数学选修4-4参数方程高考题训练

合集下载

新北师大版高中数学高中数学选修4-4第二章《参数方程》检测卷(含答案解析)(4)

新北师大版高中数学高中数学选修4-4第二章《参数方程》检测卷(含答案解析)(4)

一、选择题1.点(, )A x y 是曲线2cos 13sin x y θθ=+⎧⎨=+⎩,(θ为参数)上的任意一点,则2 -x y 的最大值为( ) AB5C .3D3+2.若直线l :y kx =与曲线C :2cos sin x y θθ=+⎧⎨=⎩(θ为参数)有唯一的公共点,则实数k等于() AB.CD.±3.4sin 4πθ⎛⎫=+ ⎪⎝⎭与直线122{12x y =-=(t 为参数)的位置关系是( ) A .相切 B .相离C .相交且过圆心D .相交但不过圆心4.在方程sin {cos 2x y θθ==(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .12(,)33C .(1,0)D .11(,)225.曲线C 的参数方程为2x cos y sin θθ=⎧⎨=⎩(θ为参数),直线l的参数方程为12x y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),若直线l 与曲线C 交于A ,B 两点,则AB 等于( ) ABCD6.参数方程2cos sin x y θθ=⎧⎨=⎩(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是( ) A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆7.已知点(),P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且[),2θππ∈)上,则点P 到直线21x ty t =+⎧⎨=--⎩(t 为参数)的距离的取值范围是( )A.⎡⎢⎣⎦ B .0tan 60x = C.D .:::2x r r q q q e αα==8.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠9.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为2C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=10.直线320{20x tsin y tcos =+=- (t 为参数)的倾斜角是( )A .20B .70C .110D .16011.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b12.已知点A 是曲线2213x y +=上任意一点,则点A到直线sin()6πρθ+=的距离的最大值是( )A.2BCD.二、填空题13.点(),M x y 为此曲线()2234x y ++=上任意一点,则x y +的最大值是______.14.已知直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),则圆心C 到直线l 的距离为___________. 15.坐标系与参数方程选做题)直线截曲线(为参数)的弦长为___________ 16.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 17.已知在极坐标系中,曲线C 的极坐标方程是2sin 4cos 0ρθθ+=,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,直线l 的参数方程是1123x t t y ⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M (03l 与曲线C 的公共点为P ,Q ,则11PM QM+=_______ 18.直线:30l x y ++=被圆14cos :24sin x C y θθ=-+⎧⎨=+⎩(θ为参数)截得的弦长为______.19.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线220x y +=的最大距离为__________.20.圆1212x y θθ⎧=-+⎪⎨=⎪⎩(θ为参数)被直线0y =截得的弦长为__________.三、解答题21.已知直线l 过定点()1,1P ,且倾斜角为4π,以坐标原点为极点,x 轴的正半轴为极轴的坐标系中,曲线C 的极坐标方程为22cos 3ρρθ=+. (1)求曲线C 的直角坐标方程与直线l 的参数方程:(2)若直线l 与曲线C 相交于不同的两点A 、B ,求AB 及PA PB ⋅的值.22.在平面直角坐标系xOy 中,已知直线l 的参数方程为1123x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),椭圆C 的参数方程为cos 2sin x y θθ=⎧⎨=⎩(θ为参数)(1)将直线l 的参数方程化为极坐标方程;(2)设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.23.在直角坐标系xOy 中,直线l 经过点()3,0P,倾斜角为6π,曲线C的参数方程为2cos x y θθ=⎧⎪⎨=⎪⎩(θ为参数),以坐标原点O 为极点,以x 轴的正半轴为极轴建立极坐标系.(1)写出直线l 的极坐标方程和曲线C 的直角坐标方程; (2)设直线l 与曲线C 相交于A ,B 两点,求PA PB +的值.24.在平面直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),将曲线C 按伸缩变换公式12x x y y =⎧''⎪⎨=⎪⎩,变换得到曲线E(1)求E 的普通方程;(2)直线l 过点()0,2M -,倾斜角为4π,若直线l 与曲线E 交于,A B 两点,N 为AB 的中点,求OMN 的面积.25.在平面直角坐标系xOy 中,直线1l :cos ,sin x t y t αα=⎧⎨=⎩(t 为参数,π02α<<),曲线1C :2cos 4+2sin x y ββ=⎧⎨=⎩,(β为参数),1l 与1C 相切于点A ,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求1C 的极坐标方程及点A 的极坐标; (2)已知直线2l :()6R πθρ=∈与圆2C:2cos 20ρθ-+=交于B ,C 两点,记AOB ∆的面积为1S ,2COC ∆的面积为2S ,求1221S S S S +的值. 26.在直角坐标系xOy 中,直线l 的参数方程为1cos 1sin x t y t αα=+⎧⎨=+⎩(t 为参数,0απ≤<).在以O 为极点,x 轴正半轴为极轴的极坐标中,曲线C :4cos ρθ=.(1)当4πα=时,求C 与l 的交点的极坐标; (2)直线l 与曲线C 交于A ,B 两点,线段AB 中点为(1,1)M ,求||AB 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【分析】利用曲线的参数方程得32co sin -32s x y θθ=+-化简求解即可 【详解】由题()32cos 3sin 23-s x y θθθϕ=+-=++ 故当()cos 1θϕ+=时,2 -x y3+ 故选D 【点睛】本题考查参数方程求最值,考查辅助角公式,是基础题2.D解析:D 【分析】根据题意,将曲线C 的参数方程消去θ,得到曲线C 的普通方程22(2)1x y -+=,可知曲线C 为圆,又知圆C 与直线相切,利用圆心到直线的距离等于半径,求得k 。

高三数学参数方程试题

高三数学参数方程试题

高三数学参数方程试题1. [选修4-4:坐标系与参数方程]在平面直角坐标系中,已知直线的参数方程(为参数),直线与抛物线相交于两点,求线段的长.【答案】【解析】可以把直线参数方程化为普通方程,与抛物线方程联立解得的坐标,可求线段的长,也可直接把直线的参数方程代入抛物线方程,解关于的方程,利用此直线参数方程中的几何意义,可得.试题解析:直线的普通方程为,即,与抛物线方程联立方程组解得,∴.【考点】直线的参数方程.2.在直角坐标平面内,以坐标原点为极点、轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,曲线的参数方程为(为参数),则点到曲线上的点的距离的最小值为.【答案】【解析】由已知得,点的直角坐标为,曲线的普通方程为,表示以为圆心,为半径的圆,故点到曲线上的点的距离的最小值为.【考点】1、直角坐标和极坐标的互化;2、参数方程和普通方程的互化;3、点和圆的位置关系.3.参数方程中当为参数时,化为普通方程为_______________.【答案】【解析】由参数方程,两式平方作差得,.【考点】参数方程化普通方程.4.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρsin+m=0,曲线C2的参数方程为(0<α<π),若曲线C1与C2有两个不同的交点,则实数m的取值范围是____________.【答案】.【解析】曲线的直角坐标方程为,曲线的直角坐标方程为,如图,直线与圆有两个不同的交点,即在直线(经过点的直线)与(经过点的直线)之间,当直线与重合时,,当直线经过点时,,综上得.【考点】直角坐标与极坐标的转化、参数方程与普通方程的转化、直线与圆的位置关系.5.在曲线C1:(θ为参数,0≤θ<2π)上求一点,使它到直线C2:(t为参数)的距离最小,并求出该点坐标和最小距离.【答案】(1-,-) 最小值1【解析】直线C2化成普通方程是x+y-1+2=0,设所求的点为P(1+cosθ,sinθ),则P到直线C2的距离d==|sin(θ+)+2|,当θ+=时,即θ=时,d取最小值1,此时,点P的坐标是(1-,-).6.在平面直角坐标系xOy中,直线l的参数方程为 (t为参数),曲线C的参数方程为(θ为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐【答案】(2,2),【解析】因为直线l的参数方程为 (t为参数),由x=t+1,得t=x-1,代入y=2t,得到直线l的普通方程为2x-y-2=0.同理得到曲线C的普通方程为y2=2x.联立方程组解得公共点的坐标为(2,2),7.已知在直角坐标系中,曲线的参数方程为为参数).在极坐标系(与直角坐标取相同的长度单位,且以原点为极点,轴的非负半轴为极轴)中,曲线的方程为.(Ⅰ)求曲线直角坐标方程;(Ⅱ)若曲线、交于A、B两点,定点,求的值.【答案】(Ⅰ)曲线直角坐标方程为;(Ⅱ).【解析】(Ⅰ)由已知,两边都乘以,得,结合即可求得曲线的直角坐标方程(普通方程);(Ⅱ)由已知条件,把的参数方程为参数)代入,得由韦达定理可得:,进一步可计算出的值.试题解析:(Ⅰ)由已知,得,.3分(Ⅱ)把的参数方程代入,得.5分.7分【考点】直线的参数方程与极坐标方程.8.在直角坐标系中,曲线的参数方程为(为参数),若以直角坐标系的原点为极点,轴的正半轴为极轴建立极坐标,曲线的极坐标方程为(其中为常数).(1)若曲线与曲线只有一个公共点,求的取值范围;(2)当时,求曲线上的点与曲线上的点的最小距离【答案】(1)或;(2).【解析】本题考查极坐标与直角坐标之间的转化,参数方程与普通方程之间的转化,考查学生的转化能力和计算能力,考查数形结合思想.第一问,把参数方程和极坐标方程先进行转化,再利用数形结合解题;第二问,考查点到直线的距离公式,利用配方法求最小值.试题解析:(1)曲线可化为,,曲线可化为,若曲线,只有一个公共点,则当直线过点时满足要求,此时,并且向左下方平行运动直到过点之前总是保持只有一个公共点,当直线N过点时,此时,所以满足要求;再接着从过点开始向左下方平行运动直到相切之前总有两个公共点,相切时仍然只有一个公共点,联立,得,,解得,综上可求得的取值范围是或.(5分)(2)当时,直线,设上的点为,,则曲线上的点到直线的距离为,当时取等号,满足,所以所求的最小距离为.(10分)【考点】1.参数方程与普通方程的互化;2.极坐标方程与直角坐标方程的互化;3.点到直线的距离公式;4.配方法求最值.9.在平面直角坐标系中,过椭圆的右焦点,且与直线(为参数)平行的直线截椭圆所得弦长为.【答案】【解析】椭圆的普通方程为,则右焦点为(1,0);直线的普通方程为,过(1,0)与直线平行的直线为,由得,所以所求的弦长为.【考点】1.参数方程与普通方程的互化;2.两点间的距离公式和弦长公式.10.在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,得曲线的极坐标方程为()(Ⅰ)求曲线的普通方程和曲线的直角坐标方程;(Ⅱ)直线: (为参数)过曲线与轴负半轴的交点,求与直线平行且与曲线相切的直线方程【答案】(Ⅰ)、;(Ⅱ)或【解析】(Ⅰ) 利用参数方程化普通方程、极坐标方程化直角坐标方程来求;(Ⅱ)利用点到直线的距离来求试题解析:(Ⅰ)曲线的普通方程为:; 2分由得,∴曲线的直角坐标方程为: 4分(或:曲线的直角坐标方程为: )(Ⅱ)曲线:与轴负半轴的交点坐标为,又直线的参数方程为:,∴,得,即直线的参数方程为:得直线的普通方程为:, 6分设与直线平行且与曲线相切的直线方程为: 7分∵曲线是圆心为,半径为的圆,得,解得或 9分故所求切线方程为:或 10分【考点】参数方程化普通方程、极坐标方程转化为直角坐标方程,考查学生分析问题、解决问题的能力11.极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为.(Ⅰ)求的直角坐标方程;(Ⅱ)设直线与曲线交于两点,求弦长.【答案】(Ⅰ) ;(Ⅱ).【解析】本题考查坐标系和参数方程.考查学生的转化能力和计算能力.第一问利用互化公式将极坐标方程转化为普通方程;第二问,先将直线方程代入曲线中,整理,利用两根之和、两根之积求弦长.试题解析:(Ⅰ)由,得,即曲线的直角坐标方程为. 5分(Ⅱ)将直线l的方程代入,并整理得,,,.所以. 10分【考点】1.极坐标方程与普通方程的互化;2.韦达定理.12.已知曲线直线将直线的极坐标方程和曲线的参数方程分别化为直角坐标方程和普通方程;设点P在曲线C上,求点P到直线的距离的最小值。

(北师大版)石家庄市高中数学选修4-4第二章《参数方程》测试(答案解析)

(北师大版)石家庄市高中数学选修4-4第二章《参数方程》测试(答案解析)

