北京2013届高三数学_最新试题分类汇编(含9区一模及上学期期末试题精选)专题概率_理 (1)

合集下载

北京2013届高三数学_最新试题分类汇编(含9区一模及上学期期末试题精选)专题圆锥曲线_理

北京2013届高三数学_最新试题分类汇编(含9区一模及上学期期末试题精选)专题圆锥曲线_理

北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:圆锥曲线一、选择题1 .(2013届北京大兴区一模理科)双曲线221x my -=的实轴长是虚轴长的2倍,则m 等于 ( )A .14B .12C .2D .42 .(2013届北京海滨一模理科)抛物线24y x =的焦点为F ,点(,)P x y 为该抛物线上的动点,又点(1,0)A -,则||||PF PA 的最 小值是( )A .12B .2C .D .33 .(2013届北京市延庆县一模数学理)已知双曲线)0,0(12222>>=-b a by a x 的离心率为2,一个焦点与抛物线x y 162=的焦点相同,则双曲线的渐近线方程为( )A .x y 23±= B .x y 23±= C .x y 33±= D .x y 3±=4 .(2013届东城区一模理科)已知1(,0)F c -,2(,0)F c 分别是双曲线1C :22221x y a b-=(0,0)a b >>的两个焦点,双曲线1C 和圆2C :222x y c +=的一个交点为P ,且12212PF F PF F ∠=∠,那么双曲线1C 的离心率为 ( )A .2BC .2D 15 .(2013届门头沟区一模理科)已知P (,)x y 是中心在原点,焦距为10的双曲线上一点,且y x的取值范围为33(,)44-,则该双曲线方程是A .221916x y -= B .221916y x -=C .221169x y -= D .221169y x -=6 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知抛物线22y px =的焦点F 与双曲线22179x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且||2||AK AF =,则△AFK 的面积为 ( )A .4B .8C .16D .327 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)方程2x xy x +=的曲线是 ( )A .一个点B .一条直线C .两条直线D .一个点和一条直线8 .(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知双曲线22221(0,0)x y a b a b-=>>,过其右焦点且垂直于实轴的直线与双曲线交于,M N 两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为 ( )A .132-+ B .132+ C .152-+ D .152+ 9 .(北京市通州区2013届高三上学期期末考试理科数学试题 )已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .355B .2C .115D .310.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是 ( )A .1422=-y x B .1422=-y x C .13222=-y x D .12322=-y x 11.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )椭圆2222:1(0)x y C a b a b +=>>的左右焦点分别为12,F F ,若椭圆C 上恰好有6个不同的点P ,使得12F F P ∆为等腰三角形,则椭圆C 的离心率的取值范围是( )A .12(,)33B .1(,1)2C .2(,1)3D .111(,)(,1)322U 二、填空题12.(2013届北京西城区一模理科)在直角坐标系xOy 中,点B 与点(1,0)A -关于原点O 对称.点00(,)P x y 在抛物线24y x =上,且直线AP 与BP 的斜率之积等于2,则0x =______.13.(2013届房山区一模理科数学)已知双曲线2222:1(0,0)x y C a b a b-=>>的焦距为4,且过点(2,3),则它的渐近线方程为 .14.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )若双曲线22221(0,0)x y a b a b -=>>与直线3y x =无交点,则离心率e 的取值范围是 . 15.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知直线:1(R)l y ax a a =+-∈,若存在实数a 使得一条曲线与直线l 有两个不同的交点,且以这两个交点为端点的线段的长度恰好等于a ,则称此曲线为直线l 的“绝对曲线”.下面给出的三条曲线方程:①21y x =--;②22(1)(1)1x y -+-=;③2234x y +=.其中直线l 的“绝对曲线”有_____.(填写全部正确选项的序号)16.(北京市东城区普通校2013届高三3月联考数学(理)试题 )如图,1F 和2F 分别是双曲线22221(00)x y a b a b-=>>,的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与 该双曲线左支的两个交点,且2F AB △是等边三角形,则双 曲线的离心率为 .17.(北京市西城区2013届高三上学期期末考试数学理科试题)已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.18.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))在平面直角坐标系xOy 中,设抛物线x y 42=的焦点为F ,准线为P l ,为抛物线上一点,l PA ⊥,A 为垂足.如果直线AF 的倾斜角为ο120,那么=PF _______.19.(北京市昌平区2013届高三上学期期末考试数学理试题 )以双曲线221916x y -=的右焦点为圆心,并与其渐近线相切的圆的标准方程是 _____.20.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )以y x =±为渐近线且经过点(2,0)的双曲线方程为______.21.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知定点A 的坐标为(1,4),点F是双曲线221412x y -=的左焦点,点P 是双曲线右支上的动点,则PF PA +的最小值为 . Ay2F1F BOx三、解答题22.(2013届北京大兴区一模理科)已知动点P 到点A (-2,0)与点B (2,0)的斜率之积为14-,点P 的轨迹为曲线C 。

