2018-2019学年七年级数学新版人教版上册第4章 几何图形初步 4.4课题学习设计制作长方体形状的包装纸盒
数学人教版七年级上册单元总结 第4章 几何图形的初步(解析表)
第四章几何图形的初步单元总结【思维导图】【知识要点】知识点一立体图形⏹立体图形概念:有些几何图形的各部分不都在同一个平面内。
常见的立体图形:棱柱、棱锥、圆柱、圆锥、球等。
⏹平面图形概念:有些几何图形的各部分不都在同一个平面内。
常见的平面图形:线段、角、三角形、长方形、圆等【立体图形和几何图形的区别】1、所含平面数量不同。
平面图形是存在于一个平面上的图形。
立体图形是由一个或者多个平面形成的图形,各部分不在同一平面内,且不同的立体图形所含的平面数量不一定相同。
2、性质不同。
根据“点动成线,线动成面,面动成体”的原理可知,平面图形是由不同的点组成的,而立体图形是由不同的平面图形构成的。
由构成原理可知平面图形是构成立体图形的基础。
3、观察角度不同。
平面图形只能从一个角度观察,而立体图形可从不同的角度观察,如左视图,正视图、俯视图等,且观察结果不同。
4、具有属性不同。
平面图形只有长宽属性,没有高度;而立体图形具有长宽高的属性。
【典型例题】1.下列请写出下列几何体,并将其分类.(只填写编号)如果按“柱”“锥”“球”来分,柱体有_____,椎体有_____,球有_____;如果按“有无曲面”来分,有曲面的有_____,无曲面的有_____.【答案】(1)(2)(6)(3)(4)(5)(2)(3)(5)(1)(4)(6)【解析】详解:按柱、锥、球分类.属于柱体有(1),(2),(6),椎体有(3),(4),球有(5);按“有无曲面”来分,有曲面的有(2),(3),(5),无曲面的有:(1),(4),(6).故答案为:(1),(2),(6);(3),(4);(5);(2),(3),(5);(1),(4),(6).2.在如下图所示的图形中,柱体有___________,锥体有__________,球体有_______.【答案】①②③⑦⑤⑥④【解析】①是圆柱,②是正方体,属于棱柱,③是长方体,属于棱柱,④是球,⑤是圆锥,⑥是三棱锥,⑦是三棱柱,所以柱体有①②③⑦,锥体有⑤⑥,球体有④,故答案为:①②③⑦;⑤⑥;④.3.如图是一个棱锥,它是由____个三角形和____个底所组成的.【答案】4 1【详解】观察所给的几何体可知,该几何体为四棱锥,∴该几何体由4个侧面(侧面为三角形)和1个底面(底面为四边形)所组成的.故答案为:4;1.4.如图所示是一座粮仓,它可以看作是由几何体_______和_______组成的.【答案】圆锥圆柱【详解】解:一座粮仓,它可以看作是由圆锥和圆柱几何体组成的。
暑假一日一练2018年七年级数学上册第4章几何图形初步4.4课题学习设计制作长方形形状的包装纸盒习题
4.4 课题学习设计制作长方形形状的包装纸盒一.选择题(共6小题)1.(2018•河南二模)如图:有一块三角形状的土地平均分给四户人家,现有四种不同的分法,(如图中,D、E、F分别是BC、AC、AB的中点,G、H分别是BF、AF的中点),其中正确的分法有()A.1种B.2种C.3种D.4种2.(2017•太原三模)四座城市A,B,C,D分别位于一个边长为100km的大正方形的四个顶点,由于各城市之间的商业往来日益频繁,于是政府决定修建公路网连接它们,根据实际,公路总长设计得越短越好,公开招标的信息发布后,一个又一个方案被提交上来,经过初审后,拟从下面四个方案中选定一个再进一步论证,其中符合要求的方案是()A.B.C.D.3.(2016•故城县校级三模)某乡镇的4个村庄A、B、C、D恰好位于正方形的4个顶点上,为了解决农民出行难问题,镇政府决定修建连接各村庄的道路系统,使得每两个村庄都有直达的公路,设计人员给出了如下四个设计方案(实线表示连接的道路)在上述四个方案中最短的道路系统是方案()A.一B.二C.三D.四4.(2016•太原二模)有甲、乙、丙三个村庄分别位于等边△ABC的顶点,在城中村改造时,为保护环境,改善居民的生活条件,政府决定铺设能够连结这三个村庄的天然气管道.设计人员给出了如图四个设计方案(点D为BC边的中点,点O为△ABC的中心,实线表示天然气管道),其中天然气管道总长最短的是()A.方案1 B.方案2 C.方案3 D.方案45.(2016•南京二模)将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A.S3<S1<S2 B.S1<S2<S3 C.S2<S1<S3 D.S1=S2=S36.(2015秋•房山区期末)如图,直线m表示一条河,点M、N表示两个村庄,计划在m上的某处修建一个水泵向两个村庄供水.在下面四种铺设管道的方案中,所需管道最短的方案是(图中实线表示铺设的管道)()A.B.C.D.二.填空题(共7小题)7.(2018•河西区一模)在每个小正方形的边长为1的网格中,有以AB为直径的半圆和线段AP,AB组成的一个封闭图形,点A,B,P都在网格点上.(Ⅰ)计算这个图形的面积为;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一条能够将这个图形的面积平分的直线,并简要说明这条直线是如何找到的(不要求证明).8.(2017•自贡)如图,13个边长为1的小正方形,排列形式如图,把它们分割,使分割后能拼成一个大正方形.请在如图所示的网格中(网格的边长为1)中,用直尺作出这个大正方形.9.(2017春•东城区期末)在数学课上,老师提出如下问题:如图1,需要在A,B两地和公路l之间修地下管道,请你设计一种最节省材料的修建方案.小军同学的作法如下:①连接AB;②过点A作AC⊥直线l于点C;则折线段B﹣A﹣C为所求.老师说:小军同学的方案是正确的.请回答:该方案最节省材料的依据是.10.(2017春•尚志市期末)如图是一个5×5的正方形网格,每个小正方形的边长都是1,请在此网格中画出一个顶点都在格点且面积为17的正方形.11.(2016•河西区二模)如图,将四边形ABCD放在每个小正方形的边长为1的网格中,点A、B、C、D均落在格点上.(Ⅰ)计算AD2+DC2+CB2的值等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为一边的矩形,使该矩形的面积等于AD2+DC2+CB2,并简要说明画图方法(不要求证明).12.(2015秋•顺义区期末)在数学实践课上,老师给同学们布置了如下任务:为美化校园环境,计划在学校内某处空地,用30平方米的草皮铺设一块等腰三角形绿地,使等腰三角形绿地的一边长为10米,请你给出设计方案.同学们开始思考,交流,一致认为应先通过画图、计算,求出等腰三角形绿地的另两边的长.请你也通过画图、计算,求出这个等腰三角形绿地的另两边的长分别为.13.