14导数的概念及运算

合集下载

高三数学导数的概念与运算

高三数学导数的概念与运算
1 (ln x )' x
1 (log a x)' log a e ; ; x
; (a )' a ln a 。
x x
(e )' e
x
x
5.导数的四则运算法则:
[u( x) v( x)] u ( x) v ( x)
' ' '
[u( x)v( x)] u '( x)v( x) u( x)v '( x)
; / 筑志棋牌游戏网
zth51awb
房肯煎药了,她去找刘晨寂。问准刘晨寂所在,她去找他。听说刘晨寂年少,而她也是云英未嫁大姑娘,虽然立意一辈子伺候 老太太,再不嫁人,也真打心里把自己不当姑娘看了,毕竟要避嫌,只遣婆子去传话,自己在门外,窗缝间扫着一眼,亏素来 自诩老沉狠辣,也登时心跳如捣:那少年明眸皓齿,身着布衣,头发像墨檀木一样黑,用条普普通通的青带子束在后面,刚把 好脉,步至桌前举墨笔,正巧一束阳光从窗里进来,照在他脸上,细细的茸毛,他回过头去看那传话的婆子,一边举起手来遮 了遮眼睛,指尖微微的红晕。这才叫布衣红颜!宝音定定神。奇也怪也!她为何觉得他这样眼熟,不但见过,而且似亲密相处 过的?实在没有因由!屋里,那传话婆子请刘大夫先留外院不要走,表 的痰盒来端给刘大夫看看,刘大夫要拟什么方子,尽 管说,若凶险极了须诊脉,给刘大夫告个罪,请刘大夫蒙上眼,入内院隔帘给表 诊。刘晨寂答应了。听他应声,宝音心底就 安定些,又嘱了丫头婆子们,刘大夫要写出什么方子来,只要不是摆明了毒药,管老大夫怎么说,就用刘大夫的方子!如果表 真的病危了,就是毒药也听刘大夫的!表面上,老大夫治过一段时间,没起色,还不如试刘大夫,这是她的道理。背地里…… 见了刘晨寂,听了他的声音,她就是想相信他,这真是可怪。踌躇疑惑着,宝音又走了几处,绕了一绕,从与嘉颜议帐的屋子 窗下过,听嘉颜似在里头生了气。嘉颜一向性子沉着,能发重话,不知出了什么大事?宝音奇着,赶紧往门前绕,却一个大丫 头又拦了她,先道乏,后问:“宝音姐姐,你看这一件是二老爷房里要的,我这般拿去还使得么?”宝音将那东西也看了一眼: 是个花鸟镶翠靶镜,镜把儿原断过一次,又用宝相花饰精巧鎏合,顿时“噫”一声:“二#奶#奶的?我不是拣点出一副新的, 怎又拿这旧的修补了给二#奶#奶!”那大丫头笑道:“是二#奶#奶说,何必又用新的,就叫将旧的补补,还于她去。”这般亏 苦,无非要在老太太跟前留下会持家的好印象,宝音心头敞亮,赞叹一句道:“二#奶#奶如此克俭,咱们作奴婢的却不能哑着。 我回老太太去,总也不能给二#奶#奶用补旧的!”大丫头含笑而去。宝音加快步子拾阶上去,有个腿快的家人媳妇赶到门边把 那半疏半透的蒙绣纱湘帘子打起来,笑道:“宝音姑娘!可巧儿您回来了,有个九层玲珑塔形的托盘儿找不着了,姑娘您还有 印象吗?”这媳妇名下数目一向不清,教了几次,记帐还是糊涂,有些有意装傻、从中贪墨的嫌疑,宝音正想捉她呢,拧起眉 毛道:“都问我,自个儿就不用查帐了?若我死了,你们更问谁去?”媳妇腮帮子明显抽了两抽。宝音自己接了帘子进屋来, 问嘉颜道:“怎么了?”嘉颜