一、选择题1.点(, )A x y 是曲线2cos 13sin x y θθ=+⎧⎨=+⎩,(θ为参数)上的任意一点,则2 -x y 的最大值为( ) AB5C .3D3+2.已知直线l的参数方程为22x m t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上,若直线l 与曲线C 交于A 、B 两点,则FA FB ⋅的值等于( ) A .1BCD .23.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭,(2,0)C 直线l 与曲线C 相交于A B ,两点,当ABC ∆的面积最大时,tan α=( )A.3B.2CD .74.在参数方程cos sin x a t y b t θθ=+⎧⎨=+⎩,(0θπ<,t 为参数)所表示的曲线上有,B C 两点,它们对应的参数值分别为1t ,2t ,则线段BC 的中点M 对应的参数值是( ) A .122t t - B .122t t + C .122t t - D .122t t + 5.直线122x ty t=+⎧⎨=+⎩(t 是参数)被圆229x y +=截得的弦长等于( )A.125BCD 6.已知在平面直角坐标系xoy 中,曲线C 的参数方程为 4cos ()sin x y 为参数ααα=⎧⎨=⎩,M 是曲线C 上的动点.以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,若曲线T 的极坐标方程为2sin cos 20ρθρθ+=,则点M 到点T 的距离的最大值为( )A.2+BC.4+D.7.直线4x 1t 5(t 3y 1t5⎧=+⎪⎪⎨⎪=-+⎪⎩为参数)被曲线πρθ4⎛⎫=+ ⎪⎝⎭所截的弦长为( ) A .15B .710C .75D .578.已知直线l的参数方程为112x y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l 与圆2216x y +=相交于A ,B 两点,则线段AB 的中点坐标为( ) A .(3,3)- B.3)-C.(D.3(,9.直线21{(1x t t y t =-=+为参数) 被圆229x y +=截得的弦长等于( )A .125B.5C.5D.510.动点1293cos 4sin 1,cos sin 2(55M θθθθθ⎛⎫--++ ⎪⎝⎭为参数)的轨迹的普通方程为( )A .22(1)(2)1259x y +-+=B .22(1)(2)1259x y -++=C .22(1)(2)1925x y +-+=D .22(1)(2)1925x y -++=11.若动点(,)x y 在曲线2221(0)4x yb b+=>上变化,则22x y +的最大值为( )A .24(04)42(4)b b b b ⎧+<⎪⎨⎪>⎩B .24(02)42(4)b b b b ⎧+<<⎪⎨⎪⎩C .244b +D .2b12.设椭圆C :2211612x y +=上的一点P 到两条直线4y =和8x =的距离分别是1d ,2d ,则122d d +的最小值( ) A .5B .6C .7D .8二、填空题13.已知曲线C参数方程为22cos2sinxyθθ=+⎧⎨=⎩(θ为参数),直线l方程为:x y-+=,将曲线C横坐标缩短为原来的12,再向左平移1个单位,得到曲线1C,则曲线1C上的点到直线l距离的最小值为______.14.曲线C的参数方程为4cossinxyαα=⎧⎨=⎩(α为参数),M是曲线C上的动点,若曲线T 极坐标方程2sin cos20ρθρθ+=,则点M到T的距离的最大值为__________.15.直线415{315x ty t=+=--(t为参数)被曲线4πρθ⎛⎫=+⎪⎝⎭所截得的弦长为 . 16.已知曲线C:2cossinxyθθ=⎧⎨=⎩(θ为参数).若点P在曲线C上运动,点Q为直线:0l x y+=-上的动点,则PQ的最小值为________.17.直线122x ty⎧=+⎪⎪⎨⎪=⎪⎩(t为参数)被双曲线221x y-=截得的弦长为_________.18.已知在极坐标系中,曲线C的极坐标方程是2sin4cos0ρθθ+=,以极点为原点,极轴为x轴的正半轴建立直角坐标系,直线l的参数方程是112x tty⎧=-+⎪⎪⎨⎪=⎪⎩(为参数),M (0l与曲线C的公共点为P,Q,则11PM QM+=_______19.已知(,)P x y是椭圆22143x y+=上的一个动点,则x y+的最大值是__________.20.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴,建立极坐标系,直线l的参数方程为1cos,sinx ty tαα=-+⎧⎨=⎩(t为参数),曲线C的方程为4cosρθ=(02πθ≤≤),()2,0C.直线l与曲线C相交于A,B两点,当ABC的面积最大时,tanα=______.三、解答题21.已知直线l的参数方程为12{2x ty ==(t 为参数),曲线C 的参数方程为4cos {4sin x y θθ==(θ为参数).(1)将曲线C 的参数方程化为普通方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的长. 22.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x ty t =+⎧⎨=⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系有相同的长度单位,曲线2C 的极坐标方程为2sin ρθ=,曲线3C 的极坐标方程为(0)6πθρ=>. (1)求曲线1C 的普通方程和3C 的直角坐标方程; (2)设3C 分别交1C 、2C 于点P 、Q ,求1C PQ ∆的面积.23.已知直线l的参数方程为12x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数).在平面直角坐标系xOy 中,()1,2P ,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线M 的极坐标方程为4cos ρθ=,直线l 与曲线M 交于A ,B 两点. (1)求曲线M 的直角坐标方程; (2)求PA PB ⋅的值.24.在平面直角坐标系xoy 中,已知直线l的参数方程为42x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为413cos 4k k k k ρπθ=⎛⎫-++ ⎪⎝⎭.(1)当1k =时,求直线l 和C 的普通方程;(2)当2k =时,试判断直线l 和C 有无交点若有,求出交点的坐标;若无,说明理由.25.在直角坐标系xOy 中直线l的参数方程为1x y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 2sin ρθθ=. (1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 交曲线C 于A ,B 两点,求线段AB 的长度.26.在直角坐标系xOy 中,直线l的参数方程为32t x y ⎧=-+⎪⎪⎨⎪=⎪⎩.(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为24cos 30p ρθ-+=.(1)求l 的普通方程及C 的直角坐标方程; (2)求曲线C 上的点P 到l 距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用曲线的参数方程得32co sin -32s x y θθ=+-化简求解即可 【详解】由题()32cos 3sin 23-s x y θθθϕ=+-=++ 故当()cos 1θϕ+=时,2 -x y3+ 故选D 【点睛】本题考查参数方程求最值,考查辅助角公式,是基础题2.D解析:D 【分析】根据题意,将曲线C 的极坐标方程变形为标准方程,由直线过的点的坐标可得m 的值,将直线的参数方程与曲线C 的方程联立,可得2220t t --=,由一元二次方程根与系数的关系计算可得答案;【详解】解:根据题意,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,则其标准方程为221124x y +=,其左焦点为(-,直线l过点(-,其参数方程为(x m ty ⎧=⎪⎪⎨⎪=⎪⎩为参数),则m =-将直线l的参数方程22x y ⎧=-⎪⎪⎨⎪=⎪⎩与曲线C 的方程221124x y +=联立,得2220t t --=, 则12||||||2FA FB t t ==. 故选:D 【点睛】本题考查椭圆的极坐标方程、参数方程,涉及椭圆与直线的位置关系,关键是求出椭圆、直线的普通方程,属于中档题.3.D解析:D 【分析】先将直线直线l 与曲线C 转化为普通方程,结合图形分析可得,要使ABC ∆的面积最大,即要ACB ∠为直角,从而求解出tan α. 【详解】解:因为曲线C 的方程为4cos 02πρθθ⎛⎫= ⎪⎝⎭, 两边同时乘以ρ,可得24cos ρρθ=,所以曲线C 的普通方程为22(2)4(02)x y y -+=, 曲线C 是以(2,0)C 为圆心,2为半径的上半个圆. 因为直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩,(t 为参数),所以直线l 的普通方程为tan tan 0x y αα-+=,因为1sin 2sin 2ABCS CA CB ACB ACB ∆, 所以当ACB ∠为直角时ABC ∆的面积最大,此时C 到直线l 的距离22222AB CA CB d +=== ,因为直线l 与x 轴交于()1,0D -, 所以3CD =,于是7DE =, 所以214tan 77α==, 故选D . 【点睛】本题考查了曲线的参数方程、极坐标方程与普通方程之间的互化,同时考查了直线与圆的位置关系,数形结合是本题的核心思想.4.D解析:D 【解析】 【分析】根据参数的几何意义求解即可。

(完整版)选修4-4坐标系与参数方程-高考题及答案

(完整版)选修4-4坐标系与参数方程-高考题及答案

x t 3,1、已知在直角坐标系xOy中,直线I的参数方程为_ (t为参数),在极坐标系(与y v3t直角坐标系xOy取相同的长度单位,且以原点0为极点,以x轴正半轴为极轴)中,曲线C 的极坐标方程为2 4 cos 3 0.①求直线I普通方程和曲线C的直角坐标方程;②设点P是曲线C上的一个动点,求它到直线I的距离的取值范围.x = 2cos 0 , 一2、已知曲线C的参数方程是(0为参数),以坐标原点为极点,x轴的正半轴y = 3sin 0 ,为极轴建立极坐标系,曲线C2的极坐标方程是p = 2,正方形ABCD勺顶点都在C2上,且AnB C、D依逆时针次序排列,点A的极坐标为(2 ,—).3(I )求点A B C、D的直角坐标;(n )设P为C上任意一点,求|PA2+ |PB2+ |PC2+ |PD2的取值范围.. . 2 2 . - 2 23、在直角坐标系xOy中,圆C :x + y = 4,圆C2:(x—2) + y = 4.(I )在以O为极点,x轴正半轴为极轴的极坐标系中,分别写出圆C i, C2的极坐标方程, 并求出圆C,C2的交点坐标(用极坐标表示);(n)求圆C与C2的公共弦的参数方程.4、在直角坐标系xOy中,直线I的方程为x —y + 4 = 0,曲线C的参数方程为x= :::]3cos a ,(a为参数).y= sin a(1)已知在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以xn轴正半轴为极轴)中,点P的极坐标为(4 ,―),判断点P与直线I的位置关系;(2)设点Q是曲线C上的一个动点,求它到直线I的距离的最小值.X = 2C0S a ,5、在直角坐标系xOy 中,曲线G 的参数方程为( a 为参数).M 是C i 上的y = 2+ 2sin a .动点,P 点满足0F= 20M P 点的轨迹为曲线 C 2.(1)求C 2的方程;(2)在以0为极点,x 轴的正半轴为极轴的极坐标系中,射线 交点为A ,与C 2的异于极点的交点为 B,求|AE |.x = cos e6、已知P 为半圆C:( e 为参数,o w e wn )上的点,点 A 的坐标为(1,0) , Oy = sin en 为坐标原点,点 M 在射线OP 上,线段OM 与C 的弧AP 的长度均为—.(1) 以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点 M 的极坐标;(2) 求直线AM 的参数方程.ne =g 与C 的异于极点的n n .* j 3 7、在极坐标系中,已知圆C经过点P .2,~4,圆心为直线P sin 9—3 =一与极轴的交点,求圆C的极坐标方程.8、在平面直角坐标系中,以坐标原点0为极点,x轴的正半轴为极轴建立极坐标系.已知直线I上两点M, N的极坐标分别为(2,0), 穿,-2,圆C的参数方程为x= 2+ 2cos 9 ,厂(9为参数).y=—3+ 2sin 9(1) 设P为线段MN的中点,求直线OP的平面直角坐标方程;(2) 判断直线l与圆C的位置关系.1、【答案】①直线I 的普通方程为:,3x y 3、、3 0. n n n n nn_nnA (2cos —, 2sin —), B (2cos(-3 + R , 2sin( — + —)) , q2cos( — +n ), 2sin( — +n 3 n n 3 nn )) , D (2cos( — + 〒),2sin( — + 亍)),即 A (1 , 3) , B ( — 3 , 1), Q — 1, — 3) , D ( 3 , — 1). (n )设 P (2cos 0 , 3sin 0 ),令 S =|PA 2+ |PB 2+ |PC 2+ |PD 2 ,则2 2S = 16cos 0 + 36sin 0 + 162=32 + 20sin 0 .因为0W sin 20W 1,所以S 的取值范围是[32 , 52].3、解:(I )圆C 的极坐标方程为p = 2 , 圆G 的极坐标方程p = 4cos 0 .2 解卩,得卩=2, 0=±石,p _ 4cos 03从而p_占.n(1)把极坐标系的点P (4 ,-)化为直角坐标,得 R0,4),满足直线l 的方程x — y + 4_ 0,所以点P 在直线l 上. 故可设点Q 的坐标为曲线C 的直角坐标方程为:x 2y 2②曲线C 的标准方程为(x 2)2 y 2•••圆心C(2,0)到直线I 的距离为:d所以点P 到直线I 的距离的取值范围是2、解:(I )由已知可得2 24x 3 0【或(x 2)2 y 21]1,圆心C(2,0),半径为1;|2、一 3 0 3.3| 5,32 2故圆C 与圆C 2交点的坐标为(2 ,,(2,—勺.注:极坐标系下点的表示不唯一.x _ p cos 0 ,得圆 y _ p sin 0 (n )法一:由故圆C 与G 的公共弦的参数方程为x_ t 1,-3w t w 3.x _ 1(或参数方程写成 , —..3 < y w 3)法二:将x = 1代入 cos 0得 p sin 0p cos 0 = 1,于是圆 C 与G 的公共弦的参数方程为x _ 1 y _ tan 0 '4、因为点P 的直角坐标(0,4)⑵因为点Q 在曲线C 上,(.3cos a , sin a ),C 与C 2交点的直角坐标分别为从而点Q 到直线I 的距离=;'2cos( a+ -Q )+ 2 2nl由此得,当cos( a + —) =— 1时,d 取得最小值,且最小值为:2.x y5、⑴设Rx , y ),则由条件知 M ^ 2 .由于M 点在C 上,x=2cos a , 2X = 4cos a ,所以即yy = 4+ 4sin a .2= 2+ 2sin a ,X = 4cos a ,从而C 2的参数方程为(a 为参数)y = 4 + 4sin a .(2)曲线C 的极坐标方程为 p = 4sin 0,曲线C 2的极坐标方程为 p = 8sin 0 .n n射线0 =三与C 的交点A 的极径为 p 1= 4sin —,3 3nn射线0 = y 与G 的交点B 的极径为p 2= 8sin —. 所以 | AB = | p 2— p 1| = 2 '3.nn6、 (1)由已知,M 点的极角为y ,且M 点的极径等于 J ,n n故点M 的极坐标为 ~~ .⑵M 点的直角坐标为n ,二空,A (1,0),故直线AM 的参数方程为6 6nx=1 + 6 — 1t ,(t 为参数).| 3cos a — sina + 4|2cos7t6所以圆C 的圆心坐标为(1,0) 因为圆C经过点P .'2, n,所以圆C的半径PC= 2+ 12—2X 1 x J2cos■—= 1,¥ 4于是圆C 过极点,所以圆 C 的极坐标方程为p = 2cos e .0, ¥8、解:(1)由题意知,M N 的平面直角坐标分别为所以直线l 的平面直角坐标方程为 3x + 3y — 2 3= 0.又圆C 的圆心坐标为(2 , — ,;3),半径r = 2, 圆心到直线I 的距离d =, : — ■' =-<r ,故直线l 与圆C 相交.yJ 3 + 9 2又P 为线段MN 勺中点,从而点 P 的平面直角坐标为1,,故直线OP 的平面直角坐标方程为 ⑵因为直线l 上两点M N 的平面直角坐标分别为 (2,0)(2,0)。