北京市西城区2013届高三上学期期末考试数学理题目

北京市西城区2013届高三上学期期末考试数学理题目

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(理科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )(1,1)-(C )1(,1)(,)2-∞-+∞ (D )(,1)(0,)-∞-+∞2.在复平面内,复数5i2i-的对应点位于( ) (A )第一象限 (B )第二象限(C )第三象限 (D )第四象限3.在极坐标系中,已知点(2,)6P π,则过点P 且平行于极轴的直线的方程是( ) (A )sin 1=ρθ (B )sin 3=ρθ (C )cos 1=ρθ(D )cos 3=ρθ4.执行如图所示的程序框图.若输出15S =, 则框图中① 处可以填入( ) (A )2k < (B )3k < (C )4k < (D )5k <5.已知函数()cos f x x b x =+,其中b 为常数.那么“0b =”是“()f x 为奇函数”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件6.已知,a b 是正数,且满足224a b <+<.那么22a b +的取值范围是( ) (A )416(,)55(B )4(,16)5(C )(1,16) (D )16(,4)57.某四面体的三视图如图所示.该四面体的六条棱的长度中,最大的是( )(A )25(B )26 (C )27 (D )428.将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是( ) (A )221(B )463(C )121(D )263第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 已知向量(1,3)=a ,(2,1)=-b ,(3,2)=c .若向量c 与向量k +a b 共线,则实数k =_____.10.如图,Rt △ABC 中,90ACB ︒∠=,3AC =,4BC =.以AC 为直径的圆交AB 于点D ,则BD = ;CD =______.11.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______.12.已知椭圆 22142x y +=的两个焦点是1F ,2F ,点P 在该椭圆上.若12||||2PF PF -=,则△12PF F 的面积是______.13.已知函数π()sin(2)6f x x =+,其中π[,]6x a ∈-.当3a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()2xf x =; ②()sin f x x =; ③3()f x x x =-.其中,具有性质P 的函数的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题满分13分)在△ABC 中,已知3sin 21cos 2B B =-. (Ⅰ)求角B 的值; (Ⅱ)若2BC =,4A π=,求△ABC 的面积.16.(本小题满分14分)如图,四棱锥ABCD P -中,底面ABCD 为正方形,PD PA =,⊥PA 平面PDC ,E 为棱PD 的中点.(Ⅰ)求证:PB // 平面EAC ;(Ⅱ)求证:平面PAD ⊥平面ABCD ; (Ⅲ)求二面角B AC E --的余弦值.17.(本小题满分13分)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下: 测试指标 [70,76) [76,82) [82,88) [88,94) [94,100]元件A 8 12 40 32 8元件B7 1840296(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望;(ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)求)(x f 的单调区间;(Ⅱ)设0b >.若13[,]44x ∃∈,使()1f x ≥,求b 的取值范围.19.(本小题满分14分)如图,已知抛物线24y x =的焦点为F .过点(2,0)P 的直线交抛物线于11(,)A x y ,22(,)B x y 两点,直线AF ,BF 分别与抛物线交于点M ,N .(Ⅰ)求12y y 的值;(Ⅱ)记直线MN 的斜率为1k ,直线AB 的斜率为2k .证明:12k k 为定值.20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)请写出一个(4,4)A S ∈,使得()0l A =; (Ⅱ)是否存在(9,9)A S ∈,使得()0l A =?说明理由;(Ⅲ)给定正整数n ,对于所有的(,)A S n n ∈,求()l A 的取值集合.北京市西城区2012 — 2013学年度第一学期期末高三数学(理科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.D ; 2.B ; 3.A ; 4.C ; 5.C ; 6.B ; 7.C ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.165,125; 11.6; 12.2; 13.1[,1]2-,[,]62ππ; 14.①③.注:10、13题第一问2分,第二问3分;14题结论完全正确才给分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解法一:因为3sin 21cos 2B B =-,所以 223sin cos 2sin B B B =. ………………3分因为 0B <<π, 所以 sin 0B >,从而 tan 3B =, ………………5分所以 π3B =. ………………6分解法二: 依题意得 3sin 2cos 21B B +=,所以 2sin(2)16B π+=, 即 1sin(2)62B π+=. (3)分因为 0B <<π, 所以 132666B πππ<+<, 所以 5266B ππ+=. ………………5分所以 π3B =. ………………6分(Ⅱ)解法一:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==. (8)分因为 512C A B π=π--=, ………………9分所以 562sin sin sin()12464C πππ+==+=, ………………11分所以 △ABC 的面积133sin 22S AC BC C +=⋅=. (13)分解法二:因为 4A π=,π3B =, 根据正弦定理得 sin sin AC BCB A=, ………………7分所以 sin 6sin BC BAC A⋅==. (8)分根据余弦定理得 2222cos AC AB BC AB BC B =+-⋅⋅, (9)y zOE PCBADx 分化简为 2220AB AB --=,解得 13AB =+. (11)分所以 △ABC 的面积133sin 22S AB BC B +=⋅=. ………………13分16.(本小题满分14分)(Ⅰ)证明:连接BD 与AC 相交于点O ,连结EO .因为四边形ABCD 为正方形,所以O 为BD 中点. 因为 E 为棱PD 中点.所以 EO PB //. ………………3分 因为 ⊄PB 平面EAC ,⊂EO 平面EAC ,所以直线PB //平面EAC . ………………4分(Ⅱ)证明:因为⊥PA 平面PDC ,所以CD PA ⊥. ………………5分因为四边形ABCD 为正方形,所以CD AD ⊥,所以⊥CD 平面PAD . ………………7分所以平面PAD ⊥平面ABCD . ………………8分(Ⅲ)解法一:在平面PAD 内过D 作直线Dz AD ⊥.因为平面PAD ⊥平面ABCD ,所以Dz ⊥平面ABCD .由,,Dz DA DC 两两垂直,建立如图所示的空间直角坐标系xyz D -. …………9分设4AB =,则(0,0,0),(4,0,0),(4,4,0),(0,4,0),(2,0,2),(1,0,1)D A B C P E .所以 )1,0,3(-=EA ,)0,4,4(-=AC .yzNMOEP C BADx 设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得(1,1,3)=n . (11)分易知平面ABCD 的法向量为(0,0,1)=v . ………………12分所以 ||311|cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分解法二:取AD 中点M ,BC 中点N ,连结PM ,MN . 因为ABCD 为正方形,所以CD MN //. 由(Ⅱ)可得⊥MN 平面PAD . 因为PD PA =,所以⊥PM AD .由,,MP MA MN 两两垂直,建立如图所示 的空间直角坐标系xyz M -. ………………9分设4=AB ,则(2,0,0),(2,4,0),(2,4,0),(2,0,0),(0,0,2),(1,0,1)A B C D P E ---.所以 )1,0,3(-=EA ,)0,4,4(-=AC .设平面EAC 的法向量为=()x,y,z n ,则有0,0.EA AC ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+-=-.044,03y x z x 取1=x ,得=n )3,1,1(. (11)分易知平面ABCD 的法向量为=v )1,0,0(. ………………12分所以||311|cos ,|||||11⋅==〈〉n v n v n v . ………………13分由图可知二面角B AC E --的平面角是钝角, 所以二面角B AC E --的余弦值为11113-. ………………14分17.(本小题满分13分)(Ⅰ)解:元件A 为正品的概率约为4032841005++=. (1)分元件B 为正品的概率约为4029631004++=. (2)分(Ⅱ)解:(ⅰ)随机变量X 的所有取值为90,45,30,15-. ………………3分433(90)545P X ==⨯=; 133(45)5420P X ==⨯=; 411(30)545P X ==⨯=; 111(15)5420P X =-=⨯=. ………………7分所以,随机变量X 的分布列为:X 90 45 30 15- P3532015120 (8)分3311904530(15)66520520EX =⨯+⨯+⨯+-⨯=. ………………9分(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5n -件. 依题意,得 5010(5)140n n --≥, 解得 196n ≥. 所以 4n =,或5n =. ………………11分设“生产5件元件B 所获得的利润不少于140元”为事件A , 则 445531381()C ()()444128P A =⨯+=.………………13分18.(本小题满分13分) (Ⅰ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………1分② 当0b >时,222()()b x f x x b -'=+. (3)分令()0f x '=,得1x b =,2x b =-.()f x 和()f x '的情况如下:x(,)b -∞-b -(,)b b -b(,)b +∞()f x ' -+-()f x↘↗↘故()f x 的单调减区间为(,)b -∞-,(,)b +∞;单调增区间为(,)b b -. (5)分③ 当0b <时,()f x 的定义域为{|}D x x b =∈≠±-R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x 的单调减区间为(,)b -∞--,(,)b b ---,(,)b -+∞;无单调增区间. (7)分(Ⅱ)解:因为0b >,13[,]44x ∈,所以 ()1f x ≥ 等价于 2b x x ≤-+,其中13[,]44x ∈. ………………9分设2()g x x x =-+,()g x 在区间13[,]44上的最大值为11()24g =.………………11分则“13[,]44x ∃∈,使得 2b x x ≤-+”等价于14b ≤. 所以,b 的取值范围是1(0,]4. ………………13分19.(本小题满分14分)(Ⅰ)解:依题意,设直线AB 的方程为2x my =+. ………………1分将其代入24y x =,消去x ,整理得 2480y my --=. ………………4分从而128y y =-. (5)分(Ⅱ)证明:设33(,)M x y ,44(,)N x y .则221234341121222234123123444444y y y y y y k x x y y k x x y y y y y y y y ----+=⨯=⨯=---+-. ………………7分设直线AM 的方程为1x ny =+,将其代入24y x =,消去x , 整理得 2440y ny --=. ………………9分所以 134y y =-. ………………10分 同理可得 244y y =-. ………………11分故112121223412444k y y y y y y k y y y y ++===--+-+. ………………13分由(Ⅰ)得 122k k =,为定值. ………………14分20.(本小题满分13分)(Ⅰ)解:答案不唯一,如图所示数表符合要求.1- 1- 1- 1- 1 1 1 1 1 1 1 1 1 1 1 1………………3分(Ⅱ)解:不存在(9,9)A S ∈,使得()0l A =. ………………4分证明如下:假设存在(9,9)A S ∈,使得()0l A =.因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (19,19)i j ≤≤≤≤, 所以1()r A ,2()r A ,,9()r A ,1()c A ,2()c A ,,9()c A 这18个数中有9个1,9个1-.令129129()()()()()()M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这18个数中有9个1,9个1-,从而9(1)1M =-=-. ① 另一方面,129()()()r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这81个实数之积为m );129()()()c A c A c A ⋅⋅⋅也表示m , 从而21M m ==. ②①、②相矛盾,从而不存在(9,9)A S ∈,使得()0l A =. ………………8分(Ⅲ)解:记这2n 个实数之积为p .一方面,从“行”的角度看,有12()()()n p r A r A r A =⋅⋅⋅;另一方面,从“列”的角度看,有12()()()n p c A c A c A =⋅⋅⋅.从而有1212()()()()()()n n r A r A r A c A c A c A ⋅⋅⋅=⋅⋅⋅. ③ (10)分注意到(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤. 下面考虑1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 中1-的个数:由③知,上述2n 个实数中,1-的个数一定为偶数,该偶数记为2(0)k k n ≤≤;则1的个数为22n k -,所以()(1)21(22)2(2)l A k n k n k =-⨯+⨯-=-. ………………12分对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l A n =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以()2[(1)()]24k l A k n k n k =-⨯+-=-.由k 的任意性知,()l A 的取值集合为{2(2)|0,1,2,,}n k k n -=. (13)分。