(2015秋•朝阳区期末)阅读下面材料:在数学课上,教师出示了一个如图1所示的六角星,并给出了得到与之形状完全相同(大小忽略不计)的六角星的两种方法.方法一:如图2,任意画一个圆,并以圆心为顶点,连续画相等的角,与圆相交于6点,连接每隔一点的两个点,擦去多余的线即可得到符合要求的六角星.方法二:按照图3所示折一个六角星.请回答:∠α与∠β之间的数量关系为.三.解答题(共4小题)14.(2018•金华)如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.15.(2018•龙岩二模)如图,在每个小正方形是边长为1的网格中,A,B,C均为格点.(Ⅰ)仅用不带刻度的直尺作BD⊥AC,垂足为D,并简要说明道理;(Ⅱ)连接AB,求△ABC的周长.16.(2018•莲湖区一模)如图,在Rt△ABC中,∠ACB=90°,请用尺规过点C作直线l,使其将Rt△ABC分割成两个等腰三角形.(保留作图痕迹,不写作法)17.(2018•鹿城区模拟)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的四边形为整点四边形.如图,已知整点A(1,2),B(3,4),请在所给网格上按要求画整点四边形.(1)在图1中画一个四边形OABP,使得点P的横、纵坐标之和等于5.(2)在图2中画一个四边形OABQ,使得点Q的横、纵坐标的平方和等于20.2018年暑假七年级数学一日一练:4.4 课题学习设计制作长方形形状的包装纸盒参考答案与试题解析一.选择题(共6小题)1.【解答】解:∵D、E、F分别是AB、BC、AC的中点,∴在图①中,DE= AC,EF= AB,DF= BC,∴△ADF,△BDE,△DEF,△EFC是同底同高,∴根据三角形面积公式可得△ADF,△BDE,△DEF,△EFC面积相等.同理可得图②,∵D、E、F分别是AB、BC、AC的中点,G、H分别是线段BD和AD的中点.同理可得图③,图④中4个三角形面积相等,所以四种分法都正确.故选:D.2.【解答】解:因为正方形的边长为100km,则方案A需用线200 km,方案B需用线(200+100 )km,方案C需用线300km,方案D如图所示:∵AD=100km,∴AG=50km,AE= km,GE= km,∴EF=100﹣2GE=(100﹣)km,∴方案D需用线×4+(100﹣)=(1+ )×100=(100+100 )km,所以方案D最省钱.故选:D.3.【解答】解:设正方形边长为a,则方案①需用线3a,方案②需用线2 a,方案③需用线2a+ a,如图所示:∵AD=a,∴AG= ,AE= a,GE= a,∴EF=a﹣2GE=a﹣a,∴方案④需用线a×4+(a﹣a×2)=(+1)a.∴方案④最省钱.故选:D.4.【解答】解:设等边三角形的边长为a,方案1:铺设路线的长为AB+AC=2a,方案2:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为AB+AD+DC= a+ a;方案3:△ABC中的高线=AB•sin60°=a,故铺设路线的长度为BC+ a=a+ a;方案4:如图所示:过点O作OD⊥BC于点D,∵BD= ,则BO= = a,铺设路线的长为AO+BO+CO=3×a= a;因为a+ a>2a>a+ a>a,所以方案4铺设路线最短.故选:D.5.【解答】解:∵矩形的长为a米,宽为b米,小路的宽为x米,∴S1=ab﹣(a+b)x+S4;S2=ab﹣(a+b)x+S5;S3=ab﹣(a+b)x+S6.∵S4=x•x=x2,S5=x•sin60°•x•sin60°=x2,S6=x•sin60°•= x2,∴S2<S1<S3.故选:C.6.【解答】解:作点M关于直线m的对称点M′,连接NM′交直线m于Q.根据两点之间,线段最短,可知选项D修建的管道,则所需管道最短.故选:D.二.填空题(共7小题)7.【解答】解:(Ⅰ)这个图形的面积为= •π•42+ ×5×8=20+8π;故答案为20+8π.(Ⅱ)如图取格点O、H,连接PO,OH,PH,取格点F,作直线OF交PB于点E,再作直线HE,直线HE即为所求.故答案为:如图取格点O、H,连接PO,OH,PH,取格点F,作直线OF交PB于点E,再作直线HE,直线HE即为所求.8.【解答】解:如图所示:所画正方形即为所求.9.【解答】解:由于两点之间距离最短,故连接AB,由于垂线段最短可知,过点A作AC⊥直线l于点C,此时AC最短,故答案为:两点之间,线段最短;垂线段最短10.【解答】解:如图所示:∵42+12=17,∴AB= .∴正方形ABCD的面积为17.11.【解答】解:(1)∵AD2=32+12=10,DC2=32+12=10,CB2=12+12=2,∴AD2+DC2+CB2=10+10=2=22,故答案为:22;(2)如图,以AB为边做正方形ABGH,再作平行四边形HMNG,直线MN交AH于点Q,交GB于点P,矩形ABPQ即为所求.理由是:∵S▱HMNG=2×6﹣2×(+1+ ×5×1)=4,∴S矩形HQNG=S▱HMNG=4,∵S 正方形ABGH=()2=26,∴S矩形ABPQ=26﹣4=22,所以画出的矩形ABPQ的面积等于AD2+DC2+CB2.12.【解答】解:①如图1中,当底BC=10 米时,作AD⊥BC垂足为D,∵•BC•AD=30,∴AD=6,∵AB=AC,AD⊥BC,∴BD=DC=5,∵AB=AC= = .②如图②当AB=AC=10时,作BD⊥AC,垂足为D,∵,∴BD=6,∴AD= =8,BC= =6 .综上所述这个等腰三角形的另外两边分别为和或10和6 .故答案为为和或10和6 .13.【解答】解:∠α==60°,∠β==30°,则∠α和∠β之间的关系是∠α=2∠β.故答案是:∠α=2∠β.三.解答题(共4小题)14.【解答】解:符合条件的图形如图所示:15.【解答】解:(Ⅰ)取线段AC的中点为格点D,则有DC=AD.连BD,则BD⊥AC,理由:由图可知BC=5,连接AB,则AB=5,∴BC=AB,又CD=AD,∴BD⊥AC.(Ⅱ)由图易得AB=5,AC= =2 ,BC= =5,∴△ABC的周长=5+5+2 =10+2 .16.【解答】解如图所示:,△ACD和△CDB即为所求.17.【解答】解:(1)如图所示:(2)如图所示:。
人教版七年级上册数学第4章 几何图形初步 课题学习 设计制作长方体形状的包装纸盒
第四章几何图形初步
4.4 课题学习 设计制作长方体形 状的包装纸盒
提示:点击 进入习题
1A
2C
3D
4D
5D
答案显示
6C
7 见习 题
8 见习题
1.如图所示的几何体的展开图是( A )
2.小明同学设计了如图所示的正方体形状的包装纸盒, 把下面四个表面展开图折叠(不计接缝),与小明同学 设计的纸盒完全相同的是( ) C
(2)每个几何体有多少个面?它们分别是什么图形?
