2019年中考数学真题试题(含解析) 新人教版新版(4)
2019年中考数学真题试题(含解析) 人教新版
2019年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分。
在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)下列等式正确的是()A.()2=3 B.=﹣3 C.=3 D.(﹣)2=﹣32.(3分)函数y=中自变量x的取值范围是()A.x≠﹣4 B.x≠4 C.x≤﹣4 D.x≤43.(3分)下列运算正确的是()A.a2+a3=a5B.(a2)3=a5C.a4﹣a3=a D.a4÷a3=a4.(3分)下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.(3分)下列图形中的五边形ABCDE都是正五边形,则这些图形中的轴对称图形有()A.1个B.2个C.3个D.4个6.(3分)已知点P(a,m),Q(b,n)都在反比例函数y=的图象上,且a<0<b,则下列结论一定正确的是()A.m+n<0 B.m+n>0 C.m<n D.m>n7.(3分)某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元8.(3分)如图,矩形ABCD中,G是BC的中点,过A、D、G三点的圆O与边AB、CD分别交于点E、点F,给出下列说法:(1)AC与BD的交点是圆O的圆心;(2)AF与DE的交点是圆O的圆心;(3)BC与圆O相切,其中正确说法的个数是()A.0 B.1 C.2 D.39.(3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化10.(3分)如图是一个沿3×3正方形方格纸的对角线AB剪下的图形,一质点P由A点出发,沿格点线每次向右或向上运动1个单位长度,则点P由A点运动到B点的不同路径共有()A.4条B.5条C.6条D.7条二、填空题(本大题共8小题,每小题2分,共16分。
2019年中考数学真题试题(含解析) 新人教A版
2019年中考数学真题试题一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×10113.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=15.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是06.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=08.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= .12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为.13.(3分)不等式组的最小整数解是.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.参考答案与试题解析一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共30分)1.(3分)﹣的相反数是()A.﹣ B.C.﹣ D.【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3分)今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为()A.2.147×102B.0.2147×103C.2.147×1010D.0.2147×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:214.7亿,用科学记数法表示为2.147×1010,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“的”与“害”是相对面,“了”与“厉”是相对面,“我”与“国”是相对面.故选:D.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3分)下列运算正确的是()A.(﹣x2)3=﹣x5B.x2+x3=x5C.x3•x4=x7D.2x3﹣x3=1【分析】分别根据幂的乘方、同类项概念、同底数幂相乘及合并同类项法则逐一计算即可判断.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x2、x3不是同类项,不能合并,此选项错误;C、x3•x4=x7,此选项正确;D、2x3﹣x3=x3,此选项错误;故选:C.【点评】本题主要考查整式的运算,解题的关键是掌握幂的乘方、同类项概念、同底数幂相乘及合并同类项法则.5.(3分)河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是0【分析】直接利用方差的意义以及平均数的求法和中位数、众数的定义分别分析得出答案.【解答】解:A、按大小顺序排序为:12.7%,14.5%,15.3%,15.3%,17.1%,故中位数是:15.3%,故此选项错误;B、众数是15.3%,正确;C、(15.3%+12.7%+15.3%+14.5%+17.1%)=14.98%,故选项C错误;D、∵5个数据不完全相同,∴方差不可能为零,故此选项错误.故选:B.【点评】此题主要考查了方差的意义以及平均数的求法和中位数、众数的定义,正确把握相关定义是解题关键.6.(3分)《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.【分析】设设合伙人数为x人,羊价为y线,根据羊的价格不变列出方程组.【解答】解:设合伙人数为x人,羊价为y线,根据题意,可列方程组为:.故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系是解题的关键.7.(3分)下列一元二次方程中,有两个不相等实数根的是()A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=0【分析】根据一元二次方程根的判别式判断即可.【解答】解:A、x2+6x+9=0△=62﹣4×9=36﹣36=0,方程有两个相等实数根;B、x2=xx2﹣x=0△=(﹣1)2﹣4×1×0=1>0两个不相等实数根;C、x2+3=2xx2﹣2x+3=0△=(﹣2)2﹣4×1×3=﹣8<0,方程无实根;D、(x﹣1)2+1=0(x﹣1)2=﹣1,则方程无实根;故选:B.【点评】本题考查的是一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8.(3分)现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是()A.B.C.D.【分析】直接利用树状图法列举出所有可能进而求出概率.【解答】解:令3张用A1,A2,A3,表示,用B表示,可得:,一共有12种可能,两张卡片正面图案相同的有6种,故从中随机抽取两张,则这两张卡片正面图案相同的概率是:.故选:D.【点评】此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.9.(3分)如图,已知▱AOBC的顶点O(0,0),A(﹣1,2),点B在x轴正半轴上按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交边OA,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠AOB内交于点F;③作射线OF,交边AC 于点G,则点G的坐标为()A.(﹣1,2) B.(,2)C.(3﹣,2) D.(﹣2,2)【分析】依据勾股定理即可得到Rt△AOH中,AO=,依据∠AGO=∠AOG,即可得到AG=AO=,进而得出HG=﹣1,可得G(﹣1,2).【解答】解:∵▱AOBC的顶点O(0,0),A(﹣1,2),∴AH=1,HO=2,∴Rt△AOH中,AO=,由题可得,OF平分∠AOB,∴∠AOG=∠EOG,又∵AG∥OE,∴∠AGO=∠EOG,∴∠AGO=∠AOG,∴AG=AO=,∴HG=﹣1,∴G(﹣1,2),故选:A.【点评】本题主要考查了角平分线的作法,勾股定理以及平行四边形的性质的运用,解题时注意:求图形中一些点的坐标时,过已知点向坐标轴作垂线,然后求出相关的线段长,是解决这类问题的基本方法和规律.10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2 C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.【解答】解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE=∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.【点评】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二、细心填一填(本大题共5小题,每小题3分,满分15分,请把答案填在答題卷相应题号的横线上)11.(3分)计算:|﹣5|﹣= 2 .【分析】直接利用二次根式以及绝对值的性质分别化简得出答案.【解答】解:原式=5﹣3=2.故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.(3分)如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为140°.【分析】直接利用垂直的定义结合互余以及互补的定义分析得出答案.【解答】解:∵直线AB,CD相交于点O,EO⊥AB于点O,∴∠EOB=90°,∵∠EOD=50°,∴∠BOD=40°,则∠BOC的度数为:180°﹣40°=140°.故答案为:140°.【点评】此题主要考查了垂直的定义、互余以及互补的定义,正确把握相关定义是解题关键.13.(3分)不等式组的最小整数解是﹣2 .【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.【解答】解:∵解不等式①得:x>﹣3,解不等式②得:x≤1,∴不等式组的解集为﹣3<x≤1,∴不等式组的最小整数解是﹣2,故答案为:﹣2.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.14.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=2,将△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',其中点B的运动路径为,则图中阴影部分的面积为π.【分析】利用弧长公式L=,计算即可;【解答】解:△ABC绕AC的中点D逆时针旋转90°得到△A'B′C',此时点A′在斜边AB 上,CA′⊥AB,∴∠ACA′=∠BCA′=45°,∴∠BCB′=135°,∴S阴==π.【点评】本题考查旋转变换、弧长公式等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(3分)如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为4或4 .【分析】当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,根据对称的性质和平行线可得:A'C=A'E=4,根据直角三角形斜边中线的性质得:BC=2A'B=8,最后利用勾股定理可得AB的长;②当∠A'FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A′EF为直角三角形时,存在两种情况:①当∠A'EF=90°时,如图1,∵△A′BC与△ABC关于BC所在直线对称,∴A'C=AC=4,∠ACB=∠A'CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE=∠A'EF,∴AC∥A'E,∴∠ACB=∠A'EC,∴∠A'CB=∠A'EC,∴A'C=A'E=4,Rt△A'CB中,∵E是斜边BC的中点,∴BC=2A'B=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==4;②当∠A'FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠A BF=90°,∵△A′BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA'=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4或4;故答案为:4或4;【点评】本题考查了三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.三、计算题(本大题共8题,共75分,请认真读题)16.(8分)先化简,再求值:(﹣1)÷,其中x=+1.【分析】根据分式的运算法则即可求出答案,【解答】解:当x=+1时,原式=•=1﹣x=﹣【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.(9分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民共有2000 人;(2)扇形统计图中,扇形E的圆心角度数是28.8°;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.【分析】(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.【解答】解:(1)本次接受调查的市民人数为300÷15%=2000人,故答案为:2000;(2)扇形统计图中,扇形E的圆心角度数是360°×=28.8°,故答案为:28.8°;(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为70×40%=28(万人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(9分)如图,反比例函数y=(x>0)的图象过格点(网格线的交点)P.(1)求反比例函数的解析式;(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.【分析】(1)将P点坐标代入y=,利用待定系数法即可求出反比例函数的解析式;(2)根据矩形满足的两个条件画出符合要求的两个矩形即可.【解答】解:(1)∵反比例函数y=(x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=;(2)如图所示:矩形OAPB、矩形OCDP即为所求作的图形.【点评】本题考查了作图﹣应用与设计作图,反比例函数图象上点的坐标特征,待定系数法求反比例函数解析式,矩形的判定与性质,正确求出反比例函数的解析式是解题的关键.19.(9分)如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为30°时,四边形ECFG为菱形;②当∠D的度数为22.5°时,四边形ECOG为正方形.【分析】(1)连接OC,如图,利用切线的性质得∠1+∠4=90°,再利用等腰三角形和互余证明∠1=∠2,然后根据等腰三角形的判定定理得到结论;(2)①当∠D=30°时,∠DAO=60°,证明△CEF和△FEG都为等边三角形,从而得到EF=FG=GE=CE=CF,则可判断四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,利用三角形内角和计算出∠COE=45°,利用对称得∠EOG=45°,则∠COG=90°,接着证明△OEC≌△OEG得到∠OEG=∠OCE=90°,从而证明四边形ECOG为矩形,然后进一步证明四边形ECOG为正方形.【解答】(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67.5°﹣67.5°=45°,∴∠AOC=45°,∴∠COE=45°,利用对称得∠EOG=45°,∴∠COG=90°,易得△OEC≌△OEG,∴∠OEG=∠OCE=90°,∴四边形ECOG为矩形,而OC=OG,∴四边形ECOG为正方形.故答案为30°,22.5°.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了菱形和正方形的判定.20.(9分)“高低杠”是女子体操特有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高、低两杠间的距离.某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答.如图所示,底座上A,B两点间的距离为90cm.低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE 为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°.求高、低杠间的水平距离CH 的长.(结果精确到1cm,参考数据sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)【分析】利用锐角三角函数,在Rt△ACE和Rt△DBF中,分别求出AE、BF的长.计算出EF.通过矩形CEFH得到CH的长.【解答】解:在Rt△ACE中,∵tan∠CAE=,∴AE==≈≈21(cm)在Rt△DBF中,∵tan∠DBF=,∴BF==≈=40(cm)∵EF=EA+AB+BF≈21+90+40=151(cm)∵CE⊥EF,CH⊥DF,DF⊥EF∴四边形CEFH是矩形,∴CH=EF=151cm答:高、低杠间的水平距离CH的长为151cm.【点评】本题考查了锐角三角函数解直角三角形.题目难度不大,注意精确度.21.(10分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是80 元,当销售单价x= 100 元时,日销售利润w最大,最大值是2000 元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意和表格中的数据可以求得y关于x的函数解析式;(2)根据题意可以列出相应的方程,从而可以求得生产成本和w的最大值;(3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本.【解答】解;(1)设y关于x的函数解析式为y=kx+b,,得,即y关于x的函数解析式是y=﹣5x+600,当x=115时,y=﹣5×115+600=25,即m的值是25;(2)设成本为a元/个,当x=85时,875=175×(85﹣a),得a=80,w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∴当x=100时,w取得最大值,此时w=2000,故答案为:80,100,2000;(3)设科技创新后成本为b元,当x=90时,(﹣5×90+600)(90﹣b)≥3750,解得,b≤65,答:该产品的成本单价应不超过65元.【点评】本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答.22.(10分)(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.【点评】本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.23.(11分)如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC 于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.【分析】(1)利用一次函数解析式确定C(0,﹣5),B(5,0),然后利用待定系数法求抛物线解析式;(2)①先解方程﹣x2+6x﹣5=0得A(1,0),再判断△OCB为等腰直角三角形得到∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以AM=2,接着根据平行四边形的性质得到PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到PD=PQ=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),讨论:当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=4;当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5),然后分别解方程即可得到P点的横坐标;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,﹣2),AC的解析式为y=5x﹣5,E点坐标为(,﹣),利用两直线垂直的问题可设直线EM1的解析式为y=﹣x+b,把E(,﹣)代入求出b得到直线EM1的解析式为y=﹣x﹣,则解方程组得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),根据中点坐标公式得到3=,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.【解答】解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),当y=0时,x﹣5=0,解得x=5,则B(5,0),把B(5,0),C(0,﹣5)代入y=ax2+6x+c得,解得,∴抛物线解析式为y=﹣x2+6x﹣5;(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),∵B(5,0),C(0,﹣5),∴△OCB为等腰直角三角形,∴∠OBC=∠OCB=45°,∵AM⊥BC,∴△AMB为等腰直角三角形,∴AM=AB=×4=2,∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,∴PQ=AM=2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,∴PD=PQ=×2=4,设P(m,﹣m2+6m﹣5),则D(m,m﹣5),当P点在直线BC上方时,PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,当P点在直线BC下方时,PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=,m2=,综上所述,P点的横坐标为4或或;②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,∵M1A=M1C,∴∠ACM1=∠CAM1,∴∠AM1B=2∠ACB,∵△ANB为等腰直角三角形,∴AH=BH=NH=2,∴N(3,﹣2),易得AC的解析式为y=5x﹣5,E点坐标为(,﹣),。
2019年中考数学真题试题(含答案)