导数

导数
那么汽车在由时刻t0变到t1这段时间内的平均速度是:
当t1无限趋近于t0时,汽车行驶的快慢变化就不会很大,平均速度就近似等于t0时刻的瞬时速度,因而就把 此时的极限作为汽车在时刻t0的瞬时速度,即,这就是通常所说的速度。这实际上是由平均速度类比到瞬时速度 的过程(如我们驾驶时的限“速”指瞬时速度)。
历史沿革
起源
大约在1629年,法国数学家费马研究了作曲线的切线和求函数极值的方法;1637年左右,他写一篇手稿《求 最大值与最小值的方法》。在作切线时,他构造了差分f(A+E)-f(A),发现的因子E就是我们所说的导数f’ (A)。
发展
17世纪生产力的发展推动了自然科学和技术的发展,在前人创造性研究的基础上,大数学家牛顿、莱布尼茨 等从不同的角度开始系统地研究微积分。牛顿的微积分理论被称为“流数术”,他称变量为流量,称变量的变化 率为流数,相当于我们所说的导数。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方 程的计算法》和《流数术和无穷级数》,流数理论的实质概括为:他的重点在于一个变量的函数而不在于多变量 的方程;在于自变量的变化与函数的变化的比的构成;最在于决定这个比当变化趋于零时的极限。
需要指出的是:
两者在数学上是等价的。
导函数
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内 的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的 导函数,记作y’、f’(x)、dy/dx或df(x)/dx,简称导数。
性质
单调性
(1)若导数大于零,则单调递增;若导数小于零,则单调递减;导数等于零为函数驻点,不一定为极值点。 需代入驻点左右两边的数值求导数正负判断单调性。

导数的基本公式和运算法则

导数的基本公式和运算法则

导数的基本公式和运算法则在微积分中,导数是描述函数变化率的重要概念。

导数的基本公式和运算法则是求解导数的基础,掌握这些公式和法则对于解决微积分中的各类问题至关重要。

本文将介绍导数的基本公式和运算法则,并通过具体的例子帮助读者更好地理解和应用。

导数的定义导数可以理解为函数在某一点处的变化率。

对于函数f(f),其在点f处的导数可以表示为f′(f)或 $\\frac{df}{dx}$。

导数的定义公式如下:$$ f'(x) = \\lim_{h \\to 0} \\frac{f(x+h) - f(x)}{h} $$这个公式表示函数f(f)在点f处的导数是函数在f点微小变化量f趋近于 0 时的极限值。

导数的基本公式常数函数对于一个常数函数f(f)=f,其中f为常数,则导数f′(f)=0。

这是因为常数函数的图像是一条水平的直线,斜率恒为 0。

幂函数对于幂函数f(f)=f f,其中f为常数,则导数f′(f)=ff f−1。

这是幂函数求导公式的基本形式。

指数函数指数函数f(f)=f f,其中f为常数且f>0,则导数$f'(x) = a^x \\cdot \\ln(a)$。

这是指数函数求导的基本公式。

对数函数对于自然对数函数 $f(x) = \\ln(x)$,则导数 $f'(x) =\\frac{1}{x}$。

自然对数的求导结果可以简单表达。

导数的运算法则导数具有一些运算法则,使得我们可以利用已知函数的导数求其它函数的导数。

以下是导数运算法则的一些常见规则:常数因子法则若f为常数,f(f)是可导函数,则 $(c \\cdot u(x))' = c\\cdot u'(x)$。

加法法则若f(f)和f(f)都是可导函数,则(f(f)+f(f))′=f′(f)+f′(f)。

乘法法则若f(f)和f(f)都是可导函数,则 $(u(x) \\cdot v(x))' =u'(x) \\cdot v(x) + u(x) \\cdot v'(x)$。

