度 方向与x轴正方向夹角1200,粒 B v 子穿越y轴正半轴后在磁场中到 x x轴的最大距离a,则该粒子 0 的比荷q/m多少?电荷的正负?
过已知点,大致画出粒子运动的圆周轨迹. 画轨迹: 找圆心: ①两半径的交点;②半径与弦中垂线的交点. ①公式:R=mv/qB ②结合几何知识计算. 定半径: 求时间: ①公式:t=T/3600,或t=T/2. ②t=s/v. 偏转角等于圆心角,等于对应弦切角的2倍,即==2. 两对应的弦切角相等. 粒子从同一边界进出磁场具有对称性.
磁场对运动电荷的作用
例.一半径为R的半圆 形光滑绝缘滑轨置于 垂直向里的匀强磁场 mgR 1 m 2 V B中.一带电量+q, 2 质量m的小球在A点无 初速释放,沿滑轨运 2 m 动.在运动过程中, N mg f V R 小球在最低点时对滑 轨的压力为:(设整 f Bq 个运动过程小球不离 开轨道)
C.洛伦兹力既不能改变带电子粒子的动 能,也不能改变带电粒子的运动方向 D.洛伦兹力对带电粒子不做动
例3、光滑斜面,倾角为θ,匀强磁场的 磁感应强度为B,一质量为M,带电量q的小球在斜面上自静止释放,求A球在 斜面上运动的时间和最大速度(设斜面 足够长)
◆当一带正电q的粒子以速度v沿螺线管中轴 线进入该通电螺线管,若不计重力,则 [ C D ] A.带电粒子速度大小改变; B.带电粒子速度方向改变; C.带电粒子速度大小不变; D.带电粒子速度方向不变。
●洛仑兹力F一定和B、V决定的平面垂直。
课堂练习
1、下列各图中带电粒子刚刚进入磁场,
试判断这时粒子所受洛伦兹力的方向。
× × × × × × V × × ×
F
+
+
F
V
-
V
+
V
不受洛伦兹力
ห้องสมุดไป่ตู้
垂直纸面向里
(二)洛伦兹力的大小
有一段长度为L的通电导线垂直于磁场方向放入 磁感应强度为B的磁场中,横截面积为S,单位体 积里含有的自由电荷数为n,每个自由电荷的电 荷量为q,定向移动的平均速率为v。
思考与讨论
带电粒子在磁场中运动时,洛伦 兹力对带电粒子是否做功?并说 明理由。
(1)洛仑兹力F一定和B、V决定的平面垂直。 (2)洛仑兹力只改变速度的方向而不改变其大小。 (3)洛伦兹力永远不做功。
磁场对运动电荷的作用
磁场对运动电荷的作用一、 考点聚焦1.磁场对运动电荷的作用,洛伦兹力。
带电粒子在匀强磁场中的运动 Ⅱ2.质谱仪.回旋加速器 Ⅰ二、 知识扫描1.磁场对运动电荷的作用力叫做洛伦兹力。
当v ⊥B qvB f =;当v ∥B 时,f =0。
2.洛伦兹力的方向:用左手定则判定。
注意:四指代表电流方向,不是代表电荷的运动方向。
3.由于洛伦兹力f 始终与速度v 垂直,因此f 只改变速度方向而不改变速度大小。
当运动电荷垂直磁场方向进入磁场时仅受洛伦兹力作用,因此一定做匀速圆周运动。
4.带电粒子在匀强磁场中做匀速圆周运动有一个动力学方程:R v m qvB 2=,两个基本公式(1)轨道半径公式:qB mv R =,(2)周期公式:qB m T π2=。