北京市2013届高三上学期期末考试理科数学试

北京市2013届高三上学期期末考试理科数学试

x y O π2π1-1北京市东城区普通校2013届高三第二学期3月联考 数学(理科)命题校:北京27中学 2013年3月本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 150 分,考试时间120 分钟。

考试结束后,将本试卷和答题卡一并交回。

祝各位考生考试顺利! 第Ⅰ卷(选择题,共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,只有一项是符合题目要求的. 1.已知平面向量(1,2)=a , (2,)m =-b , 且a ∥b , 则m 的值为( ) (A )1- (B ) (C )4- (D )4 2.极坐标方程4cos ρθ=化为直角坐标方程是( )(A )22(2)4x y -+= (B )224x y += (C )22(2)4x y +-= (D )22(1)(1)4x y -+-= 3.平面α∥平面β的一个充分条件是( ) (A )存在一条直线a a ααβ,∥,∥(B )存在一条直线a a a αβ⊂,,∥(C )存在两条平行直线a b a b a b αββα⊂⊂,,,,∥,∥ (D )存在两条异面直线a b a b a b αββα⊂⊂,,,,∥,∥ 4. 执行如图所示的程序,输出的结果为20, 则判断框中应填入的条件为( ) (A )2a ≥ (B )3a ≥ (C )4a ≥(D )5a ≥第4题图5. 如图,已知AB 是⊙O 的一条弦,点P 为AB 上一点, PC OP ⊥,PC 交⊙O 于C ,若4AP =,2PB =,则PC 的长是( )(A )3 (B) (C )2 (D第5题图 6.已知函数sin()y A x ωϕ=+的图象如图所示,则该函数的解析式可能是( ) 第6题图ABCOP40 50 60 70 80 90 分数(分)频率(A)41sin(255y x =+ (B) 31sin(225y x =+ (C)441sin()555y x =- (D) 441sin()555y x =+ 7. 设0,0.a b >>1133a b a b +与的等比中项,则的最小值为( ) (A) 8 (B) 4 (C) 1 (D) 148.对实数a 与b ,定义新运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的零点恰有两个,则实数c 的取值范围是( )(A) (]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭ (B)(]3,21,4⎛⎫-∞-⋃-- ⎪⎝⎭ (C) 11,,44⎛⎫⎛⎫-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭ (D)第Ⅱ卷(非选择题,共110分)二、填空题:本大题共6小题,每小题5分,共30分.9. 在6)11(x+的展开式中,含1x 项的系数是________.(用数字作答)10.由1、2、3、4、5组成的无重复数字的五位数中奇数有 个. 11.从某校高三学生中随机抽取100名同学,将他们的考试成绩(单位:分)绘制成频率分布直方图(如图).则图中a= ,由图中数据可知此次成绩平均分为 . 第11题图12.已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .13.如图,1F 和2F 分别是双曲线22221(00)x y a b a b -=>>,311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭的两个焦点,A 和B 是以O 为圆心,以1OF 为半径的圆与该双曲线左支的两个交点,且2F AB △是等边三角形,则双曲线的离心率为 . 第13题图 14.设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈, 则称S 为封闭集。

北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:概率(含答案)

北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:概率(含答案)

北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:概率一、选择题1 .(2013届北京大兴区一模理科)若实数,a b 满足221a b +≤,则关于x 的方程220x x a b -++=有实数根的概率是 ( )A .14 B .34C .3π24π+ D .π24π- 2 .(2013届东城区一模理科)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 ( )A .316B .14C .34D .1163 .(北京市西城区2013届高三上学期期末考试数学理科试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是 ( )A .221B .463C .121 D .2634 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 ( )A .13B .12C .23D .565 .(北京市昌平区2013届高三上学期期末考试数学理试题 )设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是 ( )A .413B .513C .825D .925二、填空题6 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知随机变量X 的分布列如下,则EX 的值等于7 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .三、解答题8 .(2013届北京大兴区一模理科)期末考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩,如下表:(1)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定。

北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:不等式(含答案)

北京市2013届高三数学理试题分类汇编(含9区一模及上学期期末试题)专题:不等式(含答案)