高考数学一轮复习考点知识专题讲解14---导数的概念及其意义、导数的运算

高考数学一轮复习考点知识专题讲解14---导数的概念及其意义、导数的运算

高考数学一轮复习考点知识专题讲解 导数的概念及其意义、导数的运算考点要求1.了解导数的概念、掌握基本初等函数的导数.2.通过函数图象,理解导数的几何意义.3.能够用导数公式和导数的运算法则求简单函数的导数.知识梳理 1.导数的概念(1)函数y =f (x )在x =x 0处的导数记作f ′(x 0)或y ′|0x x =. f ′(x 0)=lim Δx →0 Δy Δx =lim Δx →0 f (x 0+Δx )-f (x 0)Δx .(2)函数y =f (x )的导函数f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx.2.导数的几何意义函数y =f (x )在x =x 0处的导数的几何意义就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0f (x )=x α(α∈Q ,且α≠0)f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos x f ′(x )=-sin x f (x )=a x (a >0,且a ≠1)f ′(x )=a x ln a f (x )=e xf ′(x )=e x f (x )=log a x (a >0,且a ≠1)f ′(x )=1x ln a f (x )=ln xf ′(x )=1x4.导数的运算法则若f ′(x ),g ′(x )存在,则有 [f (x )±g (x )]′=f ′(x )±g ′(x ); [f (x )g (x )]′=f ′(x )g (x )+f (x )g ′(x );⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0); [cf (x )]′=cf ′(x ). 常用结论1.区分在点处的切线与过点处的切线(1)在点处的切线,该点一定是切点,切线有且仅有一条. (2)过点处的切线,该点不一定是切点,切线至少有一条. 2.⎣⎢⎡⎦⎥⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.(×)(2)与曲线只有一个公共点的直线一定是曲线的切线.(×)(3)f′(x0)=[f(x0)]′.(×)教材改编题1.若f(x)=1x,则f′(x)=________.答案-x 2x2解析f(x)=1x=12x-,∴f′(x)=3212x--=-x2x2.2.函数f(x)=e x+1x在x=1处的切线方程为.答案y=(e-1)x+2解析f′(x)=e x-1x2,∴f′(1)=e-1,又f(1)=e+1,∴切点为(1,e+1),切线斜率k=f′(1)=e-1,即切线方程为y-(e+1)=(e-1)(x-1),即y=(e-1)x+2.3.已知函数f(x)=x ln x+ax2+2,若f′(e)=0,则a=.答案-1e解析f ′(x )=1+ln x +2ax , ∴f ′(e)=2a e +2=0,∴a =-1e.题型一 导数的运算例1(1)(2022·济南质检)下列求导运算正确的是________.(填序号) ①⎝ ⎛⎭⎪⎫1ln x ′=-1x (ln x )2;②(x 2e x )′=2x +e x ; ③(tan x )′=1cos 2x; ④⎝ ⎛⎭⎪⎫x -1x ′=1+1x 2.答案①③④解析⎝ ⎛⎭⎪⎫1ln x ′=-1(ln x )2·(ln x )′=-1x (ln x )2,故①正确;(x 2e x )′=(x 2+2x )e x ,故②错误;(tan x )′=⎝ ⎛⎭⎪⎫sin x cos x ′=cos 2x +sin 2x cos 2x =1cos 2x ,故③正确;⎝⎛⎭⎪⎫x -1x ′=1+1x 2,故④正确.(2)函数f (x )的导函数为f ′(x ),若f (x )=x 2+f ′⎝ ⎛⎭⎪⎫π3sin x ,则f ⎝ ⎛⎭⎪⎫π6=.答案π236+2π3解析f ′(x )=2x +f ′⎝ ⎛⎭⎪⎫π3cos x ,∴f ′⎝ ⎛⎭⎪⎫π3=2π3+12f ′⎝ ⎛⎭⎪⎫π3,∴f ′⎝ ⎛⎭⎪⎫π3=4π3,∴f ⎝ ⎛⎭⎪⎫π6=π236+2π3.教师备选在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),则f ′(0)等于()A .26B .29C .212D .215 答案C解析因为在等比数列{a n }中,a 1=2,a 8=4, 所以a 1a 8=a 2a 7=a 3a 6=a 4a 5=2×4=8. 因为函数f (x )=x (x -a 1)(x -a 2)…(x -a 8),所以f ′(x )=(x -a 1)(x -a 2)…(x -a 8)+x [(x -a 1)(x -a 2)…(x -a 8)]′, 所以f ′(0)=a 1a 2…a 8=(a 1a 8)4=84=212.思维升华 (1)求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导.(2)抽象函数求导,恰当赋值是关键,然后活用方程思想求解.跟踪训练1(1)函数y =sin2x 的导数y ′等于()A .2B .cos2C .2cos2xD .2sin2x 答案C解析y =sin2x =2sin x ·cos x ,y ′=2cos x ·cos x +2sin x ·(-sin x ) =2cos 2x -2sin 2x =2cos2x .