三、好题精析例1 在如图11.3-1所示的三维空间中,存在方向未知的匀强磁场。
一电子从坐标原点出发,沿x 轴正方向运动时方向不变;沿y轴正方向运动时,受到z 轴负方向的洛伦兹力作用。
试确定当电子从O 点沿z 轴正方向出发时的轨道平面及绕行方向。
解析 运动的电荷在匀强磁场中方向不变有两种可能:一是电荷沿磁场方向运动不受洛伦兹力;二是电荷受洛伦兹力与其它力的合力为零。
本题电子沿x 轴正方向运动时方向不变,表明沿磁场方向运动,即磁场方向与yOz 平面垂直,而电子沿y 轴正方向运动时,受到z 轴负方向的洛伦兹力作用,由左手定则可知,磁场指向纸内。
当电子从O 点沿z 轴正方向出发时,轨道平面一定在yOz 平面内,沿顺时针方向做匀速圆周运动,且圆心在y 轴正方向某一点。
如图11.3-2所示。
点评 本题考查对洛伦兹力方向的判定和分析带电粒子在磁场中运动轨迹。
物理习题中所给条件有的是直接给出的,也有隐含在题中,需要根据所学知识进行挖掘。
本题中匀强磁场的方向就是通过两步分析来确定的。
图11.3-1图11.3-2例2 电视机的显像管中,电子束的偏转是用磁偏转技术实现的。
电子束经过电压为U 的加速电场后,进入一圆形匀强磁场区,如图11.3-3所示。
磁场对运动电荷的作用力
湖南长郡卫星远程学校
制作 08
2009年下学期
[课堂练习]
来自宇宙的质子流,以与地球表面垂直 的方向射向赤道上空的某一点,则这些质子
在进入地球周围的空间时,将B( )
A. 竖直向下沿直线射向地面 B. 相对于预定地面向东偏转 C. 相对于预定点稍向西偏转 v D. 相对于预定点稍向北偏转
湖南长郡卫星远程学校
湖南长郡卫星远程学校
制作 08
2009年下学期
三、电子束的磁偏转
1、运动电子在磁场中做圆周运动 2、磁场的强弱和电子的速度都能影响圆的半径
湖南长郡卫星远程学校
制作 08
2009年下学期
四、电视显像管的工作原理
湖南长郡卫星远程学校
制作 08
2009年下学期
四、电视显像管的工作原理
原理:应用电子束磁偏转的道理
2. 洛伦兹力的方向垂直于v和B组成的平面
湖南长郡卫星远程学校
制作 08
丁
B v
2009年下学期
三三、、洛电伦子兹束力的大磁小偏转
【思考】 电荷在磁场中做什么运动?
【猜想】: 可能做圆周运动
【实验验证】
湖南长郡卫星远程学校
制作 08
2009年下学期
三、电子束的磁偏转
洛伦磁力演示仪: 观察现象: 得出结论: 运动电子在磁场中做圆周运动
制作 08
2009年下学期
磁场对运动电荷的作用力
【问题思考】 为什么不通电的导线在磁场中不受
安培力的作用,而通电导线在磁场中受 安培力的作用?
猜想:运动电荷在磁场中受到力的作用。
湖南长郡卫星远程学校
制作 08
2009年下学期
电子射线管的原理: 从阴极发射出来电子,在阴阳两极间的
磁场对运动电荷的作用
磁场对运动电荷的作用1. 引言在物理学中,磁场是指存在于物体周围的力场,可以对运动中的电荷施加作用力。
电荷在磁场中受到的力和运动状态之间存在着密切的关系。
本文将探讨磁场对运动电荷的作用以及其物理原理。