2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)

2020年高考数学 选修4-4:坐标系与参数方程 解答题专练(含答案)

2020年高考数学选修4-4:坐标系与参数方程解答题专练1.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,直线,曲线(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系,点M的极坐标为.(1)求直线l1和曲线C的极坐标方程;(2)在极坐标系中,已知射线与,C的公共点分别为A,B,且,求MOB的面积.2.【选修4-4:坐标系与参数方程】已知曲线C的极坐标方程是,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是设点P(-1,2).(1)将曲线C的极坐标方程化为直角坐标方程,将直线的参数方程化为普通方程;(2)设直线l与曲线C相交于M,N两点,求的值.3.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,已知曲线C的参数方程为(θ为参数),直线l的参数方程为(t为参数),点P的坐标为(-2,0)(1)若点Q在曲线C上运动,点M在线段PQ上运动,且,求动点M的轨迹方程;(2)设直线l与曲线C交于A,B两点,求的值.4.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,设倾斜角为α的直线l:(t为参数)与曲线(φ为参数)相交于不同的两点A,B.(1)若,若以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AB的极坐标方程;(2)若直线的斜率为,点,求的值.5.【选修4-4:坐标系与参数方程】在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线OM与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.6.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为,在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点P(-1,0),直线l和曲线C交于A,B两点,求的值.7.【选修4-4:坐标系与参数方程】以平面直角坐标系的原点O为极点,x轴的正半轴为极轴建立极坐标系,已知点M的直角坐标为(1,0),若直线l的极坐标方程为,曲线C的参数方程是,(m为参数).(1)求直线l的直角坐标方程和曲线C的普通方程;(2)设直线l与曲线C交于A,B两点,求.8.【选修4-4:坐标系与参数方程】已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l与圆C交于A,B两点.(1)求圆C的直角坐标方程及弦AB的长;(2)动点P在圆C上(不与A,B重合),试求ABP的面积的最大值9.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,点P(0,﹣1),直线l的参数方程为(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ=8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=时,求sinα的值.10.【选修4-4:坐标系与参数方程】在平面直角坐标系xOy中,曲线C的参数方程为(α为参数).以坐标原点O为极点,z轴正半轴为极轴建立极坐标系,直线l的极坐标方程为(1)求曲线C的普通方程和直线l的直角坐标方程;(2)设点M(0,1).若直线l与曲线C相交于A,B两点,求|MA|+|MB|的值.为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点P的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若Q是曲线C上的动点,M为线段PQ的中点,直线l上有两点A,B,始终满足|AB|=4,求△MAB面积的最大值与最小值。

上海南汇第二中学高中数学选修4-4第二章《参数方程》测试(包含答案解析)

上海南汇第二中学高中数学选修4-4第二章《参数方程》测试(包含答案解析)