(2)若函数f (x ),g (x )满足f (x )+xg (x )=x 2-1,且f (1)=1,则f ′(1)+g ′(1)等于() A .1 B .2 C .3 D .4 答案C解析当x =1时,f (1)+g (1)=0, ∵f (1)=1,得g (1)=-1,原式两边求导,得f ′(x )+g (x )+xg ′(x )=2x , 当x =1时,f ′(1)+g (1)+g ′(1)=2, 得f ′(1)+g ′(1)=2-g (1)=2-(-1)=3. 题型二 导数的几何意义 命题点1求切线方程例2(1)(2021·全国甲卷)曲线y =2x -1x +2在点(-1,-3)处的切线方程为. 答案5x -y +2=0解析y ′=⎝ ⎛⎭⎪⎫2x -1x +2′=2(x +2)-(2x -1)(x +2)2=5(x +2)2,所以y ′|x =-1=5(-1+2)2=5,所以切线方程为y +3=5(x +1),即5x -y +2=0.(2)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l的方程为. 答案x -y -1=0解析∵点(0,-1)不在曲线f (x )=x ln x 上, ∴设切点为(x 0,y 0). 又f ′(x )=1+ln x ,∴直线l 的方程为y +1=(1+ln x 0)x . ∴由⎩⎨⎧y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得x 0=1,y 0=0.∴直线l 的方程为y =x -1,即x -y -1=0. 命题点2求参数的值(范围)例3(1)(2022·西安模拟)直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2),则2a +b 等于()A .4B .3C .2D .1 答案A解析∵直线y =kx +1与曲线f (x )=a ln x +b 相切于点P (1,2), 将P (1,2)代入y =kx +1, 可得k +1=2,解得k =1, ∵f (x )=a ln x +b ,∴f ′(x )=a x,由f ′(1)=a1=1,解得a =1,可得f (x )=ln x +b , ∵P (1,2)在曲线f (x )=ln x +b 上, ∴f (1)=ln1+b =2,解得b=2,故2a+b=2+2=4.(2)已知曲线f(x)=13x3-x2-ax+1存在两条斜率为3的切线,则实数a的取值范围是________.答案(-4,+∞)解析f′(x)=x2-2x-a,依题意知x2-2x-a=3有两个实数解,即a=x2-2x-3=(x-1)2-4有两个实数解,∴y=a与y=(x-1)2-4的图象有两个交点,∴a>-4.教师备选1.已知曲线f(x)=x3-x+3在点P处的切线与直线x+2y-1=0垂直,则P点的坐标为()A.(1,3) B.(-1,3)C.(1,3)或(-1,3) D.(1,-3)答案C解析设切点P(x0,y0),f′(x)=3x2-1,又直线x+2y-1=0的斜率为-1 2,∴f′(x0)=3x20-1=2,∴x20=1,∴x0=±1,又切点P(x0,y0)在y=f(x)上,∴y0=x30-x0+3,∴当x0=1时,y0=3;当x0=-1时,y0=3.∴切点P为(1,3)或(-1,3).2.(2022·哈尔滨模拟)已知M是曲线y=ln x+12x2+(1-a)x上的任一点,若曲线在M点处的切线的倾斜角均是不小于π4的锐角,则实数a的取值范围是()A.[2,+∞) B.[4,+∞) C.(-∞,2] D.(-∞,4] 答案C解析因为y=ln x+12x2+(1-a)x,所以y′=1x+x+1-a,因为曲线在M点处的切线的倾斜角均是不小于π4的锐角,所以y′≥tan π4=1对于任意的x>0恒成立,即1x+x+1-a≥1对任意x>0恒成立,所以x+1x≥a,又x+1x≥2,当且仅当x=1 x ,即x=1时,等号成立,故a≤2,所以a的取值范围是(-∞,2].思维升华(1)处理与切线有关的参数问题,关键是根据曲线、切线、切点的三个关系列出参数的方程:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上. (2)注意区分“在点P 处的切线”与“过点P 处的切线”.跟踪训练2(1)(2022·南平模拟)若直线y =x +m 与曲线y =e xe 2n 相切,则()A .m +n 为定值B.12m +n 为定值C .m +12n 为定值D .m +13n 为定值答案B解析设直线y =x +m 与曲线y =e x e 2n 切于点002e (,)e x n x ,因为y ′=e x e 2n ,所以02e e x n =1,所以x 0=2n ,所以切点为(2n ,1),代入直线方程得1=2n +m ,即12m +n =12.(2)若函数f (x )=ln x +2x 2-ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是. 答案[2,+∞)解析直线2x -y =0的斜率k =2,又曲线f (x )上存在与直线2x -y =0平行的切线, ∴f ′(x )=1x+4x -a =2在(0,+∞)内有解,则a =4x +1x-2,x >0.又4x +1x≥24x ·1x=4,当且仅当x =12时取“=”.∴a ≥4-2=2.∴a 的取值范围是[2,+∞). 题型三 两曲线的公切线例4(1)(2022·驻马店模拟)已知函数f (x )=x ln x ,g (x )=x 2+ax (a ∈R ),直线l 与f (x )的图象相切于点A (1,0),若直线l 与g (x )的图象也相切,则a 等于() A .0B .