2. 洛伦兹力磁场对运动电荷产生的作用力称为洛伦兹力。
根据洛伦兹力定律,洛伦兹力的大小与电荷的电量、电荷的速度以及磁场的强度和方向有关。
洛伦兹力的方向垂直于电荷的速度方向和磁场方向,遵循右手定则。
3. 右手定则右手定则是用于确定洛伦兹力方向的常用方法。
当右手拇指指向电荷的速度方向,四指指向磁场的方向时,手心所指的方向即为洛伦兹力的方向。
右手定则为我们理解磁场对电荷作用力提供了便利。
4. 磁场对直线运动电荷的作用当电荷沿直线运动时,如果与磁场垂直,则洛伦兹力将偏离电荷的直线运动方向,并且始终垂直于电荷的速度方向和磁场方向。
这是由于洛伦兹力的方向始终与速度和磁场互相垂直,导致电荷运动轨迹弯曲,形成圆弧轨迹。
5. 磁场对曲线运动电荷的作用当电荷沿曲线运动时,磁场对其的作用将影响电荷在曲线上的运动轨迹。
在曲线上的每一点上,电荷的速度方向和磁场方向不再垂直。
由于洛伦兹力始终垂直于速度和磁场方向,电荷将受到一个向轨迹中心的向心力。
这使得电荷在曲线上的运动具有向心加速度的特征。
6. 磁场对静止电荷的作用磁场对静止电荷的作用力为零。
这是因为洛伦兹力的大小与电荷的速度有关,而静止的电荷速度为零,因此洛伦兹力也为零。
磁场只对运动中的电荷产生作用。
7. 磁场对带电粒子的运动轨迹的影响磁场对带电粒子的运动轨迹产生明显的影响。
在强磁场的作用下,带电粒子将受到明显的偏转,形成类似于螺旋线状的轨迹。
这种现象在粒子加速器以及磁共振成像技术中得到了广泛应用。
8. 磁场对电流的作用电流也是由运动电荷产生的,因此磁场也对电流产生作用。
根据安培定律,电流在磁场中受到的力的大小与电流强度、导线长度以及磁场的强度和方向有关。
磁场对电流的作用可用于磁力计、电动机、发电机等各种电磁设备中。
磁场对运动电荷的作用力
垂直纸面向外 F
课堂训练
2、电子以初速度V垂直进入磁感应强度 为B的匀强磁场中,则 ( BD )
A.磁场对电子的作用力始终不变. B.磁场对电子的作用力始终不做功 C.电子的速度始终不变. D. 电子的动能始终不变
课堂训练
3、电子的速率v=3×106 m/s,垂直 射入B=0.10 T的匀强磁场中,它受
导线中的电荷的总个数为N = nSL
每个电荷受力为
F洛
F安 N
BnqvSL qvB nLS
三、洛伦兹力大小
F洛=qVB ( V⊥B)
F洛= 0
( V∥B)
当V与B成一角度θ时
F洛=qVB sinθ
F qvB
注意1:、此式只适用于v垂直于B的情况,
如果v和B平行则F=0。
2、洛仑兹力对静止的电荷没有 力的作用。
二、洛伦兹力的方向
左手定则:四指指向与形成的电流方 向一致,即与正电荷运动方向相同, 与负电荷运动方向相反。
课堂训练
1、判断下列粒子进入磁场时所受的洛伦兹力的方向
-q
竖直向上
竖直向上
垂直纸面向外 垂直纸面向内
三、洛伦兹力大小
设有一段长为L,横截面积为S的直导线,单
位体积内的自由电荷数为n,每个自由电荷的电荷
)
A.带电粒子速度大小改变;
演示:阴极射线在磁场中的偏转
2、电流是如何形成的?