一、选择题1.在直角坐标系xOy 中,曲线C:2x ty ⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l:30x +=的距离的最小值为( )A .23BCD2.已知直线l的参数方程为2x m t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,且曲线C 的左焦点F 在直线l 上,若直线l 与曲线C 交于A 、B 两点,则FA FB ⋅的值等于( ) A .1BCD .23.已知点(),x y 在圆22()(23)1x y -=++上,则x y +的最大值是( ) A .1B .1-C1D.1-4.已知点A ,B 是曲线2241x y +=上两点,且OA OB ⊥(O 为坐标原点),则2211OAOB+=( )A .34 B .1C .54D .55.已知椭圆4cos :3sin x C y θθ=⎧⎨=⎩(θ为参数)与x 轴正半轴,y 轴正半轴的交点分别为,A B ,动点P 是椭圆上任一点,则PAB ∆面积的最大值为( )A.)61B.)61C .125D .2456.已知椭圆C 的参数方程为3cos 5sin x y θθ=⎧⎨=⎩(θ为参数),则C 的两个焦点坐标是( )A .(4,0)±B .(0,4)±C.(D.(0,7.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t为参数)与曲线ρ=B ,C 两点,则BC 的值为( ) A.BC.D8.在直角坐标系xOy 中,过点()1,2P -的直线l的参数方程为1 2x y ⎧=--⎪⎪⎨⎪=⎪⎩(t 为参数),直线l 与抛物线2y x 交于点,A B ,则PA PB ⋅的值是( )AB .2C.D .109.点M的直角坐标是()1-,则点M 的极坐标为( ) A .52,6π⎛⎫ ⎪⎝⎭B .72,6π⎛⎫ ⎪⎝⎭C .112,6π⎛⎫⎪⎝⎭D .2,6π⎛⎫⎪⎝⎭10.把曲线12cos 2sin x C y θθ=⎧⎨=⎩:(θ为参数)上各点的横坐标压缩为原来的14,纵坐标压缩为2C 为 A .221241x y +=B .224413y x +=C .2213y x +=D .22344x y +=11.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,已知直线l 的参数方程是13x t y t =+⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是4cos ρθ=,则直线l 被圆C 截得的弦长为( ) AB.CD.12.已知圆()22:11M x y -+=,圆()22:11N x y ++=,直线12,l l 分别过圆心,M N ,且1l 与圆M 相交于,A B 两点,2l 与圆N 相交于,C D 两点,点P 是椭圆22149x y+=上任意一点,则PA PB PC PD ⋅+⋅的最小值为( ) A .7B .8C .9D .10二、填空题13.对于任意实数,直线y x b =+与椭圆()2cos 04sin x y θθπθ=⎧≤≤⎨=⎩恒有公共点,则b 的取值范围是______ .14.在平面直角坐标系xoy 中,曲线C 的参数方程是2x t y t =⎧⎨=⎩,(t 为参数).以原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l的极坐标方程是sin()4πρθ-=直线l被曲线C 截得的线段长为_______15.在直角坐标系xOy 中,若直线:x t l y t a =⎧⎨=-⎩(t 为参数)过椭圆4cos :5sin x C y θθ=⎧⎨=⎩(θ为参数)的左顶点,则a =__________. 16.设点(),x y 是曲线C 2cos sin x y θθ=-+⎧⎨=⎩(θ为参数,且02θπ≤<)上的任意一点,则yx的最大值为________. 17.将参数方程1212a x t t b y t t ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩(t 为参数),转化成普通方程为_______.18.若点P (x ,y )在曲线(θ为参数,θ∈R )上,则的取值范围是_____.19.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线2:sin 2cos (0)C a a ρθθ=>.过点(2,4)P --的直线l 的参数方程为2{4x ty t=-+=-+(t 为参数).设直线l 与曲线C 分别交于,M N 两点.若,,PM MN PN 成等比数列,则a 的值为________.20.已知点()11,A x y ,()22,B x y 是椭圆2212x y +=两个不同的动点,且满足11222x y x y ⋅+⋅=-2212x x +的值是_____. 三、解答题21.在直角坐标系xOy 中,已知曲线C 的参数方程为2sin x y θθ⎧=⎪⎨=⎪⎩,(θ为参数).将曲线C 上的点按坐标变换22x x y y ⎧'='=⎪⎨⎪⎩得到曲线C ',以坐标原点为极点,x 轴的非负半轴为极轴,建立极坐标系设A 点的极坐标为3,22π⎛⎫⎪⎝⎭.(1)求曲C '极坐标方程;(2)若过点A 且倾斜角为60︒的直线l 与曲线C '交于,M N 两点,求||||AM AN ⋅的值. 22.[选修4—4:坐标系与参数方程]以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l 的参数方程是3x ty t =⎧⎨=-⎩(t 为参数),圆C 的极坐标方程是ρ=4cos θ,求直线l 被圆C 截得的弦长.23.在直角坐标系xOy 中,曲线C 的参数方程为2cos (22sin x y θθθ=⎧⎨=+⎩为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系.()1写出曲线C 的极坐标方程; ()2设点M的极坐标为4π⎫⎪⎭,过点M 的直线l 与曲线C 相交于A ,B 两点,若2MA MB =,求AB 的弦长.24.在直角坐标系xOy 中,曲线C的参数方程为cos )cos )x y αααα⎧=-⎪⎨=+⎪⎩(α为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ+2ρsin θ+m =0.(1)求曲线C 和直线l 的直角坐标方程; (2)若曲线C 上的点到直线l,求实数m 的值. 25.在直角坐标系xOy 中,曲线C 的参数方程为3cos 4sin 129cos sin 55x y ϕϕϕϕ=-⎧⎪⎨=+⎪⎩(ϕ为参数), 以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为sin 3⎛⎫+= ⎪⎝⎭πρθ (1)曲线C 的普通方程和直线l 的直角坐标方程;(2)若直线l 与曲线C 交于P Q ,两点,M (2,0),求MP MQ +的值.26.已知直线l的参数方程为242x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数),以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=.(Ⅰ)求出直线l 的普通方程以及曲线C 的直角坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,设()0,4P -,求PA PB +的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C上点的坐标为()2t , 则C 上的点到直线l的距离2233d===,即C 上的点到直线1. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.D解析:D 【分析】根据题意,将曲线C 的极坐标方程变形为标准方程,由直线过的点的坐标可得m 的值,将直线的参数方程与曲线C 的方程联立,可得2220t t --=,由一元二次方程根与系数的关系计算可得答案; 【详解】解:根据题意,曲线C 的极坐标方程为2222cos 3sin 12ρθρθ+=,则其标准方程为221124x y +=,其左焦点为(-,直线l过点(-,其参数方程为(x m ty⎧=⎪⎪⎨⎪=⎪⎩为参数),则m =-将直线l的参数方程x y ⎧=-⎪⎪⎨⎪=⎪⎩与曲线C 的方程221124x y +=联立,得2220t t --=, 则12||||||2FA FB t t ==. 故选:D 【点睛】本题考查椭圆的极坐标方程、参数方程,涉及椭圆与直线的位置关系,关键是求出椭圆、直线的普通方程,属于中档题.3.C解析:C 【分析】设圆上一点()2,3P cos sin αα+-,则1x y sin cos αα+=+-,利用正弦型函数求最值,即可得出结论 【详解】设22(2)(3)1x y -++=上一点()2,3P cos sin αα+-,则231114x y cos sin sin cos πααααα⎛⎫+=++-=+-=+-≤ ⎪⎝⎭,故选:C 【点睛】本题考查圆的参数方程的应用,考查正弦型函数的最值4.D解析:D 【解析】 【分析】将曲线2241x y +=化为极坐标方程,设12(,),(,)2A B πρθρθ+,可将2211OAOB+表示为θ的函数,可得答案.【详解】解:将曲线2241x y +=化为极坐标方程得:2222cos 4sin 1ρθρθ+=,可得2221cos 4sin ρθθ=+, 由OA OB ⊥,可设12(,),(,)2A B πρθρθ+,可得2211OAOB+=221211+ρρ=2222cos 4sin +cos +4sin +22ππθθθθ++()()=5,故选D. 【点睛】本题主要考查椭圆的极坐标方程,注意灵活运用其性质解题.5.B解析:B 【解析】分析:根据椭圆的方程算出A (4,0)、B (0,3),从而得到|AB|=5且直线AB :3x+4y ﹣12=0.设点P (4cosθ,3sinθ),由点到直线的距离公式算出P 到直线AB 距离为d=125()4πθ+﹣1|,结合三角函数的图象与性质算出d max =1251),由此结合三角形面积公式,即可得到△PAB 面积的最大值.详解:由题得椭圆C 方程为:221169x y +=,∴椭圆与x 正半轴交于点A (4,0),与y 正半轴的交于点B (0,3), ∵P 是椭圆上任一个动点,设点P (4cosθ,3sinθ)(θ∈[0,2π]) ∴点P 到直线AB :3x+4y ﹣12=0的距离为=125()4πθ+﹣1|, 由此可得:当θ=54π时,d max =1251)∴△PAB 面积的最大值为S=12|AB|×d max =61). 点睛:(1)本题主要考查椭圆的参数方程和三角函数的图像和性质,意在考查学生对这些知 识的掌握水平和分析推理能力计算能力.(2)对于()4πθ+﹣1|,不是sin ()4πθ+=1时,整个函数取最大值,而应该是sin ()4πθ+=-1,要看后面的“-1”.6.B解析:B 【解析】分析:将参数方程化为普通方程,判断出焦点在y 轴上,利用222c a b =-即可得结果.详解:椭圆的参数方程为3cos (5x y sin θθθ=⎧⎨=⎩为参数), ∴椭圆的标准方程是221925+=x y ,∴椭圆的焦点在y 轴上,且2225,9a b ==, 22216c a b ∴=-=,4c ∴=,∴椭圆的两个焦点坐标是()0,4±,故选B.点睛:本题主要考查椭圆的参数方程以及椭圆的简单性质,属于中档题. 参数方程主要通过代入法或者已知恒等式(如22cos sin 1αα+=等三角恒等式)消去参数化为普通方程.7.D解析:D 【解析】由230130x tsin y tsin =-︒⎧⎨=-+︒⎩得1(2),10y x x y +=--+-=,由ρ=228x y += ,所以圆,因此BC =,选D. 点睛:1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换法. 2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响.3.直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可8.B解析:B 【解析】设,A B 对应的参数分别为12,t t ,把l的参数方程12x y ⎧=-⎪⎪⎨⎪=+⎪⎩代入2y x =中得:22122⎛⎫+=-- ⎪ ⎪⎝⎭,整理得:220t -=,()242100∴∆=-⨯-=>,1212?2,?t t t t PA PB +==-∴1212··2t t t t ===,故选B. 9.B解析:B 【解析】3π7π2,tan (π,)26ρθθθ===∈⇒=,故选:B .点睛:(1)直角坐标方程化为极坐标方程,只要运用公式cos x ρθ=及sin y ρθ=直接代入并化简即可; (2)极坐标方程化为直角坐标方程时常通过变形,构造形如2cos ,sin ,ρθρθρ的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须同解,因此应注意对变形过程的检验.10.B解析:B【解析】根据题意,曲线C 2:12θ x cos y θθ⎧=⎪⎪⎨⎪=⎪⎩(为参数), 消去参数,化为直角坐标方程是224413y x +=故选B .点睛:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,经常用到公式:22221cos sin 1,1tan cos θθθθ+=+=.不要忘了参数的范围. 11.D解析:D 【分析】先求出直线和圆的普通方程,再利用圆的弦长公式求弦长. 【详解】由题意得,直线l 的普通方程为y =x -4, 圆C 的直角坐标方程为(x -2)2+y 2=4, 圆心到直线l 的距离d=,直线l 被圆C 截得的弦长为= 【点睛】(1)本题主要考查参数方程极坐标方程与普通方程的互化,意在考察学生对这些知识的掌握水平和分析推理计算能力.(2)求直线和圆相交的弦长,一般解直角三角形,利用公式||AB =. 12.B解析:B 【分析】根据圆和椭圆的参数方程可假设出,,A C P 点坐标;根据,A B 共线、,C D 共线可得,B D 坐标;写出向量后,根据向量数量积运算法则可求得210sin 8PA PB PC PD θ⋅+⋅=+,从而可知当2sin 0θ=时,取得最小值,代入求得结果. 【详解】由题意可设:()1cos ,sin A αα+,()1cos ,sin C ββ-+,()2cos 3sin P θθ,则()1cos ,sin B αα--,()1cos ,sin D ββ---()1cos 2cos ,sin 3sin PA αθαθ∴=+--,()1cos 2cos ,sin 3sin PB αθαθ=----()2222212cos cos 9sin sin 5sin 4cos 4PA PB θαθαθθ∴⋅=--+-=-+同理可得:25sin 4cos 4PC PD θθ⋅=++210sin 8PA PB PC PD θ∴⋅+⋅=+当2sin 0θ=时,()min8PA PB PC PD ⋅+⋅=故选:B 【点睛】本题考查向量数量积的最值的求解问题,关键是能够灵活应用圆和椭圆的参数方程的形式,表示出所需的点的坐标,从而将问题转化为三角函数最值的求解问题.属于中档题.二、填空题13.【分析】将椭圆参数方程化为普通方程通过数形结合的方式确定临界状态结合直线与椭圆位置关系可求得结果【详解】由得:即表示椭圆的上半部分;由图象可知:当过时;当如图与椭圆相切且时取得最大值;将代入椭圆方程解析:2,25⎡⎤-⎣⎦【分析】将椭圆参数方程化为普通方程,通过数形结合的方式确定临界状态,结合直线与椭圆位置关系可求得结果. 【详解】由()2cos 04sin x y θθπθ=⎧≤≤⎨=⎩得:()2210416x y y +=≥,即表示椭圆的上半部分;由图象可知:当y x b =+过()2,0时,min 2b =-; 当y x b =+如图与椭圆相切,且0b >时,b 取得最大值; 将y x b =+代入椭圆方程得:2252160x bx b ++-=,()22242016163200b b b ∴∆=--=-+=,解得:25b =±,max 25b ∴=.b ∴的取值范围为2,25⎡⎤-⎣⎦.故答案为:2,⎡-⎣.【点睛】本题考查椭圆的参数方程,涉及直线与椭圆的位置关系,关键是能够通过数形结合的方式确定临界状态;易错点是忽略参数θ的取值范围,造成图象出现错误.14.【分析】将曲线的参数方程化为普通方程;直线极坐标方程化为直角坐标方程联立后求得交点坐标利用两点间距离公式求得线段长【详解】由得的普通方程为:又的直角坐标方程为:联立解得交点坐标为:直线被曲线截得的线解析:【分析】将曲线C 的参数方程化为普通方程;直线l 极坐标方程化为直角坐标方程,联立后求得交点坐标,利用两点间距离公式求得线段长. 【详解】 由2x t y t=⎧⎨=⎩得C 的普通方程为:2x y =又sin sin cos cos sin sin cos 44422πππρθρθρθρθρθ⎛⎫-=-=-= ⎪⎝⎭l ∴的直角坐标方程为:2y x =+联立22y x y x=+⎧⎨=⎩,解得交点坐标为:()1,1-,()2,4∴直线l 被曲线C =本题正确结果:【点睛】本题考查直线被曲线截得的弦长问题,关键是能够将参数方程化为普通方程、极坐标方程化为直角坐标方程,进而在直角坐标系中来求解.15.【解析】分析:直接化参数方程为普通方程得到直线和椭圆的普通方程求出椭圆的左顶点代入直线的方程即可求得的值详解:由已知可得圆(为参数)化为普通方程可得故左顶点为直线(为参数)化为普通方程可得又点在直线解析:4-. 【解析】分析:直接化参数方程为普通方程,得到直线和椭圆的普通方程,求出椭圆的左顶点,代入直线的方程,即可求得a 的值.详解:由已知可得圆4cos :sin x C y ϕϕ=⎧⎨=⎩(ϕ为参数)化为普通方程, 可得22116x y +=,故左顶点为(4,0)-,直线x t y t a =⎧⎨=-⎩(t 为参数)化为普通方程,可得y x a =-,又点(4,0)-在直线上,故04a =--,解得4a =-,故答案是4-.点睛:该题考查的是有关直线的参数方程与椭圆的参数方程的问题,在解题的过程中,需要将参数方程化为普通方程,所以就需要掌握参数方程向普通方程的转化-----消参,之后要明确椭圆的左顶点的坐标,以及点在直线上的条件,从而求得参数的值.16.【分析】将曲线的参数方程化为直角坐标方程知曲线是圆心为半径为1的圆表示点和原点所成直线的斜率作出圆的过原点的切线数形结合即可求得最大值【详解】曲线化为直角坐标方程为所以曲线是圆心为半径为1的圆表示点 解析:33【分析】将曲线的参数方程化为直角坐标方程知曲线C 是圆心为(2,0)-,半径为1的圆,yx表示点(),x y 和原点所成直线的斜率,作出圆的过原点的切线,数形结合即可求得最大值. 【详解】曲线2cos sin x y θθ=-+⎧⎨=⎩化为直角坐标方程为22(2)1x y ++=,所以曲线C 是圆心为(2,0)-,半径为1的圆,y x 表示点(),x y 和原点所成直线的斜率,作切线OA 、OB ,由图可知,yx在OA 、OB 的斜率之间变化且yx在A 点处取得最大值, 在Rt OAC △中,223OA OC CA -3tan CA AOC OA ∠==OA 的3y x 3故答案为:3 3【点睛】本题考查圆的参数方程、圆的切线的性质、直线的倾斜角与斜率,属于中档题. 17.【分析】将参数方程变形为两式平方再相减可得出曲线的普通方程【详解】将参数方程变形为两等式平方得上述两个等式相减得因此所求普通方程为故答案为:【点睛】本题考查参数方程化为普通方程在消参中常用平方消元法解析:22221 x ya b-=【分析】将参数方程变形为112112xta tytb t⎧⎛⎫=+⎪⎪⎪⎝⎭⎨⎛⎫⎪=-⎪⎪⎝⎭⎩,两式平方再相减可得出曲线的普通方程.【详解】将参数方程变形为112112xta tytb t⎧⎛⎫=+⎪⎪⎪⎝⎭⎨⎛⎫⎪=-⎪⎪⎝⎭⎩,两等式平方得2222222211241124xta tytb t⎧⎛⎫=++⎪ ⎪⎪⎝⎭⎨⎛⎫⎪=+-⎪⎪⎝⎭⎩,上述两个等式相减得22221x ya b-=,因此,所求普通方程为22221x ya b-=,故答案为:22221 x ya b-=.【点睛】本题考查参数方程化为普通方程,在消参中,常用平方消元法与加减消元法,考查计算能力,属于中等题.18.【解析】试题分析:求出曲线的参数方程则表示去上的点与(10)连线的斜率求出过点(10)的曲线的切线斜率即为的最值解:曲线的普通方程为(x+1)2+y2=1过点A(10)作圆(x+1)2+y2=1的切解析:.【解析】试题分析:求出曲线的参数方程,则表示去上的点与(1,0)连线的斜率.求出过点(1,0)的曲线的切线斜率即为的最值.解:曲线的普通方程为(x+1)2+y2=1,过点A(1,0)作圆(x+1)2+y2=1的切线,设切线的斜率为k,则切线方程为y=kx ﹣k ,即kx ﹣y ﹣k=0. ∴圆心(﹣1,0)到切线的距离d==1,解得k=.∵P 在圆上,∴﹣≤k PA ≤.即﹣≤≤.故答案为.考点:参数方程化成普通方程.19.1【解析】试题分析:曲线则所以可得直角坐标系方程为将直线的参数方程代入抛物线方程得:若成等比数列所以化简得又因为所以考点:化极坐标和参数方程化为普通方程解决问题解析:1 【解析】 试题分析:曲线2:sin 2cos (0)C a a ρθθ=>,则,所以可得直角坐标系方程为22y ax ,将直线的参数方程代入抛物线方程得:2t (82)1640a t a -+++=121282,164t t a t t a +=+⋅=+若,,PM MN PN 成等比数列,所以22212121212||,()()4MN PM PN t t t t t t t t =∴-=+-=,化简得2(4)5(4)a a +=+又因为04a a ><-或,所以1a =. 考点:化极坐标和参数方程化为普通方程解决问题.20.2【分析】设根据题设条件求得不妨设即可求解【详解】由题意点是椭圆两个不同的动点可设则所以所以不妨设则故答案为:2【点睛】本题主要考查了椭圆的参数方程的应用以及三角函数的性质的应用着重考查转化思想以及解析:2 【分析】设(2,sin ),(2,sin )A B ααββ,根据题设条件,求得sin 2sin 21αβ==-, 不妨设37,44ππαβ==,即可求解. 【详解】由题意,点()11,A x y ,()22,B x y 是椭圆2212x y +=两个不同的动点,可设(2,sin ),(2,sin )A B ααββ, 则112222cos 2cos (sin 2sin 2)22x y x y ααββαβ⋅+⋅=+=+=-所以sin 2sin 22αβ+=-,所以sin 2sin 21αβ==-, 不妨设37,44ππαβ==,则22122237))244x x ππ=+=+. 故答案为:2. 【点睛】本题主要考查了椭圆的参数方程的应用,以及三角函数的性质的应用,着重考查转化思想,以及运算与求解能力.三、解答题21.(1)1ρ=;(2)5||||4AM AN ⋅=. 【分析】(1)把曲线C 的参数方程化为普通方程,然后利用变换得出C '的普通方程,再化为极坐标方程;(2)把A 点极坐标化为直角坐标,写出直线l 的标准参数方程,代入曲线C '的直角坐标方程中,求出12t t 即可. 【详解】(1)曲线C 的普通方程为2212x y +=,由2x x y y⎧'='=⎪⎨⎪⎩,得到x y y ''⎧=⎪⎨=⎪⎩代入曲线C 的普通方程得到()()221x y ''+= C '的极坐极方程为1ρ=(2)点A 的直角坐标为30,2⎛⎫⎪⎝⎭,直线l的参数方程为1232x t y ⎧=⎪⎪⎨⎪=⎪⎩代入22:1C x y +='中,可得2450t ++=5||||4AM AN ⋅=. 【点睛】结论点睛:本题考查极坐标方程与直角坐标方程的互化,参数方程与普通方程的互化, (1)公式cos sin x y ρθρθ==可实现极坐标方程与直角坐标方程的互化;(2)直线的标准参数方程中参数具有几何意义:过000(,)P x y 的直线l 的参数方程为00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数),则0t P P =.从0P 向上的点对应0t >,向下的点对应参数0t <.22.14【分析】由题意,消去参数即可得到直线的普通方程,利用极坐标与直角坐标的互化公式,即可得到曲线的极坐标方程,再利用圆的弦长公式,即可求解弦长. 【详解】解:直线l 的参数方程(t 为参数)化为直角坐标方程是y =x -3,圆C 的极坐标方程ρ=4cos θ化为直角坐标方程是x 2+y 2-4x =0. 圆C 的圆心(2,0)到直线x -y -3=0的距离为d ==22. 又圆C 的半径r =2,所以直线l 被圆C 截得的弦长为2=.【点睛】本题考查了极坐标方程的求法及应用,重点考查了转化与化归能力.通常遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程. 23.(1)4sin ρθ=;(2)3 【分析】()1将参数方程转化为直角坐标方程,然后转化为极坐标方程可得曲线C 的极坐标方程为4sin ρθ=.()2设直线l 的参数方程是11x t cos y t sin θθ=+⋅⎧⎨=+⋅⎩(θ为参数),与圆的方程联立可得()2220t cos sin t θθ+--=,结合题意和直线参数的几何意义可得弦长123AB t t =-=.【详解】()1曲线C 的参数方程为222x cos y sin θθ=⎧⎨=+⎩(θ为参数). ∴曲线C 的直角坐标方程为2240x y y +-=, ∴曲线C 的极坐标方程为240sin ρρθ-=,即曲线C 的极坐标方程为4sin ρθ=.()2设直线l 的参数方程是11x t cos y t sin θθ=+⋅⎧⎨=+⋅⎩(θ为参数)①, 曲线C 的直角坐标方程是2240x y y +-=,②,①②联立,得()2220t cos sin t θθ+--=,122t t ∴=-,且2MA NB =,122t t ∴=-,则12t =,21t =-或12t =-,21t =,AB ∴的弦长123AB t t =-=.【点睛】本题主要考查参数方程与极坐标方程的转化方法,直线参数方程的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.24.(1)221204x y x y m +=++=,;(2)-【分析】(1)对曲线C 中,x y 的等式两边平方后用加减消参即可求得其普通方程;利用公式法即可将极坐标方程转化为直角坐标方程;(2)设出曲线C 上点的参数坐标,利用点到直线的距离公式,即可容易求得结果. 【详解】(1)对曲线C:cos )cos )x y αααα⎧=-⎪⎨=+⎪⎩, 也即()()222121122x sin cos y sin cos αααα⎧=-⎪⎨=+⎪⎩,消参可得22222x y +=,整理得曲线C 的普通方程为:2214x y +=;又直线l 的极坐标方程为:ρcos θ+2ρsin θ+m =0,故其直角坐标方程为:20x y m ++=. (2)根据题意,设曲线C 上的动点P的坐标为)),2sin cos sin cos αααα⎫-+⎪⎪⎭, 故点P 到直线l 的距离d==.根据题意,直线l 与曲线C 一定不相交,联立直线方程和曲线C 方程, 可得228440y my m ++-=,则2Δ324160m =⨯-<, 解得m >m <-当m >max d ==m =当m <-max d ==,解得m =-综上所述:m =- 【点睛】本题考查极坐标方程、直角坐标方程和参数方程之间的相互转化,涉及利用参数求范围问题,属综合中档题.25.(1)C :221259x y +=,l0y +-=;(2)7【分析】(1)根据参数方程消去参数ϕ得到椭圆方程,利用极坐标公式化简得到答案. (2)将直线l 的参数方程代入椭圆方程,得到1212697t t t t +==-,,计算得到答案. 【详解】(1)曲线C 的参数方程3cos 4sin 129cos sin 55x y ϕϕϕϕ=-⎧⎪⎨=+⎪⎩消去参数ϕ得, 22223443cos sin cos sin 12595555x y ϕϕϕϕ⎛⎫⎛⎫+=-++= ⎪ ⎪⎝⎭⎝⎭,故曲线C 的普通方程为221259x y +=.∵sin 3⎛⎫+= ⎪⎝⎭πρθ∴cos sin 0θρθ+-=,∴直线l0y +-=.(2)设直线l的参数方程为122x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数), 将其代入曲线C 的直角坐标方程并化简得276630t t --=,∴1212697t t t t +==-,. ∵点M (2,0)在直线l 上, ∴127MP MQ t t +=-==. 【点睛】本题考查了参数方程,极坐标方程,意在考查学生的计算能力和转化能力.26.(Ⅰ)l 普通方程为40x y --=;C 的直角坐标方程为2240x y x +-=;(Ⅱ)【分析】(Ⅰ)直线l 的参数方程消去参数t,即得l 的普通方程,由4cos ρθ=得24cos ρρθ= 结合极坐标和直角坐标方程的互化公式,即得解;(Ⅱ)将直线l 的参数方程代入圆:C 2240x y x +-=,利用直线的参数方程的几何意义,可得12PA PB t t +=+,结合韦达定理,即得解. 【详解】解: (Ⅰ)直线l的参数方程24x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)消参后可得l 普通方程为40x y --=由4cos ρθ=得24cos ρρθ=C 的直角坐标方程为2240x y x +-=(或者()2224x y -+=)(Ⅱ)由直线l 的参数方程,可知直线l 过点()0,4P - 将直线l 的参数方程代入圆:C 2240x y x +-=,并整理得2160t +-=解得121216t t t t +== 所以12,0t t >12PA PB t t +=+=【点睛】本题考查了极坐标、参数方程综合,考查了参数方程与普通方程、极坐标与直角坐标的互化,以及直线的参数几何意义的应用,考查了学生概念理解,数学运算的能力,属于中档题.。

