幂的运算单元测试卷(含答案)(最新整理)
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)
七年级数学下册第八章《幂的运算》单元测试卷-苏科版(含答案)一.选择题(共7小题,满分21分)1.若a•2•23=26,则a等于()A.4B.8C.16D.322.已知a≠0,下列运算中正确的是()A.a2•a3=a6B.a5﹣a3=a2C.(﹣a3)2=a5D.a•a3=a43.若10m=5,10n=3,求102m﹣3n的值()A.B.C.675D.4.若(2x﹣1)0有意义,则x的取值范围是()A.x=﹣2B.x≠0C.x≠D.x=5.若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x取值范围是()A.x≠3B.x≠2C.x≠3且x≠﹣2D.x≠3且x≠2 6.“绿水青山就是金山银山”.某地积极响应党中央号召,大力推进农村厕所革命,已经累计投资1.102×108元资金.数据1.102×108用科学记数法可表示为()A.1102亿B.1.102亿C.110.2亿D.11.02亿7.嫦娥五号返回器携带月球样品安全着陆,标志着中国航天业向前又迈出了一大步.嫦娥五号返回器在接近大气层时,飞行1m大约需要0.0000893s.数据0.0000893s用科学记数法表示为()A.8.93×10﹣5B.893×10﹣4C.8.93×10﹣4D.8.93×10﹣7二.填空题(共7小题,满分21分)8.将2x﹣3y(x+y)﹣1表示成只含有正整数指数幂的形式为.9.新型冠状病毒直径约为100nm,计m(用科学记数法表示).10.若有意义,则x的取值范围是.11.若a2n=2(n为正整数),则(4a3n)2÷4a4n的值为.12.目前全国疫情防控形势依旧严峻,我们应该坚持“勤洗手,戴口罩,常通风”.一双没有洗过的手,带有各种细菌约7.5×105个,则科学记数法数据7.5×105的原数为.13.已知x2n=5,则(3x3n)2﹣4(x2)2n的值为.14.已知m x=2,m y=4,则m x+y=.三.解答题(共6小题,满分58分)15.计算:(1)2+(﹣2)×3+(﹣7)0;(2)×12.16.在数学中,我们经常会运用逆向思考的方法来解决一些问题,例如:“若a m=4,a m+n =20,求a n的值.”这道题我们可以这样思考:逆向运用同底数幂的乘法公式,即a m+n =a m•a n,所以20=4•a n,所以a n=5.(1)若a m=2,a2m+n=24,请你也利用逆向思考的方法求出a n的值.(2)下面是小贤用逆向思考的方法完成的一道作业题,请你参考小贤的方法解答下面的问题:小贤的作业计算:89×(﹣0.125)9.解:89×(﹣0.125)9=(﹣8×0.125)9=(﹣1)9=﹣1.①小贤的求解方法逆用了哪一条幂的运算性质,直接写出该逆向运用的公式:.②计算:52023×(﹣0.2)2022.17.(1)若3×27m÷9m=316,求m的值;(2)已知a x=﹣2,a y=3,求a3x﹣2y的值;(3)若n为正整数,且x2n=4,求(3x2n)2﹣4(x2)2n的值.18.我们知道,同底数幂的乘法法则为a m•a n=a m+n(其中a≠0,m、n为正整数),类似地,我们规定关于任意正整数m、n的一种新运算:f(m)•f(n)=f(m+n)(其中m、n为正整数).例如,若f(3)=2,则f(6)=f(3+3)=f(3)•f(3)=2×2=4.f(9)=f(3+3+3)=f(3)•f(3)•f(3)=2×2×2=8.(1)若f(2)=5,①填空:f(6)=;②当f(2n)=25,求n的值;(2)若f(a)=3,化简:f(a)•f(2a)•f(3a)•…•f(10a).19.如表是某河流今年某一周内的水位变化情况,上周末(星期六)的水位已经达到警戒水位33米.(正号表示水位比前一天上升,负号表示水位比前一天下降).(单位:米)星期日一二三四五六水位变化+0.2+0.8﹣0.4+0.2+0.3﹣0.5﹣0.2(1)本周哪一天河流的水位最高?哪一天河流的水位最低?分别是多少?(2)与上周末相比,本周末河流的水位是上升了还是下降了?本周末的水位是多少?(3)若水位每下降1厘米,就有2.5×102吨水蒸发到大气中,请计算这个星期共有多少吨水蒸发到大气中?20.已知10﹣2α=3,,求106α+2β的值.参考答案一.选择题(共7小题,满分21分)1.解:∵a•2•23=26,∴a=26÷24=22=4.故选:A.2.解:A、原式=a5,故不符合题意;B、a5与a3不是同类项,故不能合并,故不符合题意;C、原式=﹣a6,故不符合题意;D、原式=a4,故符合题意.故选:D.3.解:∵10m=5,10n=3,∴102m﹣3n=102m÷103n=.故选:D.4.解:(2x﹣1)0有意义,则2x﹣1≠0,解得:x≠.故选:C.5.解:若(x﹣3)0﹣2(2x﹣4)﹣1有意义,则x﹣3≠0且2x﹣4≠0,解得:x≠3且x≠2.故选:D.6.解:1.102×108=1.102亿.故选:B.7.解:0.0000893=8.93×10﹣5,故选:A.二.填空题(共7小题,满分21分)8.解:原式=•=.故答案为:.9.解:新型冠状病毒的直径约为100nm=100×10﹣9m=1×10﹣7m,故答案为1×10﹣7.10.解:∵有意义,∴0.∴x+2≠0,x﹣2≠0,∴x≠±2.故答案为:x≠±2.11.解:当a2n=2时,(4a3n)2÷4a4n=16(a2n)3÷4(a2n)2=16×23÷(4×22)=16×8÷(4×4)=16×8÷16=8.故答案为:8.12.解:7.5×105=750000,故答案为:750000.13.解:∵x2n=5,∴(3x3n)2﹣4(x2)2n=9x6n﹣4x4n=9(x2n)3﹣4(x2n)2=9×53﹣4×52=1125﹣100=1025.故答案为:1025.14.解:∵m x=2,m y=4,∴m x+y=m x•m y=8,故答案为:8.三.解答题(共6小题,满分58分)15.解:(1)原式=2﹣6+1=﹣3;(2)原式=×12+=5+8﹣1616.解:(1)∵a m=2,∴a2m+n=24,∴a2m×a n=24,(a m)2×a n=24,22×a n=24,∴4a n=24,∴a n=6;(2)①逆用积的乘方,其公式为:a n•b n=(ab)n,故答案为:a n•b n=(ab)n;②52023×(﹣0.2)2022=5×52022×(﹣0.2)2022=5×(﹣0.2×5)2022=5×(﹣1)2022=5×1=5.17.