北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:不等式一、选择题1 .(2013届北京丰台区一模理科)已知变量,x y 满足约束条件1101x y x x y +≤⎧⎪+≥⎨⎪-≤⎩,则2x ye +的最大值是 ( )A .3eB .2eC .1D .4e -2 .(2013届北京丰台区一模理科)已知,a Z ∈关于x 的一元二次不等式260x x a -+≤的解集中有且仅有3个整数,则所有符合条件的a 的值之和是( )A .13B .18C .21D .263 .(2013届北京海滨一模理科)不等式组1,40,0x x y kx y ≥⎧⎪+-≤⎨⎪-≤⎩表示面积为1的直角三角形区域,则k 的值为A.2-B .1-C .0D .14 .(2013届门头沟区一模理科)定义在 R 上的函数()y f x =是减函数,且函数(2)y f x =+的图象关于点(2,0)-成中心对称,若,s t 满足不等式组()(2)0()0f t f s f t s +-≤⎧⎨-≥⎩,则当23s ≤≤时,2s t +的取值范围是( )A .[3,4] (B) [3,9] (C) [4,6] D .[4,9]5 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知2,,z x y x y =+满足2y xx y x m ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,则m 的值是 ( )A .14B .15C .16D .176 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )设0,0.a b >>若1133a b a b+与的等比中项,则的最小值为( )A .8B .4C .1D .147 .(北京市东城区2013届高三上学期期末考试数学理科试题)已知x ,y 满足不等式组0,0,,2 4.x y x y s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数y x z 23+=的最大值的变化范围是 ( )A .[6,15]B .[7,15]C .[6,8]D .[7,8]8 .(北京市西城区2013届高三上学期期末考试数学理科试题)已知,a b 是正数,且满足224a b <+<.那么22a b+的取值范围是 ( )A .416(,)55 B .4(,16)5C .(1,16)D .16(,4)59 .(北京市顺义区2013届高三第一次统练数学理科试卷(解析))设不等式组⎪⎩⎪⎨⎧≥-≥-≤+01,0,4x x y y x 表示的平面区域为D .若圆()()22211:r y x C =+++ ()0>r 不经过区域D 上的点,则r 的取值范围是( )A .[]52,22B .(]23,22C .(]52,23D .()()+∞⋃,5222,0二、填空题10.(北京市东城区2013届高三上学期期末考试数学理科试题)某种饮料分两次提价,提价方案有两种,方案甲:第一次提价%p ,第二次提价%q ;方案乙:每次都提价%2p q+,若0p q >>,则提价多的方案是 . 11.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知点(2,)P t 在不等式组40,30x y x y --≤⎧⎨+-≤⎩表示的平面区域内,则点(2,)P t 到直线34100x y ++=距离的最大值为____________.12.(北京市海淀区北师特学校2013届高三第四次月考理科数学)已知0,(,20x x y y xk x y k ≥⎧⎪≤⎨⎪++≤⎩满足为常数)若y x z 3+=的最大值为8,则k=_____13.(北京市通州区2013届高三上学期期末考试理科数学试题 )已知,x y 满足约束条件24,2400x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,,则z x y=+的最大值为14.(北京市通州区2013届高三上学期期末考试理科数学试题 )若10x +>,则11x x ++的最小值为 . 15.(北京市丰台区2013届高三上学期期末考试 数学理试题 )已知直线y x b =+与平面区域C:||2,||2x y ≤⎧⎨≤⎩的边界交于A ,B两点,若AB ≥,则b 的取值范围是________.16.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )若关于x ,y 的不等式组0, , 10x y x kx y ⎧⎪⎨⎪-+⎩………(k是常数)所表示的平面区域的边界是一个直角三角形,则k = .17.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题 )点(,)P x y 在不等式组 0,3,1x x y y x ≥⎧⎪+≤⎨⎪≥+⎩表示的平面区域内,若点(,)P x y 到直线1y kx =-的最大距离为___.k =18.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题 )已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩,,表示的平面区域S的面积为4,则=a ;若点S y x P ∈),(,则y x z +=2 的最大值为 .19.(北京市房山区2013届高三上学期期末考试数学理试题 )某汽车运输公司,购买了一批豪华大客车投入运营,据市场分析每辆客车运营前n *()n ∈N 年的总利润n S (单位:万元)与n 之间的关系为2(6)11n S n =--+.当每辆客车运营的平均利润最大时, n 的值为 .三、解答题20.(2013届北京市延庆县一模数学理)A 是由定义在]4,2[上且满足如下条件的函数)(x ϕ组成的集合:(1)对任意]2,1[∈x ,都有)2,1()2(∈x ϕ ;(2)存在常数)10(<<L L ,使得对任意的]2,1[,21∈x x ,都有-)2(|1x ϕ|)2(2x ϕ||21x x L -≤.(Ⅰ)设]4,2[,1)(3∈+=x x x ϕ,证明:A x ∈)(ϕ;(Ⅱ)设A x ∈)(ϕ,如果存在)2,1(0∈x ,使得)2(00x x ϕ=,那么这样的0x 是唯一的;(Ⅲ)设A x ∈)(ϕ,任取)2,1(∈n x ,令,,2,1),2(1⋅⋅⋅==+n x x n n ϕ证明:给定正整数k ,对任意的正整数p ,不等式||1||121x x LL x x k k p k --≤--+成立.北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:不等式参考答案一、选择题 1. B 2. C 3. D 4. D 5. A 6. B7. 【答案】D解:,当3s =时,对应的平面区域为阴影部分,由y x z 23+=得322z y x =-+,平移直线由图象可知当直线经过点C 时,直线322z y x =-+的截距最大,此时3,24x y y x +=⎧⎨+=⎩解得12x y =⎧⎨=⎩,即(1,2)C ,代入y x z 23+=得7z =。