A CC2019年中考数学真题试题(总分120分考试时间120分钟)注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;本试题共6页.2.数学试题答题卡共8页.答题前,考生务必将自己的姓名、准考证号、座号等填写在试题和答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm碳素笔答在答题卡的相应位置上.第Ⅰ卷(选择题共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.51-的倒数是()A.5- B.5 C.51- D.512.下列运算正确的是()A.()2222yxyxyx---=-- B.422aaa=+C.632aaa=⋅ D.4222yxxy=)(3.下列图形中,根据AB∥CD,能得到∠1=∠2的是()A B C D4.在平面直角坐标系中,若点P(2-m,1+m)在第二象限,则m的取值范围是()A.1-<m B.2>m C.21<<m- D.1->m5.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()A.众数是100 B.中位数是30 C.极差是20 D.平均数是306.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A.19 B.18 C.16 D.15B7.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于点F ,AB =BF .添加一个条件使四边形ABCD 是平行四边形,你认为下面四个条件中可选择的是( ) A. AD =BC B. CD =BF C. ∠A =∠C D. ∠F =∠CDF8.如图所示,圆柱的高AB =3,底面直径BC =3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .π+13B .23C .2432π+ D .213π+9.如图所示,已知△ABC 中,BC =12,BC 边上的高h =6,D 为BC 上一点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设点E 到边BC 的距离为x .则△DEF 的面积y 关于x 的函数图象大致为 ( )10.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC .给出下列结论:①CE BD =;②∠ABD +∠ECB =45°;③BD ⊥CE ;④2222)(2CD AB AD BE -+=.其中正确的是() A. ①②③④ B. ②④ C. ①②③第Ⅱ卷(非选择题 共90分)二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.东营市大力推动新旧动能转换,产业转型升级迈出新步伐.建立了新旧动能转换项目库,筛选论证项目377(第6题图) (第7题图)(第9题图) (第10题图)(第8题图)个,计划总投资4147亿元.4147亿元用科学记数法表示为元.12. 分解因式:234xyx-= .13. 有五张背面完全相同的卡片,其正面分别画有等腰三角形、平行四边形、矩形、正方形、菱形,将这五张卡片背面朝上洗匀,从中随机抽取一张,卡片上的图形是中心对称图形的概率是 .14.如图,B(3,-3),C(5,0),以OC,CB为边作平行四边形OABC,则经过点A的反比例函数的解析式为 .15.如图,在Rt△ABC中,∠B=90°,以顶点C为圆心,适当长为半径画弧,分别交AC,BC于点E,F,再分别以点E,F为圆心,大于21EF的长为半径画弧,两弧交于点P,作射线CP交AB于点D,若BD=3,AC=16.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为.17.在平面直角坐标系内有两点A、B,其坐标为A),(11--,B(2,7),点M为x轴上的一个动点,若要使MAMB-的值最大,则点M的坐标为.18.如图,在平面直角坐标系中,点1A,2A,3A,…和1B,2B,3B,…分别在直线bxy+=51和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果点1A(1,1),那么点2018A的纵坐标是.19. (本题满分7分,第⑴题4分,第⑵题3分)(第15题图)(第14题图) (第16题图)(1)计算:12018o 0)21()1(3tan30)12(32---+-++-;(2)解不等式组:⎩⎨⎧≥+-+.331203x x x )(,>并判断-1,2这两个数是否为该不等式组的解.20.(本题满分8分)2018年东营市教育局在全市中小学开展了“情系疏勒 书香援疆”捐书活动,200多所学校的师生踊跃参与,向新疆疏勒县中小学共捐赠爱心图书28.5万余本.某学校学生社团对本校九年级学生所捐图书进行统计,根据收集的数据绘制了下面不完整的统计图表.请你根据统计图表中所提供的信息解答下列问题:(1)求该校九年级共捐书多少本; (2)统计表中的a = ,b = ,c = ,d = ;(3)若该校共捐书1500本,请估计“科普图书”和“小说”一共多少本; (4)该社团3名成员各捐书1本,分别是1本“名人传记”,1本“科普图书”,1本“小说”,要从这3人中任选2人为受赠者写一份自己所捐图书的简介,请用列表法或树状图求选出的2人恰好1人捐“名人传记”,1人捐“科普图书”的概率.21.(本题满分8分)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m 和2000m ,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.22.(本题满分8分)如图,CD 是⊙O 的切线,点C 在直径AB 的延长线上.(第20题图)(1)求证:∠CAD=∠BDC;(2)若BD=32AD,AC=3,求CD的长.23.(本题满分9分)关于的方程有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sin A 的值;(2)若关于y的方程的两个根恰好是△ABC的两边长,求△ABC的周长.24.(本题满分10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=33,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB= °,AB= .(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=33,∠ABC=∠ACB=75°, BO:OD=1:3,求DC的长.25.(本题满分12分)如图,抛物线y=a(a0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(第24题图1) (第24题图2) (第24题图3)数学试题参考答案及评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分标准相应评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,共30分.选错、不选或选出的答案超过一个均记零分.二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果.11.1110147.4⨯; 12. )2)(2(y x y x x -+ ; 13.54; 14. xy 6=; 15. 15; 16. π20; 17. ),(023-; 18. 201723)(. 三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤.19.(本题满分7分,第(1)题4分,第(2)题3分) 解:(1)原式=2-1333-13-2+⨯+ …………………3分 =32-2 ……………………………………………4分....(2) 302133x x x +⎧⎨-+≥⎩>①()②解不等式①得:x>-3,解不等式②得:x ≤1………………………………………1分所以不等式组的解集为: -3<x ≤1. …………………………………………………2分 则-1是不等式组的解,2不是不等式组的解.…………………………………………3分 20.(本题满分8分)解:(1)该校九年级共捐书:(本)500360126175=÷……………………………………1分 (2)a =0.35………………………………………………………………………………1.5分b =150…………………………………………………………………………………2分c =0.22………………………………………………………………………………2.5分d =0.13…………………………………………………………………………………3分 (3)78022.03.01500=+⨯)((本)…………………………………………………5分 (4)分别用“1、2、3”代表“名人传记”、“科普图书”、“小说”三本书,可用列表法表示如下:则所有等可能的情况有6种,其中2人恰好1人捐“名人传记”,1人捐“科普图书”的情况有2种.…………………………………………………………………… …………7分 所以所求的概率:3162==P ………………………………………………………8分 21.(本题满分8分)解:设小明和小刚的速度分别是3x 米/分和4 x 米/分…………………………………1分则44200031200-=xx …………………………………………………………………3分 解得 x =25………………………………………………………………………………5分 检验:当x =25时,3x ≠0,4 x ≠0所以分式方程的解为x =25……………………………………………………………6分 则3x =75 4x =100………………………………………………………………………7分 答:小明的速度是75米/分,小刚的速度是100米/分.………………………………8分 22.(本题满分8分) (1)证明:连接OD ∵OB =OD....∴∠OBD=∠ODB …………………………1分 ∵CD 是⊙O 的切线,OD 是⊙O 的半径∴∠ODB +∠BDC =90°……………………2分 ∵AB 是⊙O 的直径∴∠ADB =90°∴∠OBD +∠CAD = 90°………………………………………3分 ∴∠CAD=∠BDC ………………………………………………4分(2)解:∵∠C =∠C ,∠CAD=∠BDC∴△CDB ∽ △CAD ………………………………………………5分∴ACCD ADBD =…………………………………………………6分∵32=AD BD ∴32=ACCD …………………………………………………7分 ∵ AC =3∴ CD =2…………………………………………………8分 23. (本题满分9分) 解:(1)因为关于x 的方程有两个相等的实数根,则△=25sin 2A -16=0………………………………………1分∴sin 2A =2516, ∴sin A =54±,……………………………………………2分∵∠A 为锐角, ∴sin A =54;………………………………………………3分 (2)由题意知,方程y 2﹣10y +k 2-4k +29=0有两个实数根, 则△≥0,………………………………………………4分 ∴100﹣4(k 2-4k +29)≥0, ∴﹣(k -2)2≥0, ∴(k -2)2≤0, 又∵(k -2)2≥0,∴k =2.…………………………………………………5分 把k =2代入方程,得y 2﹣10y +25=0, 解得y 1=y 2=5,∴△ABC 是等腰三角形,且腰长为5. …………6分(第22题答案图)....分两种情况:① ∠A 是顶角时:如图,过点B 作BD ⊥AC 于点D , 在Rt △ABD 中,AB =AC =5 ∵sin A =54, ∴AD =3 ,BD =4∴DC =2, ∴BC =52. ∴△ABC 的周长为5210+. ……………………………7分 AB =5 ∵sin A =54, ② ∠A 是底角时:如图,过点B 作BD ⊥AC 于点D , 在Rt △ABD 中,∴A D =DC =3, ∴AC =6.∴△ABC 的周长为16. …………………………8分综合以上讨论可知:△ABC 的周长为或16……………9分24.(本题满分10分)(1)75,……………………………………………1分2分(2)解:过点B 作BE ∥AD 交AC 于点E ∵AC ⊥AD∴∠DAC =∠BEA =90° ∵∠AOD =∠EOB∴△AOD ∽△EOB ……………………………………………3分 ∴=BO EO BE DO AO DA = ∵BO:OD =1:3∴1=3EO BE AO DA = (4)分 ∵AO=∴∴AE =……………………………………………5分 ∵∠ABC =∠ACB =75°∴∠BAC =30°,AB=AC ……………………………………………6分 ∴AB =2BE在Rt △AEB 中,222BE AE AB +=即222)2(34BE BE =+)(,得BE =4……………………………………………7分 ∴AB =AC =8,AD =12……………………………………………8分 在Rt △CAD 中,222AC AD CD +=即2228+12CD=,得CD =10分 25.(本题满分12分)(第23题答案图1)(第23题答案图2)(第24题答案图)....解:(1)由题可知当y =0时,a =0解得:x 1=1,x 2=3则A (1,0),B (3,0)于是OA =1,OB =3∵△OCA ∽△OBC ∴OC ∶OB =OA ∶OC ∴OC 2=OA •OB =3即OC =(2)因为C 是BM 的中点 ∴OC =BC 从而点C 的横坐标为23又OC =,点C 在x 轴下方∴C),(2323-设直线BM 的解析式为y =kx +b ,因其过点B (3,0),C),(2323-, 则有⎪⎩⎪⎨⎧-=+=+.232303b k b k ,∴,33=k ∴333-=x y ……………………5分 又点C),(2323-在抛物线上,代入抛物线解析式, 解得a =332……………………6分 ∴抛物线解析式为:323383322+-=x x y ……………………7分 (3)点P 存在.……………………8分 设点P 坐标为(x ,323383322+-x x ),过点P 作PQ x 轴交直线BM 于点Q , 则Q (x ,333-x ),....11PQ =33333322-+-x x ……………………9分 当△BCP 面积最大时,四边形ABPC )()(△2321321-+-=x PQ x PQ S BCP )(23321-+-=x x PQ PQ 43= 43943923 2-+-=x x 当492=-=a b x 时,BCP S △此时点P 的坐标为)385-,49(。
2019年中考数学真题试题(含解析) 新人教 版
2019年中考数学真题试题一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项符合题目要求1.﹣2的相反数是()A.﹣2 B.2 C.D.﹣解:﹣2的相反数是2.故选B.2.如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.解:从上边看外面是正方形,里面是没有圆心的圆.故选A.3.方程组==x+y﹣4的解是()A.B.C.D.解:由题可得:,消去x,可得2(4﹣y)=3y,解得y=2,把y=2代入2x=3y,可得x=3,∴方程组的解为.故选D.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=GC D.EG=2GC解:∵DE∥FG∥BC,DB=4FB,∴.5.下列调查中,适宜采用普查方式的是()A.调查全国中学生心理健康现状B.调查一片试验田里五种大麦的穗长情况C.要查冷饮市场上冰淇淋的质量情况D.调查你所在班级的每一个同学所穿鞋子的尺码情况解:A.了解全国中学生心理健康现状调查范围广,适合抽样调查,故A错误;B.了解一片试验田里五种大麦的穗长情况调查范围广,适合抽样调查,故B错误;C.了解冷饮市场上冰淇淋的质量情况调查范围广,适合抽样调查,故C错误;D.调查你所在班级的每一个同学所穿鞋子的尺码情况,适合全面调查,故D正确;故选D.6.估计+1的值,应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间解:∵≈2.236,∴ +1≈3.236.故选C.7.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r﹣1,OA=r,则有r2=52+(r﹣1)2,解得r=13,∴⊙O的直径为26寸.故选C.8.已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±解:∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1.9.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点,∴S△PAB=S△POB由反比例函数比例系数k的性质,S△POB=3∴△POA的面积是6故选B.10.二次函数y=x2+(a﹣2)x+3的图象与一次函数y=x(1≤x≤2)的图象有且仅有一个交点,则实数a的取值范围是()A.a=3±2B.﹣1≤a<2C.a=3或﹣≤a<2 D.a=3﹣2或﹣1≤a<﹣解:由题意可知:方程x2+(a﹣2)x+3=x在1≤x≤2上只有一个解,即x2+(a﹣3)x+3=0在1≤x≤2上只有一个解,当△=0时,即(a﹣3)2﹣12=0a=3±2当a=3+2时,此时x=﹣,不满足题意,当a=3﹣2时,此时x=,满足题意,当△>0时,令y=x2+(a﹣3)x+3,令x=1,y=a+1,令x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当a=﹣1时,此时x=1或3,满足题意;当a=﹣时,此时x=2或x=,不满足题意.综上所述:a=3﹣2或﹣1≤a<.故选D.二、填空题:本大题共6小题,每小题3分,共18分11.计算:|﹣3|= .解:|﹣3|=3.故答案为:3.12.化简+的结果是解: +=﹣==﹣1.故答案为:﹣1.13.如图,在数轴上,点A表示的数为﹣1,点B表示的数为4,C是点B关于点A的对称点,则点C表示的数为.解:设点C所表示的数为x.∵数轴上A、B两点表示的数分别为﹣1和4,点B关于点A的对称点是点C,∴AB=4﹣(﹣1),AC=﹣1﹣x,根据题意AB=AC,∴4﹣(﹣1)=﹣1﹣x,解得x=﹣6.故答案为:﹣6.14.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是度.解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为:22.5.15.如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.解:过O′作O′M⊥OA于M,则∠O′MA=90°,∵点O′的坐标是(1,),∴O′M=,OM=1.∵AO=2,∴AM=2﹣1=1,∴tan∠O′AM==,∴∠O′AM=60°,即旋转角为60°,∴∠CAC′=∠OAO′=60°.∵把△OAC绕点A按顺时针方向旋转到△O′AC′,∴S△OAC=S△O′AC′,∴阴影部分的面积S=S扇形OAO′+S△O′AC′﹣S△OAC ﹣S扇形CAC′=S扇形OAO′﹣S扇形CAC′=﹣=.故答案为:.16.已知直线l1:y=(k﹣1)x+k+1和直线l2:y=kx+k+2,其中k为不小于2的自然数.(1)当k=2时,直线l1、l2与x轴围成的三角形的面积S2= ;(2)当k=2、3、4,……,2018时,设直线l1、l2与x轴围成的三角形的面积分别为S2,S3,S4,……,S2018,则S2+S3+S4+……+S2018= .解:当y=0时,有(k﹣1)x+k+1=0,解得:x=﹣1﹣,∴直线l1与x轴的交点坐标为(﹣1﹣,0),同理,可得出:直线l2与x轴的交点坐标为(﹣1﹣,0),∴两直线与x轴交点间的距离d=﹣1﹣﹣(﹣1﹣)=﹣.联立直线l1、l2成方程组,得:,解得:,∴直线l1、l2的交点坐标为(﹣1,﹣2).(1)当k=2时,d=﹣=1,∴S2=×|﹣2|d=1.故答案为:1.(2)当k=3时,S3=﹣;当k=4时,S4=﹣;…;S2018=﹣,∴S2+S3+S4+……+S2018=﹣+﹣+﹣+…+﹣=﹣=2﹣=.故答案为:.三、简答题:本大题共3小题,每小题9分,共27分17.计算:4cos45°+(π﹣2018)0﹣解:原式=4×+1﹣2=1.18.解不等式组:解:.∵解不等式①得:x>0,解不等式②得:x<6,∴不等式组的解集为0<x<6.19.如图,已知∠1=∠2,∠3=∠4,求证:BC=BD.证明:∵∠ABD+∠3=180°∠ABC+∠4=180°,且∠3=∠4,∴∠ABD=∠ABC在△ADB和△ACB中,,∴△ADB≌△ACB(ASA),∴BD=CD.四、本大题共3小题,每小题10分,共30分20.先化简,再求值:(2m+1)(2m﹣1)﹣(m﹣1)2+(2m)3÷(﹣8m),其中m是方程x2+x﹣2=0的根解:原式=4m2﹣1﹣(m2﹣2m+1)+8m3÷(﹣8m)=4m2﹣1﹣m2+2m﹣1﹣m2=2m2+2m﹣2=2(m2+m﹣1).∵m是方程x2+x﹣2=0的根,∴m2+m﹣2=0,即m2+m=2,则原式=2×(2﹣1)=2.21.某校八年级甲、乙两班各有学生50人,为了了解这两个班学生身体素质情况,进行了抽样调查,过程如下,请补充完整.(1)收集数据从甲、乙两个班各随机抽取10名学生进行身体素质测试,测试成绩(百分制)如下:甲班65 75 75 80 60 50 75 90 85 65乙班90 55 80 70 55 70 95 80 65 70(2)整理描述数据按如下分数段整理、描述这两组样本数据:在表中:m= ,n= .(3)分析数据①两组样本数据的平均数、中位数、众数如表所示:在表中:x= ,y= .②若规定测试成绩在80分(含80分)以上的叙述身体素质为优秀,请估计乙班50名学生中身体素质为优秀的学生有人.③现从甲班指定的2名学生(1男1女),乙班指定的3名学生(2男1女)中分别抽取1名学生去参加上级部门组织的身体素质测试,用树状图和列表法求抽到的2名同学是1男1女的概率.解:(2)由收集的数据得知m=3、n=2.故答案为:3、2;(3)①甲班成绩为:50、60、65、65、75、75、75、80、85、90,∴甲班成绩的中位数x==75,乙班成绩70分出现次数最多,所以的众数y=70.故答案为:75、70;②估计乙班50名学生中身体素质为优秀的学生有50×=20人;③列表如下:由表可知,共有6种等可能结果,其中抽到的2名同学是1男1女的有3种结果,所以抽到的2名同学是1男1女的概率为=.22.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得解得∴AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)由(1)恒温系统设定恒温为20°C(3)把y=10代入y=中,解得:x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.五、本大题共2小题,每小题10分,共20分23.已知关于x的一元二次方程mx2+(1﹣5m)x﹣5=0(m≠0).(1)求证:无论m为任何非零实数,此方程总有两个实数根;(2)若抛物线y=mx2+(1﹣5m)x﹣5=0与x轴交于A(x1,0)、B(x2,0)两点,且|x1﹣x2|=6,求m的值;(3)若m>0,点P(a,b)与Q(a+n,b)在(2)中的抛物线上(点P、Q不重合),求代数式4a2﹣n2+8n的值.(1)证明:由题意可得:△=(1﹣5m)2﹣4m×(﹣5)=1+25m2﹣20m+20m=25m2+1>0,故无论m为任何非零实数,此方程总有两个实数根;(2)解:mx2+(1﹣5m)x﹣5=0,解得:x1=﹣,x2=5,由|x1﹣x2|=6,得|﹣﹣5|=6,解得:m=1或m=﹣;(3)解:由(2)得:当m>0时,m=1,此时抛物线为y=x2﹣4x﹣5,其对称轴为:x=2,由题已知,P,Q关于x=2对称,∴ =2,即2a=4﹣n,∴4a2﹣n2+8n=(4﹣n)2﹣n2+8n=16.24.如图,P是⊙O外的一点,PA、PB是⊙O的两条切线,A、B是切点,PO交AB于点F,延长BO交⊙O于点C,交PA的延长交于点Q,连结AC.(1)求证:AC∥PO;(2)设D为PB的中点,QD交AB于点E,若⊙O的半径为3,CQ=2,求的值.(1)证明:∵PA、PB是⊙O的两条切线,A、B是切点,∴PA=PB,且PO平分∠BPA,∴PO⊥AB.∵BC是直径,∴∠CAB=90°,∴AC⊥AB,∴AC∥PO;(2)解:连结OA、DF,如图,∵PA、PB是⊙O的两条切线,A、B是切点,∴∠OAQ=∠PBQ=90°.