-1C .3D .-1或3 答案D解析由f (x )=x ln x 求导得f ′(x )=1+ln x ,则f ′(1)=1+ln1=1,于是得函数f (x )在点A (1,0)处的切线l 的方程为y =x -1, 因为直线l 与g (x )的图象也相切,则方程组⎩⎨⎧y =x -1,g (x )=x 2+ax ,有唯一解,即关于x 的一元二次方程x 2+(a -1)x +1=0有两个相等的实数根, 因此Δ=(a -1)2-4=0,解得a =-1或a =3, 所以a =-1或a =3.(2)若函数f (x )=x 2-1与函数g (x )=a ln x -1的图象存在公切线,则正实数a 的取值范围是()A .(0,e)B .(0,e]C .(0,2e)D .(0,2e] 答案D解析f (x )=x 2-1的导函数f ′(x )=2x ,g (x )=a ln x -1的导函数为g ′(x )=a x. 设切线与f (x )相切的切点为(n ,n 2-1),与g (x )相切的切点为(m ,a ln m -1), 所以切线方程为y -(n 2-1)=2n (x -n ),y -(a ln m -1)=am(x -m ),即y =2nx -n 2-1,y =a mx -a +a ln m -1.所以⎩⎨⎧2n =a m ,n 2+1=a +1-a ln m ,所以a 24m 2=a -a ln m ,由于a >0,所以a4m 2=1-ln m , 即a4=m 2(1-ln m )有解即可. 令h (x )=x 2(1-ln x )(x >0),h ′(x )=x (1-2ln x ),所以h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减,最大值为h (e)=e2,当0<x <e 时,h (x )>0, 当x >e 时,h (x )<0, 所以0<a 4≤e2,所以0<a ≤2e.所以正实数a 的取值范围是(0,2e].教师备选1.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于()A .1B .2C .3D .3或-1 答案D解析设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x=1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和g (x )=x 2+ax 也相切, 故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3. 2.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)等于()A .-1B .-2C .1D .2 答案B解析已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1), 即y =1e x x -1e x x 1+1e x ,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得⎩⎨⎧1ex =1x 2,1ex -1e x x 1=-1+ln x 2,得x 2=11ex , 1e x -1e x x 1=-1+ln x 2=-1+ln11e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11ex , 所以x 2=x 1-1x 1+1, 所以x 2-1=x 1-1x 1+1-1=-2x 1+1, 所以(x 1+1)(x 2-1)=-2.思维升华 公切线问题,应根据两个函数在切点处的斜率相等,且切点既在切线上又在曲线上,列出有关切点横坐标的方程组,通过解方程组求解.或者分别求出两函数的切线,利用两切线重合列方程组求解.跟踪训练3(1)(2022·雅安模拟)已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点,且在公共点处切线相同,则m 的值为() A .2 B .5 C .1 D .0 答案C解析根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0, 由f (x )=-2x 2+m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a , 由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a-1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a-1,解得a =1或a =-34(舍去),又由g (1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f (x )=-2x 2+m , 可得m =1.(2)不与x 轴重合的直线l 与曲线f (x )=x 3和y =x 2均相切,则l 的斜率为________. 答案6427解析设直线l 与曲线f (x )=x 3相切的切点坐标为(x 0,x 30),f ′(x )=3x 2,则f ′(x 0)=3x 20,则切线方程为y =3x 20x -2x 30,因为不与x 轴重合的直线l 与曲线y =x 3和y =x 2均相切, 则⎩⎨⎧y =3x 20x -2x 30,y =x 2,得x 2-3x 20x +2x 30=0,Δ=9x 40-8x 30=0,得x 0=0(舍去)或x 0=89,所以l 的斜率为3x 20=6427. 课时精练1.(2022·阳江模拟)下列函数的求导正确的是()A .