高等数学 (第01-06课)
大学高数第一章函数和极限ppt课件
幂函数图像(a 0时)
17
幂函数图像(a 0时)
18
指数函数基本性质
解析式: y ax (a>0,且a 1) 基本特征:定义域为实数集R,值域为(0,+∞),函数 图像必经过点(0,1)
19
对数函数基本性质
解析式: y loga x(a 0,且a 1)
基本特征:定义域为(0,+∞),值域为实数集R,图像
例如函数 y x2 在 (, 0) 上单调递减, 在 (0, ) 上单调递增
7
3.函数的奇偶性
如函数 y f (x) 的定义域 D 关于原点对称,且对于任意 xD ,均有: f (x) f (x) ,则称该函数在其定义域内是偶函数; 若是 f (x) f (x) ,则称该函数在其定义域内是奇函数;
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
32
例 证明 lim | x | 0 x 0
证:因为 lim | x | lim (x) 0 ,
x0
x0
{x
|
x
2
k
,
k
Z } ,余
切函数定义域为 {x | x k , k Z} ,二者周期T均为
,值域均为(- ∞,+ ∞) ,互为倒数。
22
正切、余切函数基本图像
正切函数图像片段
23
余切函数有限次四则运算和有限 次函数复合所构成的只能用一个解析式表示的函数, 称为初等函数。 例如: y lg x 、y x tan x sin(1 ex )
《高等数学》 课件 高等数学第一章
高等数学 第一章. 第二节
第 22 页
定义1 给定一个数列xn ,如果当n无限增大时,xn 无限接近于某一
个确定常数A,则称当n趋于无穷时,数列xn 的极限为A,记作
lim
n∞
xn
A?或xn
A(n
∞).
此时也称数列xn 收敛.如果当n无限增大时,xn 无限接近的常数A不存在,
则称数列xn 发散,此时也称数列xn 的极限不存在.
称为中间变量.
1)复合函数的复合原则:前一个函数的定义域与后一个函数的值域
的交集非空,即中间变量有意义.
1 函数
高等数学 第一章. 第一节
第 16 页
例1 将y表示成x的复合函数.
(1)y eu,u sin v,v 3 x;(2)y ln u,u 2 v, 2 v sec x; (3)y arcsin u,u 2 x.2
四、基本初等函数
基本初等函数:幂函数、指数函数、对数函数、三角函数和反三角函数. 1.幂函数y x ( R)?
幂函数y x 的定义域和值域随的取值不同而不同,但是无论 取何值,幂
函数在x (0, ∞)内总有定义.常见的幂函数的图像如图所示.
1 函数
高等数学 第一章. 第一节
2.指数函数y a x (a 0,a 1)
指数函数y a( x a 0,a 1)的定义域 为(∞, ∞,) 值域为(0, ∞.) 指数函数的 图像如图所示.
第 11 页
1 函数
高等数学 第一章. 第一节
3.对数函数y loga x (a 0,a 1)
对数函数y loga x(a 0,a 1)的定义域为(0, ∞, ) 值域为(∞, ∞.) 对数函数y loga x是指数函数y ax的 反函数,其图像如图所示.