解:(1)∵3×27m÷9m=316,∴3×33m÷32m=316,∴33m+1﹣2m=316,∴3m﹣2m+1=16,解得m=15;(2)∵a x=﹣2,a y=3,∴a3x=﹣8,a2y=9,∴a3x﹣2y=a3x÷a2y=(﹣8)÷9=﹣;(3)∵x2n=4,∴(3x2n)2﹣4(x2)2n=(3x2n)2﹣4(x2n)2=(3×4)2﹣4×42=122﹣4×16=144﹣64=80.18.解:(1)①∵f(2)=5,∴f(6)=f(2+2+2)=f(2)•f(2)•f(2)=125;故答案为:125;②∵25=5×5=f(2)•f(2)=f(2+2),f(2n)=25,∴f(2n)=f(2+2),∴2n=4,∴n=2;(2)∵f(2a)=f(a+a)=f(a)•f(a)=3×3=31+1=32,f(3a)=f(a+a+a)=f(a)•f(a)•f(a)=3×3×3=31+1+1=33,…,f(10a)=310,∴f(a)•f(2a)•f(3a)•…•f(10a)=3×32×33×…×310=31+2+3+…+10=355.19.解:(1)周日:33+0.2=33.2(米),周一:33.2+0.8=34(米),周二:34﹣0.4=33.6(米),周三:33.6+0.2=33.8(米),周四:33.8+0.3=34.1(米),周五:34.1﹣0.5=33.6(米),周六:33.6﹣0.2=33.4(米).答:周四水位最高,最高水位是34.1米,周日水位最低,最低水位是33.2米;(2)33.4﹣33=0.4>0,答:与上周末相比,本周末河流的水位上升了,水位是33.4米;(3)100×(0.4+0.5+0.2)×2.5×102吨=2.75×104(吨),答:这个星期共有2.75×104吨水蒸发到大气中.20.解:∵10﹣2α==3,10﹣β==﹣,∴102α=,10β=﹣5,∴106α+2β=(102α)3•(10β)2,=()3×(﹣5)2,=×25,=.。
(完整版)幂的运算练习题及答案(可编辑修改word版)
.《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0 个B、1 个C、2 个D、3 个二、填空题A、﹣299B、﹣2C、299D、26、计算:x2•x3= ;(﹣a2)3+(﹣a3)2=2、当m 是正整数时,下列等式成立的有().(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4 个B、3 个C、2 个D、1 个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y37、若2m=5,2n=6,则2m+2n=.三、解答题8、已知 3x(x n+5)=3x n+1+45,求 x 的值。
9、若 1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的3 21 2 4 4C、4x y•(﹣2x y)= ﹣2x yD、(x﹣y)值.3=x3﹣y34、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1 与b2n+1D、a2n﹣1 与﹣b2n﹣15、下列等式中正确的个数是()10、已知 2x+5y=3,求 4x•32y的值.11、已知 25m•2•10n=57•24,求 m、n..a 12、已知 a x =5,a x+y =25,求 a x +a y 的值.13、若 x m+2n =16,x n =2,求 x m+n 的值.14、比较下列一组数的大小.8131,2741,96115、如果 a 2+a=0(a ≠0),求 a 2005+a 2004+12 的值.16、已知 9n+1﹣32n =72,求 n 的值.18、若(a n b m b )3=a 9b 15,求 2m+n 的值. 19、计算:a n ﹣5(a n+1b 3m ﹣2)2+(a n ﹣1b m ﹣2)3(﹣b 3m+2) 20、若 x=3a n ,y=﹣1 2n ﹣1,当 a=2,n=3 时,求 a n x ﹣ay 的值. 2 21、已知:2x =4y+1,27y =3x ﹣1,求 x ﹣y 的值. 22、计算:(a ﹣b )m+3•(b ﹣a )2•(a ﹣b )m •(b ﹣a )5 23、若(a m+1b n+2)(a 2n ﹣1b 2n )=a 5b 3,则求 m+n 的值.24、用简便方法计算:1(1)(24)2×421(4)[(2)2]3×(23)3(2)(﹣0.25)12×412(3)0.52×25×0.125答案与评分标准一、选择题(共 5 小题,每小题 4 分,满分 20 分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。
完整版)幂的运算练习题及答案
完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299 B。
-2 C。
299 D。
22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。
4个 B。
3个 C。
2个 D。
1个3.下列运算正确的是()A。
2x+3y=5xy B。
(-3x^2y)^3=-9x^6y^3C。
D。
(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXX^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1) D。
a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。
0个 B。
1个 C。
2个 D。
3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。
幂的运算专项练习50题(有答案)
幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。
初二年级.数学幂的运算练习及答案
一、选择题:(每小题3分,共24分)1.可以写成()A. B. C. D.2.下列计算正确的是()A. B. C. D.3.下列计算正确的是()A.B.C.D.4.如果将写成下列各式,正确的个数是( )。