北京市西城区2013届高三上学期期末考试数学文科试题Word版含答案

北京市西城区2013届高三上学期期末考试数学文科试题Word版含答案

北京市西城区2012 — 2013学年度第一学期期末试卷高三数学(文科) 2013.1第Ⅰ卷(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{|01}A x x =∈<<R ,{|(21)(1)0}B x x x =∈-+>R ,则A B =( )(A )1(0,)2(B )1(,1)2(C )1(,1)(0,)2-∞- (D )1(,1)(,1)2-∞- 2.复数5i2i=+( ) (A )12i + (B )12i -+(C )12i --(D )12i -3.执行如图所示的程序框图,则输出S =( ) (A )2 (B )6 (C )15 (D )314.函数1()ln f x x x=-的零点个数为( ) (A )0 (B )1(C )2(D )35.某四棱锥的三视图如图所示,该四棱锥的体积是( )(A ) (B )(C (D6.过点(2,0)M 作圆221x y +=的两条切线MA ,MB (A ,B 为切点),则MA MB ⋅=( )(A )2(B )52(C )2(D )327.设等比数列{}n a 的公比为q ,前n 项和为n S .则“||q =627S S =”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件8.已知函数()f x 的定义域为R .若∃常数0c >,对x ∀∈R ,有()()f x c f x c +>-,则称函数()f x 具有性质P .给定下列三个函数:①()||f x x =; ②()sin f x x =; ③3()f x x x =-. 其中,具有性质P 的函数的序号是( ) (A )① (B )③(C )①②(D )②③第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.9.已知向量(1,3)=a ,(,21)m m =-b .若向量a 与b 共线,则实数m =______.10.平行四边形ABCD 中,E 为CD 的中点.若在平行四边形ABCD 内部随机取一点M ,则点M 取自△ABE 内部的概率为______.11.双曲线2213645x y -=的渐近线方程为______;离心率为______.12.若函数2log ,0,()(),0x x f x g x x >⎧=⎨<⎩是奇函数,则(8)g -=______.13.已知函数π()sin()6f x x =+,其中π[,]3x a ∈-.当2a π=时,()f x 的值域是______;若()f x 的值域是1[,1]2-,则a 的取值范围是______.14.设函数2()65f x x x =-+,集合{(,)|()()0A a b f a f b =+≤,且()()0}f a f b -≥.在直角坐标系aOb 中,集合A 所表示的区域的面积为______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,且cos 2cos 0B B +=. (Ⅰ)求角B 的值;(Ⅱ)若b =5a c +=,求△ABC 的面积.16.(本小题满分13分)为了解学生的身体状况,某校随机抽取了一批学生测量体重.经统计,这批学生的体重数据(单位:千克)全部介于45至70之间.将数据分成以下5组:第1组[4550),,第2组[5055),,第3组[5560),,第4组[6065),,第5组[6570],,得到如图所示的频率分布直方图.现采用分层抽样的方法,从第3,4,5组中随机抽取6名学生做初检. (Ⅰ)求每组抽取的学生人数;(Ⅱ)若从6名学生中再次随机抽取2名学生进行复检,求这2名学生不在同一组的概率.17.(本小题满分14分)如图,直三棱柱111C B A ABC -中,BC AC ⊥,21===CC BC AC ,M ,N 分别为AC ,11C B 的中点. (Ⅰ)求线段MN 的长;(Ⅱ)求证:MN // 平面11A ABB ;(Ⅲ)线段1CC 上是否存在点Q ,使⊥B A 1平面MNQ ?说明理由.18.(本小题满分13分)已知函数2()xf x x b=+,其中b ∈R . (Ⅰ)若1x =-是)(x f 的一个极值点,求b 的值; (Ⅱ)求)(x f 的单调区间. 19.(本小题满分14分)如图,A ,B 是椭圆22221x y a b+=(0)a b >>的两个顶点.||AB =AB 的斜率为12-. (Ⅰ)求椭圆的方程;(Ⅱ)设直线l 平行于AB ,与,x y 轴分别交于点,M N ,与椭圆相交于,C D .证明:△OCM的面积等于△ODN 的面积. 20.(本小题满分13分)如图,设A 是由n n ⨯个实数组成的n 行n 列的数表,其中ij a (,1,2,3,,)i j n =表示位于第i 行第j 列的实数,且{1,1}ij a ∈-.记(,)S n n 为所有这样的数表构成的集合.对于(,)A S n n ∈,记()i r A 为A 的第i 行各数之积,()j c A 为A 的第j 列各数之积.令11()()()n ni j i j l A r A c A ===+∑∑.(Ⅰ)对如下数表(4,4)A S ∈,求()l A 的值;(Ⅱ)证明:存在(,)A S n n ∈,使得()24l A n k =-,其中0,1,2,,k n =;(Ⅲ)给定n 为奇数,对于所有的(,)A S n n ∈,证明:()0l A ≠.北京市西城区2012 — 2013学年度第一学期期末高三数学(文科)参考答案及评分标准2013.1一、选择题:本大题共8小题,每小题5分,共40分.1.B ; 2.A ; 3.C ; 4.B ; 5.C ; 6.D ; 7.A ; 8.B .二、填空题:本大题共6小题,每小题5分,共30分.9.1-; 10.12; 11.y x =,32; 12.3-; 13.1[,1]2-,[,]3ππ; 14.4π. 注:11、13题第一空2分,第二空3分.三、解答题:本大题共6小题,共80分.若考生的解法与本解答不同,正确者可参照评分标准给分.15.(本小题满分13分)(Ⅰ)解:由已知得 22cos cos 10B B +-=, ………………2分 即 (2cos 1)(cos 1)0B B -+=.解得 1cos 2B =,或cos 1B =-. ………………4分 因为 0πB <<,故舍去cos 1B =-. ………………5分 所以 π3B =. ………………6分 (Ⅱ)解:由余弦定理得 2222cos b a c ac B =+-. ………………8分将π3B =,b =2()37a c ac +-=. 因为 5a c +=,所以 6ac =. ………………11分所以 △ABC 的面积1sin 2S ac B == ………………13分16.(本小题满分13分)(Ⅰ)解:由频率分布直方图知,第3,4,5组的学生人数之比为3:2:1. …………2分所以,每组抽取的人数分别为: 第3组:3636⨯=;第4组:2626⨯=;第5组:1616⨯=. 所以从3,4,5组应依次抽取3名学生,2名学生,1名学生. ………………5分(Ⅱ)解:记第3组的3位同学为1A ,2A ,3A ;第4组的2位同学为1B ,2B ;第5组的1位同学为C . ………………6分 则从6位同学中随机抽取2位同学所有可能的情形为:121311121232122231(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),A A A A AB A B AC A A A B A B A C A B 3231212(,),(,),(,),(,),(,)A B A C B B B C B C ,共15种可能. ………………10分其中,111212122231323(,),(,),(,),(,),(,),(,),(,),(,),(,),A B A B A C A B A B A C A B A B A C12(,),(,)B C B C 这11种情形符合2名学生不在同一组的要求. ………………12分故所求概率为1115P =. ………………13分17.(本小题满分14分)(Ⅰ)证明:连接CN .因为 111C B A ABC -是直三棱柱,所以 ⊥1CC 平面ABC , ………………1分 所以 1AC CC ⊥. ………………2分因为 BC AC ⊥, 所以 ⊥AC 平面11BCC B . ………………3分因为 1=MC ,CN ==所以 6=MN . ………………4分 (Ⅱ)证明:取AB 中点D ,连接DM ,1DB . ………………5分在△ABC 中,因为 M 为AC 中点,所以BC DM //,BC DM 21=. 在矩形11B BCC 中,因为 N 为11C B 中点,所以BC N B //1,BC N B 211=.所以 N B DM 1//,N B DM 1=.所以 四边形N MDB 1为平行四边形,所以 1//DB MN . ………………7分因为 ⊄MN 平面11A ABB ,⊂1DB 平面11A ABB , ………………8分所以 MN // 平面11A ABB . ………………9分 (Ⅲ)解:线段1CC 上存在点Q ,且Q 为1CC 中点时,有⊥B A 1平面MNQ . ………11分证明如下:连接1BC .在正方形C C BB 11中易证 1BC QN ⊥.又⊥11C A 平面C C BB 11,所以 QN C A ⊥11,从而⊥NQ 平面11BC A .…………12分 所以 1A B QN ⊥. ………………13分 同理可得 1A B MQ ⊥,所以⊥B A 1平面MNQ .故线段1CC 上存在点Q ,使得⊥B A 1平面MNQ . ………………14分 18.(本小题满分13分)(Ⅰ)解:222()()b x f x x b -'=+. ………………2分 依题意,令(1)0f '-=,得 1b =. ………………4分 经检验,1b =时符合题意. ………………5分(Ⅱ)解:① 当0b =时,1()f x x=. 故()f x 的单调减区间为(,0)-∞,(0,)+∞;无单调增区间. ………………6分② 当0b >时,222()()b x f x x b -'=+.令()0f x '=,得1x =2x = ………………8分()f x 和()f x '的情况如下:故()f x的单调减区间为(,-∞,)+∞;单调增区间为(.………………11分③ 当0b <时,()f x的定义域为{|D x x =∈≠R .因为222()0()b x f x x b -'=<+在D 上恒成立,故()f x的单调减区间为(,-∞,(,)+∞;无单调增区间.………………13分19.(本小题满分14分)(Ⅰ)解:依题意,得1,2b a ⎧=⎪= ………………2分解得 2a =,1b =. ………………3分所以 椭圆的方程为2214x y +=. ………………4分 (Ⅱ)证明:由于l //AB ,设直线l 的方程为12y x m =-+,将其代入2214x y +=,消去y ,整理得2224440x mx m -+-=. ………………6分设11(,)C x y ,22(,)D x y .所以 22122121632(1)0,2,2 2.m m x x m x x m ⎧∆=-->⎪+=⎨⎪=-⎩ ………………8分证法一:记△OCM 的面积是1S ,△ODN 的面积是2S . 由(2,0)M m ,(0,)N m , 则12S S =⇔1211|2|||||||22m y m x ⨯⨯=⨯⨯⇔12|2|||y x =. ………………10分 因为 122x x m +=, 所以 11121|2||2()||2|||2y x m x m x =⨯-+=-+=, ………………13分 从而12S S =. ………………14分证法二:记△OCM 的面积是1S ,△ODN 的面积是2S .则12S S =⇔||||MC ND =⇔线段,CD MN 的中点重合. ………………10分 因为 122x x m +=,所以122x x m +=,1212112222y y x x m m ++=-⋅+=. 故线段CD 的中点为1(,)2m m .因为 (2,0)M m ,(0,)N m , 所以 线段MN 的中点坐标亦为1(,)2m m . ………………13分 从而12S S =. ………………14分20.(本小题满分13分)(Ⅰ)解:134()()()1r A r A r A ===,2()1r A =-;124()()()1c A c A c A ===-,3()1c A =, 所以4411()()()0i ji j l A r A cA ===+=∑∑. ………………3分(Ⅱ)证明:(ⅰ)对数表0A :1ij a =(,1,2,3,,)i j n =,显然0()2l A n =.将数表0A 中的11a 由1变为1-,得到数表1A ,显然1()24l An =-. 将数表1A 中的22a 由1变为1-,得到数表2A ,显然2()28l A n =-. 依此类推,将数表1k A -中的kk a 由1变为1-,得到数表k A . 即数表k A 满足:11221(1)kk a a a k n ====-≤≤,其余1ij a =.所以 12()()()1k r A r A r A ====-,12()()()1k c A c A c A ====-.所以 ()2[(1)()]24k l A k n k n k =-⨯+-=-,其中0,1,2,,k n =.……………7分【注:数表k A 不唯一】 (Ⅲ)证明:用反证法.假设存在(,)A S n n ∈,其中n 为奇数,使得()0l A =. 因为(){1,1}i r A ∈-,(){1,1}j c A ∈- (1,1)i n j n ≤≤≤≤,所以1()r A ,2()r A ,,()n r A ,1()c A ,2()c A ,,()n c A 这2n 个数中有n 个1,n 个1-.令1212()()()()()()n n M r A r A r A c A c A c A =⋅⋅⋅⋅⋅⋅⋅.一方面,由于这2n 个数中有n 个1,n 个1-,从而(1)1n M =-=-. ① 另一方面,12()()()n r A r A r A ⋅⋅⋅表示数表中所有元素之积(记这2n 个实数之积为m );12()()()n c A c A c A ⋅⋅⋅也表示m , 从而21M m ==.② ①、②相互矛盾,从而不存在(,)A S n n ∈,使得()0l A =.即n 为奇数时,必有()0l A ≠. ………………13分。