解:五棱锥有6个面,其中有1个五边形和5个 三角形;五棱柱有7个面,其中有2个五边形和 5个正方形薄钢片制作一个有 盖的长方体盒子,制作方案要求同时符合下列两个条 件:①必须在薄钢片的四个角上各截去一个四边形(其 余部分不能截);②折叠后薄钢片能既
【点拨】A选项,可以围成一个无盖正方体盒子;B 选项,无法围成长方体;D选项,无法围成长方 体.故选C.
【答案】C
7.把图①②沿虚线折叠,观察折成的几何体.回答下列 问题:
(1)图①②分别能折叠成什么几何体?每个几何体有多少 条棱?
解:图①能折叠成五棱锥, 有10条棱;图②能折叠成 五棱柱,有15条棱.
无空隙、又不重叠地围成各盒面.
(1)请你画出符合上述方案的草图,并标出尺寸(一种即 可);
解:如图所 示.(答案不唯 一)
(2)当盒子的高为40cm时,求该盒子的体积.
解:盒子的体积为 40×(60-10-30)×10=8000(cm3).
3.若下列图形中,只有一个图形不是如图所示的立体图 形的展开图,则此图为( ) D
4.如图是一个能折成长方体的平面图,那么由它折成的 长方体可能是下列图形中的( ) D
5.下列四个平面图形中,不能折成无盖长方体盒子的是 () D
七年级数学上册第四章几何图形初步认识4.2直线、射线、线段 第1课时(图文详解)
F
4
5
10 11
D E
人教版七年级数学上册第四章几何图形初步认识
1.经过两点有一条直线,并且只有一条直线. 2.直线、射线、线段三者的区别与联系. 3.不同几何语言(文字语言、符号语言、图形语言)的 相互转化.
人教版七年级数学上册第四章几何图形初步认识
请欣赏下列图案
人教版七年级数学上册第四章几何图形初步认识
(A)
(B)
(C)
(D)
人教版七年级数学上册第四章几何图形初步认识
6.(柳州中考)如图所示,点A,B,C是直线l上的三个点, 图中共有线段的条数是( ) (A)1条 (B)2条 (C)3条 (D)4条
A
B
C
l
【解析】选C.线段AB,AC,BC.
ห้องสมุดไป่ตู้
人教版七年级数学上册第四章几何图形初步认识
7.(嵊州中考)如图所示,平面内有公共端点的六条射线
3.如图所示, (1)过点A可以画几条直线? (2)过点A、B可以画几条直线? (3)过点A、B、C可以画几条直线?
答案:(1)无数条 (2)一条
B A
(3)0条
C
人教版七年级数学上册第四章几何图形初步认识
1.如图所示,下列说法正确的是A( ) (A)直线OM与直线MN是同一直线 (B)射线MO与射线MN是同一射线 (C)射线OM与射线MN是同一射线 (D)射线NO与射线MO是同一射线
人教版七年级数学上册第四章几何图形初步认识
4.如图所示,射线PA与PB是同一条射线,则符合题意的 图为( C )
A
A
A
P
P
A PB
B
B
P
P
B
(A)
七年级数学上册第四章几何图形初步4.1.1《立体图形与平面图形》课件2(新版)新人教版
主视图
左视图
俯视图
1 2
1
俯视图
1
【探究】
1 . 如图是由几个小立方体所搭 几何体的俯视图, 小正方形 中的数字表示在该位置小正 方体的个数。 你能摆出这个几何体吗? 试画出这个几何体的主视图 与左视图。 主视图: 左视图:
2 1
1
2
练一练
如图是由几个小立方体所搭几何 体的俯视图, 小正方形中的数字 表示在该位置小正方体的个数, 请画出主视图和左视图。 主视图:
新人教版数学七年级上册 第四章 几何图形初步
4.1.1 立体图形与平面图形(3)
想知道这些精美的包装 盒是怎么制成的吗?
有些立体图形是由一些平面图形围成的,将它 们的表面适当剪开,可以展成平面图形.这样 的平面图形称为相应立体图形的展开图.
将正方体的表面适当剪开,看看它的展开图 是怎样的结构,并画出示意图. 比一比,看哪一 组得到的结果多! 共有11种基本情况
新人教版数学七年级上册 第四章 几何图形初步
4.1.1立体图形与平面图形(1)
到城雕
从剪纸 从古代 到现代 从长城 到立交
从植物
到动物
圆柱体
对于生活中的各种各样的物体,数学中关注的是 1、物体的形状(如方的、圆的等); 2、物体的大小(如长度、面积、体积等) 3、物体的位置(如相交、垂直、平行等)。 它们的颜色、重量、材料等则是其他学科所关注。
2 3
1 1 2 3 1
主视图:
左视图:
左视图:
练一练
如图是由几个小立方体所搭几何体的主视图和左视 图,则原几何体最少有几个小立方体?最多有几个 小立方体?