《高等数学》电子课件(同济第六版)01第一章第1节函数
复合函数在数学、物理、工程等领域有广 泛的应用。
反函数
反函数的定义
反函数是原函数关于y=x对称的函数。
反函数的性质
反函数具有原函数的性质,如连续性、可导性等。
反函数的求导法则
反函数的求导法则与原函数有关,可以通过交换x和y的导数来实现。
反函数的应用
反函数在数学、物理、工程等领域有广泛的应用,如解方程、优化问题等。
函数单调性的定义
如果对于函数的定义域内的任意两个数$x_1$和$x_2$,当$x_1 < x_2$时,都 有$f(x_1) leq f(x_2)$(或$f(x_1) geq f(x_2)$),则称函数在该区间内单调递 增(或单调递减)。
单调性的判定方法
通过比较函数在不同区间内的增减性,可以判断函数的单调性。此外,导数也 是判断函数单调性的重要工具,如果函数在某区间内的导数大于0,则函数在该 区间内单调递增;如果导数小于0,则函数单调递减。
04
函数的图像与性质
函数的图像
函数图像的概念
函数图像是表示函数值的点在平面上 的集合。通过函数图像,我们可以直 观地了解函数的形态和变化趋势。
函数图像的绘制方法
绘制函数图像通常需要确定函数的定 义域和值域,然后根据函数的解析式 ,在坐标系上标出对应的点,最后用 光滑的曲线将它们连接起来。
函数的单调性
答案与解析
$|x|$ 是偶函数。
$x^3$ 是奇函数。
判断下列函数是否为奇函 数或偶函数
01
03 02
答案与解析
$frac{1}{x}$ 是奇函数。
解析:奇函数的定义是对于定义域内的任意 $x$,都有 $f(-x) = -f(x)$;偶函数的定义是对 于定义域内的任意 $x$,都有 $f(-x) = f(x)$。 根据这些定义,可以判断出 $x^3$、$|x|$ 和 $frac{1}{x}$ 的奇偶性。
高数第一章
第一节 函数
一、函数的概念
1.函数的定义 定义 1 设D是一个数集,如果对属于D的每一个数x,按照某个对应关 系f ,都有确定的数值y与之对应,则称y是定义在数集D上的x的函数,记作 y = f(x),x叫作自变量,数集D叫作函数的定义域,当x取遍D中的一切数时, 与它对应的函数值的集合M叫作函数的值域. 当自变量取某一数值x0时, 函数y具有确定的对应值,则称函数在x0有定义.
......
函数y = f(x),当x = x0 D时,对应的函数值可以记为y0 = f(x0 ) .
例2 若f(x)= | x - 2 | ,求f(2), f(-2), f(0), f(a), f(a +b). x=1
解 f(2)=0,f(-2)=|--41| 4, f(0)=|-12| 2, f(a)=|aa-+21|,
x
(b)偶函数
图 1-2 奇函数与偶函数的图形
例3 判断函数f(x)=ln(x+ x2 +1 )的奇偶性.
解 因为f(-x)=ln (-x)+ (-x)2 1 ln( x2 1 x)
=ln ( x2 1 x)( x2 1 x) ln
1
x2 1 x
x2 1 x
单调增加(或单调减少)函数的图形沿 x 轴的正向上升(或下降).
上述定义也适用于其它有限区间和无限区间的情形.
例4 证明f(x)= 1 在区间(0,1) 内是单调减少的函数. x
证 在区间(0,1)内任取两点x1, x2 ,设x1 x2 ,则x1 x2 0.因为
所以
f(x2
)
f(x1
函数y f (x)的图形与其反函数y f 1(x)的图形关于直线y = x对称.
高等数学第01章:函数及其性质
y f x, x D,
其中 x称为自变量, 称y 为因变量.集合 称D为函数的 定义域,记为 . D f
当自变量 x 取数值 x0 Df 时,与 x0对应的 y 的
x3 y3 1 0 的显函数形式为y 3 1 x3 .而有的
隐函数则不能改写成显函数的形式,如
sinxy ex y 0 .把隐函数改写成显函数,叫做隐
函数的显化.
在函数的定义中,规定了对于变量 的x每一个数 值,变量 有y唯一确定的数值与之对应,这样的函数 称为单值函数;如果变量 有两个y 或更多个确定的 数值与之对应,就称 是 的y 多值x 函数,我们主要研 究单值函数.
的周期.
显然,若 是T周期函数 的f 周x期,则 也是kT f x的 周期 k 1,2,通,3, 常说的周期就是最小正周期.
如函数y sin x 和 y cosx 都是以2 为周期的 周期函数.
3.函数的单调性
设函数 y f x在区间 I上有定义,对I 内的任 意两点 x1, x2 ,当 x1 x2时,若有f x1 f x2 ,则称f x 在 I 上是单调增加的;若有 f x1 f x2 ,则称 f x在
大于1; ⑤ 分段函数的定义域是各段定义域的并集.
二、函数的表示法
1.解析法
例2 作自由落体运动的物体下落时间为 t,下落的距 离为 ,假s定开始下落的时刻为 ,那t 么0 与 s t
之间的依赖关系由下式给出:
s 1 gt2 2
当时间t 变化时,距离 s 作相应的变化.