2 导线中的电流强度 I =
v m v 左手定则:四指指向与形成的电流方向一致,即与正电荷运动方向相同,与负电荷运动方向相反。
D.带电粒子速度方向不变。
q v B m R 导线中的电流强度 I =
这段通电导线垂直磁场方向放入磁感应强度为B的匀强磁场中,求
磁场对运动电荷的作用力
磁场对运动电荷的作用力磁场对运动电荷的作用力:磁场力,是磁场对其中运动电荷和电流的作用力。
磁场力包括洛仑兹力和安培力。
磁场对运动电荷作用力称为洛仑兹力,磁场对电流的作用力称为安培力。
洛仑兹力既垂直于磁场方向又垂直于电荷运动方向,安培力既垂直于磁场方向又垂直于电流方向。
可以用左手定则判断磁场力的方向。
磁场力包括磁场对运动电荷作用的洛仑兹力和磁场对电流作用的安培力,安培力是洛仑兹力的宏观表现。
磁场力现象中涉及3个物理量的方向:磁场方向、电荷运动方向、洛仑兹力方向;或磁场方向、电流方向、安培力方向。
用左手定则说明3个物理量的方向时有一个前提,认为磁场方向垂直于电荷运动方向或磁场方向垂直于电流方向。
不少同学认为,根据左手定则知道其中任意2个量的方向可求出第3个量的方向。
一般说,这种看法是不正确的;事实是,磁场方向不一定垂直于电荷运动方向或电流方向,它们之间的夹角可以是任意的。
能肯定的是:洛仑兹力一定既垂直于磁场方向又垂直于电荷运动方向,洛仑兹力垂直于磁场B和电荷运动速度v所决定的平面。
安培力一定既垂直于磁场方向又垂直于电流方向,安培力垂直于B和I所决定的平面,不应该忽视一个重要事实:B与v或I平行时,洛仑兹力或安培力都不存在。
因此,当B⊥v或B⊥I时,可以用左手定则表述3个物理量方向间的关系。
这时,知道任意2个物理量的方向可求出第3个物理量的方向。
当B与v或B与I不垂直时,根据B与v的方向或B与I的方向,可确定洛仑兹力f或安培力F的方向,但是,根据v、f的方向或I、F的方向不确定B的方向;根据B、f的方向或B、F的方向不能确定v或I的方向。
这2种问题若有确定的解必须补充条件。
磁场力包括两种,一种是磁场对通电导线的作用力,另一种是磁场对运动电荷的作用力。
磁场对运动电荷的作用
一、洛伦兹力的大小和方向 1.定义:磁场对运动电荷的作用力. 2.大小(1)v ∥B 时,F =0; (2)v ⊥B 时,F =q v B ; (3)v 与B 的夹角为θ时,F =q v Bsin θ. 3.方向(1)判定方法:应用左手定则,注意四指应指向正电荷运动方向或负电荷运动的反方向; (2)方向特点:F ⊥B ,F ⊥v .即F 垂直于B 、v 决定的平面.(注意B 和v 可以有任意夹角) 4.做功:洛伦兹力不做功. 二、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以入射速度v 做匀速直线运动.2.若v ⊥B 时,带电粒子在垂直于磁感线的平面内,以入射速度v 做匀速圆周运动.3.基本公式(1)向心力公式:q v B =m v 2r ; (2)轨道半径公式:r =m v Bq ; (3)周期公式:T =2πmqB . 注意:带电粒子在匀强磁场中运动的周期与速率无关.命题点一 对洛伦兹力的理解 1.洛伦兹力的特点(1)利用左手定则判断洛伦兹力的方向,注意区分正、负电荷. (2)当电荷运动方向发生变化时,洛伦兹力的方向也随之变化. (3)运动电荷在磁场中不一定受洛伦兹力作用. (4)洛伦兹力一定不做功.2.洛伦兹力与安培力的联系及区别(1)安培力是洛伦兹力的宏观表现,二者是相同性质的力,都是磁场力. (2)安培力可以做功,而洛伦兹力对运动电荷不做功.3.洛伦兹力与电场力的比较磁场对运动电荷的作用命题点二带电粒子在有界匀强磁场中的圆周运动模型1 直线边界磁场:直线边界,粒子进出磁场具有对称性(如图所示)图a 中t =T 2=πmBq图b中t=(1-θπ)T=(1-θπ)2πmBq=2m(π-θ)Bq图c中t=θπT=2θm Bq模型2平行边界磁场平行边界存在临界条件(如图所示)模型3圆形边界磁场:沿径向射入圆形磁场必沿径向射出,运动具有对称性(如图所示)r=R tan θt=θπT=2θmBqθ+α=90°命题点三带电粒子在磁场运动的多解问题。