①;②;③;④;⑤.A.1B.2C.3 D.45.计算的结果正确的是()A.B.C..D.6.下列运算正确的是()A.B.C.D.7.的结果是()A.B.C.D.#8.与的关系是()A .相等B .互为相反数C .当n为奇数时它们互为相反数;当n为偶数时,它们相等.D .当n为奇数时它们相等;当n为偶数时,它们互为相反数.二、填空题:(每小题3分,共18分)9.______________.10.=.11.用科学记数法:____________.}12.____________.13.若5n=3,4n=2,则20n的值是__________.14.若,则____________.三、计算题:(每小题3分,共18分)17.(1) ;(2) ;(3);(4);(5);(6).18.计算题(每小题4分,共16分)】(1);(2);(3);(4).四、解答题:(每小题6分,共24分)19.若为正整数,且,则满足条件的共有多少对&20.设n为正整数,且,求的值.21.已知求的值.22.一个小立方块的边长为,一个大立方体的边长为,(1)试问一个小立方块的体积是大立方体体积的几分之几试用科学记数法表示这个结果.(2)如果用这种小立方块堆成那样大的立方体,则需要这种小立方块多少个/¥(参考答案一、选择题:(每小题3分,共24分)题号】12345678 ~答案C D D A C A B\D 二、填空题:(每小题3分,共18分)9.10.11.12.13. 6 14.三、计算题:17.(1) (2)(3)(4)(5)(6)18.(1)(2)(3)(4)19.满足条件的共有4对. 20.21.22.;;个.。
(完整版)幂的运算测试题(经典题型
幂的运算性质1、下列各式计算过程正确的是()(A)x3+x3=x3+3=x6(B)x3·x3=2x3=x6(C)x·x3·x5=x0+3+5=x8(D)x2·(-x)3=-x2+3=-x52、化简(-x)3·(-x)2,结果正确的是()(A)-x6(B)x6(C)x5(D)-x53、下列计算:①(x5)2=x25;②(x5)2=x7;③(x2)5=x10;④x5·y2=(xy)7;⑤x5·y2=(xy)10;⑥x5y5=(xy)5;其中错误的有()(A)2个(B)3个(C)4个(D)5个4、下列运算正确的是()(A)a4+a5=a9(B)a3·a3·a3=3a3(C)2a4×3a5=6a9(D)(-a3)4=a75、下列计算正确的是()(A)(-1)0=-1 (B)(-1)-1=+1 (C)2a-3=(D)(-a3)÷(-a)7=6、下列计算中,运算错误的式子有()⑴5a3-a3=4a3;⑵x m+x m=x2m;⑶2m·3n=6m+n;⑷a m+1·a=a m+2;(A)0个(B)1个(C)2个(D)3个7、计算(a-b)2(b-a)3的结果是()(A)(a-b)5(B)-(a-b)5(C)(a-b)6(D)-(a-b)68.计算所得的结果是( )A.-2 B 2 C .- D.9.当n是正整数时,下列等式成立的有( ) (1) (2) (3) (4)A.4个 B.3个 C.2个 D.1个10.若,,则= .11、(2m-n)3·(n-2m)2= ;12、要使(x-1)0-(x+1)-2有意义,x的取值应满足什么条件?13、如果等式,则的值为14、 15、16、已知: ,求x的值.17、(-2a2b)3+8(a2)2·(-a)2·(-b)3; 18、(-3a2)3·a3+(-4a)2·a7-(5a3)3;逆向思维19、0.25101×4100=;(-0.5)2002×(-2)2003=;22006×32006的个位数字是;20、若a=999111,b=111222,则a、b的大小关系是;21、已知:10a=5,10b=6,求102a+3b的值.练:若3m=6,9n=2,求32m-4n+1的值;22、若n为正整数,且x2n=4,求(x3n)2-2(x2)n的值.23、若n为正整数,且x2n=3,求(3x3n)2-8(x2)2n的值.24、已知:,求的值;的值26、已知的值. 27、已知,求m、n.。
苏科新版七年级下册《第8章幂的运算》2024年单元测试卷(4)+答案解析
苏科新版七年级下册《第8章幂的运算》2024年单元测试卷(4)一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.某款手机芯片的面积大约仅有,将用科学记数法表示正确的是()A.B.C.D.2.下列运算正确的是()A. B. C.D.3.将,,这三个数按从小到大的顺序排列,为()A. B. C.D.4.计算,则括号内应填入的式子为()A. B. C.D.5.计算等于()A. B.C.1D.6.若,则n 的值为() A.B.C.0D.17.a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是()A.与B.与C.与D.与8.王老师有一个实际容量为的U 盘,内有三个文件夹,已知课件文件夹占用了的内存,照片文件夹内有32张大小都是的旅行照片,音乐文件夹内有若干首大小都是的音乐,若该U 盘内存恰好用完,则此时文件夹内有音乐首.()A.28B.30C.32D.34二、填空题:本题共11小题,每小题3分,共33分。
9.计算:______.10.比较与的大小,我们可以采用从“特殊到一般”的思想方法:通过计算比较下列各式中两数的大小:填“>”“<”或“=”①______;②______;③______;④______由可以猜测与正整数的大小关系:当n ______时,;当n______时,根据上面的猜想,则有______填“>”“<”或“=”11.根据数值转换机的示意图,输出的值为,则输入的x值为______.12.计算:______.13.把的结果用科学记数法表示为______.14.若,则______.15.,则______.16.若,则______.17.已知,则______.18.若,,则用x的代数式表示y为______.19.一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点处,第二次从跳到的中点处,第三次从点跳到的中点处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为______.三、解答题:本题共6小题,共48分。
(完整版)幂的运算练习及答案