北京2013届高三数学_最新试题分类汇编(含9区一模及上学期期末试题精选)专题9圆锥曲线_文

北京2013届高三数学_最新试题分类汇编(含9区一模及上学期期末试题精选)专题9圆锥曲线_文

【精品推荐】北京2013届高三最新文科试题分类汇编(含9区一模及上学期期末试题精选)专题9:圆锥曲线一、选择题1 .(2013届北京东城区一模数学文科)已知点(2,1)A ,抛物线24y x =的焦点是F ,若抛物线上存在一点P ,使得PA PF +最小,则P 点的坐标为( )A .(2,1)B .(1,1)C .1(,1)2D .1(,1)42 .(2013届北京丰台区一模文科)已知椭圆22212x y a +=的一个焦点与抛物线28y x =的焦点重合,则该椭圆的离心率是 ( )A.2 B.3C.2D.33 .(2013届北京海滨一模文)抛物线24y x =的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当FPM ∆为等边三角形时,其面积为 ( )A.B .4C .6D.4 .(2013届北京门头沟区一模文科数学)点P 是以12F F ,为焦点的椭圆上的一点,过焦点2F 作12F PF ∠的外角平分线的垂线,垂足为M 点,则点M 的轨迹是 ( )A .抛物线B .椭圆C .双曲线D .圆5 .(2013届北京大兴区一模文科)抛物线2(22)y x x =-≤≤绕y 轴旋转一周形成一个如图所示的旋转体,在此旋转体内水平放入一个正方体,使正方体的一个面恰好与旋转体的开口面平齐,则此正方体的棱长是 ( )A .1B .2C.D .46 .(北京市东城区2013届高三上学期期末考试数学文科试题)已知抛物线22y px =的焦点F 到其准线的距离是8,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且||2|AK AF =,则AFK ∆的面积为( )A .32B .16C .8D .47 .(北京市海淀区2013届高三上学期期末考试数学文试题)点P 是抛物线24y x =上一点,P 到该抛物线焦点的距离为4,则点P 的横坐标为( )A .2B .3C .4D .58 .(北京市通州区2013届高三上学期期末考试数学文试题)已知直线1:4360l x y -+=和直线2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .355B .2C .115D .3二、填空题9 .(2013届北京大兴区一模文科)已知中心在原点,焦点在x 轴上的双曲线的离心率为32,实轴长为4,则双曲线的方程是_________10.(2013届北京西城区一模文科)抛物线22y x =的准线方程是______;该抛物线的焦点为F ,点00(,)M x y 在此抛物线上,且52MF =,则0x =______. 11.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(文)试题)若抛物线22y x=上的一点M 到坐标原点O 3则点M 到该抛物线焦点的距离为_______________。

北京市10区2013届高三数学上学期期末试题分类汇编 数列 理

北京市10区2013届高三数学上学期期末试题分类汇编 数列 理

北京市2013届高三上学期期末数学试题分类汇编数列一、填空、选择题1.【北京市昌平区2013届高三上学期期末理】设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4 【答案】C【解析】因为124,,S S S 成等比数列,所以2142S S S =,即2111(46)(2)a a d a d +=+,即2112,2d a d d a ==,所以211111123a a d a a a a a ++===,选C. 2.【北京市朝阳区2013届高三上学期期末理】已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 .【答案】310【解析】因为121,,,9a a 是等差数列,所以121910a a +=+=。