在Rt△OAQ中,OA=OC=3,∴OQ=5.由QA2+OA2=OQ2,得QA=4.在Rt△PBQ中,PA=PB,QB=OQ+OB=8,由QB2+PB2=PQ2,得82+PB2=(PB+4)2,解得PB=6,∴PA=PB=6.∵OP⊥AB,∴BF=AF=AB.又∵D为PB的中点,∴DF∥AP,DF=PA=3,∴△DFE∽△QEA,∴ ==,设AE=4t,FE=3t,则AF=AE+FE=7t,∴BE=BF+FE=AF+FE=7t+3t=10t,∴ ==.六、本大题共2小题,第25题12分,第26题13分,共25分25.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=,试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.(3)如图3,若k=,且D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴AF=AC.∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD.∵AD∥BF,∴∠EFB=90°.∵EF=BF,∴∠FBE=45°,∴∠APE=45°.故答案为:45°.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF 是平行四边形,∴BD=AF,BF=AD.∵AC=BD,CD=AE,∴.∵BD=AF,∴.∵∠FAC=∠C=90°,∴△FAE∽△ACD,∴ =,∠FEA=∠ADC.∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD.∵AD∥BF,∴∠EFB=90°.在Rt△EFB中,tan∠FBE=,∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,∴BE=DH,EH=BD.∵AC=BD,CD=AE,∴.∵∠HEA=∠C=90°,∴△ACD∽△HEA,∴,∠ADC=∠HAE.∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°.在Rt△DAH中,tan∠ADH==,∴∠ADH=30°,∴∠APE=30°.26.如图,在平面直角坐标系中,抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于点C(0,﹣),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方形以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动时间为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由.②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.解:(1)∵OA=1,OB=4∴A(1,0),B(﹣4,0)设抛物线的解析式为y=a(x+4)(x﹣1)∵点C(0,﹣)在抛物线上∴﹣解得a=∴抛物线的解析式为y=(2)存在t,使得△ADC与△PQA相似.理由:①在Rt△AOC中,OA=1,OC=则tan∠ACO=∵tan∠OAD=∴∠OAD=∠ACO∵直线l的解析式为y=∴D(0,﹣)∵点C(0,﹣)∴CD=由AC2=OC2+OA2,得AC=在△AQP中,AP=AB﹣PB=5﹣2t,AQ=t由∠PAQ=∠ACD,要使△ADC与△PQA相似只需或则有或解得t1=,t2=∵t1<2.5,t2<2.5∴存在t=或t=,使得△ADC与△PQA相似②存在t,使得△APQ与△CAQ的面积之和最大理由:作PF⊥AQ于点F,CN⊥AQ于N在△APF中,PF=AP•sin∠PAF=在△AOD中,由AD2=OD2+OA2,得AD=在△ADC中,由S△ADC=∴CN=∴S△AQP+S△AQC==﹣∴当t=时,△APQ与△CAQ的面积之和最大。
湖北省武汉市2019年中考数学真题试题(含解析)
2019年武汉市初中毕业生考试数学试卷一、选择题(共10小题,每小题3分,共30分) 1.实数2019的相反数是() A .2019B .-2019C .20191D .20191-答案:B 考点:相反数。
解析:2019的相反数为-2019,选B 。
2.式子1-x 在实数范围内有意义,则x 的取值范围是() A .x >0B .x ≥-1C .x ≥1D .x ≤1答案:C考点:二次根式。
解析:由二次根式的定义可知,x -1≥0, 所以,x ≥1,选C 。
3.不透明的袋子中只有4个黑球和2个白球,这些球除颜色外无其他差别,随机从袋子中一次摸出3个球,下列事件是不可能事件的是() A .3个球都是黑球B .3个球都是白球C .三个球中有黑球D .3个球中有白球答案:B考点:事件的判断。
解析:因为袋中只有2个白球,所以,从袋子中一次摸出3个都是白球是不可能的,选B 。
4.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是() A .诚B .信C .友D .善答案:D考点:轴对称图形。
解析:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形就是轴对称图形,如图,只有D才是轴对称图形。
5.如图是由5个相同的小正方体组成的几何体,该几何题的左视图是()答案:A考点:三视图。
解析:左面看,左边有上下2个正方形,右边只有1个正方形,所以,A符合。
6.“漏壶”是一种这个古代计时器,在它内部盛一定量的水,不考虑水量变化对压力的影响,水从壶底小孔均匀漏出,壶内壁有刻度.人们根据壶中水面的位置计算时间,用t表示漏水时间,y表示壶底到水面的高度,下列图象适合表示y与x的对应关系的是()答案:A考点:函数图象。
解析:因为壶是一个圆柱,水从壶底小孔均匀漏出,水面的高度y是均匀的减少,所以,只有A符合。
7.从1、2、3、4四个数中随机选取两个不同的数,分别记为a 、c ,则关于x 的一元二次方程ax 2+4x +c =0有实数解的概率为() A .41 B .31C .21 D .32 答案:C考点:概率,一元二次方程。
2019中考数学真题试题(含解析) 新人教 版
学习资料专题2019年中考数学真题试题一、选择题(每小题,只有一个选项符合题意,请将正确选项填涂在答题卡上的相应位置,本大题共10个小题,每小题3分,共30分。
)1.(3.00分)﹣3的倒数是()A.3 B.C.﹣ D.﹣32.(3.00分)下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a33.(3.00分)近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1064.(3.00分)下列图形中,主视图为①的是()A.B.C. D.5.(3.00分)下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定6.(3.00分)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>17.(3.00分)抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度8.(3.00分)下列命题中:①如果a>b,那么a2>b2②一组对边平行,另一组对边相等的四边形是平行四边形③从圆外一点可以引圆的两条切线,它们的切线长相等④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1其中真命题的个数是()A.1 B.2 C.3 D.49.(3.00分)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣10.(3.00分)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.二、填空题(请把最简单答案填在答题卡相应位置。
2019年中考数学测试卷(含答案)
南通市2019年中考数学试卷第Ⅰ卷(共60分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在0,2,1,2--这四个数中,最小的数为( ) A .0 B .2 C .1- D .2-2.近两年,中国倡导的“一带一路”为沿线国家创造了约180000个就业岗位,将180000用科学计数法表示为( )A .51.810⨯B .41.810⨯C .60.1810⨯D .41810⨯ 3. 下列计算,正确的是( )A .2a a a -=B .236a a a =C .933a a a ÷=D .()236aa =4. 如图是由4的大小相同的正方形组合而成的几何体,其左视图是( )5. 平面直角坐标系中,点(1,2)P -关于x 轴的对称的点的坐标为( ) A .(1,2) B .(1,2)-- C .(1,2)- D .(2,1)-6. 如图,圆锥的底面半径为2,母线长为6,则侧面积为( ) A .4π B .6π C .12π D .16π7. 一组数据:1,2,2,3,若添加一个数据2,在发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差8. 一个有进水管和出水管的容器,从某时刻开始4min 内只进水不出水,在随后的8min 内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量()y L 与事件(min)x 之间的关系如图所示,则每分钟的出水量是( ) A .5L B .3.75L C .2.5L D .1.25L 9. 已知AOB ∠,作图步骤1:在OB 上任取一点M ,以点M 为圆心,MO 长为半径画半圆,分别交,OA OB 于点,P Q ;步骤2:过点M 作PQ 的垂线交»PQ于点C ; 步骤3:画射线OC .则下列判断:①»»PCCQ =;②//MC OA ;③OP PQ =;④OC 平分AOB ∠,其中正确的个数为( )A .1B .2C .3D .410. 如图,矩形ABCD 中,10,5AB BC ==,点,,,E F G H 分别在矩形ABCD 各边上,且,AE CG BF DH ==,则四边形EFGH 周长的最小值为( ) A .55 B .105 C .103 D .153第Ⅱ卷(共90分)二、填空题(每题8分,满分24分,将答案填在答题纸上)11.2x -在实数范围内有意义,则x 的取值范围为 . 12.如图,DE 是ABC ∆的中位线,若8BC =,则DE = .13.四边形ABCD 内接于圆,若110A ∠=o ,则C ∠= 度.14.若关于x 的方程260x x c -+=有两个相等的实数根,则c 的值为 . 15.如图,AOB ∆将绕点O 按逆时针方向旋转045后得到COD ∆,若015AOB ∠=, 则AOD ∠= 度.16.甲乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙作40个所用的时间相等,则乙每小时所做零件的个数为 .17.已知x m =时,多项式222x x n ++的值为1-,则x m =-时,该多项式的值为 .18.如图,四边形OABC 是平行四边形,点C 在x 轴上,反比例函数(0)ky x x=>的图象经过点(5,12)A ,且与边BC 交于点D ,若AB BD =,则点D 的坐标为 .三、解答题 (本大题共10小题,共96分.解答应写出文字说明、证明过程或演算步骤.)19. (1)计算2014(2)9()2---+-;(2)解不等式组321213x xxx-≥⎧⎪+⎨>-⎪⎩20. 先化简,再求值:524(2)23mmm m-+-⋅--,其中12m=-.21.某学校为了解学生的课外阅读情况,随机抽取了50名学生,并统计他们平均每天的课外阅读时间t(单位:min),然后所得数据绘制成如下不完整的统计图表:请根据图表中提供的信息回答下列问题:(1)a=;b=;(2)将频率分布直方图补充完整;(3)若全校有900名学生,估计该校有多少学生平均每天的课外阅读时间不小于50min?22. 不透明袋子中装有2个红球,1个白球和1个黑球,这些球除除颜色外无其他差别,随机摸出1个球不放回,再随机1个球,求两次均摸到红球的概率.21.热气球的探测器显示,从热气球A看一栋楼顶部B的仰角α为045,看这栋楼底部C的俯角β为060,热气球与楼的水平为100m,求这栋楼的高度(结果保留根号).24.如图,Rt ABC ∆中,090,3C BC ∠==,点O 在AB 上,2OB =,以OB 为半径的O e 与AC 相切于点D ,交BC 于点E ,求弦BE 的长.25.某学习小组在研究函数的图象与性质时,已知表、描点并画出了图象的一部分.x L 4- 3.5- 3- 2- 1- 0 12 3 3.5 4Ly L 83- 748- 32 83116116-83- 32- 748 83L (1)请补全函数图象; (2)方程31226x x -=-实数根的个数为 (3)观察图象,写出该函数的两条性质.26.如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交,,AD BE BC 于点,,P O Q , 连接,BP EQ .(1)求证:四边形BPEQ 是菱形;(2)若6,AB F =为AB 的中点,9OF OB +=,求PQ 的长.27.我们知道,三角形的内心是三条角平分线的焦点,过三角形内心的一条直线与两边相交,两焦点之间的线段把这个三角形分成两个图形,若有一个图形与原三角形相似,则把这条线段叫做这个三角形的“内似线”. (1)等边三角形“内似线”的条数为(2)如图,ABC ∆中,AB AC =,点D 在AC 上,且BD BC AD ==,求证:BD 是ABC ∆的“内似线”;(3)在Rt ABC ∆中,090,4,3,,C AC BC E F ∠===分别在边,AC BC 上,且EF 是ABC ∆的“内似线”,求EF 的长.28.已知直线y kx b =+与抛物线2(0)y ax a =>相交于,A B 两点(点A 在点B 的左侧),与y 轴正半轴相交于点C ,过点A 作AD x ⊥轴,垂足为D .(1)若060,//AOB AB x ∠=轴,2AB =,求a 的值;(2)若090AOB ∠=,点A 的横坐标为4,4AC BC -=,求点B 的坐标; (3)延长,AD BO 相交于点E ,求证:DE CO = .。
2019年中考数学真题试题(含解析1) 新人教版-新版
2019年中考数学真题试题一、选择题(本大题共10小题,每小题3分,共30分)1. 2cos60°=()A. 1B.C.D.【答案】A【解析】【分析】直接利用特殊角的三角函数值进行计算即可得出答案.【详解】2cos60°=2×=1,故选A.【点睛】本题考查了特殊角的三角函数值,熟记特殊角的三角函数值是解题的关键.2. 一种花粉颗粒直径约为0.0000065米,数字0.0000065用科学记数法表示为()A. 0.65×10﹣5B. 65×10﹣7C. 6.5×10﹣6D. 6.5×10﹣5【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】0.0000065的小数点向右移动6位得到6.5,所以数字0.0000065用科学记数法表示为6.5×10﹣6,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 已知两个有理数a,b,如果ab<0且a+b>0,那么()A. a>0,b>0B. a<0,b>0C. a、b同号D. a、b异号,且正数的绝对值较大【答案】D【解析】【分析】先由有理数的乘法法则,判断出a,b异号,再用有理数加法法则即可得出结论.【详解】∵ab<0,∴a,b异号,∵a+b>0,∴正数的绝对值较大,故选D.【点睛】本题考查了有理数的乘法、加法,熟练掌握和灵活应用有理数的加法法则和乘法法则是解题的关键.4. 一个正n边形的每一个外角都是36°,则n=()A. 7B. 8C. 9D. 10【答案】D【解析】【分析】由多边形的外角和为360°结合每个外角的度数,即可求出n值,此题得解.【详解】∵一个正n边形的每一个外角都是36°,∴n=360°÷36°=10,故选D.【点睛】本题考查了多边形的外角,熟记多边形的外角和为360度是解题的关键.5. 某商品打七折后价格为a元,则原价为()A. a元B. a元C. 30%a元D. a元【答案】B【解析】【分析】直接利用打折的意义表示出价格即可得出答案.【详解】设该商品原价为x元,∵某商品打七折后价格为a元,∴原价为:0.7x=a,则x=a(元),故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.6. 将正方体的表面沿某些棱剪开,展成如图所示的平面图形,则原正方体中与“创”字所在的面相对的面上标的字是()A. 庆B. 力C. 大D. 魅【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“力”是相对面,“创”与“庆”是相对面,“魅”与“大”是相对面,故选A.【点睛】本题考查了正方体相对两个面上的文字的知识;掌握常见类型展开图相对面上的两个字的特点是解决本题的关键.7. 在同一直角坐标系中,函数y=和y=kx﹣3的图象大致是()A. B. C. D.【答案】B【解析】【分析】根据一次函数和反比例函数的特点,k≠0,所以分k>0和k<0两种情况讨论;当两函数系数k取相同符号值,两函数图象共存于同一坐标系内的即为正确答案.【详解】分两种情况讨论:①当k>0时,y=kx﹣3与y轴的交点在负半轴,过一、三、四象限,反比例函数的图象在第一、三象限;②当k<0时,y=kx﹣3与y轴的交点在负半轴,过二、三、四象限,反比例函数的图象在第二、四象限,观察只有B选项符合,故选B.【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,熟练掌握它们的性质才能灵活解题.8. 已知一组数据:92,94,98,91,95的中位数为a,方差为b,则a+b=()A. 98B. 99C. 100D. 102【答案】C【解析】【分析】分别根据中位数和方差的定义求出a、b,然后即可求出答案.【详解】数据:92,94,98,91,95从小到大排列为91,92,94,95,98,处于中间位置的数是94,则该组数据的中位数是94,即a=94,该组数据的平均数为×(92+94+98+91+95)=94,其方差为×[(92﹣94)2+(94﹣94)2+(98﹣94)2+(91﹣94)2+(95﹣94)2]=6,所以b=6,所以a+b=94+6=100,故选C.【点睛】本题考查了中位数和方差,熟练掌握中位数和方差的定义以及求解方法是解题的关键. 9. 如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,且∠ADC=110°,则∠MAB=()A. 30°B. 35°C. 45°D. 60°【答案】B【解析】【分析】作MN⊥AD于N,根据平行线的性质求出∠DAB,根据角平分线的判定定理得到∠MAB=∠DAB,计算即可.【详解】作MN⊥AD于N,∵∠B=∠C=90°,∴AB∥CD,∴∠DAB=180°﹣∠ADC=70°,∵DM平分∠ADC,MN⊥AD,MC⊥CD,∴MN=MC,∵M是BC的中点,∴MC=MB,∴MN=MB,又MN⊥AD,MB⊥AB,∴∠MAB=∠DAB=35°,故选B.【点睛】本题考查了平行线的性质,角平分线的性质与判定,熟练掌握相关内容、正确添加辅助线是解题的关键.10. 如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y= a×5×1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【详解】由二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0),可得抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a×5×1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(1,5a)关于直线x=1的对称点为(﹣2,﹣5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确,故选B.【点睛】本题考查了二次函数的图象与性质,待定系数法、二次函数与一元二次方程等,综合性较强,熟练掌握待定系数法以及二次函数的相关知识是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)11. 已知圆柱的底面积为60cm2,高为4cm,则这个圆柱体积为_____cm3.【答案】240【解析】【分析】根据圆柱体积=底面积×高,即可求出结论.【详解】V=S•h=60×4=240(cm3),故答案为:240.【点睛】本题考查了圆柱体的体积,熟练掌握圆柱体的体积公式是解题的关键.12. 函数y=的自变量x取值范围是_____.【答案】x≤3【解析】由题意可得,3-x≥0,解得x≤3.故答案为x≤3.13. 在平面直角坐标系中,点A的坐标为(a,3),点B的坐标是(4,b),若点A与点B关于原点O对称,则ab=_____.【答案】12【解析】【分析】直接利用关于原点对称点的性质得出a,b的值,进而得出答案.【详解】∵点A的坐标为(a,3),点B的坐标是(4,b),点A与点B关于原点O对称,∴a=﹣4,b=﹣3,则ab=12,故答案为:12.【点睛】本题考查了关于原点对称的点的坐标,熟知关于原点对称的两点的横、纵坐标互为相反数是解题的关键.14. 在△ABC中,∠C=90°,AB=10,且AC=6,则这个三角形的内切圆半径为_____.【答案】2【解析】【分析】先利用勾股定理计算出BC=8,然后利用直角三角形内切圆的半径=(a、b为直角边,c为斜边)进行计算即可得.【详解】∵∠C=90°,AB=10,AC=6,∴BC==8,∴这个三角形的内切圆半径==2,故答案为:2.【点睛】本题考查了直角三角形内切圆半径,熟知直角三角形内切圆半径的求解方法是解题的关键.直角三角形内切圆的半径=(a、b为直角边,c为斜边).15. 若2x=5,2y=3,则22x+y=_____.【答案】75【解析】【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则将原式变形进而得出答案即可.【详解】∵2x=5,2y=3,∴22x+y=(2x)2×2y=52×3=75,故答案为:75.【点睛】本题考查了同底数幂的乘法以及幂的乘方,熟练掌握运算法则是解题的关键.16. 已知=+,则实数A=_____.【答案】1【解析】【分析】先计算出,再根据已知等式得出A、B的方程组,解之可得.【详解】,∵=+,∴,解得:,故答案为:1.【点睛】本题考查了分式的加减法运算,熟练掌握分式加减运算的法则、得出关于A、B的方程组是解本题的关键.17. 如图,在Rt△ABC中,∠A CB=90°,AC=BC=2,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积为_____.【答案】【解析】【分析】先根据勾股定理得到AB=2,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【详解】∵∠ACB=90°,AC=BC=2,∴AB=2,∴S扇形ABD=,又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=,故答案为:.【点睛】本题考查了旋转的性质、扇形面积的计算,得到S阴影部分 =S扇形ABD是解题的关键.18. 已知直线y=kx(k≠0)经过点(12,﹣5),将直线向上平移m(m>0)个单位,若平移后得到的直线与半径为6的⊙O相交(点O为坐标原点),则m的取值范围为_____.【答案】0<m<【解析】【分析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答.