(完整版)幂的运算练习及答案初一数学幂的运算练习姓名________ 学号____一.填空题1、-34πr 3的系数次数 2、多项式2a 2b-35是次项式。
各项的系数分别是3、在下列各式53b a +, 3x ,π1, a 2+b 2, 31-a 2bc, x 2+2x+x 1中单项式有多项式有 4、多项式a n b n+1+3a 3b+1是5次3项式,n= 。
5、减去3ab 得—2ab 的式子是___6、化简)()(325x x x x --=7、若31123x x x x n n =+,则n=8、若2,5m n a a ==,则m n a +=________;若1216x +=,则x=________. 9、化简)2()2()2(43y x x y y x ---=10、若4x =5,4y =3,则4x+y =________若2,x a =则3x a = 。
11、–a 12=a 3( )9=(-a)5( )7=-a 4( )8二.选择题1、m x -与m x )(-的关系是()A :相等B :相反C :m 为奇数时相等,m 为偶数时相反D :m 为奇数时相反,m 为偶数时相等2、下列计算正确的是()A 、102×102=2×102B 、102×102=104C 、102+102=104D 、102+102=2×1043、计算19992000(2)(2)-+-等于( ) A.39992- B.-2 C.19992- D.199924、长方形一边长为2a+b 另一边比它小a-b ,这个长方形周长为()A 、6aB 、10a+2bC 、2a-2bD 、6a+6b5、a=255 b=344 c=533 d=622 a,b,c,d 大小顺序为()A 、a<b<c<d< p="">B 、a<b<d<c< p="">C 、b<a<c<d< p="">D 、a<d<b<c< p="">6、512×83=2m+1 m=( )A 、15B 、17C 、18D 、21三、计算题:(1)a 2·a 3+a ·a 5(2) (n-m)3·(m-n)2 -(m-n)5(3) 2323()()()()x y x y y x y x -?-?-?-(4) 2344()()2()()x x x x x x -?-+?---?四、.解答1、化简a-{b-2a+[3a-2(b+2a)+5b]}2、一个多项式与7532-+-x x 的和是12+-x 求这个多项式3、已知105,106a b ==,求(1)231010a b +的值;(2)2310a b +的值4.已知:A=12322--+x xy x ,B=12-+-xy x ,且3A+6B 的值与x 无关,求y 的值。
幂的运算 单元测试卷 (含答案)
幂的运算 单元测试卷一、选择题1.若a m =12,a n =3,则a m ﹣n 等于( )A .4 B .9 C .15 D .362.在等式a 2×a 4×( )=a 11中,括号里面的代数式应当是( )A .a 3B .a 4C .a 5D .a 63.计算25m ÷5m 的结果是( )A .5 B .20 C .5m D .20m4、a 与b 互为相反数,且都不等于0,n 为正整数,则下列各组中一定互为相反数的是( )A 、a n 与b nB 、a 2n 与b 2nC 、a 2n+1与b 2n+1D 、a 2n ﹣1与﹣b 2n ﹣15、下列等式中正确的个数是( )①a 5+a 5=a 10;②(﹣a )6•(﹣a )3•a=a 10;③﹣a 4•(﹣a )5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个6、数学上一般把n aa a a a 个···…·记为( )A .na B .n a + C .n a D .a n7、下列计算不正确的是( )A.933)(a a =B.326)(n n a a =C.2221)(++=n n x xD.623x x x =⋅8、计算()4323b a --的结果是( ) A.12881b a B.7612b a C.7612b a - D.12881b a -二、填空题。
1、计算:x 2•x 3= _________ ;(﹣a 2)3+(﹣a 3)2= _________ .2、若2m =5,2n =6,则2m+2n = _________ .3、①最薄的金箔的厚度为0.000000091m ,用科学记数法表示为 m ; ②每立方厘米的空气质量约为1.239×10﹣3g ,用小数把它表示为 g .4.= ;﹣y 2n+1÷y n+1= ;[(﹣m )3]2= .5.(a+b )2•(b+a )3= ;(2m ﹣n )3•(n ﹣2m )2= .6.( )2=a 4b 2; ×2n ﹣1=22n+3.7.已知:,,,…,若(a ,b 为正整数),则ab= .8、已知102103m n ==,,则3210m n +=____________.三、解答题1、已知3x (x n +5)=3x n+1+45,求x 的值.3、已知2x+5y=3,求4x •32y 的值.2、若1+2+3+…+n=a,求代数式(x n y )(x n ﹣1y 2)(x n ﹣2y 3)…(x 2y n ﹣1)(xy n )的值.4、已知25m •2•10n =57•24,求m 、n .5、已知a x =5,a x+y =25,求a x +a y 的值.6、若x m+2n=16,x n=2,求x m+n的值. 8、比较下列一组数的大小.8131,2741,9617、已知10a=3,10β=5,10γ=7,试把105写成底数是10的幂的形式。
2021-2022学年苏科版七年级数学下册《第8章幂的运算》单元达标测试题(附答案)