主视图
左视图 1 2 1 1
1
最新人教版七年级数学上册教案:第四章 几何图形初步
第四章几何图形初步4.1 几何图形4.1.1 立体图形与平面图形第1课时认识几何图形【知识与技能】通过观察生活中的大量图片或实物,体验、感受、认识以生活中的事物为原型的几何图形,认识一些简单几何体(长方体、正方体、棱柱、棱锥、圆柱、圆锥、球等)的基本特性,能识别这些几何体.【过程与方法】能由实物形状想象出几何图形,由几何图形想象出实物形状,进一步丰富学生对几何图形的感性认识.【情感态度】从现实世界中抽象出几何图形的过程,感受图形世界的丰富多彩,激发学生对学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成参与数学活动、主动与他人合作交流的意识.【教学重点】识别简单几何体.【教学难点】从具体事物中抽象出几何图形.一、情境导入,初步认识播放北京奥运会的比赛场馆宣传片.导语:2008年奥运会在我国首都北京举行,尽管已成为历史的记忆,但它永远铭刻在每一个中国人的心中,让我们一起来看看北京奥运会国家体育场(鸟巢)图.(出示章前图)你能从中找到一些熟悉的图形吗?学生看书小组讨论交流.引导学生从周围的事物(如建筑物、地板、围墙、公园等)找到一些美丽图形的图片或实物,互相交流,并思考在这些图片或实物中有我们熟悉的图形吗?【教学说明】奥运会的成功举办向全世界展现了我们祖国的综合国力,选用2008年北京奥运会国家体育场(鸟巢)图作为引例能调动学生的学习兴趣,同时对学生进行爱国主义教育,增强他们的民族自信心和自豪感.通过多媒体向学生展示丰富的图形世界,给学生带来直观感受,让学生体会图形世界的多姿多彩;在此基础上,要求学生从中找出一些熟悉或不熟悉的几何图形,并结合生活中具体例子(如建筑设计、艺术设计等),说明研究几何图形的应用价值,从而调动学生学习的积极性,激发学习的兴趣.二、思考探究,获取新知找一找探索教材第115页思考题并出示实物(如地球仪、字典及魔方等)及多媒体演示(如谷堆、铅笔、帐篷、卢浮宫、金字塔等),它们与我们学过的哪些图形相类似?【教学说明】长方体、正方体、圆柱、圆锥、球都是学生已经学习过的图形,棱柱、棱锥也是学生很熟悉的图形,通过找一找,结合具体实例引入.从熟悉的生活中识别立体图形,不仅帮助学生理解,而且让他们感受生活中处处有数学.议一议出示已准备好的教具棱柱、圆柱、棱锥、圆锥模型,让学生看一看,比较观察后说说它们的异同.(教师巡视指导,提倡学生尽量用自己的语言描述,互相补充.)看一看再动手摸一摸,观察、感觉几何体之间的联系与区别,是为了更好地识别几何体.想一想生活中还有哪些物体的形状类似于这些立体图形呢?小组讨论后回答.教师提醒学生体会几何图形与生活的密切联系.赛一赛小组长组织组员完成教材第116页思考题,并进行学习汇报.让学生主动参与学习活动,自主完成平面图形学习,交流各自的学习成果,培养学生的自主学习能力.三、典例精析,掌握新知例1 如图,将下列两个图形沿AB剪开,再展开,实际动手做一做,再对照实物画出展开后的图形.【解析】圆锥的侧面展开图是一个扇形,底面是一个圆.圆柱的侧面展开图是一个矩形,两底面是两个等圆.由此我们可以了解组成圆锥和圆柱的基本图形.解:圆锥、圆柱的展开图如下:【教学说明】认识一个图形的组成,实际动手操作是最有效的途径.解完这道题,你应得到这样的启示:实践是认识生活、认识世界的必经之路.例2 请说出下列几何体的名称,再根据你的感受简要说说它们的一些特征.【分析】(1)—(6)的名称比较容易识别,要善于发现其中所体现的独特特征.解:(1)圆柱.特征:两个底面是圆的几何体;(2)圆锥.特征:像锥体,且底面是圆;(3)正方体(也叫立方体).特征:所有面都是正方形;(4)长方体.特征:其侧面均为长方形(特殊情况有两个面为正方形);(5)棱柱.特征:底面为多边形,侧面为长方形;(6)球.特征:圆圆的实体.【教学说明】几何体的识别以直观为主,其几何特征也以形象感觉说明即可.当然,你还可以尽可能地从其他角度去感受这些几何体的特征,因为观察角度的变化,发现的特征就可能不一样.试试看.例3 先观察下列图形,再动手填写下表.【分析】从上图可以看出四边形被一条对角线分成两个三角形,从五边形的一个顶点可以引2条对角线,六边形被对角线分成4个三角形,从n边形的一个顶点可以引出的对角线条数恰为其边数与3之差即(n-3)条.所以构成的三角形为边数与2之差,即(n-2)个.解:2,4,n-3;2,4,n-2.四、运用新知,深化理解1~2.教材第116页练习.【教学说明】这两道题较为简单,教师可让学生口答,如学生回答不全教师可补充.【答案】略五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.选做题:(1)收集一些常见的几何体的实物;(2)设计一张由简单的平面图形(如圆、三角形、直线等)组合成的优美图案,并写上一两句贴切、诙谐的解说词.本节教学应通过实际问题启发、做、想、试等方式让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现并认识立体图形与平面图形,这样的教学,可使学生得到探索发现的成功感,自然获取知识并形成应用能力.第2课时从不同方向看立体图形和立体图形的展开图【知识与技能】1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看.2.通过实际操作,能认识和判断立体图形的平面展开图.【过程与方法】在立体图形与平面图形相互转换的过程中,初步建立空间观念,培养几何意识.【情感态度】激发学生学习空间与图形的兴趣,通过与其他同学交流、活动,初步形成积极参与数学活动,主动与他人合作交流的意识.【教学重点】识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形.【教学难点】画出从正面、左面、上面看正方体及简单组合体的平面图.一、情境导入,初步认识多媒体演示庐山景观,请学生背诵苏东坡《题西林壁》并说说诗中意境.跨越学科界限,以苏东坡的诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”营造一个崭新的数学学习氛围,并从中挖掘蕴含的数学道理.比一比讲台上依次放置粉笔盒、乒乓球、热水瓶.请四位学生上来后按照不同的方位站好,然后向同学们汇报各自看到的情形.从身边的事物入手,采用游戏的形式,有助于学生积极主动地参与,激发学生的学习潜能,感受新知.自己从中发现从不同的方向看,确实看到的可能不一样.如何进行楼房的图纸设计?出示楼房模型.多媒体展示神舟八号无人飞船.问:如何进行飞船的图纸设计?(出示三张设计平面图),并问每张图分别从什么方向看?看起来,楼房、航天飞船等均是立体图形,但是设计图都是平面图形,建筑单位、工厂均按照平面设计图加工,其中一个小零件如课本第117页图4.1-6,先需要看的图是图(2),所以,我们要研究立体图形从不同方向看它得到的平面图.