有些函数在其定义域上的对应法则不能由一 个式子表示,即在定义域的不同范围内用不同的解 析式表示,这成为分段函数.如符号函数
高等数学-第1章课件
三、函数极限的性质
第三节 极限的运算
一、极限的运算法则
法则1 法则2
x x0
lim[ f ( x) g ( x)] lim f ( x) lim g ( x) A B
x x0 x x0 x x0 x x0
x x0
lim[ f ( x ) g ( x )] lim f ( x ) lim g ( x ) A B
第 一 章 函 数 ︑ 极 限 与 连 续
目录
第一节 函数
第二节 极限
第三节 极限的运算 第四节 无穷小与无穷大 第五节 函数的间断性与连续点 第六节 初等函数的连续性
第一节 函数
一、集合、区间与邻域
1.集合
集合(简称集)是具有某种共同性质的事物的全 体,组成集合的单一事物称为该集合的元素。
有限集合 有限个元素构成 北京户籍人口
° a
• a •
a°Leabharlann a3.邻域设 x0, δ R, 其中δ > 0,以 x0为中心,以δ 为半径,长为 2δ的
开区间. 即
( x0 , x0 ) { x x x0 , 0}
称为点 x0 的 δ 邻域 , 记为U(x0 , δ ).
2
x0
x0
x0
集合的运算及关系
由所有属于集合A或属于集合B的元 并集 素所组成的集合,称为集合A与B的 并集 交集 差集 由属于集合A且属于集合B的所有元 素组成的集合,称为A与B的交集
由所有属于集合A 而不属于集合B 的 元素组成的集合
A∪B A∪B={x|x∈A,或 x∈B}
A∩B A-B
A∩B={x|x∈A,且 x∈B} A-B={x|x∈A,且 xB}
大学数学第一课知识点总结
大学数学第一课知识点总结一、集合论1. 集合及其基本概念1.1 集合的定义1.2 元素1.3 集合的表示方式2. 集合间的关系2.1 相等2.2 包含2.3 子集2.4 交集2.5 并集2.6 差集2.7 补集3. 集合的运算3.1 交集的性质3.2 并集的性质3.3 差集的性质4. 集合的基数4.1 有限集合和无限集合4.2 等势集合4.3 自然数集5. 基本概念的扩展5.1 复合命题5.2 集合的基本运算和性质5.3 逻辑运算和集合关系的联系二、函数与映射1. 函数的定义1.1 自变量和因变量1.2 函数的符号表示1.3 函数图像2. 函数的性质2.1 值域和定义域2.2 单调性2.3 奇偶性2.4 周期性2.5 常用函数的性质3. 函数的运算3.1 函数的和、差、积、商3.2 复合函数3.3 反函数4. 映射4.1 映射的定义4.2 单射、满射、双射4.3 逆映射5. 常用函数5.1 幂函数5.2 指数函数5.3 对数函数5.4 三角函数5.5 反三角函数三、数列与极限1. 数列的概念1.1 数列的定义1.2 数列的表示方法1.3 数列的分类2. 数列的性质2.1 有界数列2.2 单调数列2.3 散点数列2.4 大O记号3. 数列的极限3.1 数列极限的定义 3.2 数列极限的性质 3.3 无穷小量3.4 等价无穷小4. 函数的极限4.1 函数极限的定义 4.2 函数的极限性质4.3 左右极限5. 极限的计算5.1 无穷大极限5.2 极限的四则运算 5.3 极限的夹逼准则 5.4 极限的一致性收敛四、导数与微分1. 导数的概念1.1 导数的定义1.2 导数的几何意义1.3 导数的物理意义2. 导数的计算2.1 函数的导数2.2 基本初等函数的导数 2.3 导数的四则运算2.4 高阶导数3. 函数的增减性和凹凸性 3.1 函数的增减性3.2 函数的凹凸性4. 微分的概念4.1 微分的定义4.2 微分的性质4.3 微分近似5. 函数的求极值5.1 函数的极值及其判定 5.2 凹凸性与极值的关系5.3 临界点与拐点五、定积分1. 定积分的概念1.1 定积分的定义1.2 定积分的几何意义1.3 定积分的物理意义2. 定积分的性质2.1 定积分的性质2.2 定积分的计算2.3 积分中值定理3. 不定积分3.1 不定积分的定义3.2 不定积分的计算3.3 定积分与不定积分的关系4. 微积分基本定理4.1 微积分基本定理的内容4.2 微积分基本定理的应用4.3 微分方程5. 曲线的弧长与表面积5.1 曲线的弧长5.2 曲线的表面积总结起来,大学数学第一课主要包括集合论、函数与映射、数列与极限、导数与微分、定积分等内容。
《高等数学》 第一章(上)
25
1 005
5
超过 35 000 元至 55 000 元的部分
30
2 755
6
超过 55 000 元至 80 000 元的部分
35
5 505
7
超过 80 000 元的部分
45
13 505
第一节 函数的概念
个人所得税=(工资-五险一金-个税起征点)×税率-速算扣除数,用分段函 数可表示为
3%x ,
y0 y |xx0 f (x0 ) .