磁场对运动电荷的作用
A洛伦兹力对运动电荷一定不做功;B 洛伦兹力对运动电荷可能做功理由:洛伦兹力始终和速度方向垂直1.如图11-3-1所示,在长直导线中有恒电流I通过,导线方向与电流I的方向相同,电子将(D) 正下方电子初速度v0A.沿路径a运动,轨迹是圆B.沿路径a运动,轨迹半径越来越大C.沿路径a运动,轨迹半径越来越小D.沿路径b运动,轨迹半径越来越大图11-3-1【例3】一个带电粒子沿垂直于磁场的方向射入一个匀强磁场,粒子后段轨迹如图11-3-2所示,轨迹上的每一小段都可近似看成是圆弧.由于带电粒子使沿途的空气电离,粒子的能量逐渐减少(带电量不变).从图中情况可以确定:(B)A.粒子从a到b,带正电;B.粒子从b到a,带正电;C.粒子从a到b,带负电;D.粒子从b到a,带负电;如图11-3-3所示,匀强磁场中,放置一块与磁感线平行的均匀薄铅板,一个带电粒子进入磁场,=20cm做匀速圆周运动,以半径R1第一次垂直穿过铅板后,以半径R=19cm做匀速圆2周运动(设其电量始终保持不变)则带电粒子还能够穿过铅板9次.【例4】如图11-3-4(a)所示,在x轴上方有匀强磁场B,一个质量为m,带电量为-q的的粒子,以速度v从O点射入磁场,角已知,粒子重力不计,求(1)粒子在磁场中的运动时间.(2)粒子离开磁场的位置.【例5】如图11-3-5所示,匀强磁场磁感应强度为B,,0)方向垂直xOy平面向外.某一时刻有一质子从点(L,0)处沿y轴负向进入磁场;同一时刻一粒子从点(-L进入磁场,速度方向在xOy平面内.设质子质量为m,电量为e,不计质子与粒子间相互作用.(1)如果质子能够经过坐标原点O,则它的速度多大?(2)如果粒子第一次到达原点时能够与质子相遇,求粒子的速度.(1)试确定正、负电子在管道内各是沿什么方向旋转的?(2)已知正、负电子的质量都是m,所带电荷都是元电荷e,重力不计.求电磁铁内匀强磁场的磁感应强度B的大小?图11-3-6。
磁场对运动电荷的作用力
磁场对运动电荷的作用力首先,磁场是由运动电荷产生的。
当电荷在运动时,它会产生一个环绕着它的磁场。
这就是著名的安培环路定理,它说明了电流在产生磁场方面的重要性。
电流是由运动电荷产生的,并且在产生磁场时,电流不仅仅是电荷的数量,还包括电荷的速度。
因此,只有运动电荷才能产生磁场。
当一个运动电荷进入一个磁场时,它会受到一个磁场力的作用。
这个作用力被称为洛伦兹力,是由电荷的运动状态和磁场的性质共同决定的。
具体来说,洛伦兹力的大小和方向由以下三个因素决定:电荷的速度、磁场的方向和大小以及电荷的电荷量。
洛伦兹力可以用以下公式表示:F=q*(v×B)其中,F表示洛伦兹力,q是电荷的电荷量,v是电荷的速度,B是磁场的磁感应强度。
"×"表示向量叉乘,由右手定则可知,正交于电荷的速度和磁场的方向。
根据这个公式,我们可以看到洛伦兹力与电荷的速度和磁场的方向和大小都有关系。
如果电荷的速度与磁场平行,洛伦兹力为零,电荷不会受到磁场力的作用。
如果电荷的速度与磁场垂直,洛伦兹力的大小最大。
如果电荷的速度与磁场的方向成一定的角度,洛伦兹力的大小将介于0和最大值之间。
在实际应用中,磁场对运动电荷的作用力表现出一些重要的特性。
首先,该力是一个受力,它使运动电荷发生加速度。
其次,磁场力只对速度有垂直分量的电荷产生作用,不会改变电荷的速度大小。
最后,磁场力与电荷的电荷量成正比,因此电荷越大,力也越大。
磁场对运动电荷的作用力在许多实际情况中都有重要应用。
例如,它可以用于磁力传感器和磁力计等仪器中。
在这些设备中,磁场力被用来测量电荷的速度,并将其转化为一个可读的数值。