2021-2022学年苏科版七年级数学下册《第8章幂的运算》单元达标测试题(附答案)一.选择题(共8小题,满分40分)1.数字0.000000006用科学记数法表示为()A.6×10﹣8B.6×10﹣9C.6×10﹣10D.6×10﹣11 2.计算(﹣)2022×(﹣2)2022的结果是()A.﹣1B.0C.1D.20223.下列计算正确的是()A.(﹣2a2b)3=﹣8a6b3B.a6÷a3+a2=2a2C.2a+3b=5ab D.a2•a4=a84.已知10a=20,100b=50,则a+b+的值是()A.2B.C.3D.5.计算:(﹣x2y)3=()A.﹣2x6y3B.C.D.6.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10D.a2b2=c27.若8x=21,2y=3,则23x﹣y的值是()A.7B.18C.24D.638.若22=4y﹣1,27y=3x+1,则x﹣y等于()A.﹣5B.3C.﹣1D.1二.填空题(共8小题,满分40分)9.计算:2×103﹣(﹣2)3×102=(把结果用科学记数法表示).10.若9a•27b÷81c=9,则2a+3b﹣4c的值为.11.若2x=3,4y=2,则2x﹣2y的值为.12.若3x﹣5y﹣1=0,则103x÷105y=.13.已知3x+1•5x+1=152x﹣3,则x=.14.若2m+2m+2m+2m=8,则m=.15.计算:=.16.已知(x+3)2﹣x=1,则x的值可能是.三.解答题(共5小题,满分40分)17.(1).(2)如果2m=3,.求23m+2n的值.18.m•(﹣m)2•(﹣m)2•(﹣m)2•(﹣m3)•(﹣m)3.19.(1)已知2m=a,32n=b,m、n为正整数,求23m+10n﹣2的值;(2)已知2a=3,4b=5,8c=7,求8a+c﹣2b的值.20.2(a3)4+a4•(﹣a2)4+a6•(﹣a2)3+(﹣a2)(﹣a5)2.21.某银行去年新增加居民存款10亿元人民币.(结果用科学记数法表示)(1)经测量,100张面值为100元的新版人民币大约厚0.9厘米,如果将10亿元面值为100元的新版人民币摞起来,大约有多高?(2)一台激光点钞机的点钞速度是8×104张/时,按每天点钞5小时计算,如果让点钞机点一遍10亿元面值为100元的新版人民币,点钞机大约要点多少天?参考答案一.选择题(共8小题,满分40分)1.解:0.000000006=6×10﹣9.故选:B.2.解:(﹣)2022×(﹣2)2022=[﹣×(﹣)]2022=12022=1,故选:C.3.解:A、(﹣2a2b)3=﹣8a6b3,故A符合题意;B、a6÷a3+a2=a3+a2,故B不符合题意;C、2a与3b不属于同类项,不能合并,故C不符合题意;D、a2•a4=a6,故D不符合题意;故选:A.4.解:∵10a×100b=10a×102b=10a+2b=20×50=1000=103,∴a+2b=3,∴原式=(a+2b+3)=×(3+3)=3,故选:C.5.解:(﹣x2y)3=﹣x6y3,故选:D.6.解:∵5×10=50,∴2a•2b=2c,∴2a+b=2c,∴a+b=c,故选:B.7.解:∵8x=21,2y=3,∴23x=21,∴23x﹣y=23x÷2y=21÷3=7.故选:A.8.解:∵22=4y﹣1=22y﹣2,27y=33y=3x+1,∴2y﹣2=2,3y=x+1,解得y=2,x=5,∴x﹣y=5﹣2=3.故选:B.二.填空题(共8小题,满分40分)9.解:2×103﹣(﹣2)3×102=2×103+8×102=2000+800=2800=2.8×103.故答案为:2.8×103.10.解:9a•27b÷81c=9,32a•33b÷34c=32,32a+3b﹣4c=32,∴2a+3b﹣4c=2,故答案为:2.11.解:∵2x=3,4y=2,∴22y=2,∴2x﹣2y=2x÷22y=3÷2=,故答案为:.12.解:因为3x﹣5y﹣1=0,所以3x﹣5y=1,所以103x÷105y=103x﹣5y=10.故答案为:10.13.解:∵3x+1•5x+1=152x﹣3,∴(3×5)x+1=152x﹣3,即15x+1=152x﹣3,∴x+1=2x﹣3,解得:x=4.故答案为:4.14.解:∵2m+2m+2m+2m=8,∴4×2m=8,∴22×2m=8,则有:2m+2=23,∴m+2=3,解得:m=1.故答案为:1.15.解:原式=1+﹣1=1+2﹣1=2.故答案为:2.16.解:当x+3=1时,解得:x=﹣2,故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时,解得:x=﹣4,故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时,解得:x=2,故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.三.解答题(共5小题,满分40分)17.解:(1)=﹣1+1﹣9+(﹣8)=﹣9﹣8=﹣17;(2)当2m=3,时,23m+2n=23m×22n=(2m)3×(2n)2=33×()2=27×=3.18.解:m•(﹣m)2•(﹣m)2•(﹣m)2•(﹣m3)•(﹣m)3=m•m2•m2•m2•(﹣m3)•(﹣m3)=m1+2+2+2+3+3=m13.19.解:(1)∵2m=a,32n=25n=b,m、n为正整数,∴23m+10n﹣2=(2m)3•(25n)2÷22=a3•b2÷4=;(2)∵2a=3,4b=22b=5,8c=23c=7,∴8a+c﹣2b=23a+3c﹣6b=(2a)3•23c÷(22b)3=33×7÷53=27×7÷125=.20.解:原式=2a12+a12﹣a12﹣a12.=a12.21.解:(1)10亿=1 000 000 000=109,∴10亿元的总张数为109÷100=107张,107÷100×0.9=9×104(厘米);(2)107÷(5×8×104),=(1÷40)×(107÷104),=0.025×103=25=2.5×10(天).。
(完整版)幂的运算测试题(经典题型
幂的运算性质1、下列各式计算过程正确的是( )(A )x 3+x 3=x 3+3=x 6 (B )x 3·x 3=2x 3=x 6(C )x ·x 3·x 5=x 0+3+5=x 8 (D )x 2·(-x )3=-x 2+3=-x 52、化简(-x )3·(-x )2,结果正确的是( )(A )-x 6 (B)x 6 (C )x 5 (D)-x 53、下列计算:①(x 5)2=x 25;②(x 5)2=x 7;③(x 2)5=x 10;④x 5·y 2=(xy )7;⑤x 5·y 2=(xy )10;⑥x 5y 5=(xy )5;其中错误..的有( ) (A )2个 (B )3个 (C )4个 (D)5个4、下列运算正确的是( )(A )a 4+a 5=a 9 (B )a 3·a 3·a 3=3a 3 (C )2a 4×3a 5=6a 9 (D)(-a 3)4=a 75、下列计算正确的是( )(A )(-1)0=-1 (B )(-1)-1=+1 (C )2a -3=321a (D )(-a 3)÷(-a )7=41a6、下列计算中,运算错误的式子有( )⑴5a 3-a 3=4a 3;⑵x m +x m =x 2m ;⑶2m ·3n =6m +n ;⑷a m +1·a =a m +2;(A )0个 (B )1个 (C )2个 (D)3个7、计算(a -b )2(b -a )3的结果是( )(A )(a -b )5 (B )-(a -b )5 (C )(a -b )6 (D )-(a -b )68.