函数 y f (x) 的定义域 D 是自变量 x 的取值范围,而函数值 y 又是由对应 法则 f 来确定的,所以函数实质上是由其定义域 D 和对应法则 f 所确定的.通 常称函数的定义域 D 和对应法则 f 为函数的两要素.只要函数的定义域相同, 对应法则也相同,它们就是相同的函数,而与变量用什么字母或符号表示无关.
第一节 函数的概念
三、函数的概念
函数的记号通常记作 y f (x) ,在后续内容或后续课程中可能有下列记号, 也表示函数.例如
y F(x),y g(x) ,y G(x) ,y (x) , s s(t),v v(t) ,a a(t) ,r r( ) .
又如,经济学中的成本函数就是表示企业总成本与产量之间关系的公式,它 分为短期成本函数和长期成本函数,其中,短期成本函数 C C(q) 可分为固定成 本 b 与可变成本 f (q) ,即 C b f (q) .经济学中除了成本函数外,还有收入函 数 R R(q) 和利润函数 L L(q) ,其中, L R C ,这里 q 表示产品的数量.
y f (x) ,x D . 其中,变量 x 称为自变量,变量 y 称为因变量,集合 D 称为函数的定义域, f 称为函数的对应法则.
同济版 高等数学(上册) 第一章课件
第一章 函数、连续与极限
正弦函数
y sin x
y sin x
19
1. 基本初等函数
第一章 函数、连续与极限
余弦函数
y cos x
y cos x
20
1. 基本初等函数
第一章 函数、连续与极限
y tan x
的定义域是
上是奇函数(见图1-24); y cot x 上是奇函数(见图1-25);
a A 表示 a 不是集 A 的元素(读作 a 不属
于 A ). 集合按照元素的个数分为有限集和无限集 ,不含任何元素的 集合称为空集,记为 .
3
集合之间的关系及运算
定义 . 设有集合
第一章 函数、连续与极限
A, B ,
记作
若
x A 必有
x B , 则称 A A B.
是 B 的子集 , 或称 B 包含 A , 若
注: 在本书中所讨论的数集除特别说明外均为实数集.
5
1. 集合及其运算 集合的基本运算有四种:并、交、差、补. 设 A, B 是两个集合.
第一章 函数、连续与极限
由同时包含于 A 与 B 的元素构成的集合(见图 1-2),称为 A 与 B 的交集(简称交),记作 A B ,即 A B {x | x A 且 x B} ; 由包含于
y
y x (α 是常数) Z y x 当 时, 的定义域是 R ; 当 Z 时,y x 的定义域是 R\{0}
(1) 幂函数: (见图1-17);
1 1 当 时,y x 2 x 的定义域是 [0, ) ; 1 21 1 当 时,y x 2 的定义域是 (0, ) , 2 x
《高等数学(一)微积分》讲义
5. 复合函数
给定函数链 f : D1 → f (D1) g : D → g(D) ⊂ D1
则复合函数为 f o g : D → f [g(D) ]
6. 初等函数 由基本初等函数经有限次四则运算与复合而成的由一个表达式表示的函
数。
4/69
二、 极限 (1.概念回顾 2、极限的求法,)
=
lim
x→π
1 cos x
sin x
-2 ⋅ 2(π
−
2 x)=
lim
x→π
1 -4 sin
cos x
x(π − 2x)
2
2
2
=
lim
x→π
1 -4 sin
x
⋅
cos
lxi→mπ(π −
2xx )=
1 -4
lim
x→π
−
sin −2
x =
−
1 8
2
2
2
13/69
注:使用洛必达法则必须判断所求的极限是分式型的未定式 ∞ 、 0 。 ∞0
例 5:
求 lim x→∞
x+5 x2 − 9
.