高中数学选修44坐标系与参数方程练习题含详解1

高中数学选修44坐标系与参数方程练习题含详解1

数学选修 4-4坐标系与参数方程[ 基础训练 A 组]一、选择题1.若直线的参数方程为x 1 2t (t 为参数 ) ,则直线的斜率为( )y 2 3t A .2B .2 3 D .333C .222.以下在曲线x sin 2( 为参数 ) 上的点是()ycossinA .(1,2)B . (3,1)C . (2, 3)D . (1,3)24 23.将参数方程x 2 sin 2为参数 ) 化为一般方程为(y sin2( )A . y x2B . y x 2C . y x 2(2 x 3)D . yx 2(0 y 1)4.化极坐标方程2cos0 为直角坐标方程为()A . x 2y 20或 y 1B . x 1C . x 2 y 20或 x 1D . y 15.点 M 的直角坐标是 (1, 3) ,则点 M 的极坐标为()A . (2,) B . (2,) C . (2,2)D . (2,2 k),( k Z )33336.极坐标方程cos 2sin 2 表示的曲线为()A .一条射线和一个圆B .两条直线C .一条直线和一个圆D .一个圆二、填空题1.直线x 3 4t (t 为参数 ) 的斜率为 ______________________。

y 4 5t2.参数方程x e te t) (t 为参数) 的一般方程为 __________________。

y2(e te t3.已知直线 l 1 :x 1 3ty 2 (t 为参数 ) 与直线 l 2 : 2x 4 y 5 订交于点 B ,又点 A(1,2) ,4t则 AB_______________。

x 2 1 t4.直线2(t 为参数 ) 被圆 x 2 y 2 4 截得的弦长为 ______________。

y1 1t25.直线 x cos y sin 0 的极坐标方程为 ____________________ 。

三、解答题1.已知点 P(x, y) 是圆 x 2y 2 2y 上的动点,( 1)求 2xy 的取值范围;( 2)若 xy a 0恒建立,务实数 a 的取值范围。

高中数学选修4-4 极坐标与参数方程专项训练题

高中数学选修4-4 极坐标与参数方程专项训练题
(2)先将曲线 的方程转化为标准参数方程,然后将其代入曲线 的直角坐标方程中,因曲线 和曲线 有两个交点,所以整理后的关于 的二次方程 ,初步确定 的范围,再根据参数方程的几何意义可知 , ,引入已知 ,分类讨论,求实数 的值.
详解:(1) 的参数方程 ,消参得普通方程为 ,
的极坐标方程化为 即 ;
详解:解:(1)曲线C1的参数方程为 (t为参数),
消去参数t得普通方程为 ,
曲线C2的极坐标方程为 ,两边同乘以 ,
得 ,所以其直角坐标方程为
(2)曲线C1过点P(0,1),则其参数方程为 ,
将其代入方程 得,

化简得 ,
设上式方程的根为 ,所以 ,
所以
【点睛】
本题考查了参数方程化为普通方程,极坐标方程化为直角坐标方程,参数的几何意义,考查了计算能力,属于中档题.
7、在平面直角坐标系中,以原点为极点.以 轴非负半轴为极轴建立极坐标系,已知曲线 的极坐标方程为 ,直线 的极坐标方程为 .
(1)写出曲线 和直线 的直角坐标方程;
(2)设直线 过点 与曲线 交于不同两点 , 的中点为 , 与 的交点为 ,求 .
8、平面直角坐标系 中,曲线 的参数方程为 ( 为参数),以原点为极点, 轴的非负半轴为极轴,建立极坐标系,曲线 的极坐标方程为 .
(1)写出 的普通方程和极坐标方程;
(2)设 , 是 上的两点,且 ,求 的值.
6、在直角坐标系 中,直线 的参数方程 ( 为参数, ),曲线 的参数方程 ( 为参数).
(1)求曲线 在直角坐标系中的普通方程;
(2)以坐标原点 为极点, 轴的正半轴为极轴建立极坐标系,当曲线 截直线 所得线段的中点极坐标为 时,求 .
设 点的参数分别为 ,把 代入 整理得

(完整版)高中数学选修4-4习题(含答案)