【详解】把点(12,﹣5)代入直线y=kx得,﹣5=12k,∴k=﹣;由y=﹣x平移m(m>0)个单位后得到的直线l所对应的函数关系式为y=﹣x+m(m>0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=m,∴A(m,0),B(0,m),即OA=m,OB=m,在Rt△OAB中,AB=,过点O作OD⊥AB于D,∵S△ABO=OD•AB=OA•OB,∴OD•=×m×m,∵m>0,解得OD=m,由直线与圆的位置关系可知m <6,解得m<,故答案为:0<m<.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明三、解答题(本大题共10小题,共66分)19. 求值:(﹣1)2018+|1﹣|﹣【答案】【解析】【分析】按顺序分别进行乘方的运算、绝对值的化简、立方根的运算,然后再按运算顺序进行计算即可得.【详解】(﹣1)2018+|1﹣|﹣=1+﹣1﹣2=﹣2.【点睛】本题考查了实数的混合运算,熟练掌握实数混合运算的运算顺序以及运算法则是解题的关键.20. 解方程:﹣=1.【答案】分式方程的解为x=﹣.【解析】【分析】方程两边都乘以x(x+3)得出方程x﹣1+2x=2,求出方程的解,再代入x(x+3)进行检验即可.【详解】两边都乘以x(x+3),得:x2﹣(x+3)=x(x+3),解得:x=﹣,检验:当x=﹣时,x(x+3)=﹣≠0,所以分式方程的解为x=﹣.【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.21. 已知:x2﹣y2=12,x+y=3,求2x2﹣2xy的值.【答案】2x2﹣2xy=28.【解析】【分析】先求出x﹣y=4,进而求出2x=7,而2x2﹣2xy=2x(x﹣y),代入即可得出结论.【详解】∵x2﹣y2=12,∴(x+y)(x﹣y)=12,∵x+y=3①,∴x﹣y=4②,①+②得,2x=7,∴2x2﹣2xy=2x(x﹣y)=7×4=28.【点睛】本题考查了因式分解的应用,代数值求值,二元一次方程组的特殊解法等,求出x-y=4是解本题的关键.22. 如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)【答案】此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45° ,AP=80(海里),在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=40(海里),在Rt△PCB中,cos∠BPC=,∴PB==40≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.23. 九年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个选项,每位同学仅选一项,根据调查结果绘制了如下不定整的频数分布表和扇形统计图.根据图表提供的信息,解答下列问题:(1)直接写出a,b,m的值;(2)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用列表法或画树状图的方法,求选取的2人恰好乙和丙的概率.【答案】(1)a=8,b=12,m=30;(2)选取的2人恰好乙和丙的概率为.【解析】【分析】(1)先根据戏剧的人数及其所占百分比可得总人数,再用总人数乘以散文的百分比求得其人数,根据各类别人数之和等于总人数求得其他类别的人数,最后用其他人数除以总人数求得m的值;(2)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率.【详解】(1)∵被调查的学生总人数为4÷10%=40人,∴散文的人数a=40×20%=8,其他的人数b=40﹣(16+4+8)=12,则其他人数所占百分比m%=×100%=30%,即m=30;(2)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,所以选取的2人恰好乙和丙的概率为.【点睛】本题考查了统计表、扇形统计图、列表法或树状图法求概率,读懂统计图,从中得到必要的信息是解题的关键. 注意,概率=所求情况数与总情况数之比.24. 如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【答案】(1)证明见解析;(2)AB=13cm,【解析】【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;【详解】(1)∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又 EF∥DC,∴四边形CDEF是平行四边形;(2)∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm.【点睛】本题考查了平行四边形的判定与性质、直角三角形斜边中线的性质等,熟练掌握平行四边形的判定与性质、直角三角形斜边中线等于斜边一半是解题的关键.25. 某学校计划购买排球、篮球,已知购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元.(1)求购买1个排球、1个篮球的费用分别是多少元?(2)若该学校计划购买此类排球和篮球共60个,并且篮球的数量不超过排球数量的2倍.求至少需要购买多少个排球?并求出购买排球、篮球总费用的最大值?【答案】(1)每个排球的价格是60元,每个篮球的价格是120元;(2)m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值为6000元.【解析】【分析】(1)根据购买1个排球与1个篮球的总费用为180元;3个排球与2个篮球的总费用为420元列出方程组,解方程组即可;(2)根据购买排球和篮球共60个,篮球的数量不超过排球数量的2倍列出不等式,解不等式即可.【详解】(1)设每个排球的价格是x元,每个篮球的价格是y元,根据题意得:,解得:,所以每个排球的价格是60元,每个篮球的价格是120元;(2)设购买排球m个,则购买篮球(60﹣m)个,根据题意得:60﹣m≤2m,解得m≥20,又∵排球的单价小于蓝球的单价,∴m=20时,购买排球、篮球总费用的最大,购买排球、篮球总费用的最大值=20×60+40×120=6000元.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,弄清题意,找准备等量关系列出方程组、找准不等关系列出不等式是解题的关键.26. 如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B 在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标;(3)求△OAP的面积.【答案】(1)反比例函数解析式为y=;(2)点B的坐标为(9,3);(3)△OAP的面积=5.【解析】【分析】(1)将点A的坐标代入解析式求解可得;(2)利用勾股定理求得AB=OA=5,由AB∥x轴即可得点B的坐标;(3)先根据点B坐标得出OB所在直线解析式,从而求得直线与双曲线交点P的坐标,再利用割补法求解可得.【详解】(1)将点A(4,3)代入y=,得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);(3)∵点B坐标为(9,3),∴OB所在直线解析式为y=x,由可得点P坐标为(6,2),(负值舍去),过点P作PD⊥x轴,延长DP交AB于点E,则点E坐标为(6,3),∴AE=2、PE=1、PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.【点睛】本题考查了反比例函数与几何图形综合,熟练掌握反比例函数图象上点的坐标特征、正确添加辅助线是解题的关键.27. 如图,AB是⊙O的直径,点E为线段OB上一点(不与O,B重合),作EC⊥OB,交⊙O于点C,作直径CD,过点C的切线交DB的延长线于点P,作AF⊥PC于点F,连接CB.(1)求证:AC平分∠FAB;(2)求证:BC2=CE•CP;(3)当AB=4且=时,求劣弧的长度.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据已知先证明∠ACF=∠ACE,再根据等角的余角相等即可证得;(2)只要证明△CBE∽△CPB,可得即可解决问题;(3)作BM⊥PF于M,则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性质求出BM,求出tan∠BCM的值即可解决问题;【详解】(1)∵AB是直径,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠AFC=90°,∠AEC=90°,∴∠FAC=∠EAC,即AC平分∠FAB;(2)∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切线,CE⊥AB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∵CD是直径,∴∠CBD=∠CBP=90°,∴△CBE∽△CPB,∴,∴BC2=CE•CP;(3)如图,作BM⊥PF于M.则CE=CM=CF,设CE=CM=CF=3a,PC=4a,PM=a,∵∠MCB+∠P=90°,∠P+∠PBM=90°,∴∠MCB=∠PBM,∵CD是直径,BM⊥PC,∴∠CMB=∠BMP=90°,∴△BMC∽△PMB,∴,∴BM2=CM•PM=3a2,∴BM=a,∴tan∠BCM=,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°,∴的长=.【点睛】本题考查了切线的性质、圆周角定理、相似三角形的判定与性质、解直角三角形的应用等,综合性较强,有一定的难度,正确添加辅助线,熟练掌握和灵活应用相似三角形的判定与性质定理是解题的关键.28. 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.【答案】(1)抛物线的解析式为y=x2﹣5x+4;(2)PE+EF的最大值为;(3)①符合条件的点D的坐标是(,)或(,﹣);②点D的纵坐标的取值范围为<y<或﹣<y<.【解析】【分析】(1)利用待定系数法求抛物线的解析式;(2)易得BC的解析式为y=﹣x+4,先证明△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,则△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣4t+3)(1<t<3),则G (t,﹣t+3),接着利用t表示PF、PE,所以PE+EF=2PE+PF=﹣t2+5t,然后利用二次函数的性质解决问题;(3)①如图2,抛物线的对称轴为直线x=﹣点D的纵坐标的取值范围;②由于△BCD是以BC为斜边的直角三角形有4+(y﹣3)2+1+y2=18,解得y1=,y2=,得到此时D点坐标为(,)或(,),然后结合图形可确定△BCD是锐角三角形时点D的纵坐标的取值范围.【详解】(1)把B(4,0),C(0,4)代入y=x2+bx+c,得,解得,∴抛物线的解析式为y=x2﹣5x+4;(2)由B(4,0),C(0,4),根据待定系数法易得BC的解析式为y=﹣x+4,∵直线y=x+m与直线y=x平行,∴直线y=﹣x+4与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图1,△EPG为等腰直角三角形,PE=PG,设P(t,t2﹣5t+4)(1<t<4),则G(t,﹣t+4),∴PF=PH=t,PG=﹣t+4﹣(t2﹣5t+4)=﹣t2+4t,∴PE=PG=﹣t2+2t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+4t+t=﹣t2+5t=﹣(t﹣)2+,当t=时,PE+EF的最大值为;(3)①如图2,抛物线的对称轴为直线x=,设D(,y),则BC2=42+42=32,DC2=()2+(y﹣4)2,BD2=(4﹣)2+y2=+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即32+()2+(y﹣4)2=+y2,解得y=5,此时D点坐标为(,);当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即32++y2=()2+(y﹣4)2,解得y=﹣1,此时D点坐标为(,﹣);综上所述,符合条件的点D的坐标是(,)或(,﹣);②当△BCD是以BC为斜边的直角三角形时,DC2+DB2=BC2,即()2+(y﹣4)2++y2=32,解得y1=,y2=,此时D点坐标为(,)或(,),所以△BCD是锐角三角形,点D的纵坐标的取值范围为<y<或﹣<y<.【点睛】本题考查了二次函数的综合题,涉及到待定系数法、两直线平行或相交问题、二次函数精品试卷推荐下载的最值、存在性问题等,综合性较强,有一定的难度,正确添加辅助线、灵活运用相关知识以及分类讨论思想、数形结合思想是解题的关键.。
2019年中考数学真题试题(含解析)新人教版
学习资料专题2019年中考数学真题试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形 C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形 C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30° B.40° C.50° D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= 60 °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S△AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S△OMN=•OM•NE=×1.5x×x,∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2019年中考数学真题试题(含解析1) 人教新版
2019年中考数学真题试题一、选择题(每题3分.共30分)1. 当x=﹣1时,代数式3x+1的值是()A. ﹣1B. ﹣2C. 4D. ﹣4【答案】B【解析】【分析】把x的值代入进行计算即可.【详解】把x=﹣1代入3x+1,3x+1=﹣3+1=﹣2,故选B.【点睛】本题考查了代数式求值,熟练掌握运算法则是解本题的关键.2. 如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是()A. 线段DEB. 线段BEC. 线段EFD. 线段FG【答案】B【解析】【分析】根据三角形一边的中点与此边所对顶点的连线叫做三角形的中线逐一判断即可得.【详解】根据三角形中线的定义知线段BE是△ABC的中线,其余线段DE、EF、FG都不符合题意,故选B.【点睛】本题主要考查三角形的中线,解题的关键是掌握三角形一边的中点与此边所对顶点的连线叫做三角形的中线.3. 如图是一个几何体的主视图和俯视图,则这个几何体是()A. 三棱柱B. 正方体C. 三棱锥D. 长方体【答案】A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B、D,由俯视图为长方形,可排除C,故选A.【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.4. 在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是()A. 抽取乙校初二年级学生进行调查B. 在丙校随机抽取600名学生进行调查C. 随机抽取150名老师进行调查D. 在四个学校各随机抽取150名学生进行调査【答案】D【解析】【分析】根据抽样调查的代表性和广泛性逐项进行判断即可得.【详解】A. 抽取乙校初二年级学生进行调查,不具有广泛性;B. 在丙校随机抽取600名学生进行调查,不具有代表性;C. 随机抽取150名老师进行调查,与考查对象无关,不可取;D. 在四个学校各随机抽取150名学生进行调査,具有代表性和广泛性,合理,故选D.【点睛】本题考查了抽样调查,样本的确定,解题的关键是要明确抽样调查的样本要具有代表性和广泛性.5. 如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为()A. 24B. 18C. 12D. 9【答案】A【解析】【分析】易得BC长为EF长的2倍,那么菱形ABCD的周长=4BC问题得解.【详解】∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长是4×6=24,故选A.【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.6. 如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A. ﹣2B. 0C. 1D. 4【答案】C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.7. 如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B. 1 C. D.【答案】B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.8. 如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是()A. B. C. D.【答案】A【解析】【分析】先找出符合的所有情况,再得出选项即可.【详解】如图所示,共有12种情况,恰好摆放成如图所示位置的只有1种,所以概率是,故选A.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A 出现m种结果,那么事件A的概率P(A)=,能找出符合的所有情况是解本题的关键.9. 一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. (﹣5,3)B. (1,﹣3)C. (2,2)D. (5,﹣1)【答案】C【解析】【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>0,A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣<0,不符合题意;B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;C、把点(2,2)代入y=kx﹣1得到:k=>0,符合题意;D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,故选C.【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.10. 已知二次函数y=﹣x2+x+6及一次函数y=﹣x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=﹣x+m与新图象有4个交点时,m的取值范围是()A. ﹣<m<3B. ﹣<m<2C. ﹣2<m<3D. ﹣6<m<﹣2【答案】D【解析】【分析】如图,解方程﹣x2+x+6=0得A(﹣2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),然后求出直线•y=﹣x+m经过点A(﹣2,0)时m的值和当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时m的值,从而得到当直线y=﹣x+m与新图象有4个交点时,m的取值范围.【详解】如图,当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,则A(﹣2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x﹣3),即y=x2﹣x﹣6(﹣2≤x≤3),当直线y=﹣x+m经过点A(﹣2,0)时,2+m=0,解得m=﹣2;当直线y=﹣x+m与抛物线y=x2﹣x﹣6(﹣2≤x≤3)有唯一公共点时,方程x2﹣x﹣6=﹣x+m有相等的实数解,解得m=﹣6,所以当直线y=﹣x+m与新图象有4个交点时,m的取值范围为﹣6<m<﹣2,故选D.【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c 是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.二、填空題(每小题4分,共20分)11. 某班50名学生在2018年适应性考试中,数学成绩在100〜110分这个分数段的频率为0.2,则该班在这个分数段的学生为_____人.【答案】10【解析】【分析】频率是指每个对象出现的次数与总次数的比值(或者百分比),即频率=频数÷数据总数,进而得出即可.【详解】∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10,故答案为:10.【点睛】本题考查了频数与频率,熟练掌握频数与频率间的关系是解题的关键.12. 如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=(x>0),y=﹣(x>0)的图象交于A 点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.【答案】【解析】【分析】设出点P坐标,分别表示点AB坐标,由题意△ABC面积与△ABO的面积相等,因此只要求出△ABO 的面积即可得答案..【详解】设点P坐标为(a,0)则点A坐标为(a,),B点坐标为(a,﹣)∴S△ABC=S△ABO =S△APO+S△OPB==,故答案为:.【点睛】本题考查了反比例函数中比例系数k的几何意义,熟练掌握相关知识是解题的关键.13. 如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是_____度.【答案】72【解析】【分析】连接OA、OB、OC,根据正多边形的中心角的计算公式求出∠AOB,证明△AOM≌△BON,根据全等三角形的性质得到∠BON=∠AOM,得到答案.【详解】如图,连接OA、OB、OC,∠AOB==72°,∵∠AOB=∠BOC,OA=OB,OB=OC,∴∠OAB=∠OBC,在△AOM和△BON中,,∴△AOM≌△BON,∴∠BON=∠AOM,∴∠MON=∠AOB=72°,故答案为:72.【点睛】本题考查的是正多边形和圆的有关计算,掌握正多边形与圆的关系、全等三角形的判定定理和性质定理是解题的关键.14. 已知关于x的不等式组无解,则a的取值范围是_____.【答案】a≥2【解析】【分析】先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.【详解】,由①得:x≤2,由②得:x>a,∵不等式组无解,∴a≥2,故答案为:a≥2.【点睛】本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.15. 如图,在△ABC中,BC=6,BC边上的高为4,在△ABC的内部作一个矩形EFGH,使EF在BC边上,另外两个顶点分别在AB、AC边上,则对角线EG长的最小值为_____.【答案】【解析】【分析】作AQ⊥BC于点Q,交DG于点P,设GF=PQ=x,则AP=4﹣x,证△ADG∽△ABC得,据此知EF=DG=(4﹣x),由EG=即可求得答案.【详解】如图,作AQ⊥BC于点Q,交DG于点P,∵四边形DEFG是矩形,∴AQ⊥DG,GF=PQ,设GF=PQ=x,则AP=4﹣x,由DG∥BC知△ADG∽△ABC,∴,即,则EF=DG=(4﹣x),∴EG===,∴当x=时,EG取得最小值,最小值为,故答案为:.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握矩形的性质、相似三角形的判定与性质及二次函数的性质及勾股定理.