此外,洛伦兹力是运行大型粒子加速器的基本原理之一、在这些加速器中,电荷通过磁场受到的力会加速它们,并使其达到很高的速度。
总之,磁场对运动电荷的作用力是一种重要的物理现象。
洛伦兹力的大小和方向取决于电荷的电荷量、速度和磁场的方向和大小。
磁场力对于许多实际应用非常重要,并在许多领域中发挥着重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习 1、一个电子以速度v逆着磁感线方向进入一匀强磁 、一个电子以速度 逆着磁感线方向进入一匀强磁 它在磁场中将做( 场,它在磁场中将做( ) A.加速直线运动 B.减速直线运动 . . C.匀速圆周运动 D.匀速直线运动 . . 2、带电量为+q的粒子,在匀强磁场中运动,下面说法 、带电量为+ 的粒子 在匀强磁场中运动, 的粒子, 正确的是: 正确的是: A.只要速度大小相同,所受的洛伦兹力就相同 .只要速度大小相同, B.如果把+q改为-q,且速度反向大小不变,则所 改为- ,且速度反向大小不变, .如果把+ 改为 受的洛伦兹力大小、 受的洛伦兹力大小、方向均不变 C.带电粒子在磁场中运动,不一定受洛伦兹力作用 .带电粒子在磁场中运动, D.带电粒子受洛伦兹力小,则该磁场的磁感应强度 .带电粒子受洛伦兹力小, 小
四、速度选择器 问题:如图所示, 问题:如图所示,两平行金属板间存在一磁感应强度为 B、方向垂直纸面向外的匀强磁场,一束带电粒子流以 、方向垂直纸面向外的匀强磁场, 速度v水平射入 为使粒子经磁场时不偏转( 水平射入.为使粒子经磁场时不偏转 速度 水平射入 为使粒子经磁场时不偏转(粒子重力不 ),则磁场区域内必须同时存在一个匀强电场 则磁场区域内必须同时存在一个匀强电场, 计),则磁场区域内必须同时存在一个匀强电场,关于 这个电场场强大小和方向的说法中正确的是( 这个电场场强大小和方向的说法中正确的是( ) A.大小为 ,粒子带正电时,方向向上 大小为B/v,粒子带正电时, 大小为 B.大小为 ,粒子带负电时,方向向下 大小为B/v,粒子带负电时, 大小为 C.大小为 ,方向向下,与粒子带何种电荷无关 大小为Bv,方向向下, 大小为 D.大小为 ,方向向上,与粒子带何种电荷无关 大小为Bv,方向向上, 大小为 速度选择器选择的是粒子的速度大 . . . .B 小和方向,与粒子带电的多少、 小和方向,与粒子带电的多少、种类 v . . . . 无关,与粒子的质量无关。 无关,与粒子的质量无关。 速度选择器中电场强度和磁场的磁 感应强度关系是: 感应强度关系是:v=E/B
二、洛伦兹力的方向 推理:左手定则判断安培力方向, 推理:左手定则判断安培力方向,大量定向移动电荷 所受洛伦兹力宏观表现为安培力,因此, 所受洛伦兹力宏观表现为安培力,因此,可以用左手定 则判定洛伦兹力的方向. 则判定洛伦兹力的方向. 实验验证 结论:用左手定则判定洛伦兹力的方向 结论: 注意: 区分正负电荷。 注意: 区分正负电荷。 用四指指向电荷的运动方向。 用四指指向电荷的运动方向。 若是正电荷,则洛伦兹力方向即为大拇指所指方向; 若是正电荷,则洛伦兹力方向即为大拇指所指方向; 若是负电荷,则洛伦兹力方向与大拇指所指方向相反。 若是负电荷,则洛伦兹力方向与大拇指所指方向相反。
练习 3、质量m=1×10-4kg的小物块,带有电量为 q=5×10-4C 、质量 的小物块, × 的小物块 × 的正电荷,放在斜面上,斜面的倾角α=30°,物块与斜 的正电荷,放在斜面上,斜面的倾角 ° 面间的动摩擦因数µ=0.4。设整个斜面放在匀强磁场中, 面间的动摩擦因数 。设整个斜面放在匀强磁场中, B=0.5T,方向如图,若斜面足够长,问: ,方向如图,若斜面足够长, (1)物块下滑时,能达到的最大速率为多少? )物块下滑时,能达到的最大速率为多少? 2)如果将磁场反向,其他条件不变, (2)如果将磁场反向,其他条件不变,物块下滑时将发 生什么情况? 生什么情况?