(完整版)高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系中,直线的参数方程为为参数),以原点xOy l 12,(2x t t y t =+⎧⎨=-⎩为极点,以轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线O x 的极坐标方程为 .C 22cos 4sin 40ρρθρθ+++=(1)求的普通方程和的直角坐标方程;l C (2)已知点是曲线上任一点,求点到直线距离的最大值.M C M l 2.已知极坐标的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长O x 度单位相同。

直线的极坐标方程为:,点,参数l ρ=102sin (θ‒π4)P (2cosα,2sinα+2).α∈[0,2π](I )求点轨迹的直角坐标方程;P (Ⅱ)求点到直线距离的最大值.P l1、【详解】(1)12,2x t y t =+⎧⎨=-⎩10x y ∴+-=因为,222,cos ,sin x y x y ρρθρθ=+==所以,即222440x y x y ++++=22(1)(2)1x y +++=(2)因为圆心到直线,(1,2)--10x y +-==所以点到直线距离的最大值为M l 1.r +=+2、解:(Ⅰ)设,则,且参数,P (x ,y ){x =2cosαy =2sinα+2 α∈[0,2π]消参得:x 2+(y ‒2)2=4所以点的轨迹方程为P x 2+(y ‒2)2=4(Ⅱ)因为ρ=102sin (θ‒π4)所以ρ2sin (θ‒π4)=10所以,ρsinθ‒ρcosθ=10所以直线的直角坐标方程为l x ‒y +10=0法一:由(Ⅰ)点的轨迹方程为P x 2+(y ‒2)2=4圆心为(0,2),半径为2.,d =|1×0‒1×2+10|12+12=42点到直线距离的最大值等于圆心到直线距离与圆的半径之和,P l l 所以点到直线距离的最大值.P l 42+2法二:d =|2cosα‒2sinα‒2+10|12+12=2|cosα‒sinα+4|=2|2cos (α+π4)+4|当时,,即点到直线距离的最大值为.a =74πd max =42+2P l 42+26.33.在平面直角坐标系xOy 中,已知曲线的参数方程为(为参数),曲C 1{x =cosθy =3sinθθ线的参数方程为(,t 为参数).C 2{x =4‒22ty =4+22tt ∈R(1)求曲线的普通方程和曲线的极坐标方程;C 1C 2(2)设P 为曲线上的动点,求点P 到上点的距离的最小值,并求此时点P 的坐标.C 1C 24.在直角坐标系中曲线的参数方程为(为参数,以坐标原xOy 1C cos x y αα=⎧⎪⎨=⎪⎩α点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为x 2C .sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出的普通方程和的直角坐标方程;1C 2C (2)设点在上,点在上,求的最小值及此时的直角坐标.P 1C Q 2C ||PQ P3、【详解】(1)对曲线:,,C 1cos 2θ=x 2sin 2θ=y 23∴曲线的普通方程为.C 1x 2+y 23=1对曲线消去参数可得且C 2t t =(4‒x )×2,t =(y ‒4)×2,∴曲线的直角坐标方程为. C 2x +y ‒8=0又,∵x =ρcosθ,y =ρsinθ∴ρcosθ+ρsinθ‒8=2ρsin (θ+π4)‒8=0从而曲线的极坐标方程为。

(完整版)高中数学选修4-4习题(含答案)

(完整版)高中数学选修4-4习题(含答案)

统考作业题目——4-46.21.在平面直角坐标系xOy 中,直线l 的参数方程为12,(2x t t y t =+⎧⎨=-⎩为参数),以原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,两坐标系取相同的长度单位。

曲线C 的极坐标方程为 22cos 4sin 40ρρθρθ+++=. (1)求l 的普通方程和C 的直角坐标方程;(2)已知点M 是曲线C 上任一点,求点M 到直线l 距离的最大值.2.已知极坐标的极点在平面直角坐标系的原点O 处,极轴与x 轴的正半轴重合,且长度单位相同。

直线l 的极坐标方程为:ρ=√2sin(θ−π4),点P(2cosα,2sinα+2),参数α∈[0,2π].(I )求点P 轨迹的直角坐标方程; (Ⅱ)求点P 到直线l 距离的最大值.1、【详解】 (1)12,2x t y t=+⎧⎨=-⎩10x y ∴+-= 因为222,cos ,sin x y x y ρρθρθ=+==,所以222440x y x y ++++=,即22(1)(2)1x y +++=(2)因为圆心(1,2)--到直线10x y +-==所以点M 到直线l 距离的最大值为 1.r =2、解:(Ⅰ)设P(x,y),则{x =2cosαy =2sinα+2,且参数α∈[0,2π],消参得:x 2+(y −2)2=4所以点P 的轨迹方程为x 2+(y −2)2=4 (Ⅱ)因为ρ=√2sin(θ−π4)所以ρ√2sin (θ−π4)=10 所以ρsinθ−ρcosθ=10,所以直线l 的直角坐标方程为x −y +10=0 法一:由(Ⅰ)点P 的轨迹方程为x 2+(y −2)2=4 圆心为(0,2),半径为2. d =√12+12=4√2,P 点到直线l 距离的最大值等于圆心到直线l 距离与圆的半径之和, 所以P 点到直线l 距离的最大值4√2+2. 法二:d =√12+12=√2|cosα−sinα+4|=√2|√2cos (α+π4)+4|当a =74π时,d max =4√2+2,即点P 到直线l 距离的最大值为4√2+2.6.33.在平面直角坐标系xOy 中,已知曲线C 1的参数方程为{x =cosθy =√3sinθ(θ为参数),曲线C 2的参数方程为{x =4−√22ty =4+√22t (t ∈R ,t 为参数). (1)求曲线C 1的普通方程和曲线C 2的极坐标方程;(2)设P 为曲线C 1上的动点,求点P 到C 2上点的距离的最小值,并求此时点P 的坐标.4.在直角坐标系xOy 中曲线1C的参数方程为cos x y αα=⎧⎪⎨=⎪⎩ (α为参数,以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.3、【详解】(1)对曲线C 1:cos 2θ=x 2,sin 2θ=y 23,∴曲线C 1的普通方程为x 2+y 23=1.对曲线C 2消去参数t 可得t =(4−x)×√2,且t =(y −4)×√2, ∴曲线C 2的直角坐标方程为x +y −8=0.又∵x =ρcosθ,y =ρsinθ,∴ρcosθ+ρsinθ−8=√2ρsin (θ+π4)−8=0 从而曲线C 2的极坐标方程为ρ=4√2sin(θ+π4)。

(典型题)高中数学高中数学选修4-4第二章《参数方程》测试(有答案解析)

(典型题)高中数学高中数学选修4-4第二章《参数方程》测试(有答案解析)

一、选择题1.在直角坐标系xOy 中,曲线C :22x ty t⎧=⎪⎨=⎪⎩(t 为参数)上的点到直线l :230x y -+=的距离的最小值为( )A .23B .223C .233D .22.直线2413x t y t =-+⎧⎨=--⎩(t 为参数)被圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)所截得的弦长为( ) A .6B .5C .8D .7 3.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A .B .C .D .4.在方程sin {cos 2x y θθ==(θ为参数)所表示的曲线上的点是 ( )A .(2,7)B .12(,)33C .(1,0)D .11(,)225.若曲线2sin301sin30x t y t =-︒⎧⎨=-+︒⎩(t 为参数)与曲线22ρ=相交于B ,C 两点,则BC 的值为( )A .27B .60C .72D .306.在平面直角坐标系中以原点为极点,以x 轴正方向为极轴建立的极坐标系中,直线:20l y kx ++=与曲线2:cos C ρθ=相交,则k 的取值范围是( )A .k ∈RB .34k ≥-C .34k <-D .k ∈R 但0k ≠7.过()0,2P -,倾斜角为60︒的直线与曲线232y x x =-+交于A B 、两点,则PA PB ⋅= ( )A .623+B .16C .8D .623-8.点M 的直角坐标是()3,1--,则点M 的极坐标为( ) A .52,6π⎛⎫ ⎪⎝⎭B .72,6π⎛⎫ ⎪⎝⎭C .112,6π⎛⎫ ⎪⎝⎭D .2,6π⎛⎫⎪⎝⎭9.极坐标系中,由三条曲线围成的图形的面积是( )A .B .C .D .10.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线11.已知在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,建立极坐标系.曲线1C 的极坐标方程为4cos ρθ=,直线251:51x l y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).若曲线2C 的参数方程为2cos sin x y αα=⎧⎨=⎩(α为参数),曲线1C 上点P 的极角为4π,Q 为曲线2C 上的动点,求PQ 的中点M 到直线l 距离的最大值为( )A .2B 63+C 31D 10 12.椭圆221169x y +=上的点到直线34132x y += )A .0B .25C .52D .241325- 二、填空题13.已知点(,)P x y 在曲线2cos sin x y θθ=-+⎧⎨=⎩,(θ为参数)上,则yx 的取值范围为_____.14.以直角坐标系的原点为极点,x 轴的正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的极坐标方程为()4R πθρ=∈,它与曲线1222x cos y sin αα=+⎧⎨=+⎩(α为参数),相交于两点A 和 B ,则AB =__________. 15.直线170{?270x tsin y tcos =+=+(t 为参数)的倾斜角为_________16.在直角坐标系xOy 中,直线l 的参数方程为22212x y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 4sin ρθθ=,l与C 交于,A B 两点,则AB =_______.17.在平面直角坐标系xOy 中,曲线C的参数方程为,sin ,x y φφ⎧=⎪⎨=⎪⎩(φ为参数),直线l 的方程为40x y +-=,则曲线C 上的点到直线l 的距离的最大值为__________. 18.曲线4cos 2sin x y θθ=⎧⎨=⎩上的点到直线20x y +=的最大距离为__________.19.曲线1C 的极坐标方程2cos sin ρθθ=,曲线2C 的参数方程为31x t y t =-⎧⎨=-⎩,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则曲线1C 上的点与曲线2C 上的点最近的距离为__________.20.已知直线12:(22x l t y t⎧=--⎪⎪⎨⎪=+⎪⎩为参数)与曲线:(x cos C y θθθ=⎧⎪⎨=⎪⎩为参数)交于,A B 两点,则点()1,2M -与,A B 两点的距离之积MA MB ⋅=______.三、解答题21.在平面直角坐标系xOy 中,直线l的参数方程为4x aty ⎧=⎪⎨=+⎪⎩(其中t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴的极坐标系中,点A 的极坐标为2,6π⎛⎫⎪⎝⎭,直线l 经过点A .曲线C 的极坐标方程为2sin 4cos ρθθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)过点)P作直线l 的垂线交曲线C 于D ,E 两点(D 在x 轴上方),求11PD PE-的值. 22.已知纵坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的参数方程为:112x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),曲线C 的极坐标方程为:4cos ρθ=. (1)写出C 的直角坐标方程,并指出C 是什么曲线. (2)设直线l 与曲线C 相交于P ,Q 两点,求PQ 值.23.曲线1C :2121x t y t =+⎧⎨=-⎩(其中t 为参数),以原点为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,曲线2C :()2cos 0a a ρθ=>关于1C 对称.(1)求曲线1C 的普通方程,曲线2C 直角坐标方程;(2)将2C 向左平移2个单位长度,按照12x x y y ⎧=⎪⎪⎨=''⎪⎪⎩变换得到3C ,点P 为3C 上任意一点,求点P 到曲线1C 距离的最大值. 24.[选修4-4:坐标系与参数方程](10分)在极坐标系中,圆C 的极坐标方程为()24cos sin 3ρρθθ=+-,若以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系. (1)求圆C 的一个参数方程;(2)在平面直角坐标系中,(),P x y 是圆C 上的动点,试求2x y +的最大值,并求出此时点P 的直角坐标.25.在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 上两点M ,N 的极坐标分别为(2,0),(32π,),圆C的参数方程222x cos y sin θθ=+⎧⎪⎨=⎪⎩(θ为参数). (Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (Ⅱ)判断直线l 与圆C 的位置关系.26.已知曲线C 的参数方程为32cos 12sin x y αα=+⎧⎨=+⎩ (α为参数),以直角坐标系原点为极点,以x轴正半轴为极轴并取相同的单位长度建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹;(2)若直线l 的极坐标方程为1sin 2cos θθρ-=,求曲线C 上的点到直线l 的最大距离.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设曲线C上点的坐标为()2t ,利用点到直线的距离公式表示出距离,即可求出最小值. 【详解】设曲线C 上点的坐标为()2,2t t , 则C 上的点到直线l 的距离2223(1)2233333t t t d -+-+===, 即C 上的点到直线1的距离的最小值为23. 故选:C. 【点睛】本题考查参数方程的应用,属于基础题.2.A解析:A 【分析】把直线和圆的参数方程化为普通方程,结合点到直线的距离公式和利用圆的弦长公式,即可求解. 【详解】由题意,直线2413x ty t =-+⎧⎨=--⎩(t 为参数)可得直线的方程为34100x y ++=,圆25cos 15sin x y θθ=+⎧⎨=+⎩(θ为参数)的普通方程为22(2)(1)25x y -+-=, 可得圆心(2,1)C ,半径为=5r ,所以圆心到直线34100x y ++=的距离为226410434d ++==+,由圆的弦长公式可得,弦长222222546L r d =-=-=. 故选:A. 【点睛】本题主要考查了参数方程与普通方程的互化,以及直线与圆的位置关系的应用,其中解答中把参数方程化为普通方程,结合圆的弦长公式求解是解答的关键,着重考查推理与运算能力.3.D解析:D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。