三、解答題(本大題10个小题,共100分)16. 在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:(1)根据上述数据,将下列表格补充完成.整理、描述数据:分析数据:样本数据的平均数、中位数、满分率如表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.【答案】(1)99分,补全表格见解析;(2)270;(3)初二年级掌握禁毒知识的总体水平较好,理由见解析. 【解析】【分析】(1)根据中位数的定义求解可得;(2)用初一、初二的总人数乘以其满分率之和即可得;(3)根据平均数和中位数的意义解答可得.【详解】(1)由题意知初二年级的中位数在90≤x≤100分数段中,将90≤X≤100的分数从小到大排列为90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为99分,补全表格如下:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共600×(25%+20%)=270人,故答案为:270;(3)初二年级掌握禁毒知识的总体水平较好,∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一,∴初二年级掌握禁毒知识的总体水平较好.【点睛】本题主要考查频数分布表,解题的关键是熟练掌握数据的整理、样本估计总体思想的运用、平均数和中位数的意义.17. 如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m或n的代数式表示拼成矩形的周长;(2)m=7,n=4,求拼成矩形的面积.【答案】(1)矩形的周长为4m;(2)矩形的面积为33.【解析】【分析】(1)根据题意和矩形的周长公式列出代数式解答即可.(2)根据题意列出矩形的面积,然后把m=7,n=4代入进行计算即可求得.【详解】(1)矩形的长为:m﹣n,矩形的宽为:m+n,矩形的周长为:2[(m-n)+(m+n)]=4m;(2)矩形的面积为S=(m+n)(m﹣n)=m2-n2,当m=7,n=4时,S=72-42=33.【点睛】本题考查了矩形的周长与面积、列代数式问题、平方差公式等,解题的关键是根据题意和矩形的性质列出代数式解答.18. 如图①,在Rt△ABC中,以下是小亮探究与之间关系的方法:∵sinA=,sinB=,∴c=,c=,∴=,根据你掌握的三角函数知识.在图②的锐角△ABC中,探究、、之间的关系,并写出探究过程.【答案】==,理由见解析.【解析】【分析】三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.【详解】==,理由为:如图,过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=,即AD=csinB,在Rt△ADC中,sinC=,即AD=bsinC,∴csinB=bsinC,即=,同理可得=,则==.【点睛】本题考查了解直角三角形,熟练掌握锐角三角函数定义是解本题的关键.19. 某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?【答案】(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.【解析】【分析】(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.【详解】(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有,解得:x=30,经检验,x=30是原方程的解,x+10=30+10=40,答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)设他们可购买y棵乙种树苗,依题意有30×(1﹣10%)(50﹣y)+40y≤1500,解得y≤11,∵y为整数,∴y最大为11,答:他们最多可购买11棵乙种树苗.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.20. 如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.【答案】(1)证明见解析;(2)S△ADF=.【解析】【分析】(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;(2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知AE=AF=DF=、AH=,从而得出答案.【详解】(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=,则EH=AE=、AH=,∴S△ADF=×.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、含30°角的直角三角形,轴对称的性质,解题的关键是掌握直角三角形有关的性质、等边三角形的判定与性质、轴对称的性质及平行四边形的性质等知识点.21. 图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)随机掷一次骰子,则棋子跳动到点C处的概率是(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率.【答案】(1);(2)棋子最终跳动到点C处的概率为.【解析】【分析】(1)和为8时,可以到达点C,根据概率公式计算即可;(2)列表得到所有的情况数,然后再找到符合条件的情况数,利用概率公式进行求解即可.【详解】随机掷一次骰子,骰子向上三个面(除底面外)的数字之和可以是 6、7、8、9.(1)随机掷一次骰子,满足棋子跳动到点 C 处的数字是 8,则棋子跳动到点C处的概率是,故答案为:;(2)列表得:共有16种可能,和为14可以到达点C,有3种情形,所以棋子最终跳动到点C处的概率为.【点睛】本题考查列表法与树状图,概率公式等知识,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.22. 六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.【答案】(1)他需要199.500625s才能到达终点;(2)y=2(x+)2+.【解析】【分析】(1)利用待定系数法求出函数解析式,再求出y=80000时x的值即可得;(2)根据函数图象平移“上加下减,左加右减”的原则进行解答即可.【详解】(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax2+bx,将(1,4)、(2,12)代入,得:,解得:,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625(负值舍去),即他需要199.500625s才能到达终点;(2)∵y=2x2+2x=2(x+)2﹣,∴向左平移2个单位,再向上平移5个单位后函数解析式为y=2(x+2+)2﹣+5=2(x+)2+.【点睛】本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式及函数图象平移的规律.23. 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC 于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.【答案】(1)∠PMO=135°;(2)内心M所经过的路径长为2πcm.【解析】【分析】(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.【详解】(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°﹣∠MPO﹣∠MOP=180°﹣(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°﹣(∠EOP+∠OPE)=180°﹣(180°﹣90°)=135°;(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(和);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°﹣135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=OC=×4=2,∴弧OMC的长==π(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为πcm,所以内心M所经过的路径长为2×π=2πcm.【点睛】本题考查了弧长的计算公式、三角形内心的性质、三角形全等的判定与性质、圆周角定理和圆的内接四边形的性质,解题的关键是正确寻找点I的运动轨迹.24. 如图,在矩形ABCD中,AB═2,AD=,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)【答案】(1)作图见解析;(2)EB是平分∠AEC,理由见解析;(3)△PFB能由都经过P点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=,∵点E是CD的中点,∴DE=CE=CD=1,在△ADE和△BCE中,,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,AD=,DE=1,∴tan∠AED==,∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED﹣∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,BC==,∴CP=,BP=,在Rt△CEP中,tan∠CEP==,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP==,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.25. 如图,在平面直角坐标系xOy中,点A是反比例函数y=(x>0,m>1)图象上一点,点A的横坐标为m,点B(0,﹣m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE= ,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A、B、D、F为顶点的四边形是平行四边形?【答案】(1)点A坐标为(3,6);(2)1,y=(x>2);(3)m=2时,以A、B、D、F为顶点的四边形是平行四边形.【解析】【分析】(1)根据题意代入m值即可求得;(2)利用ED∥y轴,AD=AC构造全等三角形将求DE转化为求FC,再利用三角形相似求出FC;用m表示D点坐标,利用代入消元法得到y与x函数关系.(3)数值上线段中点坐标等于端点坐标的平均数,坐标系中同样可得线段中点横纵坐标分别是端点横纵坐标的平均数,利用此方法表示出F点坐标代入(2)中函数关系式即可.【详解】(1)当m=3时,y=,∴当x=3时,y=6,∴点A坐标为(3,6);(2)如图,延长EA交y轴于点F,∵DE∥x轴∴∠FCA=∠EDA,∠CFA=∠DEA,∵AD=AC,∴△FCA≌△EDA,∴DE=CF,∵A(m,m2﹣m),B(0,﹣m),∴BF=m2﹣m﹣(﹣m)=m2,AF=m,∵Rt△CAB中,AF⊥x轴,∴△AFC∽△BFA,∴AF2=CF•BF,∴m2=CF•m2,∴CF=1,∴DE=1,故答案为:1;由上面步骤可知,点E坐标为(2m,m2﹣m),∴点D坐标为(2m,m2﹣m﹣1),∴x=2m,y=m2﹣m﹣1,∴把m=代入y=m2﹣m﹣1,∴y=(x>2);(3)由题意可知,AF∥BD当AD、BF为平行四边形对角线时,由平行四边形对角线互相平分可得A、D和B、F的横坐标、纵坐标之和分别相等设点F坐标为(a,b)∴a+0=m+2mb+(﹣m)=m2﹣m+m2﹣m﹣1∴a=3m,b=2m2﹣m﹣1代入y=,得2m2﹣m﹣1=,解得m1=2,m2=0(舍去)当FD、AB为平行四边形对角线时,同理设点F坐标为(a,b),则a=﹣m,b=1﹣m,则F点在y轴左侧,由(2)可知,点D所在图象不能在y轴左侧∴此情况不存在,综上当m=2时,以A、B、D、F为顶点的四边形是平行四边形.【点睛】本题为代数几何综合题,考查了反比例函数图象上点的坐标特征、三角形的全等、相似三角形的判定与性质、平行四边形判定及用字母表示坐标等基本数学知识,熟练掌握和灵活应用相关知识、利用数形结合和分类讨论的数学思想是解题的关键.。
【中考真题】2019年全国中考数学试卷(含答案及解析)
【中考真题】2019年全国中考数学试卷(含答案及解析)2019年全国中考数学试卷(含答案及解析)。
一、选择题。
1.已知函数y=2x+3,那么当x=5时,y的值是多少?A. 8B. 10C. 13D. 15。
解析,将x=5代入y=2x+3中,得到y=25+3=13,因此答案为C。
2.下列各数中,最小的是()。
A. -5B. -3C. 1D. 2。
解析,-5是负数中最小的,因此答案为A。
3.已知集合A={x|x是2的倍数},集合B={x|x是3的倍数},则A∪B是()。
A. {x|x是2和3的公倍数}B. {x|x是2或3的倍数} 。
C. {x|x是2和3的公因数}D. {x|x是2和3的倍数}。
解析,A∪B表示A和B的并集,即A和B中所有的元素的集合。
A={...,-4,-2,0,2,4,...},B={...,-6,-3,0,3,6,...},A∪B={...,-6,-4,-3,-2,0,2,3,4,6,...},即A∪B是2和3的倍数的集合,因此答案为D。
4.已知△ABC中,AB=BC=6cm,AC=8cm,则△ABC的周长是()。
A. 12cmB. 20cmC. 24cmD. 30cm。
解析,△ABC的周长为AB+BC+AC=6+6+8=20cm,因此答案为B。
5.已知直角三角形的两条直角边分别为3cm和4cm,则斜边长为()。
A. 5cmB. 7cmC. 9cmD. 12cm。
解析,根据勾股定理,斜边长为√(3^2+4^2)=√(9+16)=√25=5cm,因此答案为A。
6.已知a:b=3:4,b:c=2:5,则a:b:c=()。
A. 3:4:5B. 6:8:10C. 12:16:20D. 15:20:25。
解析,根据比例的性质,a:b=3:4,b:c=2:5,将两个比例相连结,得到a:b:c=32:42:45=6:8:20,因此答案为B。
7.已知(-2)×(-3)×(-4)×(-5)的结果是()。
2019年中考数学真题试题(含解析)-人教新目标版
2019年中考数学真题试题一、精心选一选,相信自己的判断!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题目要求的,不读、错涂或涂的代号超过一个,一律得0分)1. 的倒数是()A. 4B. -4C.D. 16【答案】B【解析】分析:根据乘积是1的两个数互为倒数解答.详解:∵-×(-4)=1,∴的倒数是-4.故选:B.点睛:此题考查的知识点是倒数,关键掌握求一个数的倒数的方法.注意:负数的倒数还是负数.2. 如图,直线,若,,则的度数为()A. B. C. D.【答案】C【解析】分析:依据三角形内角和定理,即可得到∠ABC=60°,再根据AD∥BC,即可得出∠2=∠ABC=60°.详解:∵∠1=42°,∠BAC=78°,∴∠ABC=60°,又∵AD∥BC,∴∠2=∠ABC=60°,故选:C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.3. 下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A. B. C. D.【答案】B【解析】分析:先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.详解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选:B.点睛:本题考查的是在数轴上表示不等式的解集,解答此类题目时一定要注意实心与空心圆点的区别,即一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点.4. 如图,在中,,,,则等于()A. B. C. D.【答案】A【解析】分析:先根据勾股定理求得BC=6,再由正弦函数的定义求解可得.详解:在Rt△ABC中,∵AB=10、AC=8,∴BC=,∴sinA=.故选:A.点睛:本题主要考查锐角三角函数的定义,解题的关键是掌握勾股定理及正弦函数的定义.5. 下列说法正确的是()A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】分析:根据随机事件的概念以及概率的意义结合选项可得答案.详解:A、了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,此选项错误;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,此选项错误;C、三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是,此选项错误;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,此选项正确.故选:D.点睛:此题主要考查了概率的意义,关键是弄清随机事件和必然事件的概念的区别.6. 下列计算正确的是()A. B.C. D.【答案】A【解析】分析:直接利用完全平方公式以及二次根式加减运算法则和幂的乘方运算法则分别计算得出答案.详解:A、,正确;B、(a+b)2=a2+2ab+b2,故此选项错误;C、2+,无法计算,故此选项错误;D、(a3)2=a6,故此选项错误;故选:A.点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.7. 如图,菱形的对角线,相交于点,,,则菱形的周长为()A. 52B. 48C. 40D. 20【答案】A【解析】分析:由勾股定理即可求得AB的长,继而求得菱形ABCD的周长.详解:∵菱形ABCD中,BD=24,AC=10,∴OB=12,OA=5,在Rt△ABO中,AB==13,∴菱形ABCD的周长=4AB=52,故选:A.点睛:此题考查了菱形的性质、勾股定理等知识,解题的关键是熟练掌握菱形的性质8. 已知,,则式子的值是()A. 48B.C. 16D. 12【答案】D【解析】分析:先通分算加法,再算乘法,最后代入求出即可.详解:(x-y+)(x+y-)===(x+y)(x-y),当x+y=4,x-y=时,原式=4×=12,故选:D.点睛:本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键.9. 如图,在中,,,,动点从点开始沿向点以以的速度移动,动点从点开始沿向点以的速度移动.若,两点分别从,两点同时出发,点到达点运动停止,则的面积随出发时间的函数关系图象大致是()A. B. C. D.【答案】C【解析】分析:根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.详解:由题意可得:PB=3-t,BQ=2t,则△PBQ的面积S=PB•BQ=(3-t)×2t=-t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选:C.点睛:此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.10. 如图,是等边三角形,是等腰直角三角形,,于点,连分别交,于点,,过点作交于点,则下列结论:①;②;③;④;⑤.A. 5B. 4C. 3D. 2【答案】B【解析】分析:①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP=x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得,从而得出a与x的关系即可判断.详解:∵△ABC为等边三角形,△ABD为等腰直角三角形,∴∠B AC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,∴△CAD是等腰三角形,且顶角∠CAD=150°,∴∠ADC=15°,故①正确;∵AE⊥BD,即∠AED=90°,∴∠DAE=45°,∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,∴∠AGF=75°,由∠AFG≠∠AGF知AF≠AG,故②错误;记AH与CD的交点为P,由AH⊥CD且∠AFG=60°知∠FAP=30°,则∠BAH=∠ADC=15°,在△ADF和△BAH中,∵,∴△ADF≌△BAH(ASA),∴DF=AH,故③正确;∵∠AFG=∠CBG=60°,∠AGF=∠CGB,∴△AFG∽△CBG,故④正确;在Rt△APF中,设PF=x,则AF=2x、AP=x,设EF=a,∵△ADF≌△BAH,∴BH=AF=2x,△ABE中,∵∠AEB=90°、∠ABE=45°,∴BE=AE=AF+EF=a+2x,∴EH=BE-BH=a+2x-2x=a,∵∠APF=∠AEH=90°,∠FAP=∠HAE,∴△PAF∽△EAH,∴,即,整理,得:2x2=(-1)ax,由x≠0得2x=(-1)a,即AF=(-1)EF,故⑤正确;故选:B.点睛:本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分,请将结果直接填写在答题卡相应位置上)11. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳的平均距离,即149600000千米,用科学记数法表示1个天文单位是__________千米.【答案】【解析】试题分析:科学技术是指a×10n,1≤lal<10,n为原数的整数位数减一.考点:科学计数法.12. 如图是一个几何体的三视图(图中尺寸单位:),根据图中数据计算,这个几何体的表面积为__________.【答案】【解析】分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.详解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).故答案为:16π.点睛:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.13. 如图,抛物线与直线的两个交点坐标分别为,,则方程的解是__________.【答案】,【解析】分析:根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2-bx-c=0的解.详解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(-2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2-bx-c=0的解为x1=-2,x2=1.所以方程ax2=bx+c的解是x1=-2,x2=1故答案为x1=-2,x2=1.点睛:本题考查抛物线与x轴交点、一次函数的应用、一元二次方程等知识,解题的关键是灵活运用所学知识,学会利用图象法解决实际问题14. 已知的半径为,,是的两条弦,,,,则弦和之间的距离是__________.【答案】2或14【解析】分析:分两种情况进行讨论:①弦AB和CD在圆心同侧;②弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.详解:①当弦AB和CD在圆心同侧时,如图,∵AB=16cm,CD=12cm,∴AE=8cm,CF=6cm,∵OA=OC=10cm,∴EO=6cm,OF=8cm,∴EF=OF-OE=2cm;②当弦AB和CD在圆心异侧时,如图,∵AB=16cm,CD=12cm,∴AF=8cm,CE=6cm,∵OA=OC=10cm,∴OF=6cm,OE=8cm,∴EF=OF+OE=14cm.