进一步培养学生的空间想象能力以及与他人合作交流的能力.二、思考探究,获取新知探究 1 分别从正面、左面、上面观察乒乓球、粉笔盒、茶叶盒,各能得到什么平面图形?(出示实物)让学生从不同方向观察立体图形,体验立体图形转化为平面图形的过程.长方体、圆锥分别从正面、左面、上面观察,各能得到什么图形?试着画一画.(出示实物)这样,我们将立体图形转化成了平面图形,以四人小组为学习单位进行小组创作,培养学生的观察力和创新能力.教科书第117页图4.1-7,从正面、左面、上面观察得到的平面图形你能画出来吗?适当变动正方体的摆放位置,你还能解决吗?【教学说明】小组合作学习,你摆我答,动手画一画,展示此活动设计既能引发学生动脑思考、动手实践,在你摆我答的小组合作学习中,又给学生创造了交流的机会,引导学生学会合作,突破创新,达到共同提高的目的.探究2 (1)出示教材第118页图4.1-9的平面展开图,让学生说一说这是什么立体图形?【教学说明】教师让学生回答,若学生对此有困难,可让学生自己动手画一画,剪一剪,仔细体会.(2)让学生拿出自己的墨水盒或其他正方体方盒,动手剪一剪,看能得到几种正方体的展开图.【教学说明】正方体的展开图是教学重点,教师必须对此重视,让学生以小组为单位展开讨论和剪切,争取尽可能地多剪出几种展开图,教师根据学生回答情况予以板书和归纳.三、典例精析,掌握新知例1 你能画出如图所示的正方体和圆柱体的从不同方向看到的平面图形吗?试试看!【分析】正方体的从不同方向看到的平面图形都是正方形,圆柱体从正面、左面看到的平面图形都是长方形,从上往下看是圆.解:正方体看到的结果分别如图所示:圆柱体看到的结果如下所示:例2 (1)前面所讲的苏东坡的《题西林壁》中有一句传诵千古的名句:“横看成岭侧成峰,远近高低各不同”,请用简单的几何图形画出这句话所表达的意境.(2)同伴交流一下这句话给我们的启示,特别谈谈对我们学习数学知识的启迪.【分析】从诗句的意思中应看出这句话是以群山为背景的.诗句中所蕴含的哲理会是仁者见仁,智者见智,所以,互相交流十分必要.解:(1)如图(2)以下启示供参考:“变换思考角度,获得的结论就不同”.“从不同角度看同一问题,可能获得不同的解决途径”等.例 3 如图,需要再补画一个面,折叠后才能围成一个正方体,下面是四位同学补画另一个面的情况(图中阴影部分),其中正确的是().【分析】A、C、D三项中的展开图都不能围成正方体,只有B项符合要求.【答案】B四、运用新知,深化理解1~3.教材第118~119页练习.【教学说明】这几道题是考查立体图形的视图和展开图的.题目较为简单,教师可让学生举手回答.【答案】1.(1)是从上面看到的;(2)是从正面看到的;(3)是从左面看到的.2.圆柱体—(4),圆锥体—(6),三棱柱—(3).3.C五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?提醒学生注意:多看,多动手,多想象,是学好几何知识的基本途径之一.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.本节教学应通过引导观察和实际动手操作,让学生主动探索来认识知识,在学生自己动手实践、小组合作的基础上,发现从不同角度看物体可以得到不同的结果,在实践中体验认识生活与客观世界,并逐步养成勤于动手,善于观察,勇于思考的学习习惯.4.1.2 点、线、面、体【知识与技能】通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系.【过程与方法】培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想.【情感态度】学生养成积极主动的学习态度和自主学习的方式.【教学重点】认识点、线、面、体的几何特征,感受它们之间的关系.【教学难点】在实际背景中体会点的含义.一、情境导入,初步认识多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.【教学说明】从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示这些生活实例在城市的位置,让学生体会到“点”的含义.二、思考探究,获取新知课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论,让学生共同体会“点动成线、线动成面、面动成体”.让学生举出更多的“点动成线、线动成面、面动成体”的例子.小组合作学习,学生利用学具完成教材第120页练习第2题.(动手转一转)【教学说明】教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力.学生自己动手实践操作,加深学生印象,化解难度.教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等.让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子.1.教材119页思考,并回答它的问题.【教学说明】引导学生观察后得出结论:面与面相交得到线,线与线相交得到点.2.教材120页练习第1题(提供实物,议一议,动手摸一摸),对于第1题,思考以下问题:这些立体图形是由几个面围成的,它们都是平的吗?圆锥的侧面与底面相交成几条线,是直线还是曲线?正方体有几个顶点?经过每个顶点有几条边?【教学说明】让学生自己体会并小组讨论得出点、线、面、体之间的关系.三、典例精析,掌握新知例 1 直观地认识形形色色的平面图形,特别是对简单的多边形——三角形有更多的感觉,认识多边形可由三角形组合而成.如:有边长为1的等边三角形卡片若干张,使用这些三角形卡片拼出边长分别是2,3,4,……的等边三角形,这些等边三角形的边长为n,所用卡片总数为S:试求当n=12时,S=_______.【分析】据图可以看出,当n=2时,S=4;当n=3时,S=9;当n=4时S=16,由此可推出:卡片总数S与边长n之间的关系式S=n2,故所求答案为144.例 2 利用点、线、面、体的几何特征和它们之间的关系,可以进行图形分割与变化.如:苏学美同学为班级“学生专栏”设计了报头图案,并用文字说明图案的含义,如图(1).请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等)中若干个,为“环保专栏”在图(2)方框中设计一个报头图案,并简要说明图案的含义.【教学说明】本题由学生自主完成,互相交流.四、运用新知,深化理解1.下列说法中,正确的有()(1)柱体的两个底面一样大;(2)圆柱的面与面的交线都是圆;(3)棱柱的底面是四边形;(4)棱柱的侧面一定是长方形;(5)长方体一定是柱体;(6)长方体的面不可能是正方形.A.(1)(2)(4)B.(1)(2)(5)C.(2)(3)(5)D.(2)(4)(5)2.一个几何体只有一个顶点、一个侧面、一个底面,则这个几何体是()A.