F安 = IL⋅ B = (nq荷上的洛伦兹力 的合力,这段导线中含有的运动电荷数为nLS 的合力,这段导线中含有的运动电荷数为 所以洛伦兹力 f = F /nLS = qvB 安
即:
适用条件: 适用条件:速度方向与磁场方向垂直
f = qvB
f、v(正电荷)与B的方向关系示意
f
B
v
二、洛伦兹力的大小 方向不垂直, 方向的夹角为θ, 若v与B方向不垂直,v与B方向的夹角为 ,洛伦兹力的 与 方向不垂直 与 方向的夹角为 大小该怎么表达? 大小该怎么表达? 两种特殊情况: 两种特殊情况: 若v⊥B:f=qvB ⊥ 若v∥B:f=0 ∥ 一般情况: 一般情况:
f = qvBsinθ
f
B⊥
B
θ
B∥
v
三、洛伦兹力的特点 1.洛伦兹力的方向既垂直于磁场,又垂直于速度,即垂 .洛伦兹力的方向既垂直于磁场,又垂直于速度, 直于v和 所组成的平面 所组成的平面. 直于 和B所组成的平面. 2.洛伦兹力对电荷不做功,只改变速度的方向,不改变 .洛伦兹力对电荷不做功,只改变速度的方向, 速度的大小. 速度的大小. 练习:下列说法中正确的是:( 练习:下列说法中正确的是:( ) A.磁场方向、电荷运动方向、洛仑兹力方向三者总 .磁场方向、电荷运动方向、 是互相垂直的 B.洛仑兹力方向一定既垂直于磁场方向,又垂直于 .洛仑兹力方向一定既垂直于磁场方向, 电荷运动方向 C.电荷运动方向与磁场方向可能垂直,也可能不垂 .电荷运动方向与磁场方向可能垂直, 直,但洛仑兹力方向一定与磁场方向和运动方向都垂直 D.根据电荷运动方向和洛仑兹力方向,一定能确定 .根据电荷运动方向和洛仑兹力方向, 磁场方向
选修3-1 选修
磁
场
磁场对运动电荷的作用
一、磁场对运动电荷有力的作用 磁场对运动电荷有力的作用? 磁场对运动电荷有力的作用? 1、磁场对通电导线有力的作用,电流是由电荷的定向 磁场对通电导线有力的作用, 移动形成的 2、实验验证: 实验验证: 结论: 结论: 阴极射线管(电子射线管) 阴极射线管(电子射线管) 中的电子束在磁场中发生偏转, 中的电子束在磁场中发生偏转, 磁场对运动电荷确实存在作用力. 磁场对运动电荷确实存在作用力. 洛伦兹力:磁场对运动电荷的作用力叫做洛伦兹力. 洛伦兹力:磁场对运动电荷的作用力叫做洛伦兹力. 通电导线在磁场中所受安培力是洛伦兹力的宏观表现
练习 如图表示磁场B的方向、电荷运动v的方向和磁场对运 如图表示磁场 的方向、电荷运动 的方向和磁场对运 的方向 动电荷作用力f方向的相互关系 其中B、 、 的方向两两 方向的相互关系, 动电荷作用力 方向的相互关系,其中 、v、f的方向两两 相垂直,正确的图是( ) 相垂直,正确的图是
二、洛伦兹力的大小 1.推导 . 设有一段长度为L,横截面积为S的导线 的导线, 设有一段长度为 ,横截面积为 的导线,导线单位 体积内含有的自由电荷数为n,每个自由电荷的电荷量为q, 体积内含有的自由电荷数为 ,每个自由电荷的电荷量为 , 定向移动速率为v. 定向移动速率为 .这段通电导线垂直磁场方向放入磁感 应强度为B的磁场中所受的安培力 的磁场中所受的安培力. 应强度为 的磁场中所受的安培力.