∴AB与CD之间的距离为14cm或2cm.故答案为:2或14.点睛:本题考查了勾股定理和垂径定理的应用.此题难度适中,解题的关键是注意掌握数形结合思想与分类讨论思想的应用,小心别漏解.15. 我国古代数学家杨辉发现了如图所示的三角形,我们称之为“杨辉三角”,从图中取一列数:1,3,6,10,…,记,,,,…,那么的值是__________.【答案】11【解析】分析:由已知数列得出a n=1+2+3+…+n=,再求出a10、a11的值,代入计算可得.详解:由a1=1,a2=3,a3=6,a4=10,…,知a n=1+2+3+…+n=,∴a10==55、a11==66,则a4+a11-2a10+10=10+66-2×55+10=-24,故答案为:-24.点睛:本题主要考查数字的变化规律,解题的关键是根据已知数列得出a n=1+2+3+…+n=.16. 如图,在平面直角坐标系中,正方形的顶点的坐标为,点在轴正半轴上,点在第三象限的双曲线上,过点作轴交双曲线于点,连接,则的面积为__________.【答案】7【解析】分析:作辅助线,构建全等三角形:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,证明△AGD≌△DHC≌△CMB,根据点D的坐标表示:AG=DH=-x-1,由DG=BM,列方程可得x的值,表示D和E的坐标,根据三角形面积公式可得结论.详解:过D作GH⊥x轴,过A作AG⊥GH,过B作BM⊥HC于M,设D(x,),∵四边形ABCD是正方形,∴AD=CD=BC,∠ADC=∠DCB=90°,易得△AGD≌△DHC≌△CMB,∴AG=DH=-x-1,∴DG=BM,∴1-=-1-x-,x=-2,∴D(-2,-3),CH=DG=BM=1-=4,∵AG=DH=-1-x=1,∴点E的纵坐标为-4,当y=-4时,x=-,∴E(-,-4),∴EH=2-=,∴CE=CH-HE=4-=,∴S△CEB=CE•BM=××4=7.故答案为:7.点睛:本题考查正方形的性质、全等三角形的判定和性质、反比例函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考填空题的压轴题.三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17. 计算.【答案】13.【解析】分析:原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.详解:原式.点睛:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 如图,,,,在一条直线上,已知,,,连接.求证:四边形是平行四边形.【答案】证明见解析.【解析】分析:由AB∥DE、AC∥DF利用平行线的性质可得出∠B=∠DEF、∠ACB=∠F,由BE=CF可得出BC=EF,进而可证出△ABC≌△DEF(ASA),根据全等三角形的性质可得出AB=DE,再结合AB∥DE,即可证出四边形ABED是平行四边形.详证明:∵AB∥DE,AC∥DF,∴∠B=∠DEF,∠ACB=∠F.∵BE=CF,∴BE+CE=CF+CE,∴BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AB=DE.又∵AB∥DE,∴四边形ABED是平行四边形.点睛:本题考查了平行线的性质、平行四边形的判定以及全等三角形的判定与性质,利用全等三角形的性质找出AB=DE是解题的关键.19. 在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗飘飘,引我成长”知识竞赛,赛后随机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成,,,,五类,绘制成下面两个不完整的统计图:根据上面提供的信息解答下列问题:(1)类所对应的圆心角是________度,样本中成绩的中位数落在________类中,并补全条形统计图;(2)若类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图求恰好抽到1名男生和1名女生的概率.【答案】(1)72,,补图见解析;(2)【解析】分析:(1)首先用C类别的学生人数除以C类别的人数占的百分率,求出共有多少名学生;然后根据B类别百分比求得其人数,由各类别人数和等于总人数求得D的人数,最后用360°乘以样本中D类别人数所占比例可得其圆心角度数,根据中位数定义求得答案.(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名担任校园广播“孝心伴我行”节目主持人,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.详解:(1)∵被调查的总人数为30÷30%=100人,则B类别人数为100×40%=40人,所以D类别人数为100-(4+40+30+6)=20人,则D类所对应的圆心角是360°×=72°,中位数是第50、51个数据的平均数,而第50、51个数据均落在C类,所以中位数落在C类,补全条形图如下:(2)列表为:由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,∴恰好选到1名男生和1名女生的概率为.点睛:此题考查了扇形统计图、条形统计图和列表法求概率,用到的知识点为:概率=所求情况数与总情况数之比.20. 如图,中,,小聪同学利用直尺和圆规完成了如下操作:①作的平分线交于点;②作边的垂直平分线,与相交于点;③连接,.请你观察图形解答下列问题:(1)线段,,之间的数量关系是________;(2)若,求的度数.【答案】(1);(2)80°.【解析】分析:(1)根据线段的垂直平分线的性质可得:PA=PB=PC;(2)根据等腰三角形的性质得:∠ABC=∠ACB=70°,由三角形的内角和得:∠BAC=180°-2×70°=40°,由角平分线定义得:∠BAD=∠CAD=20°,最后利用三角形外角的性质可得结论. 详解:(1)如图,PA=PB=PC,理由是:∵AB=AC,AM平分∠BAC,∴AD是BC的垂直平分线,∴PB=PC,∵EP是AB的垂直平分线,∴PA=PB,∴PA=PB=PC;故答案为:PA=PB=PC;(2)∵AB=AC,∴∠ABC=∠A CB=70°,∴∠BAC=180°-2×70°=40°,∵AM平分∠BAC,∴∠BAD=∠CAD=20°,∵PA=PB=PC,∴∠ABP=∠BAP=∠ACP=20°,∴∠BPC=∠ABP+∠BAC+∠ACP=20°+40°+20°=80°.点睛:本题考查了角平分线和线段垂直平分线的基本作图、等腰三角形的三线合一的性质、三角形的外角性质、线段的垂直平分线的性质,熟练掌握线段的垂直平分线的性质是关键.21. 已知关于的一元二次方程.(1)试证明:无论取何值此方程总有两个实数根;(2)若原方程的两根,满足,求的值.【答案】(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥0,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=0.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥0,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.22. “绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高.孝感市槐荫公司根据市场需求代理、两种型号的净水器,每台型净水器比每台型净水器进价多200元,用5万元购进型净水器与用4.5万元购进型净水器的数量相等.(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进、两种型号的净水器共50台进行试销,其中型净水器为台,购买资金不超过9.8万元.试销时型净水器每台售价2500元,型净水器每台售价2180元.槐荫公司决定从销售型净水器的利润中按每台捐献元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为,求的最大值.【答案】(1)型净水器每台进价2000元,型净水器每台进价1800元.(2)的最大值是元. 【解析】分析:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据数量=总价÷单价结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于m的分式方程,解之经检验后即可得出结论;(2)根据购买资金=A型净水器的进价×购进数量+B型净水器的进价×购进数量结合购买资金不超过9.8万元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,由总利润=每台A型净水器的利润×购进数量+每台B型净水器的利润×购进数量-a×购进A型净水器的数量,即可得出W关于x的函数关系式,再利用一次函数的性质即可解决最值问题.详解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m-200)元,根据题意得:,解得:m=2000,经检验,m=2000是分式方程的解,∴m-200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+180(50-x)≤98000,解得:x≤40.W=(2500-2000)x+(2180-1800)(50-x)-ax=(120-a)x+19000,∵当70<a<80时,120-a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120-a)×40+19000=23800-40a,∴W的最大值是(23800-40a)元.点睛:本题考查了分式方程的应用、一次函数的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出W关于x的函数关系式.23. 如图,中,,以为直径的交于点,交于点,过点作于点,交的延长线于点.(1)求证:是的切线;(2)已知,,求和的长.【答案】(1)证明见解析;(2)【解析】分析:(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB 知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得,由此构建方程即可解决问题;详解:(1)连接OD,AD,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD∥AC,∵DG⊥AC,∴OD⊥FG,∴直线FG与⊙O相切;(2)连接BE.∵BD=2,∴CD=BD=2,∵CF=2,∴DF==4,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴,∴,∴AB=10,∴AE=,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴,∴,∴BG=.点睛:本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.24. 如图1,在平面直角坐标系中,已知点和点的坐标分别为,,将绕点按顺时针分别旋转,得到,,抛物线经过点,,;抛物线经过点,,.(1)点的坐标为________,点的坐标为________;抛物线的解析式为________,抛物线的解析式为________;(2)如果点是直线上方抛物线上的一个动点.①若,求点的坐标;②如图2,过点作轴的垂线交直线于点,交抛物线于点,记,求与的函数关系式.当时,求的取值范围.【答案】(1),,:,:.(2)①符合条件的点的坐标为或.②.【解析】分析:(1)根据旋转的性质,可得C,E,F的坐标,根据待定系数法求解析式;(2)①根据P点关于直线CA或关于x轴对称直线与抛物线交点坐标,求出解析式,联立方程组求解;②根据图象上的点满足函数解析式,可得P、N、M纵坐标,根据平行于y轴直线上两点间的距离是较大的较大的纵坐标间较小的纵坐标,可得二次函数,根据x取值范围讨论h范围.详解:(1)由旋转可知,OC=6,OE=2,则点C坐标为(-6,0),E点坐标为(2,0),分别利用待定系数法求C1解析式为:y=-x2−4x−6,C2解析式为:y=-x2−2x+6(2)①若点P在x轴上方,∠PCA=∠ABO时,则CA1与抛物线C1的交点即为点P设直线CA1的解析式为:y=k1x+b1∴解得∴直线CA1的解析式为:y=x+2联立:,解得或,∴;∴符合条件的点的坐标为或.精 品 试 卷推荐下载 ②设直线的解析式为:,∴,解得, ∴直线的解析式为:, 过点作于点,则,∴,,, ,当时,的最大值为21.∵,当时,;当时,;当时,的取值范围是. 点睛:本题考查二次函数综合题,解(1)的关键是利用旋转的性质得出C ,E 的坐标,又利用了待定系数法;解(2)①的关键是利用解方程组,要分类讨论,以防遗漏;解(2)②的关键是利用平行于y 轴直线上两点间的距离是较大的较大的纵坐标间较小的纵坐标得出二次函数,又利用了二次函数的性质.。
中考数学真题试题(含解析1) 新人教版新版
——————————新学期新成绩新目标新方向——————————2019年中考数学真题试题一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1. 2018的相反数是()A.2018 B.﹣2018 C.D.2.下列图形是轴对称图形的是()A.B.C.D.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60° C.45° D.30°4.如图所示的几何体的主视图是()A.B.C.D.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012 D.0.128×10117.下列计算正确的是()A.2x﹣x=1 B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=28.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和69.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.10.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM 所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF 的长为()A.3 B.C. D.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣3 0.(填“<”,“=”,“>”)14.因式分解:x2﹣4= .15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE 的面积是,则k的值是.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6分)计算:+(﹣3)0﹣6cos45°+()﹣1.20.(6分)解不等式<x+1,并把它的解集在数轴上表示出来.21.(8分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.22.(8分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了名学生,图表中的m= ,n ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.23.(8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)24.(8分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?25.(10分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O 于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD 的长.26.(12分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,有且只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.1.2018的相反数是()A.2018 B.﹣2018 C.D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:B.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解即可.【解答】解:A、是轴对称图形,本选项正确;B、不是轴对称图形,本选项错误;C、不是轴对称图形,本选项错误;D、不是轴对称图形,本选项错误.故选:A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.如图,直线a,b被直线c所截,a∥b,∠1=60°,则∠2的度数是()A.120°B.60° C.45° D.30°【分析】利用两直线平行,同位角相等就可求出.【解答】解:∵直线被直线a、b被直线c所截,且a∥b,∠1=60°∴∠2=∠1=60°.故选:B.【点评】本题考查了平行线的性质,应用的知识为两直线平行,同位角相等.4.如图所示的几何体的主视图是()A.B.C.D.【分析】根据主视图是从正面看到的图形,可得答案.【解答】解:从正面看下面是一个长方形,如图所示:故C选项符合题意,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形画出来就是主视图.5.用代数式表示:a的2倍与3的和.下列表示正确的是()A.2a﹣3 B.2a+3 C.2(a﹣3)D.2(a+3)【分析】a的2倍就是2a,与3的和就是2a+3,根据题目中的运算顺序就可以列出式子,从而得出结论.【解答】解:a的2倍就是:2a,a的2倍与3的和就是:2a与3的和,可表示为:2a+3.故选:B.【点评】本题是一道列代数式的文字题,本题考查了数量之间的和差倍的关系.解答时理清关系的运算顺序会死解答的关键.6.2018年5月3日,中国科学院在上海发布了中国首款人工智能芯片:寒武纪(MLU100),该芯片在平衡模式下的等效理论峰值速度达每秒128 000 000 000 000次定点运算,将数128 000 000 000 000用科学记数法表示为()A.1.28×1014B.1.28×10﹣14C.128×1012 D.0.128×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将128 000 000 000 000用科学记数法表示为:1.28×1014.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.下列计算正确的是()A.2x﹣x=1 B.x(﹣x)=﹣2x C.(x2)3=x6D.x2+x=2【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答】解:A、2x﹣x=x,错误;B、x(﹣x)=﹣x2,错误;C、(x2)3=x6,正确;D、x2+x=x2+x,错误;故选:C.【点评】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.8.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别是()A.10和7 B.5和7 C.6和7 D.5和6【分析】将这组数据排序后处于中间位置的数就是这组数据的中位数,出现次数最多的数为这组数据的众数.【解答】解:将这组数据重新排列为5、5、5、6、7、7、10,所以这组数据的众数为5、中位数为6,故选:D.【点评】本题考查了中位数,众数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);众数是一组数据中出现次数最多的数据,注意众数可以不止一个.9.已知关于x的一元二次方程2x2﹣kx+3=0有两个相等的实根,则k的值为()A.B.C.2或3 D.【分析】把a=2,b=﹣k,c=3代入△=b2﹣4ac进行计算,然后根据方程有两个相等的实数根,可得△=0,再计算出关于k的方程即可.【解答】解:∵a=2,b=﹣k,c=3,∴△=b2﹣4ac=k2﹣4×2×3=k2﹣24,∵方程有两个相等的实数根,∴△=0,∴k2﹣24=0,解得k=±2,故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.10.若|3x﹣2y﹣1|+=0,则x,y的值为()A.B.C.D.【分析】根据二元一次方程组的解法以及非负数的性质即可求出答案.【解答】解:由题意可知:解得:故选:D.【点评】本题考查二元一次方程组的解法,解题的关键是熟练运用二元一次方程组的解法,本题属于基础题型.11.如图,在正方形ABCD中,AB=3,点M在CD的边上,且DM=1,△AEM与△ADM关于AM 所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF 的长为()A.3 B.C. D.【分析】解法一:连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=3,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长;解法二:过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,判定△AEH∽△EMG,即可得到==,设MG=x,则EH=3x,DG=1+x=AH,利用勾股定理可得,Rt△AEH中,(1+x)2+(3x)2=32,进而得出EH==BN,CG=CM﹣MG==EN,FN=,再根据勾股定理可得,Rt △AEN中,EF==.【解答】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=3.∵DM=1,∴CM=2.∴在Rt△BCM中,BM==,∴EF=,故选:C.解法二:如图,过E作HG∥AD,交AB于H,交CD于G,作EN⊥BC于N,则∠AHG=∠MGE=90°,由折叠可得,∠AEM=∠D=90°,AE=AD=3,DM=EM=1,∴∠AEH+∠MEG=EMG+∠MEG=90°,∴∠AEH=∠EMG,∴△AEH∽△EMG,∴==,设MG=x,则EH=3x,DG=1+x=AH,∴Rt△AEH中,(1+x)2+(3x)2=32,解得x1=,x2=﹣1(舍去),∴EH==BN,CG=CM﹣MG==EN,又∵BF=DM=1,∴FN=,∴Rt△AEN中,EF==,故选:C.【点评】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.12.如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作AB⊥AC交y轴于点B,当点A从M运动到N时,点B随之运动.设点B的坐标为(0,b),则b的取值范围是()A.B.C.D.【分析】延长NM交y轴于P点,则MN⊥y轴.连接CN.证明△PAB∽△NCA,得出=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,代入整理得到y=3x﹣x2=﹣(x﹣)2+,根据二次函数的性质以及≤x≤3,求出y的最大与最小值,进而求出b的取值范围.【解答】解:如图,延长NM交y轴于P点,则MN⊥y轴.连接CN.在△PAB与△NCA中,,∴△PAB∽△NCA,∴=,设PA=x,则NA=PN﹣PA=3﹣x,设PB=y,∴=,∴y=3x﹣x2=﹣(x﹣)2+,∵﹣1<0,≤x≤3,∴x=时,y有最大值,此时b=1﹣=﹣,x=3时,y有最小值0,此时b=1,∴b的取值范围是﹣≤b≤1.