棱柱B.棱锥C.圆锥D.圆柱3.飞机飞行表演在空中留下漂亮的“彩带”用数学知识解释为_______;在朱自清的《春》中有描写春雨“像牛毛,像细丝,密密地斜织着”的语句,这里把雨看成了_______,这说明_______;把一张纸对折,形成一条折痕,用数学知识解释为_______;用铁丝围成一个长方形,绕它的一边旋转,形成一个_______,这说明_______.4.如图是在一个正方体的一个角挖去一个小正方体后得到的几何体,这个几何体的顶点个数是_______.5.请你从数学的角度描述下列现象.(1)国庆之夜,炸响的礼花在天空中(瞬间)留下美丽的弧线;(2)用一条拉直的细线切一块豆腐;(3)将2012张十六开的白纸摞成长方体.【教学说明】教师先让学生自主完成上述几题,然后让学生回答并予以点评.【答案】1.B 2.C 3.点动成线线线动成面面与面相交成线圆柱体面动成体4.145.(1)点动成线(2)线动成面(3)面动成体五、师生互动,课堂小结请学生谈:我知道了什么?我学会了什么?我发现了什么?要求学生留心观察身边的事物,从实际生活中感受理解几何知识.1.布置作业:从教材习题4.1中选取.2.完成练习册中本课时的练习.3.“当你远远地去观察霓虹灯组成的图案时,图案中的每个霓虹灯就是一个点;在交通图上,点用来表示每个地方;电视屏幕上的画面也是由一个个小点组成;运用点可以组成数字和字母,这正是点阵式打印机的原理.”说说你对上述这段叙述的理解和体会.本节教学重在指导学生通过观察生活中的实物,抽象出几何图形的形成过程,把培养学生的观察、思考、提炼的素质放在首位.学生之间可以以小组为单位,在合作中交流,使知识的认识变为学生主动参与的过程.4.2 直线、射线、线段第1课时直线、射线、线段【知识与技能】1.进一步认识直线、射线、线段的联系和区别,逐步掌握它们的表示方法.2.结合实例,了解两点确定一条直线的性质,并能初步应用.3.会画一条线段等于已知线段.【过程与方法】能根据语句画出相应的图形,会用语句描述简单的图形.在图形的基础上发展数学语言.【情感态度】初步体验图形是有效描述现实世界的重要手段,并能初步应用空间与图形的知识解释生活中的现象以及解决简单的实际问题,体会研究几何图形的意义.【教学重点】认识直线、射线、线段的区别与联系.学会正确表示直线、射线、线段,逐步使学生懂得几何语句的意义并能建立几何语句与图形之间的联系.【教学难点】能够把几何图形与语句表示、符号书写很好地联系起来.一、情境导入,初步认识1.观察教材第125页图4.2-1.2.学校总务处为解决下雨天学生雨伞的存放问题,决定在每个班级教室外钉一根2米长的装有挂钩的木条.本校三个年级,每个年级八个班,问至少需要买几颗钉子?你能帮总务处的师傅算一算吗?【教学说明】创设实际问题情景,引导学生思考,激发学习兴趣.二、思考探究,获取新知学生按照学习小组,利用打好的小洞,10cm长,1cm宽的硬纸条和撒扣进行实践活动,小组之间交流实践成果,相互补充完善,并解决问题1和2得到直线性质:两点确定一条直线.画一画要求学生分别画一条直线、射线、线段,教师给出规范表示方法.【教学说明】学生通过动手实践,观察分析,猜想,合作交流,体验并感悟到直线的性质.让学生自己归纳性质,在小组交流中完善表述.(教学中学生用自己的语言描述性质,语言可能不够准确简练、完整细致,面对这种情况,不必操之过急,要允许学生有一个发展的时间与空间.)结合自己所画图形寻找直线、射线、线段的特征,说说它们之间的区别与联系并交流.思考:怎样由一条线段得到一条射线或一条直线?举出生活中一些可以看成直线、射线、线段的例子.设计意图:在自己动手画好直线、射线和线段的基础上,要求学生说出它们的区别与联系,目的是使学生进一步认识线段、射线、直线.完成教科书126页练习,使学生逐步懂得几何语句的意义并能建立几何语句与图形之间的联系.数学活动独立探究:画一条线段等于已知线段a,说说你的想法.小组交流补充.教师边说边示范尺规作图并要求学生写好结论.【教学说明】慢慢让学生读清楚题意并学会按照要求正确画出图形.并让学生自己说出想法,培养学生独立操作、自主探索的数学实验学习能力.三、典例精析,掌握新知例1 动手画一画,邀同伴讨论下列问题:(1)过一个已知点可以画多少条直线?(2)过两个已知点可以画多少条直线?(3)过三个已知点一定可以画出直线吗?(4)经过平面上三点A,B,C中的每两点可以画多少条直线?(5)借鉴(4)的结论,猜想经过平面上四点A,B,C,D中的任意两点画直线会有什么样的结果?如果不能画,请简要说明理由,如能画,画出图来.【分析】解答本题时,要仔细读题,注意体会不同问题间的细微区别,以便求得正确的答案.解:(1)过一点可以画无数条直线.(2)过两个点可以画唯一的一条直线.(3)过三个已知点不一定能画出直线,当三点不共线时,不能作出直线;当三点共线时,能画一条直线.(4)当A,B,C三点不共线时,过其中的每两点可以画一条直线,所以共有三条直线;当A,B,C三点共线时,上面画的三条直线重合了,只能画一条直线,如图(一):(5)经过平面内四点中的任意两点画直线有三种结果,如图(二):①当A,B,C,D四个点在同一条直线上时,只可以画出一条直线.②当A,B,C,D四个点有三个点在同一条直线上时,可画出4条直线.③当A,B,C,D四个点中任意三个点都不在同一条直线上时,可画出6条直线.【教学说明】题(3)和题(4)中分别没有明确平面上三点,四点是否在同一条直线上,解答时要分各种可能情况解答,这种解答方法叫分类讨论.运用分类方法时,要考虑到可能出现的所有情形,不能丢掉任何一种,否则就不完整,不全面.例 2 如图(1)(2)(3)中给出的直线,射线,线段,根据它们各自性质,判断其能否相交?【分析】这是用几何图形语言给出的已知条件的例题,读懂图形语言是学习几何知识的基础.结合直线、射线、线段的几何性质作出判断.解:图(1)中直线AB与直线CD相交;图(2)中射线CD与直线AB不相交,因为射线CD是以C为端点C向D所在方向延伸的;图(3)中射线CD与线段AB不相交,因为线段AB不能延伸,而射线CD延伸方向为C向D所在方向,故它们不相交;图(4)中线段AB与线段CD不相交,因为线段AB与线段CD都不能延伸.【教学说明】本题解答关键在理解三种基本图形的延伸性质.四、师生互动,课堂小结请学生互相交流我知道了哪些概念?我学会了什么解题方法?我发现了什么新知识?1.布置作业:从教材习题4.2中选取.2.完成练习册中本课时的练习.本课时主要介绍直线、射线、线段的概念、表示方法,以及它们的区别与联系,是典型的概念教学课.教学中,教师应给学生充分探寻直线的基本知识,直线、射线、线段的表示方法的素材和动手动脑、合作交流的时间与空间,鼓励学生在活动观察时感受概念的形成过程,获得数学体验.提醒学生结合生活经验、留心周围事物,借助实物来认识图形.。
【实用】2018-2019最新人教版七年级数学上册第四章《几何图形初步》全部精品课件【全套完整版】【新教材】
解:略.