高考理科第一轮复习练习(选修4-4第二节参数方程)

高考理科第一轮复习练习(选修4-4第二节参数方程)

课时提升作业(七十七)一、选择题1.已知直线l:(t为参数),圆C:ρ=2cosθ,则圆心C到直线l的距离是( )(A)2 (B)(C)(D)12.参数方程(θ为参数)和极坐标方程ρ=-6cosθ所表示的图形分别是( )(A)圆和直线(B)直线和直线(C)椭圆和直线(D)椭圆和圆3.(2013·惠州模拟)直线(t为参数)被圆x2+y2=9截得的弦长为()(A)(B)(C)(D)二、填空题4.(2012·北京高考)直线(t为参数)与曲线(α为参数)的交点个数为.5.(2012·天津高考)已知抛物线的参数方程为(t为参数),其中p>0,焦点为F,准线为l.过抛物线上一点M作l的垂线,垂足为E.若|EF|=|MF|,点M的横坐标是3,则p= .6.(2013·咸阳模拟)若直线l的极坐标方程为ρcos(θ-)=3,圆C:(φ为参数)上的点到直线l的距离为d,则d的最大值为.三、解答题7.已知直线l过点P(1,-3),倾斜角为,求直线l与直线l′:y=x-2的交点Q与点P的距离|PQ|.8.(2013·三明模拟)已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x轴的正半轴重合.圆C的参数方程为(α为参数),点Q的极坐标为(2,).(1)化圆C的参数方程为极坐标方程.(2)若点P是圆C上的任意一点,求P,Q两点距离的最小值.9.在直角坐标系xOy中,直线l的参数方程为(t为参数),以O为原点,Ox轴为极轴,单位长度不变,建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(1)写出直线l的普通方程和曲线C的直角坐标方程.(2)若直线l和曲线C相切,求实数k的值.10.已知直线l经过点P(1,1),倾斜角α=,(1)写出直线l的参数方程.(2)设l与圆x2+y2=4相交于两点A,B,求点P到A,B两点的距离之积.11.已知某圆的极坐标方程是ρ2-4ρcos(θ-)+6=0,求:(1)圆的普通方程和一个参数方程.(2)圆上所有点(x,y)中xy的最大值和最小值.12.(2012·新课标全国卷)已知曲线C1的参数方程是C1:(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D 依逆时针次序排列,点A的极坐标为(2,).(1)求点A,B,C,D的直角坐标.(2)设P为C1上任意一点,求|PA|2+|PB|2+|PC|2+|PD|2的取值范围.答案解析1.【解析】选C.直线l:(t为参数)的普通方程为x-y+1=0,圆C:ρ=2cosθ的直角坐标方程为x2+y2-2x=0,即(x-1)2+y2=1,则圆心C(1,0)到直线l的距离d==.2.【解析】选D.参数方程(θ为参数)的普通方程为+y2=1,表示椭圆.极坐标方程ρ=-6cosθ的直角坐标方程为(x+3)2+y2=9,表示圆.3.【解析】选B.把直线代入x2+y2=9,得(1+2t)2+(2+t)2=9,即5t2+8t-4=0,∴|t1-t2|===.∴弦长为|t1-t2|=.4.【解析】方法一:由直线(t为参数)与曲线(α为参数)的参数方程得(2+t)2+(-1-t)2=9,整理,得t2+3t-2=0,方程有两个不相等的实数根,所以直线与曲线的交点个数有2个.方法二:将直线(t为参数)与曲线(α为参数)的参数方程分别化为直角坐标方程,得x+y-1=0,x2+y2=9.原点(圆心)到直线的距离为d=<r=3,所以直线与圆相交,交点个数为2.答案:25.【解析】消去参数t得抛物线的普通方程为y2=2px,准线方程为x=-,因为M为抛物线上一点,所以有|MF|=|ME|,又|MF|=|EF|,所以三角形ME F为等边三角形,则|EF|=|MF|=2p=3-(-)=3+,解得p=2.答案:26.【解析】由ρcos(θ-)=3得直角坐标方程为x+y-6=0,圆C:(φ为参数)的普通方程为x2+y2=1,圆心(0,0)到直线l的距离为d′==3>r=1,所以直线与圆相离,所以圆上的点到直线l的距离d的最大值为3+1.答案:3+17.【解析】∵l过点P(1,-3),倾斜角为,∴l的参数方程为(t为参数),即(t为参数),代入y=x-2得-3+t=1+t-2,解得t=4+2.即t=2+4为直线l与l′的交点Q所对应的参数值,根据参数t的几何意义,可知|t|=|PQ|,∴|PQ|=4+2.8.【解析】(1)圆C的直角坐标方程为(x-1)2+(y+1)2=4,展开得x2+y2-2x+2y-2=0,化为极坐标方程为ρ2-2ρcosθ+2ρsinθ-2=0.(2)点Q的直角坐标为(2,-2),且点Q在圆C内,因为|QC|=,所以P,Q两点距离的最小值为|PQ|=2-.9.【解析】(1)由得直线l的普通方程为y=kx+1.由ρsin2θ=4cosθ得ρ2sin2θ=4ρcosθ,y2=4x,曲线C的直角坐标方程为y2=4x.(2)把y=kx+1代入y2=4x得k2x2+(2k-4)x+1=0,由Δ=(2k-4)2-4k2=0,解得k=1.10.【解析】(1)直线的参数方程为(t为参数)即(t为参数)(2)把直线的参数方程(t为参数)代入x2+y2=4得(1+t)2+(1+t)2=4,t2+(+1)t-2=0,∴t1t2=-2,则点P到A,B两点的距离之积为2.11.【解析】(1)由ρ2-4ρcos(θ-)+6=0,得ρ2-4(ρcosθ·+ρsinθ·)+6=0,∴普通方程为x2+y2-4x-4y+6=0,即(x-2)2+(y-2)2=2.一个参数方程为(θ为参数)(2)xy=(2+cosθ)(2+sinθ)=4+2(sinθ+cosθ)+2sinθcosθ令sinθ+cosθ=t∈[-,]得2sinθcosθ=t2-1,xy=t2+2t+3=(t+)2+1,∴当t=-时,(xy)min=1,当t=时,(xy)max=9.12.【解析】(1)因为曲线C2的极坐标方程ρ=2,所以曲线C2是圆心在极点,半径为2的圆,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2,),故B(2,),由对称性得,直角坐标分别为A(1,),B(-,1),C(-1,-),D(,-1).(2)由于点P为曲线C1:(φ为参数)上任意一点,得P(2cosφ,3sinφ),则|PA|2+|PB|2+|PC|2+|PD|2=(2cosφ-1)2+(3sinφ-)2+(2cosφ+)2+(3sinφ-1)2+(2cosφ+1)2+(3sinφ+)2+(2cosφ-)2+(3sinφ+1)2=16cos2φ+36sin2φ+16=32+20sin2φ因为32≤32+20sin2φ≤52,所以|PA|2+|PB|2+|PC|2+|PD|2的取值范围是[32,52].。

高二数学选修4-4《极坐标与参数方程》测试题

高二数学选修4-4《极坐标与参数方程》测试题

高二数学选修4-4《极坐标与参数方程》测试题(时间:120分钟,总分:150分) 姓名: 学号:一.选择题(每小题5分,共50分)1.曲线的极坐标方程θρsin 4=化为直角坐标为( )。

A.4)2(22=++y xB. 4)2(22=-+y xC. 4)2(22=+-y xD. 4)2(22=++y x 2.已知点P 的极坐标是(1,π),则过点P 且垂直极轴的直线方程是( )。

A.1=ρ B. θρcos = C. θρcos 1-= D. θρcos 1= 3.直线12+=x y 的参数方程是( )。

A.⎩⎨⎧+==1222t y t x B.⎩⎨⎧+=-=1412t y t x C. ⎩⎨⎧-=-=121t y t x D. ⎩⎨⎧+==1sin 2sin θθy x 4.方程⎪⎩⎪⎨⎧=+=21y t t x 表示的曲线是( )。

A.一条直线 B.两条射线 C.一条线段 D.抛物线的一部分5.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是( )。

A.042=+-y xB. 042=-+y xC. 042=+-y x ]3,2[∈xD. 042=-+y x]3,2[∈x6.设点P 对应的复数为-3+3i ,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A.(23,π43) B. (23-,π45) C. (3,π45) D. (-3,π43) 7.直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是( )。

A.43-≤k B. 43-≥k C. R k ∈ D. R k ∈但0≠k 8.在极坐标系中,曲线)3sin(4πθρ-=关于( )。

A.直线3πθ=对称 B.直线65πθ=对称 C.点(2,3π)中心对称 D.极点中心对称9.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x ,直线的方程为⎩⎨⎧-=-=1612t y t x ,则直线与圆的位置关系是( )。

选修4-4坐标系与参数方程高考真题汇总

选修4-4坐标系与参数方程高考真题汇总

坐标系与参数方程姓名: 班级:(2020全国Ⅰ)22.在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标。

(2020全国Ⅱ)22.[选修4-4:坐标系与参数方程] (10分)已知曲线12,C C 的参数方程分别为2124cos ,(4sin x C y θθθ⎧=⎪⎨=⎪⎩:为参数),21,(1x t t C t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩:为参数), (1) 将12,C C 的参数方程化为普通方程:(2) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.(2020全国Ⅲ)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.(2019全国Ⅱ)22.[选修4—4:坐标系与参数方程](10分)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.(2019全国Ⅲ)22.[选修4−4:坐标系与参数方程](10分)如图,在极坐标系Ox 中,(2,0)A ,(2,)4B π,(2,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||3OP =P 的极坐标.2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos 3sin 110ρθρθ+=在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.(2018全国Ⅱ)22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.(2018全国Ⅲ)22.[选修4—4:坐标系与参数方程](10分)在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P(2017全国Ⅰ)22.[选修4―4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t t y t =+⎧⎨=-⎩(为参数). (1)若a =−1,求C 与l 的交点坐标;(2)若C 上的点到la.(2017全国Ⅱ)22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.(2017全国Ⅲ)22.[选修44:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线l 2的参数方程为2,,x m m my k =-+⎧⎪⎨=⎪⎩(为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ,M 为l 3与C 的交点,求M 的极径.。