故选:B.【点评】本题考查了相似三角形的判定与性质,二次函数的性质,得出y与x之间的函数解析式是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分,请将答案填在答题卡上.13.比较大小:﹣3 <0.(填“<”,“=”,“>”)【分析】根据负数小于0可得答案.【解答】解:﹣3<0,故答案为:<.【点评】此题主要考查了有理数的大小,关键是掌握法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.14.因式分解:x2﹣4= (x+2)(x﹣2).【分析】直接利用平方差公式分解因式得出答案.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.15.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为84 分.【分析】根据加权平均数的定义列出方程求解即可.【解答】解:(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.16.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是 3 .【分析】首先根据已知条件分别计算图中每一个三角形每个角的度数,然后根据等腰三角形的判定:等角对等边解答,做题时要注意,从最明显的找起,由易到难,不重不漏.【解答】解:∵AB=AC,∠A=36°∴△ABC是等腰三角形,∠ABC=∠ACB==72°,BD平分∠ABC,∴∠EBD=∠DBC=36°,∴在△ABD中,∠A=∠A BD=36°,AD=BD,△ABD是等腰三角形,在△ABC中,∠C=∠ABC=72°,AB=AC,△ABC是等腰三角形,在△BDC中,∠C=∠BDC=72°,BD=BC,△BDC是等腰三角形,所以共有3个等腰三角形.故答案为:3【点评】本题考查了等腰三角形的性质及等腰三角形的判定,角的平分线的性质;求得各个角的度数是正确解答本题的关键.17.如图,矩形OABC的边AB与x轴交于点D,与反比例函数y=(k>0)在第一象限的图象交于点E,∠AOD=30°,点E的纵坐标为1,△ODE的面积是,则k的值是3.【分析】作EM⊥x轴于点M,由点E的纵坐标为1可得EM=1.根据△ODE的面积是,求出OD=.解直角△EMD,求出DM==,那么OM=OD+DM=3,E(3,1).再将E点坐标代入y=,即可求出k的值.【解答】解:如图,作EM⊥x轴于点M,则EM=1.∵△ODE的面积是,∴OD•EM=,∴OD=.在直角△OAD中,∵∠A=90°,∠AOD=30°,∴∠ADO=60°,∴∠EDM=∠ADO=60°.在直角△EMD中,∵∠DME=90°,∠EDM=60°,∴DM===,∴OM=OD+DM=3,∴E(3,1).∵反比例函数y=(k>0)的图象过点E,∴k=3×1=3.故答案为3.【点评】本题考查了反比例函数图象上点的坐标特征,矩形的性质,解直角三角形,三角形的面积等知识.求出E点坐标是解题的关键.18.将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…按此规律,自然数2018记为(505,2)【分析】根据表格可知,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.用2018除以4,根据除数与余数确定2018所在的行数,以及是此行的第几个数,进而求解即可.【解答】解:由题意可得,每一行有4个数,其中奇数行的数字从左往右是由小到大排列;偶数行的数字从左往右是由大到小排列.∵2018÷4=504…2,504+1=505,∴2018在第505行,∵奇数行的数字从左往右是由小到大排列,∴自然数2018记为(505,2).故答案为(505,2).【点评】本题考查了规律型:数字的变化类,通过观察得出表格中的自然数的排列规律是解题的关键.三、解答题:本大题共8小题,共66分.请将答题过程写在答题卡上.19.(6.00分)计算:+(﹣3)0﹣6cos45°+()﹣1.【分析】本题涉及零指数幂、负指数幂、二次根式化简和特殊角的三角函数值4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=3+1﹣6×+2=3+1﹣3+2=3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(6.00分)解不等式<x+1,并把它的解集在数轴上表示出来.【分析】根据解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.依次计算可得.【解答】解:去分母,得:5x﹣1<3x+3,移项,得:5x﹣3x<3+1,合并同类项,得:2x<4,系数化为1,得:x<2,将不等式的解集表示在数轴上如下:【点评】本题主要考查解一元一次不等式,解题的关键是掌握解不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.21.(8.00分)如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:△ABC≌DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.【分析】(1)求出AC=DF,根据SSS推出△ABC≌△DEF.(2)由(1)中全等三角形的性质得到:∠A=∠EDF,进而得出结论即可.【解答】证明:(1)∵AC=AD+DC,DF=DC+CF,且AD=CF∴AC=DF在△ABC和△DEF中,∴△ABC≌△DEF(SSS)(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°﹣(∠A+∠B)=180°﹣(55°+88°)=37°∴∠F=∠ACB=37°【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的对应边相等.22.(8.00分)某校为了解高一年级住校生在校期间的月生活支出情况,从高一年级600名住校学生中随机抽取部分学生,对他们今年4月份的生活支出情况进行调查统计,并绘制成如下统计图表:请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了40 名学生,图表中的m= 12 ,n =0.40 ;(2)请估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数;(3)现有一些爱心人士有意愿资助该校家庭困难的学生,学校在本次调查的基础上,经过进一步核实,确认高一(2)班有A,B,C三名学生家庭困难,其中A,B为女生,C为男生.李阿姨申请资助他们中的两名,于是学校让李阿姨从A,B,C三名学生中依次随机抽取两名学生进行资助,请用列表法(或树状图法)求恰好抽到A,B两名女生的概率.【分析】(1)由第一组的频数及其频率可得总人数,再根据频率=频数÷总数可得m、n的值;(2)用总人数乘以样本中第一、二组频率之和即可得;(3)画树状图得出所有等可能解果,然后根据概率公式计算即可得解.【解答】解:(1)本次调查的学生总人数为4÷0.1=40人,m=40×0.3=12、n=16÷40=0.40,故答案为:40、12、=0.40;(2)600×(0.10+0.05)=600×0.15=90(人),答:估计该校高一年级600名住校学生今年4月份生活支出低于350元的学生人数为90;(3)画树状图如下:由树状图知共有6种等可能结果,其中恰好抽到A,B两名女生的结果数为2,所以恰好抽到A、B两名女生的概率;【点评】本题考查频数分布直方图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件.也考查了列表法与树状图法求概率.23.(8.00分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:≈1.41,≈1.73,≈2.45结果精确到0.1小时)【分析】延长AB交南北轴于点D,则AB⊥CD于点D,根据直角三角形的性质和三角函数解答即可.【解答】解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D∵∠BCD=45°,BD⊥CD∴BD=CD在Rt△BDC中,∵cos∠BCD=,BC=60海里即cos45°=,解得CD=海里∴BD=CD=海里在Rt△ADC中,∵tan∠ACD=即 ta n60°==,解得AD=海里∵AB=AD﹣BD∴AB=﹣=30()海里∵海监船A的航行速度为30海里/小时则渔船在B处需要等待的时间为==≈2.45﹣1.41=1.04≈1.0小时∴渔船在B处需要等待1.0小时【点评】本题考查解直角三角形、方向角、三角函数、特殊角的三角函数值、等腰直角三角形的判定和性质等知识,解题的关键是添加辅助线构造直角三角形,学会用转化的思想解决问题,把问题转化为方程解决,属于中考常考题型.24.(8.00分)某校利用暑假进行田径场的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?【分析】(1)设二号施工队单独施工需要x天,根据一号施工队完成的工作量+二号施工队完成的工作量=总工程(单位1),即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据工作时间=工作总量÷工作效率,即可求出结论.【解答】解:(1)设二号施工队单独施工需要x天,根据题意得:+=1,解得:x=60,经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工期需要60天.(2)根据题意得:1÷(+)=24(天).答:若由一、二号施工队同时进场施工,完成整个工程需要24天.【点评】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(10.00分)如图1,已知⊙O是△ADB的外接圆,∠ADB的平分线DC交AB于点M,交⊙O于点C,连接AC,BC.(1)求证:AC=BC;(2)如图2,在图1的基础上做⊙O的直径CF交AB于点E,连接AF,过点A做⊙O的切线AH,若AH∥BC,求∠ACF的度数;(3)在(2)的条件下,若△ABD的面积为,△ABD与△ABC的面积比为2:9,求CD 的长.【分析】(1)先判断出∠ADC=∠BDC,再用圆的性质即可得出结论;(2)先判断出AI⊥BC,进而求出∠IAC=30°,即可得出结论;(3)先判断出△ABC为等边三角形,进而判断出AB⊥CF,即:AE=BE,利用等边三角形的面积求出AB=,CE=9,再利用勾股定理求OE,进而得出OA,利用面积关系求出DG=2,再判断出四边形PDGE为矩形,得出PE=DG=2,即:CP=11,求出DP==,最后用勾股定理即可得出结论.【解答】解:(1)∵DC平分∠ADB,∴∠ADC=∠BDC,∴,∴AC=BC(2)连接AO并延长交BC于I交⊙O于J,∵AH是⊙O的切线且AH∥BC,∴AI⊥BC,由垂径定理得,BI=IC,∵AC=BC,∴IC=AC,在Rt△AIC中,IC=AC,∴∠IAC=30°∴∠ABC=60°=∠F=∠ACB,∵FC是直径,∴∠FAC=90°,∴∠ACF=180°﹣90°﹣60°=30°;(3)过点D作DG⊥AB,连接AO由(1)(2)知,△ABC为等边三角形,∵∠ACF=30°,∴AB⊥CF,∴AE=BE,∴,∴AB=,∴,在Rt△AEC中,CE=AE=9,在Rt△AEO中,设EO=x,则AO=2x,∴AO2=AE2+OE2,∴,∴x=6,∴⊙O的半径为6,∴CF=12,∵,∴DG=2,过点D作DP⊥CF,连接OD,∵AB⊥CF,DG⊥AB,∴CF∥DG,∴四边形PDGE为矩形,∴PE=DG=2,∴CP=PE+CE=2+9=11在Rt△OPD中,OP=5,OD=6,∴DP==,∴在Rt△CPD中,根据勾股定理得,CD==2.【点评】此题是圆的综合题,主要考查了圆的性质,垂径定理,矩形判定和性质,等边三角形的判定和性质,勾股定理,切线的判定和性质,三角形的面积公式,求出∠ACF=30°是解本题的关键.26.(12.00分)如图,已知抛物线y=ax2+bx+6(a≠0)与x轴交于点A(﹣3,0)和点B(1,0),与y轴交于点C.(1)求抛物线y的函数表达式及点C的坐标;(2)点M为坐标平面内一点,若MA=MB=MC,求点M的坐标;(3)在抛物线上是否存在点E,使4tan∠ABE=11tan∠ACB?若存在,求出满足条件的所有点E的坐标;若不存在,请说明理由.【分析】(1)根据待定系数法,可得函数解析式;(2)根据线段垂直平分线的性质,可得M在线段的垂直平分线上,根据勾股定理,可得答案;(3)根据相似三角形的判定与性质,可得F点坐标,根据解方程组,可得D点坐标,根据正切值,可得tan∠ABE=2,①根据待定系数法,可得BM,根据解方程组,可得E点坐标;②根据正切值,可得关于m的方程,根据解方程,可得答案.【解答】解:(1)将A,B的坐标代入函数解析式,得,解得,抛物线y的函数表达式y=﹣2x2﹣4x+6,当x=0时,y=6,即C(0,6);(2)由MA=MB=MC,得M点在AB的垂直平分线上,M在AC的垂直平分线上,设M(﹣1,x),MA=MC,得(﹣1+2)2+x2=(x﹣6)2+(﹣1﹣0)2,解得x=∴若MA=MB=MC,点M的坐标为(﹣1,);(3)①过点A作DA⊥AC交y轴于点F,交CB的延长线于点D,如图1,∵∠ACO+∠CAO=90°,∠DAO+∠CAO=90°,∠ACO+∠AFO=90°∴∠DAO=∠ACO,∠CAO=AFO∴△AOF∽△COA∴=∴AO2=OC×OF∵OA=3,OC=6∴OF==∴∵A(﹣6,0),F(0,﹣)∴直线AF的解析式为:,∵B(1,0),(0,6),∴直线BC的解析式为:y=﹣6x+6∴,解得∴∴∴tan∠ACB=∵4tan∠ABE=11tan∠ACB∴tan∠ABE=2过点A作AM⊥x轴,连接BM交抛物线于点E ∵AB=4,tan∠ABE=2∴AM=8∴M(﹣3,8),∵B(1,0),(﹣3,8)∴直线BM的解析式为:y=﹣2x+2,联立BM与抛物线,得∴,解得x=﹣2或x=1(舍去)∴y=6∴E(﹣2,6)②当点E在x轴下方时,如图2,过点E作EG⊥AB,连接BE,设点E(m,﹣2m2﹣4m+6)∴tan∠ABE==2∴m=﹣4或m=1(舍去)可得E(﹣4,﹣10),综上所述:E点坐标为(﹣2,6),(﹣4,﹣10).【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段垂直平分线的性质得出M在线段的垂直平分线上;解(3)①的关键是利用正切值得出M点的坐标,又利用了解方程组;解②的关键是利用正切值得出关于m的方程.。
2019年中考数学真题试题(含解析) 新版新人教版
2019年中考数学真题试题一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)用计算器依次按键,得到的结果最接近的是()A.1.5 B.1.6 C.1.7 D.1.82.(3分)如图所示,直线AB,CD相交于点O,已知∠AOD=160°,则∠BOC的大小为()A.20° B.60° C.70° D.160°3.(3分)将多项式x﹣x3因式分解正确的是()A.x(x2﹣1)B.x(1﹣x2)C.x(x+1)(x﹣1)D.x(1+x)(1﹣x)4.(3分)下列图形中,是轴对称图形的是()A.B.C.D.5.(3分)据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m6.(3分)如图所示,四边形ABCD为⊙O的内接四边形,∠BC D=120°,则∠BOD的大小是()A.80° B.120°C.100°D.90°7.(3分)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界记录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠8.(3分)如图所示,在平面直角坐标系中,已知点A(2,4),过点A作AB⊥x轴于点B.将△AOB以坐标原点O 为位似中心缩小为原图形的,得到△COD,则CD的长度是()A.2 B.1 C.4 D.29.(3分)根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐()A.李飞或刘亮B.李飞 C.刘亮 D.无法确定10.(3分)程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A.大和尚25人,小和尚75人 B.大和尚75人,小和尚25人C.大和尚50人,小和尚50人 D.大、小和尚各100人二、填空题(本大题有8个小题,每小题3分,共24分)11.(3分)点A在数轴上的位置如图所示,则点A表示的数的相反数是.12.(3分)如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:.13.(3分)已知关于x的方程x2+3x﹣m=0的一个解为﹣3,则它的另一个解是.14.(3分)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是.15.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.16.(3分)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.17.(3分)如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE=,则BC的长是.18.(3分)如图所示,点A是反比例函数y=图象上一点,作AB⊥x轴,垂足为点B,若△AOB的面积为2,则k 的值是.三、解答题(本大题有8个小题,第19~25题每小题8分,第26题10分,共66分。
2019中考数学真题试题(含解析) 新人教 版
2019年中考数学真题试题一、选择题(每小题,只有一个选项符合题意,请将正确选项填涂在答题卡上的相应位置,本大题共10个小题,每小题3分,共30分。
)1.(3.00分)﹣3的倒数是()A.3 B.C.﹣ D.﹣32.(3.00分)下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a33.(3.00分)近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是()A.0.65×108B.6.5×107C.6.5×108D.65×1064.(3.00分)下列图形中,主视图为①的是()A.B.C. D.5.(3.00分)下列说法正确的是()A.为了解我国中学生课外阅读的情况,应采取全面调查的方式B.一组数据1、2、5、5、5、3、3的中位数和众数都是5C.投掷一枚硬币100次,一定有50次“正面朝上”D.若甲组数据的方差是0.03,乙组数据的方差是0.1,则甲组数据比乙组数据稳定6.(3.00分)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是()A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>17.(3.00分)抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度8.(3.00分)下列命题中:①如果a>b,那么a2>b2②一组对边平行,另一组对边相等的四边形是平行四边形③从圆外一点可以引圆的两条切线,它们的切线长相等④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1其中真命题的个数是()A.1 B.2 C.3 D.49.(3.00分)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣10.(3.00分)已知点P为某个封闭图形边界上的一定点,动点M从点P出发,沿其边界顺时针匀速运动一周,设点M的运动时间为x,线段PM的长度为y,表示y与x的函数图象大致如图所示,则该封闭图形可能是()A.B.C.D.二、填空题(请把最简单答案填在答题卡相应位置。
2019年中考数学真题试题(含解析)(新版)新人教版 (2)
精品试卷2019年中考数学真题试题一、选择题(本大题共10小题,共40分)1.下列四个数中,最大的数是A. B. C. 0 D.【答案】D【解析】解:根据实数比较大小的方法,可得,所以最大的数是.故选:D.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数负实数,两个负实数绝对值大的反而小.2.如图的几何体是由四个大小相同的正方体组成的,它的俯视图是A.B.C.D.【答案】C【解析】解:从上面可看到从上往下2行小正方形的个数为:2,1,并且下面一行的正方形靠左,故选C.找到从上面看所得到的图形即可.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.据统计,近十年中国累积节能1570000万吨标准煤,1570000这个数用科学记数法表示为A. B. C. D.【答案】B【解析】解:,故选:B.科学记数法的表示形式为的形式,其中,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值时,n是正数;当原数的绝对值时,n 是负数.此题考查科学记数法的表示方法科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.4.如图,已知,,DB平分,则A. B. C. D.【答案】B【解析】解:,,再根据角平分线的概念,得:,再根据两条直线平行,内错角相等得:,故选:B.根据平行线的性质:两条直线平行,内错角相等及角平分线的性质,三角形内角和定理解答.考查了平行线的性质、角平分线的概念,要熟练掌握.5.下列图案中,既是轴对称图形又是中心对称图形的是A. B. C. D.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可精品试卷重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.下列运算正确的是A. B.C. D.【答案】A【解析】解:A、原式,所以A选项正确;B 、原式,所以B选项错误;C 、原式,所以C选项错误;D、原式,所以D选项错误.故选:A.利用合并同类项对A进行判断;利用积的乘方对B进行判断;利用完全平方公式对C进行判断;利用取括号法则对D进行判断.本题考查了幂的乘方与积的乘方:幂的乘方法则:底数不变,指数相乘:n是正整数;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘:是正整数也考查了整式的加减.7.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧全等的是A. 甲和乙B. 乙和丙C. 甲和丙D. 只有丙【答案】B【解析】解:乙和全等;理由如下:在和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和全等;在和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和全等;不能判定甲与全等;故选:B.根据三角形全等的判定方法得出乙和丙与全等,甲与不全等.本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务设原计划每天施工x米,所列方程正确的是A. B.C. D.【答案】A【解析】解:设原计划每天施工x米,则实际每天施工米,根据题意,可列方程:,故选:A.设原计划每天施工x米,则实际每天施工米,根据:原计划所用时间实际所用时间,列出方程即可.本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.9.下列等式正确的是A. B. C. D.【答案】A【解析】解:A、,此选项正确;B、,此选项错误;C、,此选项错误;D、,此选项错误;故选:A.