10. 指出图中各物体是由哪些立体图形组成的.
解:(1)由正方体、圆柱、圆锥组成; (2)由圆柱、长方体、三棱柱组成; (3)由五棱柱、球组成.
将一个边长为 12 cm 的正方体的棱三等分,然后沿分 点切开. (1)大正方体变为多少个小正方体? (2)变形前后的表面积增加了多少平方厘米?
A.2n+2 C.4n-4
B.4n+4 D.4n
【解析】 根据给出的 3 个图形可以知道: 第 1 个图形中 三角形的个数是 4,第 2 个图形中三角形的个数是 8,第 3 个图形中三角形的个数是 12,从而得出第 n 个图形中三角 形的个数是 4n.
4. 三棱柱有___ 6 个顶点,___ 5 个面,___ 9 条棱,n 棱柱有
第 4 题图 A.美 C.宜 B.丽 D.昌
5. (2017·北京) 如图是某个几何体的展开图,该几何 体是( A )
第 5 题图 A.三棱柱 C.四棱柱 B.圆锥 D.圆柱
6. 如图,四个图形折叠后所得正方体与所给正方体 的各个面上颜色一致的是( B )
2. (2017·南充)如图是由 7 个小正方体组合而成的几 何体,那么这个几何体从正面看到的平面图形是( A )
3. 如图,根据立体图形从三个方向看到的图形,判断
六棱柱 . 这个立体图形是________
知识点
立体图形的平面展开图
4. (2017·宜昌) 如图是一个小正方体的展开图,把展 开图折叠成小正方体后, 有“爱”字一面的相对面上的字是 ( C )
【解析】 ①②正确; ③圆柱由 2 个底面, 1 个侧面围成, 故错误;④长方体的侧面可能是长方形,也可能是正方形, 故错误.
2. 下列各组图形中都是平面图形的是( C ) A.三角形、圆、球、圆锥 B.点、线段、棱锥、棱柱 C.角、三角形、正方形、圆 D.点、角、线段、长方体
新人教版七年级上册数学第4章-图形认识初步全章教案
第四章图形认识初步多姿多彩的图形§几何图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体. 2、过程与方法!(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观(1).形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程)1.创设情境,导入新课.(1)同学们,不知你们有没有仔细地观察过我们生活的周围,如果你认真观察的话,你会发现我们生活在一个多姿多彩的图形世界里.引导学生观察08年奥运村模型图,你能从中找到一些你熟悉的图形吗(2)用幻灯片展示一些实物图片并引导学生观察.从城市宏伟的建筑到江南水乡的小桥流水,从高科技产品到日常小玩意,从四通八达的立交桥到街头巷尾的交通标志,从古老的剪纸艺术到现代的雕塑,从自然界形态各异的动物到北京的申奥标志……图形的世界是丰富多彩的.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.<(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.}3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗(4)下图中实物的形状对应哪些立体图形把相应的实物与图形用线连起来#4.小结这节课你有什么收获5.作业设计课本第123页习题第1、2题;第125页习题第7、8题。
七年级数学上册第四章几何图形初步4.1几何图形4.1.1立
泰姬陵—印度
圆形斗兽场—意大利
白宫—美国
巴台农神庙—希腊
大英博物馆—英国
典题精讲
从上面看
从左边看
长方体
从正面看
从上面看
从左面看
从正面看
从左面看
从上面看 从正面看
从上面看 从左面看
从正面看
从上面看
从左面看
从正面看
从正面看
从左面看
从上面看
课后思考
利用骰子摆成下面的图形,分别从正面、左 面、上面观察这个图形,各能得到什么平面
对于各种各样的物体,数学关注的是它们的 形状(如圆的、方的等),大小(如长度、 面积、体积等)和位置(如相交、平行等)。
长方体
正方形
长方形
线段
点
长方体、圆柱、球、长方形、圆、线
段、点等,以及在小学学过的三角形、 四边形等,都是从形形色色的物体外形 中得出的。我们把从实物中抽象出的各 种图形统称为几何图形。
常见立体图形的归类
柱体
立体图形
球体
圆柱 棱柱
三棱柱
四棱柱 五棱柱 六棱柱 ……
锥体
圆锥 棱锥
三棱锥
四棱锥 五棱锥 六棱锥 ……
探索新知
有些几何图形的各部分都在同一平 面内,这些图形是平面图形。
常见的平面图形
三角形
长方形
五边形
圆形
正方形
六边形
找一找:图中包含哪些简单的平面图形? 请再举出一些平面图形的例子。
贴近教学 服务师生 方便老师
人教版
七年级 数学 上册
4.1 几何图形(一)
学习目标
初步了解立体图形和平面图形的概念; 能从具体物体中抽象出立体图形 ;
人教版七年级上册第四章《几何图形初步》全章课件
4.1 几何图形
4.1.1 立体图形与平面图形
第1课时 认识几何图形
新课导入
从古老简朴的青砖黛瓦到恢弘大气的 现代建筑。
从四通八达的立交桥到街头巷尾的交 通标志。
从传统的艺术剪纸到异域的城市建筑, 今天我们就来探索几何图形的奥秘.
(1)能从具体事物中抽象出几何图形,并用几何 图形描述一些现实生活中的物体. (2)能分清立体图形和平面图形,并了解它们之 间的联系.
四棱锥
观察 下面这些几何图形又有什么共同特点?
各部分都在同一平面内. 有些几何图形的各部分都在同一平面 内,它们是平面图形.
思考 下面各图中包含哪些简单的平面图形? 请再举出一些平面图形的例子.