计算9910022)()(-+-所得的结果是( ) A .-2 B 2 C .-992 D .9929.当n 是正整数时,下列等式成立的有( )(1)22)(m m a a = (2)m m a a )(22= (3)22)(m m a a -= (4)m m a a )(22-=A.4个 B.3个 C.2个 D.1个10.若52=m ,62=n ,则n m 22+= .11、(2m -n )3·(n -2m )2= ;12、要使(x -1)0-(x +1)—2有意义,x 的取值应满足什么条件?13、如果等式()1122=-+a a ,则a 的值为14、232324)3()(9n m n m -+ 15、422432)(3)3(a ab b a ⋅-⋅ 16、已知: ()1242=--x x ,求x 的值。
【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)
【精选】苏科版七年级下册数学第八章《幂的运算》测试卷(含答案)一、选择题(每题3分,共24分)1.【2021·南京市玄武区二模】计算a 3·(-a 2)的结果是( )A .a 5B .-a 5C .a 6D .-a 62.计算⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫15-2的结果是( ) A.110 B .-110 C .25 D .-1253.【2022·宿迁】下列运算正确的是( )A .2m -m =1B .m 2·m 3=m 6C .(mn )2=m 2n 2D .(m 3)2=m 54.计算:(a ·a 3)2=a 2·(a 3)2=a 2·a 6=a 8,其中,第一步运算的依据是( )A .同底数幂的乘法法则B .幂的乘方法则C .乘法分配律D .积的乘方法则5.已知a a -1÷a =a ,则a =( )A .3B .1C .-1D .3或±16.【2022·长沙市校级期中】已知2x -3y =2,则(10x )2÷(10y )3的值为( )A .10 000B .1 000C .10D .1007.已知(x -1)|x |-1有意义且值为1,则x 的值为( )A .±1 B.-1 C .-1或2 D .28.【2022·青岛期中】如图,已知点P 从距原点右侧8个单位的点M 处向原点方向跳动,第一次跳动到OM 的中点M 1处,第二次从点M 1跳到OM 1的中点M 2处,第三次从点M 2跳到OM 2的中点M 3处,…,依次这样进行下去,第2 024次跳动后,该点到原点O 的距离为( )A .2-2 024B .2-2 023C .2-2 022D .2-2 021二、填空题(每题3分,共30分)9.【2022·苏州市吴江区期中】计算:(-3xy 3)3=__________.10.【2021·溧阳市期中】若83=25·2m ,则m =________.11.计算:(-5)2 023×⎝ ⎛⎭⎪⎫15 2 024=________.12.【2021·扬州市江都区期中】已知2a ÷4b =8,则a -2b 的值是________.13.【2022·湖北】科学家在实验室中检测出某种病毒的直径约为0.000 000 103m ,该直径用科学记数法表示为______________m.14.若0<x <1,则x -1,x ,x 2的大小关系是____________.15.【2021·盐城市建湖县月考】已知3x +1=6,2y +2=108,则xy 的值为________.16.设x =5a ,y =125a +1(a 为正整数),用含x 的代数式表示y ,则y =________.17.梯形的上、下底的长分别是4×103cm 和8×103cm ,高是1.6×104cm ,此梯形的面积是__________.18.我们知道,同底数幂的乘法法则为a m ·a n =a m +n (其中a ≠0,m 、n 为正整数).类似地,我们规定关于任意正整数m 、n 的一种新运算:g (m +n )=g (m )·g (n ),若g (1)=-13,则g (2 023)·g (2 024)=________________. 三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.计算:(1)a3·a2·a+(a2)3; (2)(2m3)3+m10÷m-(m3)3. 20.计算:(1)0.62 023×(-53)2 024; (2)(-2)-2+⎝⎛⎭⎪⎫13-1×(2 023-π)0.21.已知2a=4b(a、b是正整数)且a+2b=8,求2a+4b的值.22.(1)比较221与314的大小;(2)比较86与411的大小.23.【2021·张家港市月考】(1)已知2×8x×16=223,求x的值;(2)已知a m=2,a n=3,求a3m-2n的值.24.某农科所要在一块长为1.2×105cm,宽为2.4×104cm的长方形实验地上培育新品种粮食,已知培育每种新品种需一块边长为1.2×104cm的正方形实验地,这块长方形实验地最多可以培育多少种新品种粮食?25.【2021·宿迁市沭阳县期中】(1)已知10a=5,10b=6,求102a+103b的值;(2)已知9n+1-9n=72,求n的值.26.【2022·盐城市亭湖区校级月考】规定两数a、b之间的一种运算,记作(a,b);如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.。
幂的运算练习题及答案
幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。
-299B。
-2C。
299D。
22.当m是正整数时,下列等式成立的有()1) a^(2m)=(a^m)^2;2) a^(2m)=(a^2)^m;3) a^(2m)=(-a^m)^2;4) a^(2m)=(-a^2)^m.A。
4个B。
3个C。
2个D。
1个3.下列运算正确的是()A。
2x+3y=5xyB。
(-3x^2y)^3=-9x^6y^3C。