1231,,,,9b b b 是等比数列,所以22199b =⨯=,因为1220b b =>,所以23b =,所以212310b a a =+。

3.【北京市东城区2013届高三上学期期末理】已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于(A ) (B )53(C )2 (D )3 【答案】C【解析】因为36a =,312S =,所以13133()3(6)1222a a a S ++===,解得12a =,所使用316222a a d d ==+=+,解得2d =,选C.4.【北京市丰台区2013届高三上学期期末理】右表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第行第j 列的数为ij a (*,,N j i j i ∈≥),则53a 等于 ,______(3)mn a m =≥. 【答案】5,16 12n m+ (第一个空2分,第二个空3分) 5、【北京市海淀区2013届高三上学期期末理】数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____. 【答案】18,22n +-【解析】由n mnm a a a +=可得211a a a =,所以222124a a ===。

北京2013届高三数学 最新试题分类汇编(含9区一模及上学期期末试题精选)专题概率 理

北京2013届高三数学 最新试题分类汇编(含9区一模及上学期期末试题精选)专题概率 理

北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:概率一、选择题1 .(2013届北京大兴区一模理科)若实数,a b 满足221ab ≤,则关于x 的方程220x x a b 有实数根的概率是 ( )A .14 B .34 C .3π24πD .π24π 2 .(2013届东城区一模理科)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 ( )A .316B .14C .34D .1163 .(北京市西城区2013届高三上学期期末考试数学理科试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是 ( )A .221B .463C .121 D .2634 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 ( )A .13B .12C .23D .565 .(北京市昌平区2013届高三上学期期末考试数学理试题 )设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是( )A .413B .513C .825D .925二、填空题6 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知随机变量X的分布列如下,则7 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .三、解答题8 .(2013届北京大兴区一模理科)期末考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩,如下表:(1)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:概率一、选择题1 .(2013届北京大兴区一模理科)若实数,a b 满足221a b +≤,则关于x 的方程220x x a b -++=有实数根的概率是 ( )A .14 B .34 C .3π24π+ D .π24π- 2 .(2013届东城区一模理科)某游戏规则如下:随机地往半径为1的圆内投掷飞标,若飞标到圆心的距离大于12,则成绩为及格;若飞标到圆心的距离小于14,则成绩为优秀;若飞标到圆心的距离大于14且小于12,则成绩为良好,那么在所有投掷到圆内的飞标中得到成绩为良好的概率为 ( )A .316B .14C .34D .1163 .(北京市西城区2013届高三上学期期末考试数学理科试题)将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数,则两组中各数之和相等的概率是 ( )A .221B .463C .121 D .2634 .(北京市丰台区2013届高三上学期期末考试 数学理试题 )从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 ( )A .13B .12C .23D .565 .(北京市昌平区2013届高三上学期期末考试数学理试题 )设不等式组22,42x y x y -+≥≥-⎧⎪⎨⎪⎩0≤, 表示的平面区域为D .在区域D 内随机取一个点,则此点到直线+2=0y 的距离大于2的概率是( )A .413B .513C .825D .925二、填空题6 .(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )已知随机变量X的分布列如下,则EX 的值等于7 .(北京市东城区普通校2013届高三3月联考数学(理)试题 )已知区域1,{(,)0,}1,y x x y y x ≤+⎧⎪Ω=≥⎨⎪≤⎩,1,{(,)}0,y x M x y y ⎧≤-+⎪=⎨≥⎪⎩,向区域Ω内随机投一点P ,点P 落在区域M 内的概率为 .三、解答题8 .(2013届北京大兴区一模理科)期末考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩,如下表:(1)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定。

从4名数学成绩在90分以上的同学中选2人参加一项活动,以X 表示选中同学的物理成绩高于90分的人数,求随机变量X 的分布列及数学期望E (X)的值.9 .(2013届北京丰台区一模理科)在一次抽奖活动中,有甲、乙等6人获得抽奖的机会。

抽奖规则如下:主办方先从6人中随机抽取两人均获奖1000元,再从余下的4人中随机抽取1人获奖600元,最后还从这4人中随机抽取1人获奖400元。

(Ⅰ)求甲和乙都不获奖的概率;(Ⅱ)设X 是甲获奖的金额,求X 的分布列和均值EX 。

10.(2013届北京海滨一模理科)在某大学自主招生考试中,所有选报II 类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E 五个等级. 某考场考生两科的考试成绩的数据统计如下图所示,其中“数学与逻辑”科目的成绩为B 的考生有10人. (I )求该考场考生中“阅读与表达”科目中成绩为A 的人数; (II )若等级A ,B ,C ,D ,E 分别对应5分,4分,3分,2分,1分. (i )求该考场考生“数学与逻辑”科目的平均分;(ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10 人中随机抽取两人,求两人成绩之和的分布列和数学期望.0.375等级0.250频率0.2000.075科目:数学与逻辑0.025频率等级0.1500.375科目:阅读与表达11.(2013届北京市延庆县一模数学理)空气质量指数5.2PM (单位:3/g m)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:甲、乙两城市2013年2月份中的15天对空气质量指数5.2PM进行监测,获得5.2PM日均浓度指数数据如茎叶图所示:(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;(Ⅲ) 在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.12.(2013届北京西城区一模理科)某班有甲、乙两个学习小组,两组的人数如下:现采用分层抽样的方法(层内采用简单随机抽样)从甲、乙两组中共抽取3名同学进行学业检测.(Ⅰ)求从甲组抽取的同学中恰有1名女同学的概率;(Ⅱ)记X为抽取的3名同学中男同学的人数,求随机变量X的分布列和数学期望.13.(2013届东城区一模理科)某班联欢会举行抽奖活动,现有六张分别标有1,2,3,4,5,6六个数字的3 0 2 2 44 8 9 66 1 5 17 88 2 3 09 8甲城市3 2 0 45 56 47 6 9 78 8 0 79 1 8 0 9乙城市形状相同的卡片,其中标有偶数数字的卡片是有奖卡片,且奖品个数与卡片上所标数字相同,游戏规则如下:每人每次不放回抽取一张,抽取两次. (Ⅰ)求所得奖品个数达到最大时的概率;(Ⅱ)记奖品个数为随机变量X ,求X 的分布列及数学期望.14.(2013届房山区一模理科数学)PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米:75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.某城市环保局从该市市区2012年全年每天的PM2.5监测数据中随机的抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(Ⅰ)从这15天的PM2.5日均监测数据中,随机抽出三天数据,求恰有一天空气质量达到一级的概率;(Ⅱ)从这15天的数据中任取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列和数学期望;(Ⅲ)根据这15天的PM2.5日均值来估计一年的空气质量情况,则一年(按365天计算)中平均有多少天的空气质量达到一级或二级.15.(2013届门头沟区一模理科)交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2 畅 通;2~4 基本畅通;4~6 轻度拥堵;6~8 中度拥堵;8~10 严重拥堵.早高峰时段,从北京市交通指挥中心随机选取了四环以内的50个交通路段,依据其交通指数数据绘制的直方图如右图.(Ⅰ)这50个路段为中度拥堵的有多少个?(Ⅱ)据此估计,早高峰四环以内的三个路段至少有一个是严重拥堵的概率是多少? (III )某人上班路上所用时间若畅通时为20分钟,基本畅通为30分钟,轻度拥堵为36分钟;中度拥堵为42分钟;严重拥堵为60分钟,求此人所用时间的数学期望.16.(北京市东城区普通高中示范校2013届高三3月联考综合练习(二)数学(理)试题 )(本小题满分13分) 某地区举办了一次数学知识应用竞赛.有近万名学生参加,为了分析竞赛情况,在参赛学生中随机抽取了40名学生的成绩,并根据他们的成绩制作了频率分布直方图(如图所示). (1) 试估计这40名学生成绩的众数;(2) 试估计这40名学生的成绩在(]84 72,之间的人数;(3) 从参加活动的学生中任取5人,求这5人中恰有2人的成绩在(]09 80, 之间的概率.17.(北京市东城区普通校2013届高三3月联考数学(理)试题 )甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,现在从这两个箱子里各随机摸出2个球,求 (Ⅰ)摸出3个白球的概率; (Ⅱ)摸出至少两个白球的概率;(Ⅲ)若将摸出至少两个白球记为1分,则一个人有放回地摸2次,求得分X 的分布列及数学期望。