根据算术平方根的定义逐一计算即可得.本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.10.如图在▱ABCD中,已知,若的周长为13cm,则▱ABCD的周长为A. 26cmB. 24cmC. 20cmD. 18cm【答案】D精品试卷【解析】解:,若的周长为13cm,.又四边形ABCD是平行四边形,,,平行四边形的周长为.故选:D.根据三角形周长的定义得到然后由平行四边形的对边相等的性质来求平行四边形的周长.本题考查了平行四边形的性质此题利用了“平行四边形的对边相等”的性质.二、填空题(本大题共10小题,共30分)11.,则的补角为______度【答案】145【解析】解:,则的补角为,故答案为:145.根据两个角的和等于,则这两个角互补计算即可.本题考查的是余角和补角,若两个角的和为,则这两个角互余;若两个角的和等于,则这两个角互补.12.不等式组的解集是______.【答案】【解析】解:由,由,所以.首先把两条不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,把不等式的解集用一条式子表示出来.本题考查不等式组的解法,一定要把每条不等式的解集正确解出来.13.如图为洪涛同学的小测卷,他的得分应是______分【答案】100【解析】解:的相反数是,此题正确;倒数等于它本身的数是1和,此题正确;的绝对值是1,此题正确;的立方根是2,此题正确;则洪涛同学的得分是,故答案为:100.根据相反数的定义、倒数、绝对值性质及立方根的定义逐一判断即可得.本题主要考查立方根、绝对值、相反数及倒数,解题的关键是掌握相反数的定义、倒数、绝对值性质及立方根的定义.14.若100个产品中有98个正品,2个次品,从中随机抽取一个,抽到次品的概率是______.【答案】【解析】解:个产品中有2个次品,从中随机抽取一个,抽到次品的概率是,故答案为:.本题只要用次品的个数除以总的产品的个数即可得出次品的概率.本题考查的是概率的公式,用满足条件的个数除以总个数可得出概率的值.15.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数单位:分及方差,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是______.精品试卷【答案】丙【解析】解:因为乙组、丙组的平均数比甲组、丁组大,而丙组的方差比乙组的小,所以丙组的成绩比较稳定,所以丙组的成绩较好且状态稳定,应选的组是丙组.故答案为:丙.先比较平均数得到乙组和丙组成绩较好,然后比较方差得到丙组的状态稳定,于是可决定选丙组去参赛.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数的意义.16.三角形的两边长分别为3和6,第三边的长是方程的解,则此三角形周长是______.【答案】13【解析】解:,,,,,,当时,,不符合三角形的三边关系定理,所以舍去,当时,符合三角形的三边关系定理,三角形的周长是,故答案为:13.求出方程的解,有两种情况:时,看看是否符合三角形三边关系定理;时,看看是否符合三角形三边关系定理;求出即可.本题考查了三角形的三边关系定理和解一元二次方程等知识点,关键是确定第三边的大小,三角形的两边之和大于第三边,分类讨论思想的运用,题型较好,难度适中.17.己知一个菱形的边长为2,较长的对角线长为,则这个菱形的面积是______.【答案】【解析】解:依照题意画出图形,如图所示.在中,,,,,.故答案为:.根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.18.已知:二次函数图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是______.【答案】【解析】解:抛物线经过、两点,对称轴;点关于对称轴对称点为,因此它的图象与x轴的另一个交点坐标是.故答案为:.根据、两点求得对称轴,再利用对称性解答即可.本题考查了抛物线与x轴的交点,关键是熟练掌握二次函数的对称性.19.根据下列各式的规律,在横线处填空:,,,,______【答案】【解析】解:,,,,,为正整数.,.故答案为:.根据给定等式的变化,可找出变化规律“为正整数”,依此规律即可得出结论.本题考查了规律型中数字的变化类,根据等式的变化,找出变化规律“为正整数”是解题的关键.精品试卷20.如图,已知在中,BC边上的高AD与AC边上的高BE交于点F,且,,,则的面积为______.【答案】60【解析】解:,,,,,,,,≌,,设.∽,,,整理得,解得或舍弃,,.故答案为60.首先证明≌,推出,设由∽,推出,构建方程求出x即可解决问题;本题考查勾股定理、等腰三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数构建方程解决问题,属于中考常考题型.三、计算题(本大题共1小题,共12分)21.计算:先化简,再在1、2、3中选取一个适当的数代入求值.【答案】解:;,当时,原式.【解析】根据绝对值、特殊角的三角函数值、负整数指数幂、零指数幂可以解答本题;根据分式的减法和乘法可以化简题目中的式子,再从1、2、3中选取一个使得原分式有意义的值代入化简后的式子即可解答本题.本题考查分式的化简求值、绝对值、特殊角的三角函数值、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.四、解答题(本大题共5小题,共68分)22.如图,CE是的直径,BC切于点C,连接OB,作交于点D,BD的延长线与CE的延长线交于点A.求证:AB是的切线;若的半径为1,,,求AE的长.【答案】解:连接OD,如图.,,,,精品试卷,.在与中,,≌,,切于点C,,,是的切线;,,的半径为1,,,,,.【解析】连接OD,由,得到,,通过≌,得到,而由BC 切于点C得出,那么,问题得证;根据三角函数,得出,再由,得出,那么.本题考查了切线的判定和性质,全等三角形的判定与性质,锐角三角函数定义,掌握各定理是解题的关键.23.目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人每名学生必选一种且只能从这四种中选择一种并将调查结果绘制成如下不完整的统计图.根据图中信息求出______,______;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?已知A、B两位同学都最认可“微信”,C同学最认可“支付宝”D同学最认可“网购”从这四名同学中抽取两名同学,请你通过树状图或表格,求出这两位同学最认可的新生事物不一样的概率.【答案】100;35【解析】解:被调查的总人数人,支付宝的人数所占百分比,即,故答案为:100、35;网购人数为人,微信对应的百分比为,补全图形如下:估算全校2000名学生中,最认可“微信”这一新生事物的人数为人;列表如下:精品试卷共有12种情况,这两位同学最认可的新生事物不一样的有10种,所以这两位同学最认可的新生事物不一样的概率为.由共享单车人数及其百分比求得总人数m,用支付宝人数除以总人数可得其百分比n的值;总人数乘以网购人数的百分比可得其人数,用微信人数除以总人数求得其百分比即可补全两个图形;总人数乘以样本中微信人数所占百分比可得答案;列表得出所有等可能结果,从中找到这两位同学最认可的新生事物不一样的结果数,根据概率公式计算可得.本题考查的是用列表法或画树状图法求概率以及扇形统计图与条形统计图的知识列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比.24.某种蔬菜的销售单价与销售月份x之间的关系如图1所示,成本与销售月份x之间的关系如图2所示图1的图象是线段,图2的图象是抛物线已知6月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?收益售价成本哪个月出售这种蔬菜,每千克的收益最大?简单说明理由.已知市场部销售该种蔬菜4、5两个月的总收益为22万元,且5月份的销售量比4月份的销售量多2万千克,求4、5两个月的销售量分别是多少万千克?【答案】解:当时,,,,月份出售这种蔬菜每千克的收益是2元.设,.将、代入,,解得:,;将代入,,解得:,..,当时,取最大值,最大值为,即5月份出售这种蔬菜,每千克的收益最大.当时,.设4月份的销售量为t万千克,则5月份的销售量为万千克,根据题意得:,解得:,.答:4月份的销售量为4万千克,5月份的销售量为6万千克.【解析】找出当时,、的值,二者做差即可得出结论;观察图象找出点的坐标,利用待定系数法即可求出、关于x的函数关系式,二者做差后利用二次函数的性质即可解决最值问题;求出当时,的值,设4月份的销售量为t万千克,则5月份的销售量为万千克,根据总利润每千克利润销售数量,即可得出关于t的一元一次方程,解之即可得出结论.本题考查了待定系数法求一次二次函数解析式、二次函数的性质以及一元一次方程的应用,解题的关键是:观察函数图象,找出当时的值;根据点的坐标,利用待定系数法求出、关于x的函数关系式;找准等量关系,正确列出一元一次方程.25.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同如图,这样图1中黑点个数是个;图2精品试卷中黑点个数是个:图3中黑点个数是个;所以容易求出图10、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块画在答题卡上,再完成以下问题:第5个点阵中有______个圆圈;第n个点阵中有______个圆圈.小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.【答案】60个;6n个;61;【解析】解:图10中黑点个数是个;图n中黑点个数是6n个,故答案为:60个,6n个;如图所示:第1个点阵中有:1个,第2个点阵中有:个,第3个点阵中有:个,第4个点阵中有:个,第5个点阵中有:个,第n个点阵中有:,故答案为:60,;,,,,舍,小圆圈的个数会等于271,它是第10个点阵.根据规律求得图10中黑点个数是个;图n中黑点个数是6n个;第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:,代入271,列方程,方程有解则存在这样的点阵.本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.26.如图1,已知矩形AOCB,,,动点P从点A出发,以的速度向点O运动,直到点O为止;动点Q同时从点C出发,以的速度向点B运动,与点P同时结束运动.点P到达终点O的运动时间是______s,此时点Q的运动距离是______cm;当运动时间为2s时,P、Q两点的距离为______cm;请你计算出发多久时,点P和点Q之间的距离是10cm;如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.【答案】;;【解析】解:四边形AOCB是矩形,,动点P从点A出发,以的速度向点O运动,,此时,点Q的运动距离是,故答案为,;精品试卷如图1,由运动知,,,过点P作于E,过点Q作于F,四边形APEB是矩形,,,,根据勾股定理得,,故答案为;设运动时间为t秒时,由运动知,,,同的方法得,,,点P和点Q之间的距离是10cm,,或;的值是不会变化,理由:四边形AOCB是矩形,,,,,直线AC的解析式为,设运动时间为t,,,,,,解析式为,联立解得,,,,是定值.先求出OA,进而求出时间,即可得出结论;构造出直角三角形,再求出PE,QE,利用勾股定理即可得出结论;同的方法利用勾股定理建立方程求解即可得出结论;先求出直线AC解析式,再求出点P,Q坐标,进而求出直线PQ解析式,联立两解析式即可得出结论.此题是反比例函数综合题,主要考查了勾股定理,待定系数法,构造出直角三角形是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学真题试题一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上。
1.(3.00分)﹣4的相反数()A.4 B.﹣4 C.D.﹣2.(3.00分)下列实数中,是无理数的是()A.1 B.C.﹣3 D.3.(3.00分)一条数学学习方法的微博被转发了30000次,这个数字用科学记数法表示为3×10n,则n的值是()A.3 B.4 C.5 D.64.(3.00分)下列计算结果为a6的是()A.a7﹣a B.a2•a3 C.a8÷a2D.(a4)25.(3.00分)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数6.(3.00分)两三角形的相似比是2:3,则其面积之比是()A.: B.2:3 C.4:9 D.8:277.(3.00分)某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球8.(3.00分)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种9.(3.00分)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC 为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行 B.相交C.垂直 D.平行、相交或垂直10.(3.00分)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2 C.4 D.311.(3.00分)圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90° B.120°C.150°D.180°12.(3.00分)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y 轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤12二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上。
13.(3.00分)计算:6﹣(3﹣5)= .14.(3.00分)五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是.15.(3.00分)已知ab=a+b+1,则(a﹣1)(b﹣1)= .16.(3.00分)小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是cm.17.(3.00分)如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,则AD的取值范围是.18.(3.00分)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= .三、解答题:本大题共8小题,满分共66分。
解答应写出证明过程或演算步骤(含相应的文字说明)将解答写在答题卡上。
19.(6.00分)计算:|2﹣|+(π﹣1)0+﹣()﹣120.(6.00分)先化简再求值:(a﹣)÷,其中a=1+,b=1﹣.21.(6.00分)已知关于x的一元二次方程:x2﹣2x﹣k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)给k取一个负整数值,解这个方程.22.(8.00分)今年5月13日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:(1)统计表中的x= ,y= ;(2)小君计算被抽查同学做家务时间的平均数是这样的:第一步:计算平均数的公式是=,第二步:该问题中n=4,x1=0.5,x2=1,x3=1.5,x4=2,第三步:==1.25(小时)小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;(3)现从C,D两组中任选2人,求这2人都在D组中的概率(用树形图法或列表法).23.(9.00分)如图,在△ABC中,以AB为直径作⊙O交BC于点D,∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)点E是AB上一点,若∠BCE=∠B,tan∠B=,⊙O的半径是4,求EC的长.24.(9.00分)山地自行车越来越受中学生的喜爱.一网店经营的一个型号山地自行车,今年一月份销售额为30000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是27000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆山地自行车的进价是多少元?25.(10.00分)如图,在▱ABCD中,DC>AD,四个角的平分线AE,DE,BF,CF的交点分别是E,F,过点E,F分别作DC与AB间的垂线MM'与NN',在DC与AB上的垂足分别是M,N 与M′,N′,连接EF.(1)求证:四边形EFNM是矩形;(2)已知:AE=4,DE=3,DC=9,求EF的长.26.(12.00分)如图,直线y=﹣3x+3与x轴、y轴分别交于A,B两点,抛物线y=﹣x2+bx+c 与直线y=c分别交y轴的正半轴于点C和第一象限的点P,连接PB,得△PCB≌△BOA(O为坐标原点).若抛物线与x轴正半轴交点为点F,设M是点C,F间抛物线上的一点(包括端点),其横坐标为m.(1)直接写出点P的坐标和抛物线的解析式;(2)当m为何值时,△MAB面积S取得最小值和最大值?请说明理由;(3)求满足∠MPO=∠POA的点M的坐标.参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填(涂)在答题卡内相应的位置上。
1.(3.00分)﹣4的相反数()A.4 B.﹣4 C.D.﹣【分析】根据只有符号不同的两个数叫做互为相反数解答.【解答】解:﹣4的相反数4.故选:A.2.(3.00分)下列实数中,是无理数的是()A.1 B.C.﹣3 D.【分析】分别根据无理数、有理数的定义即可判定选择项.【解答】解:1,﹣3,是有理数,是无理数,故选:B.3.(3.00分)一条数学学习方法的微博被转发了30000次,这个数字用科学记数法表示为3×10n,则n的值是()A.3 B.4 C.5 D.6【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:30000次,这个数字用科学记数法表示为3×104,则n的值是4.故选:B.4.(3.00分)下列计算结果为a6的是()A.a7﹣a B.a2•a3 C.a8÷a2D.(a4)2【分析】根据同底数幂的乘除法法则、幂的乘方法则、合并同类项法则进行计算,判断即可.【解答】解:A、a7与a不能合并,A错误;B、a2•a3=a5,B错误;C、a8÷a2=a6,C正确;D、(a4)2=a8,D错误;故选:C.5.(3.00分)等腰三角形底角与顶角之间的函数关系是()A.正比例函数B.一次函数 C.反比例函数D.二次函数【分析】根据一次函数的定义,可得答案.【解答】解:设等腰三角形的底角为y,顶角为x,由题意,得y=﹣x+90°,故选:B.6.(3.00分)两三角形的相似比是2:3,则其面积之比是()A.: B.2:3 C.4:9 D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.7.(3.00分)某小组做“用频率估计概率”的实验时,绘出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,出现3点朝上C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球【分析】利用折线统计图可得出试验的频率在0.33左右,进而得出答案.【解答】解:A、抛一枚硬币,出现正面朝上的概率为0.5,不符合这一结果,故此选项错误;B、掷一个正六面体的骰子,出现3点朝上为,不符合这一结果,故此选项错误;C、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;D、从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球的概率为:,符合这一结果,故此选项正确.故选:D.8.(3.00分)在四边形ABCD中:①AB∥CD②AD∥BC③AB=CD④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有()A.3种B.4种C.5种D.6种【分析】根据平行四边形的判定方法中,①②、③④、①③、③④均可判定是平行四边形.【解答】解:根据平行四边形的判定,符合条件的有4种,分别是:①②、③④、①③、③④.故选:B.9.(3.00分)如图,∠AOB=60°,OA=OB,动点C从点O出发,沿射线OB方向移动,以AC 为边在右侧作等边△ACD,连接BD,则BD所在直线与OA所在直线的位置关系是()A.平行 B.相交C.垂直 D.平行、相交或垂直【分析】先判断出OA=OB,∠OAB=∠ABO,分两种情况判断出∠ABD=∠AOB=60°,进而判断出△AOC≌△ABD,即可得出结论.【解答】解:∵∠AOB=60°,OA=OB,∴△OAB是等边三角形,∴OA=AB,∠OAB=∠ABO=60°①当点C在线段OB上时,如图1,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,②当点C在OB的延长线上时,如图2,同①的方法得出OA∥BD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,∴∠OAC=∠BAD,在△AOC和△ABD中,,∴△AOC≌△ABD,∴∠ABD=∠AOC=60°,∴∠ABE=180°﹣∠ABO﹣∠ABD=60°=∠AOB,∴BD∥OA,故选:A.10.(3.00分)如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x轴,且AC=BC,则AB等于()A.B.2 C.4 D.3【分析】依据点C在双曲线y=上,AC∥y轴,BC∥x轴,可设C(a,),则B(3a,),A(a,),依据AC=BC,即可得到﹣=3a﹣a,进而得出a=1,依据C(1,1),B(3,1),A(1,3),即可得到AC=BC=2,进而得到Rt△ABC中,AB=2.【解答】解:点C在双曲线y=上,AC∥y轴,BC∥x轴,设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,故选:B.11.(3.00分)圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90° B.120°C.150°D.180°【分析】由圆锥的主视图为等边三角形知圆锥的底面圆直径为4、侧面展开图扇形的半径为4,据此利用弧长公式求解可得.【解答】解:∵圆锥的主视图与左视图都是边长为4的等边三角形,∴圆锥的母线长为4、底面圆的直径为4,则圆锥的侧面展开图扇形的半径为4,设圆锥的侧面展开图扇形的圆心角是n,根据题意,得:=4π,解得:n=180°,故选:D.12.(3.00分)如图,一段抛物线y=﹣x2+4(﹣2≤x≤2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y 轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A.6<t≤8 B.6≤t≤8 C.10<t≤12 D.10≤t≤12【分析】首先证明x1+x2=8,由2≤x3≤4,推出10≤x1+x2+x3≤12即可解决问题;【解答】解:翻折后的抛物线的解析式为y=(x﹣4)2﹣4=x2﹣8x+12,∵设x1,x2,x3均为正数,∴点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,∵2≤x3≤4,∴10≤x1+x2+x3≤12即10≤t≤12,故选:D.二、填空题:本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上。