长方形、圆、三角形、正方形……
思考 立体图形和平面图形是同一类图形吗? 它们之间有什么联系?
1 立体图形与平面图形是两类不同的几何
图形,但它们是互相联系的.
2 立体图形中某些部分是平面图形,如正方
体的每个面都是正方形.
强化练习
1.如图,说出下图中 的一些物体的形状所 对应的立体图形. 正方体、长方体、球、圆柱体.
强化练习
2.你能给右图中的两个 图形起个名吗?并说明 它们由哪些平面图形构 成? 雪人.由三角形、圆和线段组成;三毛.由线 段、圆、三角形、正方形组成.
正面
左面
上面
强化练习
1.如图,右面三幅图分别是从哪个方向看 到这个棱柱的? 上面 正面 左面
知识点2
立体图形的展开图
思考 要设计、制作一个长方体形状的包装盒,除 了美术设计以外,还需要知道些什么?
相应立体图形的展开图.
探究
a.圆柱、圆锥的平面展开图是如何构成的?
2018-2019学年七年级数学新版人教版上册第4章 几何图形初步 4.1.1 第1课时 认识几何图形
2018年秋
第四章 几何图形初步
4.1 几何图形 4.1.1 立体图形与平面图形 第1课时 认识几何图形
形状 同一平面内
大小
位置
自我诊断 1. 下列图形不是立体图形的是( D ) A.球 C.圆锥
平面图形 有些几何图形的各部分都在 同一平面内 ,它们是平面图形.
B.圆柱 D.圆
自我诊断 2. 如图是由一副七巧板组成的一个狐狸,图中含有的平面图形有三角形、正方形、源自行四边形,分别有 5,1,1
个.
1. (丽水中考)下列图形中,不属于平面图形的是( C )
2.如图是一间房子的平面示意图,组成这幅图的简单几何图形是
三角形、正方形、长方形和梯形
.
3.通过观察 (如图),请判断下列实物中含有棱锥的几何体是( C )
4.用一个平面去截一个几何体,得到的截面是四边形,这个几何体可能是 ( C ) A.圆锥 C.圆柱 B.球体 D.以上都有可能
两
四
解:(1)由正方体、圆柱、圆锥组成; (2)由圆柱、长方体、三棱柱组成; (3)由五棱柱、球组成.
解:(1)圆、菱形、正方形、扇形、三角形、长方形; (2)从上到下,依次对折; (3)如图所示:
新人教版七年级上册数学第4章几何图形初步全章教案
第四章几何图形初步屯脚中学:李治民4.1 几何图形§ 4.1.1立体图形与平面图形一、教学目标1、知识与技能(1)初步了解立体图形和平面图形的概念.(2)能从具体物体中抽象出长方体、正方体、球、圆锥、棱锥、棱柱等立体图形;能举出类似长方体、正方体、球、圆锥、棱锥、棱柱的物体实体.2、过程与方法(1)过程:在探索实物与立体图形关系的活动过程中,对具体图形进行概括,发展几何直觉.(2)方法:能从具体事物中抽象出几何图形,并用几何图形描述一些现实中的物体.3、情感、态度、价值观:形成主动探究的意识,丰富学生数学活动的成功体验,激发学生对几何图形的好奇心,发展学生的审美情趣.二、教学重点、难点:教学重点:常见几何体的识别教学难点:从实物中抽象几何图形.三、教学过程1.创设情境,导入新课.让我们一起来看看北京奥运会奥运村模型图.(出示章前图)展示丰富多彩的图形世界.2直观感知,识别图形(1)对于各种各样的物体,数学中关注是它们的形状、大小和位置.(2)展示一个长方体教具,让学生分别从整体和局部抽象出几何图形.观察长方体教具的外形,从整体上看,它的形状是长方体,看不同的侧面,得到的是正方形或长方形,只看棱、顶点等局部,得到的是线段、点.(3)观察其他的实物教具(或图片)让学生从中抽象出圆柱,球,圆等图形.(4)引导学生得出几何图形、立体图形、平面图形的概念.我们把从实物中抽象出的各种图形统称为几何图形.比如长方体,长方形,圆柱,线段,点,三角形,四边形等.几何图形是数学研究的主要对象之一.有些几何体的各部分不都在同一平面内,它们是立体图形.如长方体,立方体等.有些几何图形和各部分都在同一平面内,它们是平面图形.如线段,角,长方形,圆等.3. 实践探究.(1) 引导学生观察帐篷,,金字塔的图片,从面抽象出棱柱,棱锥.(2)你能说说圆柱与棱柱,圆锥与棱锥的区别吗?(3)你能再举一些圆柱、棱柱、圆锥、棱锥的实例吗?(4)下图中实物的形状对应哪些立体图形?把相应的实物与图形用线连起来4.小结这节课你有什么收获?5.作业设计课本第123页习题4.1第1、2题;第125页习题4.1第7、8题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年秋
第四章 几何图形初步
4.4 课题学习 设计制作长方体形状的包装纸盒
展开图
长方体
美术
语言
生产
长方体
圆台
圆柱
易错点 没有抓住正方体邻面、对面的特征而出错. 自我诊断 4. (恩州中考)正方体六个面上分别标有 1、2、3、4、5、6 六个数 字,如图是其三种可能的放置方式,与数字“6”相对的面上的数字是( B ) A.1 C.4 B.5 D.3
1.下面是某品牌牛奶软包装盒,其展开图不正确的是( B )
2.如图是无盖长方体盒子的展开图(重叠部分不计),则盒子的容积为( B ) A.4 C.12 B.6 D.15
3.如图所示是长方体的展开图,折叠成一个长方体,那么与字母 J 重合的 点是 H和N .
4.下列图形折叠起来不能做成一个开口的盒子的是( B
)
5.如图是一个长方体形状包装盒的表面展开图,折叠制作完成后得到长方 体的容积是(包装材料厚度不计)( D )
A.40×40×70 C.80×80×40
B.70×70×80 D.40×70×80
解:(1)∵裁剪时 x 张用 A 方法,∴裁剪时(19-x)张用 B 方法.∴侧面的个 数为:6x+4(19-x)=2x+76(个),底面的个数为:5(19-x)=95-5x(个);
2×7+76 (2)由题意, 得 2(2x+76)=3(95-5x), 解得 x=7.∴盒子的个数为 = 3 30(个).答:裁剪出的侧面和底面恰好全部用完,能做 30 个盒子.