18.(北京市西城区2013届高三上学期期末考试数学理科试题)生产A ,B 两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下: 测试指标[70,76) [76,82) [82,88) [88,94) [94,100]0.0050.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 06065 70 75 80 85 90 95 组距频率100 分数(Ⅰ)试分别估计元件A ,元件B 为正品的概率;(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元 .在(Ⅰ)的前提下,(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.19.(北京市顺义区2013届高三第一次统练数学理科试卷(解析))现有甲、乙两个靶.某射手向甲靶射击两次,每次命中的概率为43,每命中一次得1分,没有命中得0分;向乙靶射击一次,命中的概率为32,命中得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (I)求该射手恰好命中两次的概率;(II)求该射手的总得分X 的分布列及数学期望EX ; (III)求该射手向甲靶射击比向乙靶射击多击中一次的概率. 20.(北京市通州区2013届高三上学期期末考试理科数学试题 )某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔一小时抽一包产品,称其重量(单位:克)是否合格,分别记录抽查数据,获得重量数据茎叶图(如右).(Ⅰ)根据样本数据,计算甲、乙两个车间产品重量的均值与方差,并说明哪个车间的产品的重量相对稳定;(Ⅱ)若从乙车间6件样品中随机抽取两件,求所抽取两件样品重量之差不超过2克的概率.21.(北京市昌平区2013届高三上学期期末考试数学理试题 )(本小题满分13分)为了解甲、乙两厂的产品的质量,从两厂生产的产品中随机抽取各10件,测量产品中某种元素的含量(单位:毫克).下表是测量数据的茎叶图: 甲厂 乙厂 9 03 965 8 18 4 5 6 9 0 32 1 2 4 43 1 1 1 1 0 2 57 1 0 8 9甲 乙15 0 3 2 1 0 3规定:当产品中的此种元素含量满足≥18毫克时,该产品为优等品. (Ⅰ)试用上述样本数据估计甲、乙两厂生产的优等品率;(Ⅱ)从乙厂抽出的上述10件产品中,随机抽取3件,求抽到的3件产品中优等品数ξ的分布列及其数学期望()E ξ;(Ⅲ)从上述样品中,各随机抽取3件,逐一选取,取后有放回,求抽到的优等品数甲厂恰比乙厂多2件的概率.22.(【解析】北京市朝阳区2013届高三上学期期末考试数学理试题 )某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:(Ⅰ)写出,,,a b x y 的值;(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率;(Ⅲ)在(Ⅱ)的条件下,设ξ表示所抽取的2名同学中来自第5组的人数,求ξ的分布列及其数学期望.组别 分组 频数 频率第1组 [50,60) 80.16第2组 [60,70) a ▓第3组 [70,80) 200.40 第4组 [80,90) ▓ 0.08第5组 [90,100] 2 b合计▓▓频率分布表组距频率成绩(分)频率分布直方图0.040▓0.008▓5060807090100y23.(【解析】北京市海淀区2013届高三上学期期末考试数学理试题)汽车租赁公司为了调查A,B两种车型的出租情况,现随机抽取了这两种车型各100辆汽车,分别统计了每辆车某个星期内的出租天数,统计数据如下表:A出租天数1 2 3 4 5 6 7车辆数5 1335153 2B出租天数1 2 3 4 5 6 7车辆数14 20 20 16 15 10 5(I)从出租天数为3天的汽车(仅限A,B两种车型)中随机抽取一辆,估计这辆汽车恰好是A型车的概率;(Ⅱ)根据这个星期的统计数据,估计该公司一辆A型车,一辆B型车一周内合计出租天数恰好为4天的概率;(Ⅲ)如果两种车型每辆车每天出租获得的利润相同,该公司需要从A,B两种车型中购买一辆,请你根据所学的统计知识,给出建议应该购买哪一种车型,并说明你的理由.24.(【解析】北京市石景山区2013届高三上学期期末考试数学理试题)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为1123p、、,且他们是否破译出密码互不影响.若三人中只有甲破译出密码的概率为1 4 .(Ⅰ)求甲乙二人中至少有一人破译出密码的概率;(Ⅱ)求p的值;(Ⅲ)设甲、乙、丙三人中破译出密码的人数为X,求X的分布列和数学期望EX.25.(北京市房山区2013届高三上学期期末考试数学理试题)(本小题满分13分)在某校组织的一次篮球定点投篮测试中,规定每人最多..投3次,每次投篮的结果相互独立.在A处每投进一球得3分,在B处每投进一球得2分,否则得0分. 将学生得分逐次累加并用ξ表示,如果ξ的值不低于3分就认为通过测试,立即停止....投篮,否则继续投篮,直到投完三次为止.投篮的方案有以下两种:方案1:先在A处投一球,以后都在B处投;方案2:都在B处投篮.甲同学在A处投篮的命中率为5.0,在B处投篮的命中率为8.0.(Ⅰ)甲同学选择方案1.①求甲同学测试结束后所得总分等于4的概率;②求甲同学测试结束后所得总分ξ的分布列和数学期望Eξ;(Ⅱ)你认为甲同学选择哪种方案通过测试的可能性更大?说明理由.北京2013届高三最新模拟试题分类汇编(含9区一模及上学期期末试题精选)专题:概率参考答案一、选择题1. C2. A3. 【答案】B解:将正整数1,2,3,4,5,6,7随机分成两组,使得每组至少有一个数则有123456777777722126C C C C C C+++++=-=种,因为123456728++++++=,所以要使两组中各数之和相,则有各组数字之和为14.则有7615432++=+++;7526431++=+++;7436521++=+++;7421653+++=++;5432761+++=++;6431752+++=++;6521743+++=++;6537421++=+++共8种,所以两组中各数之和相等的概率是8412663=,选B.4. 【答案】C解:从袋中任取2个球,恰有一个红球的概率1122244263C CPC===,选C.5. 【答案】D解:不等式对应的区域为三角形DEF,当点D在线段BC上时,点D到直线+2=0y的距离等于2,所以要使点D到直线的距离大于2,则点D应在三角形BCF中。

相关文档
最新文档