(x-y)^3=x^3-y^3D。
无正确答案4.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。
an与XXXB。
a^(2n)与b^(2n)C。
a^(2n+1)与b^(2n+1)D。
a^(2n-1)与(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6*(-a)^3*a=a^10;③(-a)^4*(-a)^5=a^20;④25+25=26.A。
0个B。
1个C。
2个D。
3个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^(n+1)+45,求x的值。
9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))的值。
10.已知2x+5y=3,求4x*3^(2y)的值.11.已知25^m*2^10n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.17.删除该题18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^(n-1),当a=2,n=3时,求a^n*x-a*y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)3]答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299D、2解答:根据负数的奇偶次幂性质,(-2)100为正数,(-2)99为负数,所以(-2)100+(-2)99=-299.因此,选A。
高中幂运算练习题及讲解
高中幂运算练习题及讲解题目1:基础幂运算计算以下表达式的值:1. \( a^3 \)2. \( b^2 \)3. \( (-2)^3 \)4. \( (-3)^4 \)答案:1. 需要知道 \( a \) 的值才能计算。
2. 需要知道 \( b \) 的值才能计算。
3. \( (-2)^3 = -8 \)4. \( (-3)^4 = 81 \)题目2:幂的乘法计算以下表达式的值:1. \( (x^2)^3 \)2. \( (y^3)^2 \)3. \( (-2)^2 \cdot (-2)^3 \)答案:1. \( (x^2)^3 = x^6 \)2. \( (y^3)^2 = y^6 \)3. \( (-2)^2 \cdot (-2)^3 = 4 \cdot (-8) = -32 \) 题目3:幂的除法计算以下表达式的值:1. \( \frac{x^6}{x^2} \)2. \( \frac{y^8}{y^4} \)3. \( \frac{(-3)^6}{(-3)^2} \)答案:1. \( \frac{x^6}{x^2} = x^4 \)2. \( \frac{y^8}{y^4} = y^4 \)3. \( \frac{(-3)^6}{(-3)^2} = 729 \) 题目4:幂的乘方计算以下表达式的值:1. \( (x^2)^4 \)2. \( (y^3)^3 \)3. \( (-2)^6 \)答案:1. \( (x^2)^4 = x^8 \)2. \( (y^3)^3 = y^9 \)3. \( (-2)^6 = 64 \)题目5:组合幂运算计算以下表达式的值:1. \( (x^2y^3)^2 \)2. \( (3a^2b^3)^2 \)3. \( (-4x^2y^3)^3 \)答案:1. \( (x^2y^3)^2 = x^4y^6 \)2. \( (3a^2b^3)^2 = 9a^4b^6 \)3. \( (-4x^2y^3)^3 = -64x^6y^9 \)题目6:零指数幂计算以下表达式的值:1. \( a^0 \)2. \( (-3)^0 \)3. \( (2x)^0 \)答案:1. \( a^0 = 1 \)(对于任何非零的 \( a \))2. \( (-3)^0 = 1 \)3. \( (2x)^0 = 1 \)(对于任何非零的 \( x \))题目7:负指数幂计算以下表达式的值:1. \( a^{-2} \)2. \( (-3)^{-1} \)3. \( (2x)^{-3} \)答案:1. \( a^{-2} = \frac{1}{a^2} \)2. \( (-3)^{-1} = -\frac{1}{3} \)3. \( (2x)^{-3} = \frac{1}{(2x)^3} \)幂运算讲解幂运算是代数学中的基础概念,它涉及到将一个数(称为底数)自身乘以自身若干次(称为指数)。
幂的运算基础练习试题(整理1).doc
1-计算:(1) (_亍), (2) (X 2yj = (4) (一 "+(—〃) = 1. 下列各式中,正确的是(B> m 5m 5=25C. = mD. y 6y 6= 2y 122. 下列各式中错误的是()—m 6n 3 27幕的运算基础题小测%1. 填空题(每空1分)2. 填上适当的指数:(1) 口4.次)=疽(2)。
5十。
()=。
4(3)(Q 4)C=Q 8(4)(沥)3 4~(响()=3. 填上适当的代数式:(1)工3・工4.()=工8 /) /+() = 口6(3) (X —>)5 *(x-y)4=4、 若"=2,则若]=2, a 「= 3,则「 <1 、2]35、 计算:(Q%)2 = ___________ ~(-xy 2z 3) 二 _________________12 /6、 (Q 2 )4 . (_ " = - (- x)2 5 =7、 (。
勺)•(沥')2 —(a+b)' • (b + a):,—(2m —n)5 • (n —2m)2=; %1. 选择题(每小题2分)A ・[(x-航=3-))D.(一沥3 )' = 一。
% 65.下列4个算式⑴(*)4于(一寸=—凌(2) (一),)6日—寸)=—尸⑶ z 、Z 。
