拉电流(sourcecurrent)与灌电流(sinkcurrent)
什么是灌电流和拉电流
欢迎进入老古论坛对拉电流输出和灌电流输出进行讨论在使用数字集成电路时,拉电流输出和灌电流输出是一个很重要的概念,例如在使用反向器作输出显示时,图1是拉电流,即当输出端为高电平时才符合发光二极管正向连接的要求,但这种拉电流输出对于反向器只能输出零点几毫安的电流用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
图2为灌电流输出,即当反向器输出端为低电平时,发光二极管处于正向连接情况,在这种情况下,反向器一般能输出5~10mA的电流,足以使发光二极管发光,所以这种灌电流输出作为驱动发光二极管的电路是比较合理的。
因为发光二极管发光时,电流是由电源+5V通过限流电阻R、发光二极管流入反向器输出端,好像往反向器里灌电流一样,因此习惯上称它为“灌电流”输出。
电子学中“拉电流”与“灌电流”的含义悬赏分:0 - 提问时间2006-8-11 15:40 问题为何被关闭谁知道电子学中“拉电流”与“灌电流”的含义,知道的详细说来!提问者:jzy19840914 - 助理二级答复共4 条垃,既通过器件向电源索取。
灌,既通过器件向电源回输(流)。
回答者:老瓢虫- 高级魔法师七级8-11 16:35器件通过负载接电源称为灌;器件通过负载接地称为拉。
回答者:lnaslzt - 同进士出身七级8-11 18:59拉电流即元气件从它的负载输入电流;灌电流即该元气件向负载输出电流。
回答者:lncysun - 助理三级8-13 10:48数字电路中的0,1,是根据电位的高低来区分的。
在电位高时,下一级电路会从本级电路中拉出一部分电流,在电位低时,上一级电路会向本级电路中灌入一部分电流,这就是你所谓的:电子学中“拉电流”与“灌电流”的含义回答者:高级电灯泡- 见习魔法师二级8-13 21:17什么是灌电流,拉电流和扇出系数当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
灌电流拉电流
灌电流、拉电流当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
逻辑门的低电平是有一定限制的,它有一个最大值U OLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定U OLMAX ≤0.4~0.5V。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,高电平越低。
逻辑门的高电平是有一定限制的,它有一个最小值U OHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定U OHMIN≥2.4V。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。
扇出系数NO是低电平最大输出电流和低电平最大输入电流的比值对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL门,NO≥20网络上的个人解释:吸电流、拉电流输出、灌电流输出拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
一般采用灌电流的方式驱动能力大,所以led低电平点亮(一)上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
灌电流和拉电流
灌电流(sink current),对一个端口而言,如果电流方向是向其内部流动的则是“灌电流”,比如一个IO通过一个电阻和一个LED连接至VCC,当该IO输出为逻辑0时能不能点亮LED,去查该器件手册中sink current参数。
拉电流(sourcing current),对一个端口而言,如果电流方向是向其外部流动的则是“拉电流”,比如一个IO通过一个电阻和一个LED连至GND,当该IO输出为逻辑1时能不能点亮LED,去查该器件手册中sourcing current参数。
一般来说上拉或下拉电阻的作用是增大电流,加强电路的驱动能力。
也有时用来平衡电平,是的处理器可以得到更稳定的逻辑电平,减少因干扰造成的盲区误判断。
说一下基础概念
电源到元件间的叫上拉电阻,作用是平时使该脚为高电平
地到元件间的叫下拉电阻,作用是平时使该脚为低电平
上拉电阻和下拉电阻的范围由器件来定(我们一般用10K)
+Vcc---上拉电阻---|IO口元件|(该情况为上拉电阻方式)
|IO口元件|---下拉电阻---GND|(该情况为下拉电阻方式)
而对于51处理器的P0口必须接上拉电阻才可以作为IO口输出使用上拉和下拉的区别是一个为拉电流,一个为灌电流
一般来说灌电流比拉电流要大
也就是灌电流驱动能力强一些。
拉电流灌电流扇入扇出准双向双向定义
拉电流灌电流扇入扇出准双向双向定义很详细实用当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
逻辑门的低电平是有一定限制的,它有一个最大值UOLMA某。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMA某≤0.4~0.5V。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,高电平越低。
逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN≥2.4V。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。
扇出系数NO是描述集成电路带负载能力的参数,它的定义式如下:NO=IOLMA某/IILMA某其中IOLMA某为最大允许灌电流,IILMA某是一个负载门灌入本级的电流。
No越大,说明门的负载能力越强。
一般产品规定要求No≥8。
对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL门,NO≥20扇入、扇出系数:扇入系数--门电路允许的输入端数目。