高二级数学选修4-4《极坐标与参数方程》考试卷

高二级数学选修4-4《极坐标与参数方程》考试卷

高二级数学选修4-4《极坐标与参数方程》考试卷一、选择题1.曲线的极坐标方程θρsin 4=化为直角坐标为 ( )A 4)2(22=++y xB 4)2(22=-+y xC 4)2(22=+-y xD 4)2(22=++y x2.已知点P 的极坐标是),1(π,则过点P 且垂直极轴的直线方程是 ( )A 1=ρB θρcos =C θρcos 1-=D θρcos 1= 3.在极坐标系中,圆=2cos ρθ的垂直于极轴的两条切线方程分别为 ( )A.=0()cos=2∈R θρρ和B.ρρπθ=(∈R)和cos =22 C. πθ=(ρ∈R)和ρcos =12D.θ=0(ρ∈R)和ρcos =1 4.直线12+=x y 的参数方程是 ( ) A ⎩⎨⎧+==1222t y t x (t 为参数) B ⎩⎨⎧+=-=1412t y t x (t 为参数) C ⎩⎨⎧-=-=121t y t x (t 为参数) D ⎩⎨⎧+==1sin 2sin θθy x (t 为参数)5.圆5cos ρθθ=-的圆心是 ( )A .4(5,)3π--B .(5,)3π-C .(5,)3πD .5(5,)3π- 6.参数方程⎩⎨⎧+-=+=θθ2cos 1sin 22y x (θ为参数)化为普通方程是 ( ) A 042=+-y x B 042=-+y xC 042=+-y x ]3,2[∈xD 042=-+y x ]3,2[∈x7.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为 ( ) A (23,π43) B (23-,π45) C (3,π45) D (-3,π43) 8.在符合互化条件的直角坐标系和极坐标系中,直线l :02=++kx y 与曲线C :θρcos 2=相交,则k 的取值范围是 ( ) A 34k <- B 43-≥k C R k ∈ D R k ∈但0≠k9.已知过曲线{()3cos 4sin x y θθπθθ≤≤==为参数,0上一点P 与原点O 的直线PO 的倾斜角为4π,则P 点坐标是 ( )A (3,4)B 1212(,)55--C (-3,-4) D1212(,)5510.若圆的方程为⎩⎨⎧+=+-=θθsin 23cos 21y x (θ为参数),直线的方程为⎩⎨⎧-=-=1612t y t x (t 为参数),则直线与圆的位置关系是 () A 相交过圆心 B 相交而不过圆心 C 相切 D 相离11.直线112()x tt y ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标()A .(3,3)- B.( C.3)- D.(3,12.极坐标方程cos 2sin 2ρθθ=表示的曲线为 () A .一条射线和一个圆 B .两条直线 C .一条直线和一个圆 D .一个圆二、填空题13.在极坐标系中,以)2,2(πa 为圆心,2a为半径的圆的极坐标方程是 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-4参数方程综合测试一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x tt y t =-+⎧⎨=-⎩为参数与坐标轴的交点是( ). A .21(0,)(,0)52、 B .11(0,)(,0)52、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9、 2.把方程1xy =化为以t 参数的参数方程是( ).A .1212x t y t -⎧=⎪⎨⎪=⎩B .sin 1sin x t y t =⎧⎪⎨=⎪⎩C .cos 1cos x t y t =⎧⎪⎨=⎪⎩D .tan 1tan x t y t =⎧⎪⎨=⎪⎩ 3.若直线的参数方程为12()23x tt y t=+⎧⎨=-⎩为参数,则直线的斜率为( ). A .23 B .23- C .32 D .32- 4.点(1,2)在圆18cos 8sin x y θθ=-+⎧⎨=⎩的( ).A .内部B .外部C .圆上D .与θ的值有关5.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆⎩⎨⎧+=+-=θθsin 24cos 23y x 与⎩⎨⎧==θθsin 3cos 3y x 的位置关系是( ).A .内切B .外切C .相离D .内含7.与参数方程为)x t y ⎧=⎪⎨=⎪⎩为参数等价的普通方程为( ).A .2214y x += B .221(01)4y x x +=≤≤ C .221(02)4y x y +=≤≤ D .221(01,02)4y x x y +=≤≤≤≤ 8.曲线5cos ()5sin 3x y θπθπθ=⎧≤≤⎨=⎩的长度是( ).A .5πB .10πC .35π D .310π 9.点(,)P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为( ).A. B. CD10.直线112()2x t t y t ⎧=+⎪⎪⎨⎪=-⎪⎩为参数和圆2216x y +=交于,A B 两点,则AB 的中点坐标为( ).A .(3,3)- B.( C.3)- D.(3,11.若点(3,)P m 在以点F 为焦点的抛物线24()4x t t y t⎧=⎨=⎩为参数上,则||PF 等于( ). A .2 B .3 C .4 D .512.直线2()1x tt y t =-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( ). AB .1404CD二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.13.参数方程()2()t tt tx e et y e e --⎧=+⎪⎨=-⎪⎩为参数的普通方程为__________________. 14.直线2()3x t y ⎧=--⎪⎨=⎪⎩为参数上与点(2,3)A -的点的坐标是_______. 15.直线cos sin x t y t θθ=⎧⎨=⎩与圆42cos 2sin x y αα=+⎧⎨=⎩相切,则θ=_______________.16.设()y tx t =为参数,则圆2240x y y +-=的参数方程为____________________. 三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.17.(本小题满分10分)求直线11:()5x tl t y =+⎧⎪⎨=-⎪⎩为参数和直线2:0l x y --=的交点P 的坐标,及点P 与(1,5)Q -的距离.过点2P 作倾斜角为α的直线与曲线22121x y +=交于点,M N , 求||||PM PN ⋅的值及相应的α的值. 19.(本小题满分12分)已知ABC ∆中,(2,0),(0,2),(cos ,1sin )A B C θθ--+(θ为变数), 求ABC ∆面积的最大值.20.(本小题满分12分)已知直线l 经过点(1,1)P ,倾斜角6πα=,(1)写出直线l 的参数方程.(2)设l 与圆422=+y x 相交与两点,A B ,求点P 到,A B 两点的距离之积.分别在下列两种情况下,把参数方程1()cos21()sin2t tt tx e ey e eθθ--⎧=+⎪⎪⎨⎪=-⎪⎩化为普通方程:(1)θ为参数,t为常数;(2)t为参数,θ为常数.22.(本小题满分12分)已知直线l过定点3(3,)2P--与圆C:5cos()5sinxyθθθ=⎧⎨=⎩为参数相交于A、B两点.求:(1)若||8AB=,求直线l的方程;(2)若点3(3,)2P--为弦AB的中点,求弦AB的方程.答案与解析:1.B 当0x =时,25t =,而12y t =-,即15y =,得与y 轴的交点为1(0,)5; 当0y =时,12t =,而25x t =-+,即12x =,得与x 轴的交点为1(,0)2.2.D 1xy =,x 取非零实数,而A ,B ,C 中的x 的范围有各自的限制. 3.D 233122y t k x t --===--. 4.A ∵点(1,2)到圆心(1,0)-8=<(圆半径)∴点(1,2)在圆的内部.5.D 2y =表示一条平行于x 轴的直线,而2,2x x ≥≤-或,所以表示两条射线. 6.B5=,两圆半径的和也是5,因此两圆外切.7.D 22222,11,1,0,011,0244y y x t t x x t t y ==-=-+=≥≤-≤≤≤而得. 8.D 曲线是圆2225x y +=的一段圆弧,它所对圆心角为233πππ-=. 所以曲线的长度为310π. 9.D 椭圆为22164x y +=,设,2sin )P θθ,24sin )x y θθθϕ+=+=+≤10.D221(1)()162t ++-=,得2880t t --=,12128,42t t t t ++==,中点为114324x x y y ⎧=+⨯⎪=⎧⎪⎪⇒⎨⎨=⎪⎩⎪=-⎪⎩ 11.C 抛物线为24y x =,准线为1x =-,||PF 为(3,)P m 到准线1x =-的距离,即为4. 12.C222112x x t y t y ⎧=-⨯⎪=-+⎧⎪⇒⎨⎨=-⎩⎪=⨯⎪⎩,把直线21x t y t =-+⎧⎨=-⎩代入22(3)(1)25x y -++=,得222(5)(2)25,720t t t t -++-=-+=,12||t t -==12|t t -=13.221,(2)416x y x -=≥ 22()()422222t t tt tty x e x e e y y x x y y e e x e ---⎧⎧+==+⎪⎪⎪⇒⇒+-=⎨⎨=-⎪⎪-=⎩⎪⎩. 14.(3,4)-,或(1,2)-22221()),,22t t +===±. 15.6π,或56π 直线为tan y x θ=,圆为22(4)4x y -+=,作出图形,相切时,易知倾斜角为6π,或56π.16.2224141t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩ 22()40x tx tx +-=,当0x =时,0y =,或241t x t =+; 而y tx =,即2241t y t =+,得2224141t x t t y t ⎧=⎪⎪+⎨⎪=⎪+⎩. 17.解:将15x ty =+⎧⎪⎨=-+⎪⎩,代入0x y --=,得t =得(1P +,而(1,5)Q -,得||PQ ==.18.解:设直线为cos ()2sin x t t y t αα⎧=+⎪⎨⎪=⎩为参数,代入曲线并整理得223(1sin ))02t t αα+++=, 则12232||||||1sin PM PN t t α⋅==+, 所以当2sin 1α=时,即2πα=,||||PM PN ⋅的最小值为34,此时2πα=.19.解:设C 点的坐标为(,)x y ,则cos 1sin x y θθ=⎧⎨=-+⎩,即22(1)1x y ++=为以(0,1)-为圆心,以1为半径的圆. ∵(2,0),(0,2)A B -,∴||AB ==且AB 的方程为122x y+=-, 即20x y -+=,则圆心(0,1)-到直线AB=. ∴点C 到直线AB的最大距离为1 ∴ABC S ∆的最大值是1(132⨯=+. 20.解:(1)直线的参数方程为1cos 61sin 6x t y t ππ⎧=+⎪⎪⎨⎪=+⎪⎩,即1112x y t ⎧=⎪⎪⎨⎪=+⎪⎩, (2)把直线1112x y t ⎧=+⎪⎪⎨⎪=+⎪⎩,代入422=+y x ,得2221(1)(1)4,1)2022t t t +++=+-=, 122t t =-,则点P 到,A B 两点的距离之积为2.21.解:(1)当0t =时,0,cos y x θ==,即1,0x y ≤=且; 当0t ≠时,cos ,sin 11()()22t tt t x y e e e e θθ--==+-,而221x y +=,即2222111()()44tt t t x y e e e e --+=+-;(2)当,k k Z θπ=∈时,0y =,1()2t tx e e -=±+,即1,0x y ≥=且; 当,2k k Z πθπ=+∈时,0x =,1()2t ty e e -=±-,即0x =;当,2k k Z πθ≠∈时,得2cos 2sin t tt t x e e y e e θθ--⎧+=⎪⎪⎨⎪-=⎪⎩, 即222cos sin 222cos sin tt x y e x ye θθθθ-⎧=+⎪⎪⎨⎪=-⎪⎩,得222222()()cos sin cos sin t t x y x y e e θθθθ-⋅=+-,即22221cos sin x y θθ-=. 22.解:(1)由圆C 的参数方程225cos 255sin x x y y θθ=⎧⇒+=⎨=⎩,设直线l 的参数方程为①3cos ()3sin 2x t t y t αα=-+⎧⎪⎨=-+⎪⎩为参数, 将参数方程①代入圆的方程2225x y += 得2412(2cos sin )550t t αα-+-=, ∴△216[9(2cos sin )55]0αα=++>, 所以方程有两相异实数根1t 、2t ,∴12||||8AB t t =-==, 化简有23cos 4sin cos 0ααα+=, 解之cos 0α=或3tan 4α=-, 从而求出直线l 的方程为30x +=或34150x y ++=.(2)若P 为AB 的中点,所以120t t +=,由(1)知2cos sin 0αα+=,得tan 2α=-,故所求弦AB 的方程为2242150(25)x y x y ++=+≤.备用题:1.已知点00(,)P x y 在圆38cos 28sin x y θθ=+⎧⎨=-+⎩上,则0x 、0y 的取值范围是( ). A .0033,22x y -≤≤-≤≤ B .0038,28x y ≤≤-≤≤ C .00511,106x y -≤≤-≤≤D .以上都不对1.C 由正弦函数、余弦函数的值域知选C . 2.直线12()2x tt y t =+⎧⎨=+⎩为参数被圆229x y +=截得的弦长为( ). A .125 BCD2.B11221x x t y t y ⎧=+⎪=+⎧⎪⇒⎨⎨=+⎩⎪=+⎪⎩122x t y t =+⎧⎨=+⎩代入 229x y +=得222(12)(2)9,5840t t t t +++=+-=,1212||5t t -===12|t t -=3.已知曲线22()2x pt t p y pt ⎧=⎨=⎩为参数,为正常数上的两点,M N 对应的参数分别为12,t t 和,120t t +=且,那么||MN =_______________.3.14||p t 显然线段MN 垂直于抛物线的对称轴,即x 轴,121||2||2|2|MN p t t p t =-=.4.参数方程cos (sin cos )()sin (sin cos )x y θθθθθθθ=+⎧⎨=+⎩为参数表示什么曲线?4.解:显然tan y xθ=,则222222111,cos cos 1y y x x θθ+==+,2222112tan cossin cos sin 2cos cos 221tan x θθθθθθθθ=+=+=⨯++, 即22222221112111y yx x x y y y x x x+=⨯+=+++,22(1)1y y x x x +=+, 得21y yx x x+=+, 即220x y x y +--=.5.已知点(,)P x y 是圆222x y y +=上的动点, (1)求2x y +的取值范围;(2)若0x y a ++≥恒成立,求实数a 的取值范围.5.解:(1)设圆的参数方程为cos 1sin x y θθ=⎧⎨=+⎩,22cos sin 1)1x y θθθϕ+=++=++,∴121x y ≤+≤.(2)cos sin 10x y a a θθ++=+++≥,∴(cos sin )1)14a πθθθ≥-+-=+-恒成立,即1a ≥.。

相关文档
最新文档