= Z 3A. (_『)3=_尸3 .下列各式(1) 3x 3 • 4x 2 = 7x 5: (2) 2尸・3尸=6疽(3) (x 5)2 = x 7(4) (3xy) J9"y3,其中计算正确的有( )A. 0个B. 1个C. 2个D. 3个 4.下列各式(1) // "5 =2厅(2) (-2a 2)2=-4^4(3)),二 /心 3(4)I = —x 6/,其中计算错误的有( ){5) 125A. 1个B. 2个C. 3个D. 4个⑷其中,计算错误的有( )A. 4个B. 3个C. 2个D. 1个 6. (_#T )2 等于 ()A. —x 妇 B .一『-c.亍〜 D . 2疽一|7.已知n 是大于1的自然数,则(一刁〃-\(_刁仲等于( )A. (―c)〃JB. -2ncC. -c 2〃D.注 8.计算的结果是( )A. x 12B. x 14C. x 19D. %849.下列等式正确的是 ( )Be %8 4-%4 = x 1 C. x 3 +x 3 = 2x 3 De (xy ) 3= xy 310. 下列运算中与结果相同的是 ( )A. B ・词 4 C. (#)4 D.(疽)4.侗)411.下列计算正确的是 ( )A. o' •a1 = a5B. a3 a- a3C. [a1 J = a5D. (36/ ) 3= 3tz3(3) (— 3a) — ( —a) •(4) 2伊),+心Mm 心I12.下列计算正确的( )A. X 2+ X 3= 2x yB. X 2•X 3=X 6C.(一尤3) 2=-工6D. X 64-X 3- x 313. 下列计算正确的是()( 、一2A. -14--x- = -lB.(5-10-2)° =1C. 2x5 2=1O 2D. \=813 4 V 7I 9)14. 计算(- 2)叫(-2)件所得的结果是()A 、- 2"B 、-2C 、2"D 、215. a 与b 互为相反数,且都不等于0, n 为正整数,则下列各组中一定互为相反数 的是()A 、1与b"B 、寸与b 如C 、a*与"D 、与 16、 下列等式中正确的个数是()①a 3+a 5=a 10;②(-a) 6, ( - a) 3,a=a 10;③-a'・(-a) 5=a 20;④25+25=26.A 、0个B 、1个C 、2个D 、3个 %1. 解答题1 .计算(每小题4分) / 7\H/ Q 、'1 (1)1- - (-1) H (2)I 9) 116;'7(5) (p —q) *4- (q —p) :• (p —q)2(6) (y-x)2(x-y)+(x-y)3+ 2(x-y)2>(y-x)⑺ *、3〃)3十(/、2/1)(8){b-ci) (b-c^(a-b^2求值(9)己知:8 - 22m-1 - 23m=217.求m 的值.(10)、己知 b = 5, Q E' = 25,求疽 + / 的值.(11)、若Y"2〃 =16工〃=2,求严〃的值.12.用简便方法计算:(])(2 十;(2)(—0. 25)" X 41::;(3)0. 52 X23X0. 125;(4).若(/*/舟2)(『一%2〃)=疽。
(完整版)初一数学下册《幂的运算》单元测试卷
初一数学下册《幂的运算》单元测试卷一、选择题1、下列计算正确的是( )A 、x 2+ x 2=x 4B 、x 3÷x 4=x1 C 、(m 5)5=m 25 D 、x 2y 3=(xy)5 2、81×27可以记为( ) A 、93 B 、36 C 、37 D 、312 3、a 5可以等于( )A 、(-a )2·(-a)3·B 、(-a)·(-a)4C 、(-a 2)·a3 D 、(-a 3)·(-a 2) 4、若a m =6,a n =10,则a m-n 值为( )A 、-4B 、4C 、 53D 、35 5、计算- b 2·(-b 3)2的结果是( ) A 、-b 8 B 、-b 11 C 、b 8D 、b 11 6、连结边长为1的正方形对边中点,可将一个正方形分成四个全等的小正方形,选右下角的小正方形进行第二次操作,又可将这个小正方形分成四个更小的小正方形,……重复这样的操作,则2004次操作后右下角的小正方形面积是( )A 、20041 B 、(21)2004 C 、(41)2004 D 、1-(41)2004 7、下列运算正确的是( )A 、x 3+2x 3=3x 6B 、(x 3)3=x 6C 、x 3·x 9=x27 D 、x ÷x 3=x -2 8、在等式a 2·a 3·( )=a 10中,括号内的代数式应当是( )A 、a 4B 、a 5C 、a 6D 、a 79、 (a 2)3÷(-a 2)2=( )A 、- a 2B 、a 2C 、-aD 、a 10、0.000000108这个数,用科学记数法表示,正确的是( )A 、1.08×10-9B 、1.08×10-8C 、1.08×10-7D 、1.08×10-611、若n 是正整数,当a=-1时,-(-a 2n )2n+1等于( )A 、1B 、-1C 、0D 、1或-112、计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2 表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式数是( )A 、8B 、15C 、20D 、30二、填空题(每空3分,共42分) 7、(21)-1= ,(-3)-3= , (π-3)0 ,(-21)100×2101= 。
(完整版)幂的运算经典习题(最新整理)
八、数的计算
1、下列计算正确的是 ( )
A. 1 4 3 1 34
B. 5 10 20 1
C. 2 5 2 102
D. 1 2 81 9
2、 1 2 1 0 53 52
3 9
3、 10 3( 2 105)0 - 1 2 10 2
10
4、4-(-2)-2-32÷(3.14-π)0
x10 (x)2 x3 = 五、幂的混合运算 1、a5÷(-a2 )·a=
2、( a 2b ) ab3 2 =
6、 (a b)5m b a 2m b a 7m (m 为偶数,
a b)
7、 y x2 x y+(x y)3+ 2(x y)2 y x
3、(-a3)2·(-a2)3
2、(3x-2)0=1 成立的条件是_________. 3、用科学记数法表示 0.000695 并保留两个有
8、下列运算中与 a 4 a 4 结果相同的是( )
A. a2 a8
B. a 2 4
C. a4 4
D. a2 4 a2 4
*9、32m×9m×27=
效数字为_______. 4、计算(-3-2)3 的结果是_________. 5、若 x2+x-2=5,则 x4+x-4 的值为_________. 6、若 x= 2 -1,则 x+x-1=__________.
(D)9
幂的运算练习
5、
1
xy
2
z
3
2
3
=
2
6、计算 x4 3 x7 的结果是 ( )
A. x12
B. x14
7、 a2 4 a3
C. x 19 D. x84