一般门电路的扇入系数Nr为1—5,最多不超过8。
若芯片输入端数多于实际要求的数目,可将芯片多余输入端接高电平(+5V)或接低电平(GND)。
扇出系数--一个门的输出端所驱动同类型门的个数,或称负载能力。
一般门电路的扇出系数Nc为8,驱动器的扇出系数Nc可达25。
Nc体现了门电路的负载能力。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内流入称为灌电流;反之如果内部电流通过很详细实用芯片引脚从芯片内‘流出’称为拉电流。
拉电流和灌电流
拉电流输出和灌电流输出拉电流输出和灌电流输出上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
拉电流和灌电流
拉电流输出和灌电流输出拉电流输出和灌电流输出上拉电阻:1、当TTL 电路驱动COMS 电路时,如果TTL 电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V ),这时就需要在TTL 的输出端接上拉电阻,以提高输出高电平的值。
2、OC 门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS 芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k 到10k 之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1. 驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2. 下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3. 高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通反射波干扰!!电阻匹配!!抑制电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
拉电流、灌电流、扇入、扇出、准双向、双向定义
当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,高电平越低。
逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。
由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题,用扇出系数来说明逻辑门来同类门的能力。
扇出系数NO是描述集成电路带负载能力的参数,它的定义式如下:NO= IOLMAX / IILMAX其中IOLMAX为最大允许灌电流,IILMAX是一个负载门灌入本级的电流。
No越大,说明门的负载能力越强。
一般产品规定要求No≥8。
对于标准TTL门,NO≥10;对于低功耗肖特基系列的TTL门,NO≥20扇入、扇出系数:扇入系数--门电路允许的输入端数目。
一般门电路的扇入系数Nr为1—5,最多不超过8。
若芯片输入端数多于实际要求的数目,可将芯片多余输入端接高电平(+5V)或接低电平(GND)。
扇出系数--一个门的输出端所驱动同类型门的个数,或称负载能力。
一般门电路的扇出系数Nc为8,驱动器的扇出系数Nc可达25。
Nc体现了门电路的负载能力。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流;反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流。
拉电流与灌电流
在使用数字集成电路时,拉电流输出和灌电流输出是一个很重要的概念,例如在使用反向器作输出显示时,当输出端为高电平时才符合发光二极管正向连接的要求,但这种拉电流输出对于反向器只能输出零点几毫安的电流用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
当反向器输出端为低电平时,发光二极管处于正向连接情况,在这种情况下,反向器一般能输出5~10mA的电流,足以使发光二极管发光,所以这种灌电流输出作为驱动发光二极管的电路是比较合理的。
因为发光二极管发光时,电流是由电源+5V通过限流电阻R、发光二极管流入反向器输出端,好像往反向器里灌电流一样,因此习惯上称它为“灌电流”输出。
拉电流与灌电流1、概念拉电流和灌电流是衡量电路输出驱动能力(注意:拉、灌都是对输出端而言的,所以是驱动能力)的参数,这种说法一般用在数字电路中。
这里首先要说明,芯片手册中的拉、灌电流是一个参数值,是芯片在实际电路中允许输出端拉、灌电流的上限值(允许最大值)。
而下面要讲的这个概念是电路中的实际值。
由于数字电路的输出只有高、低(0,1)两种电平值,高电平输出时,一般是输出端对负载提供电流,其提供电流的数值叫“拉电流”;低电平输出时,一般是输出端要吸收负载的电流,其吸收电流的数值叫“灌(入)电流”。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流(被灌入);反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流(被拉出)2、为什么能够衡量输出驱动能力当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。
拉电流(source current)与灌电流(sink current)
拉电流(source current)与灌电流(sink current)
对一个互补输出的驱动器而言,从输出端向外电路流出的负载电流称为拉电流(SOURCE CURRENT);从外电路流入输出端的负载电流称为灌电流(SINK CURRENT);在没有负载的情况下,驱动器本身消耗的电流称为QUIESCENT CURRENT。
对于拉电流的理解:例如一个5V的驱动器的输出端(假设为推挽输出),该端子悬空时,输出H的电压为0.9*VDD=4.5V以上,输出L的电压为