解:
lim
x→∞
x+5 x2 − 9
=
lim
x→∞
1 x
+
5 x2
1−
9 x2
=
1 lim( x→∞ x
+
5 x2
)
=
0
=
0.
lim(1 −
x→∞
9 x2
)
1
知识点:设a0 ≠ 0, b0 ≠ 0, m, n ∈ N ,
《高等数学(上册)》课件 第一章
图 1-1
图 1-2
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
例1 判断函数 ylg(x x2 1)的奇偶性. 解 因为函数的定义域为〔-∞,+ ∞ 〕,且
f( x ) l g ( x ( x ) 2 1 ) l g ( x x 2 1 ) l g ( x x 2 1 ) ( x x 2 1 ) x x 2 1
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
一、数列极限
定义1 在某一法那么下,当n〔n∈N+〕依次取1,2,3,…, n,…时,对应的实数排成一列数
x1, x2, x3, , xn,
函数的对应法那么和函数的定义域称为函数的两
个要素.两个函数相等的充分必要条件是函数的定义 域和对应法那么均相同.
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
高等数学第一章第一节
目录
上一页 下一页
退 出
余弦函数 y cos x
y cos x
目录
上一页 下一页
退 出
正切函数 y tan x
y tan x
目录
上一页 下一页
退 出
余切函数 y cot x
y cot x
目录
上一页 下一页
退 出
正割函数 y sec x
y sec x
目录
上一页 下一页
y
o -1
x sgn x x
x
目录
上一页 下一页
退 出
(2) 取整函数 y=[x]
[x]表示不超过 x 的最大整数 4 3 2 1 o
y
-4 -3 -2 -1
1 2 3 4 5 x -1 -2 -3 -4
阶梯曲线
目录
上一页 下一页
退 出
(3) 狄利克雷函数
1 y D(x) 0 当 x 是有理数时 当 x 是无理数时
退 出
例2
1 设 f (x) 2 0 x 1 1 x 2 , 求函数 f ( x 3 )的定义域 .
解
1 f (x) 2
0 x 1 1 x 2 0 x 3 1 1 x 3 2
1 f ( x 3) 2 1 2
函数的两要素: 定义域与对应法则.
(
x
D
x0
)
对应法则f
(
自变量
)
W
y
f ( x0 )
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x
2
D : [ 1 ,1 ] D : ( 1 ,1 )
大一高等数学教材第一章
大一高等数学教材第一章高等数学是大一学生必修的数学课程,其内容涵盖了微积分、数学分析、线性代数等多个领域。
本篇文章将着重介绍大一高等数学教材的第一章内容,主要包括函数及其基本性质、极限及其运算法则以及导数和微分。
一、函数及其基本性质函数是一种数学工具,用于描述变量之间的依赖关系。
在高等数学中,函数被用来研究数学模型,解决实际问题。
函数的基本性质包括定义域、值域、奇偶性、单调性、周期性等。
其中,定义域是指函数的输入集合,值域是指函数的输出集合。
奇偶性是指函数关于原点的对称性质,单调性是指函数在定义域内的增减性质,周期性是指函数具有重复性质。
二、极限及其运算法则极限是一种数学概念,用于描述函数在某一点附近的变化趋势。
在大一高等数学中,极限的计算是重要的基础知识。
极限的运算法则包括四则运算法则、复合函数的极限法则、三角函数的极限法则等。
四则运算法则指的是对于加减乘除四种基本运算,函数极限的性质。
复合函数的极限法则用于求解复合函数在某一点的极限,三角函数的极限法则用于求解三角函数在特定角度下的极限。
三、导数和微分导数是函数在某一点的变化率,用于描述函数在给定点的瞬时变化情况。
微分是导数的一种特殊形式,可以看作是函数在给定点的线性近似。