(x -2)′=-2xB .(x cos x )′=cos x -x sin xC .(ln10)′=110D .(3x )′=3x 答案B解析(x -2)′=-2x -3,∴A 错; (x cos x )′=cos x -x sin x ,∴B 对;(ln10)′=0,∴C错;(3x)′=3x·ln3,∴D错.2.已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()答案B解析由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率先增大后减小.3.(2022·黑龙江哈师大附中月考)曲线y=2cos x+sin x在(π,-2)处的切线方程为() A.x-y+π-2=0 B.x-y-π+2=0C.x+y+π-2=0 D.x+y-π+2=0答案D解析y′=-2sin x+cos x,当x=π时,k=-2sinπ+cosπ=-1,所以在点(π,-2)处的切线方程,由点斜式可得y+2=-1×(x-π),化简可得x+y-π+2=0.4.(2022·兴义模拟)已知y=f(x)是可导函数,如图,直线y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g′(x)是g(x)的导函数,则g′(3)等于()A .-1B .0C .2D .4 答案B解析由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13,∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ), ∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1, ∴g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.5.设曲线f (x )=a e x +b 和曲线g (x )=cos x +c 在它们的公共点M (0,2)处有相同的切线,则b +c -a 的值为() A .0B .πC.-2D .3 答案D解析∵f ′(x )=a e x ,g ′(x )=-sin x , ∴f ′(0)=a ,g ′(0)=0,∴a =0, 又M (0,2)为f (x )与g (x )的公共点, ∴f (0)=b =2,g (0)=1+c =2,解得c =1, ∴b +c -a =2+1-0=3.6.已知点A是函数f(x)=x2-ln x+2图象上的点,点B是直线y=x上的点,则|AB|的最小值为()A. 2 B.2 C.433D.163答案A解析当与直线y=x平行的直线与f(x)的图象相切时,切点到直线y=x的距离为|AB|的最小值.f′(x)=2x-1x=1,解得x=1或x=-12(舍去),又f(1)=3,所以切点C(1,3)到直线y=x的距离即为|AB|的最小值,即|AB|min=|1-3|12+12= 2.7.已知函数f(x)的图象如图,f′(x)是f(x)的导函数,设a=f(3)-f(2),则下列结论正确的是()A.f′(2)<f′(3)<aB.f′(2)<a<f′(3)C.f′(3)<a<f′(2)D.a<f′(3)<f′(2)答案C解析a=f(3)-f(2)=f(3)-f(2)3-2,∴a 表示曲线上两点A (2,f (2)),B (3,f (3))连线的斜率, 由图知,曲线切线的斜率越来越小, ∴f ′(3)<a <f ′(2).8.(2022·固原模拟)设点P 是函数f (x )=2e x -f ′(0)x +f ′(1)图象上的任意一点,点P 处切线的倾斜角为α,则角α的取值范围是() A.⎣⎢⎡⎭⎪⎫0,3π4 B.⎣⎢⎡⎭⎪⎫0,π2∪⎝⎛⎭⎪⎫3π4,π C.⎝ ⎛⎭⎪⎫π2,3π4 D.⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π 答案B解析∵f (x )=2e x -f ′(0)x +f ′(1), ∴f ′(x )=2e x -f ′(0),∴f ′(0)=2-f ′(0),f ′(0)=1, ∴f (x )=2e x -x +f ′(1), ∴f ′(x )=2e x -1>-1.∵点P 是曲线上的任意一点,点P 处切线的倾斜角为α, ∴tan α>-1. ∵α∈[0,π),∴α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫3π4,π. 9.已知函数y =f (x )的图象在x =2处的切线方程是y =3x +1,则f (2)+f ′(2)=________. 答案10解析切点坐标为(2,f (2)),∵切点在切线上,∴f (2)=3×2+1=7, 又k =f ′(2)=3,∴f (2)+f ′(2)=10.10.(2022·四川天府名校联考)若曲线f (x )=x cos x 在x =π处的切线与直线ax -y +1=0平行,则实数a =. 答案-1解析因为f (x )=x cos x , 所以f ′(x )=cos x -x sin x ,f ′(π)=cosπ-π·sinπ=-1,因为函数在x =π处的切线与直线ax -y +1=0平行,所以a =f ′(π)=-1. 11.已知函数f (x )=1ax -1+e x cos x ,若f ′(0)=-1,则a =. 答案2解析f ′(x )=-(ax -1)′(ax -1)2+e x cos x -e x sin x =-a (ax -1)2+e x cos x -e xsin x ,∴f ′(0)=-a +1=-1,则a =2.12.