0.1*VDD=0.5V以下.如果在这个输出端加一个阻性负载到地,这时输出端的H电位会从4.5V以上下降,比如下降到4V,此时流过阻性负载的电流称为拉电流(从电源中拉出的电流)。
对于灌电流的理解:如果在输出端到电源加一个阻性负载或往输出端灌电流,这是输出端的L电位会从0.5上升,比如上升到1.5V,此时流过阻性负载的电流,即灌入电路的电流称为灌电流。
下图有助于我们理解这两个电流:
对于静态电流的理解:开关电路,互补的两个器件同时只有一个在导电,QUIESCENT CURRENT是由漏电引起的,以及在高低电平转换中间短暂的线性状态产生的。
前者取决于加工工艺,后者与信号的频率有关。
对于线性驱动器电路而言,QUIESCENT CURRENT是为了保证互补的输出级工作在线性状态,减少交叉失真所必须的。
拉电流,灌电流 ,扇出系数,上拉电阻,下拉电阻讲议
拉电流与灌电流1、概念拉电流(sourcing current)和灌电流(Sink Current)是衡量电路输出驱动能力(注意:拉、灌电流都是对输出端口而言的,所以是驱动能力)的参数,这种说法一般用在数字电路中。
在芯片手册中的拉、灌电流是一个参数值,是芯片在实际电路中允许输出端拉、灌电流的上限值(允许最大值)。
而下面要讲的这个概念是电路中的实际值(并非级限值)。
由于数字电路的输出只有高、低(1,0)两种电平值,高电平输出时,一般是输出端对负载提供电流,其提供电流的数值叫“拉电流”;低电平输出时,一般是输出端要吸收负载的电流,其吸收电流的数值叫“灌电流”。
对于输入电流的器件而言:①灌入电流I/O端口是输出端口。
②灌入电流是被动的。
③吸收电流是主动的。
④吸电流的I/O端口是输入端口。
2、为什么能够衡量输出驱动能力当逻辑门输出端是低电平时(向负载提供低输出),灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
因为负载向I/O端灌入电流是通过端口内部的一个到地的三极管完成的,由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越高。
然而,逻辑门的低电平是有一定限制的,它有一个最大U OLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定U OLMAX ≤0.4~0.5V。
所以,灌电流有一个上限。
当逻辑门输出端是高电平时(向负载提供高输出),逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,输出端的高电平越低。
然而,逻辑门的高电平是有一定限制的,它有一个最小值U OHMIN。
在逻辑门工作时,不允许低于这个数值,TTL逻辑门的规范规定U OHMIN ≥2.4V。
所以,拉电流也有一个上限。
可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于U OHMIN;低电平输出时,灌电流会使输出电平高于U OLMAX。
吸电流、拉电流输出、灌电流输出分析
吸电流、拉电流输出、灌电流输出吸电流、拉电流输出、灌电流输出拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
4、上拉电阻是用来解决总线驱动能力不足时提供电流的。
拉电流灌电流
吸电流、拉电流、灌电流、上下拉电阻、高阻态吸电流、拉电流输出、灌电流输出拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
PLC输入输出信号处理
摘要:本文主要分析了数字量输入时PLC内部电路常见的几种形式,SINK- 拉电流输入,SOURCE - 灌电流输入,并结合传感器常见几种输出形式和经常遇到的NPN和PNP输出,以及单端与双端接口,给出了和不同的PLC电路形式连接时的接线方法。
关键词:PLC SINK- 拉电流输入NPN输出SOURCE- 灌电流输入PNP输出单端双端接口一:引言PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。
因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。
目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC 供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。
由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PL C为后期的编程工作和系统稳定奠定基础。
二:输入电路的形式1、输入类型的分类PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。
2、术语的解释SINK漏型SOURCE源型SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。
SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。
国内对这两种方式的说法有各种表达:1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流,2)、由按接口的单端共点的极性,共正极与共负极。
拉灌电流,扇出系数,驱动能力
电路常识性概念--拉电流、灌电流/扇出系数,驱动能力-拉电流、灌电流 / 扇出系数的概念一般用在含有上拉电阻、下拉电阻的电路中。
拉电流与灌电流1、概念拉电流和灌电流是衡量电路输出驱动能力(注意:拉、灌都是对器件输出端而言的,所以是驱流的数值叫“灌(入)电流”。
对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流(被灌入);反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流(被拉出)2、为什么能够衡量输出驱动能力所谓总线的负载能力即驱动能力,是指当总线接上负载(接口设备)后必须不影响总线输入/输出的逻辑电平。