导数和微分在大一高等数学中占据重要地位,广泛应用于物理、经济、工程等实际问题的求解。
导数的计算包括基本导数公式、求导法则和高阶导数。
微分的计算包括微分法则和微分方程等内容。
总结:大一高等数学教材的第一章主要介绍了函数及其基本性质、极限及其运算法则以及导数和微分。
函数是数学中重要的工具,用于研究数学模型和解决实际问题。
极限的计算是数学分析的基础,对于化学、物理等学科也有重要应用。
导数和微分是函数变化率的描述方法,可以应用于求解实际问题。
通过学习第一章内容,学生将建立起基本的数学思维模式和分析问题的能力,为后续学习铺垫了坚实的基础。
以上就是大一高等数学教材第一章的主要内容介绍。
《高等数学》第一课
《⾼等数学》第⼀课更多、更好资源和精彩⽂章请参见本⽂结尾给出的推荐阅读列表注重⼤学数学特点初等数学的研究对象基本上是不变的量,⽽⾼等数学中研究对象则是变动的量.函数关系就是变量之间的依赖关系,极限⽅法是研究变量的⼀种基本⽅法,也是⾼等数学研究的基本⼯具与⼿段.⼤学数学有以下三个显著特点。
(⼀)精确性数学从诞⽣之⽇起,以严密、简洁、精确⽽著称。
⽽《⾼等数学》(也称分析数学),更是集中体现了这⼀风格,整个分析数学都建⽴在极限的精确语⾔ε-N语⾔与ε-δ语⾔之上。
这两个语⾔的精确性,可以说是字字千⾦。
(⼆)抽象性⾼等数学中的⼀些概念具有⼀定的抽象性,如极限、可导、可积等概念。
设想⼀下,如果数学没有了抽象性,总是就⼀个问题研究⼀个问题,那么数学的发展不可能有今天这样繁荣,那么数学科学可能就成了⼀本厚厚的习题解。
(三)技巧性必须指出,任何⾼超的技巧离不开基本理论、基本思想与运算技能的辅助。
学习的境界有⼈研究孔⼦关于学习的论述,发现了学习的三境界:第⼀境界是“知之”;第⼆境界是“好之”;第三境界是“乐之”。
有的把读书三境界归纳成:为知、为⼰、为⼈三境。
有⼈⽤充满禅机语⾔来说明:第⼀境界是“看⼭是⼭,看⽔是⽔”;第⼆境界是“看⼭不是⼭,看⽔不是⽔”;第三境界是“看⼭还是⼭,看⽔还是⽔”。
也有把三境界引为企业家之⼤境界:第⼀境界是“⼤智慧”;第⼆境界是“⼤抱负”;第三境界是“⼤⼿笔”。
林林总总的三境界就是要告诉我们:第⼀要⽴志,要确⽴⼈⽣⽬标;第⼆要为实现⽬标⽽锲⽽不舍的奋⽃;第三是功夫不负有⼼⼈,最后⼀定会成功。
如何学习⾼等数学相关推荐。
高等数学第一课
⑤无穷级数
⑥常微分方程
⑦高等数学在经济学中的应用
等。
3.《高等数学》教学大纲中提出的“三个 基本”是什么?
“基本概念、基本理论和基本运算技能”;
要求: 基本概念要准确, 基本理论要清楚, 基本运算技能要熟练。
二、《高等数学》培养学生那些能力?
教学大纲中要求,逐步培养学生具有: ①抽象概括问题的能力; ②逻辑推理能力; ③空间想象能力; ④自学能力; ⑤比较熟练的运算能力; ⑥综合运用所学知识去分析问题和解决问题 的能力。
素质有三部分组成:知识(30%)、见识(40%)、组 织管理能力(30%)。而在知识的积累中,中小学 积累的知识占整个知识的10%,大学(包括四年本 科10%、三年硕士研究生10%、三年博士研究生 和一年半的博士后10%)积累的知识占整个知识的 30%,工作以后知识的再积累占整个知识的60% .
素质教育在数学上主要是:
⑦ 要训练学生具有高水平的审美观。
九、强调上《高等数学》课的要求 有那些?
1. 上课不能迟到! 2.每次的作业都应该认真完成! 3.每个学生先准备两个作业本,一个笔记本! 4.数学上的问题每周一、四晚上7:00―9:00
到数学教研室答疑。
谢谢大家!
高等数学第一课
⑤ 图中阴影部分的图形绕 轴x(或 轴y)旋转一周的立体的表
面积是多少(用二重积分的应用)?
⑥ 无穷多个数相加的和仍然是一个数吗(用级数)?
⑦ 两电线杆之间的电线的长度是多少(用定积分的应用、 微分方程)?
2.《高等数学》学习那些内容?
①函数、极限、连续
②一元函数微积分学
③向量代数与空间解析几何 ④多元函数微积分学
① 要训练学生学会运用数学语言的能力;