例如PC总线中的输出信号,在输出低电平要吸收电流(由信号源流负载入),以IOL表示,这时的负载能力就是指当它吸收了规定电流时,仍能保持逻辑低电平。
输出高电平的负载能力以IOH表示,这是一个由信号源流向负载的输出电流。
当输出电流超过规定值时,输出逻辑电平会降低,甚至变到阈值以下。
对于输入信号来说,系统总线就成了I/O插件板的负载,当输入低电平时总线向插件板灌入电流,以IIL表示。
要求插件板在流入了这个电流后,还能向总线输出一个正确的低电平。
驱动电路还要给总线接收电路提供输入高电平的电流。
当总线上所接负载超过总线的负载能力时,必须在总线和负载之间加接缓冲器或驱动器,最常用的是三态缓冲器,其作用是驱动(使信号电流加大,可带动更多负载)和隔离(减少负载对总线信号的影响)。
当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
然而,逻辑门的低电平是有一定限制的,它有一个最大值U OLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定U OLMAX≤0.4~0.5V。
所以,灌电流有一个上限。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
为何拉电流和灌电流是衡量电路输出驱动能力
为何拉电流和灌电流是衡量电路输出驱动能力拉对于输入电流的器件而言:灌入电流和吸收电流都是输入的,灌入电流是被动的,吸收电流是主动的。
如果外部电流通过芯片引脚向芯片内‘流入’称为灌电流(被灌入);反之如果内部电流通过芯片引脚从芯片内‘流出’称为拉电流(被拉出)为什么能够衡量输出驱动能力当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。
由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。
然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4~0.5V。
所以,灌电流有一个上限。
当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。
拉电流越大,输出端的高电平就越低。
这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。
拉电流越大,输出端的高电平越低。
然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。
在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。
所以,拉电流也有一个上限。
可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。
所以,拉电流与灌电流反映了输出驱动能力。
(芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大)由于高电平输入电流很小,在微安级,一般可以不必考虑,低电平电流较大,在毫安级。
所以,往往低电平的灌电流不超标就不会有问题。
用扇出系数来说明逻辑门来驱动同类门的能力,扇出系数No是低电平最大输出电流和低电平最大输入电流的比值。
在集成电路中,吸电流、拉电流输出和灌电流输出是一个很重要的概念。
吸电流、拉电流、灌电流、上下拉电阻、高阻态
【转】吸电流、拉电流、灌电流、上下拉电阻、高阻态拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
4、上拉电阻是用来解决总线驱动能力不足时提供电流的。
吸电流、拉电流、灌电流
吸电流、拉电流、灌电流2011-03-03 18:19:16| 分类:默认分类阅读84 评论0 字号:大中小订阅拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
吸电流、灌电流及拉电流
吸电流、拉电流输出、灌电流输出拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O 端口,有的可以设置,有的不可以设置,有的是置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。
4、上拉电阻是用来解决总线驱动能力不足时提供电流的。
吸电流、拉电流、灌电流、上下拉电阻、高阻态分析
吸电流、拉电流、灌电流、上下拉电阻、高阻态分析吸电流、拉电流输出、灌电流输出拉即泄,主动输出电流,从输出口输出电流;灌即充,被动输入电流,从输出端口流入;吸则是主动吸入电流,从输入端口流入。
吸电流和灌电流就是从芯片外电路通过引脚流入芯片内的电流;区别在于吸收电流是主动的,从芯片输入端流入的叫吸收电流。
灌入电流是被动的,从输出端流入的叫灌入电流;拉电流是数字电路输出高电平给负载提供的输出电流,灌电流时输出低电平是外部给数字电路的输入电流。
这些实际就是输入、输出电流能力。
拉电流输出对于反向器只能输出零点几毫安的电流,用这种方法想驱动二极管发光是不合理的(因发光二极管正常工作电流为5~10mA)。
上、下拉电阻一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平!“电阻同时起限流作用”!下拉同理!2、上拉是对器件注入电流,下拉是输出电流3、弱强只是上拉电阻的阻值不同,没有什么严格区分4、对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
2、数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平;C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用吗:比如:“当一个接有上拉电阻的端口设为输入状态时,他的常态就为高电平,用于检测低电平的输入”。