已知函数f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),若曲线y =f (x )存在两条垂直于y 轴的切线,则a 的取值范围为. 答案(-∞,-1)∪(3,+∞)解析因为f (x )=x 3-ax 2+⎝ ⎛⎭⎪⎫23a +1x (a ∈R ),所以f ′(x )=3x 2-2ax +23a +1,因为曲线y =f (x )存在两条垂直于y 轴的切线, 所以关于x 的方程f ′(x )=3x 2-2ax +23a +1=0有两个不等的实根, 则Δ=4a 2-12⎝ ⎛⎭⎪⎫23a +1>0,即a 2-2a -3>0,解得a >3或a <-1,所以a 的取值范围是(-∞,-1)∪(3,+∞).13.已知f 1(x )=sin x +cos x ,f n +1(x )是f n (x )的导函数,即f 2(x )=f 1′(x ),f 3(x )=f 2′(x ),…,f n +1(x )=f n ′(x ),n ∈N *,则f 2023(x )等于()A .-sin x -cos xB .sin x -cos xC .-sin x +cos xD .sin x +cos x答案A解析∵f 1(x )=sin x +cos x ,∴f 2(x )=f 1′(x )=cos x -sin x ,f 3(x )=f 2′(x )=-sin x -cos x ,f 4(x )=f 3′(x )=-cos x +sin x ,f 5(x )=f 4′(x )=sin x +cos x ,∴f n (x )的解析式以4为周期重复出现,∵2023=4×505+3,∴f 2023(x )=f 3(x )=-sin x -cos x .14.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则()A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案D解析方法一设切点(x 0,y 0),y 0>0,则切线方程为y -b =0e x (x -a ),由⎩⎨⎧ y 0-b =0e x (x 0-a ),y 0=0e x ,得0e x (1-x 0+a )=b ,则由题意知关于x 0的方程0e x (1-x 0+a )=b 有两个不同的解.设f (x )=e x (1-x +a ),则f ′(x )=e x (1-x +a )-e x =-e x (x -a ),由f ′(x )=0得x =a ,所以当x <a 时,f ′(x )>0,f (x )单调递增,当x >a 时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (a )=e a (1-a +a )=e a ,当x <a 时,a -x >0,所以f (x )>0,当x →-∞时,f (x )→0,当x →+∞时,f (x )→-∞,函数f (x )=e x (1-x +a )的大致图象如图所示,因为f (x )的图象与直线y =b 有两个交点,所以0<b <e a .方法二(用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .15.(2022·重庆沙坪坝区模拟)若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=[f ′(x )]′.若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在⎝⎛⎭⎪⎫0,3π4上是凸函数的是________.(填序号)①f (x )=-x 3+3x +4;②f (x )=ln x +2x ;③f (x )=sin x +cos x ;④f (x )=x e x .答案①②③解析对①,f (x )=-x 3+3x +4, f ′(x )=-3x 2+3,f ″(x )=-6x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故①为凸函数; 对②,f (x )=ln x +2x ,f ′(x )=1x+2, f ″(x )=-1x 2, 当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故②为凸函数; 对③,f (x )=sin x +cos x , f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x =-2sin ⎝ ⎛⎭⎪⎫x +π4,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )<0,故③为凸函数; 对④,f (x )=x e x ,f ′(x )=(x +1)e x , f ″(x )=(x +2)e x ,当x ∈⎝⎛⎭⎪⎫0,3π4时,f ″(x )>0,故④不是凸函数. 16.已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为____________________.答案y =e x 或y =x +1解析设直线l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x ,∴切点为(x 1,1e x ),切线斜率k =1e x ,∴切线方程为y -1e x =1e x (x -x 1),即y =1e x ·x -x 11e x +1e x , ①同理设直线l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x, ∴g ′(x 2)=1x 2, 切点为(x 2,ln x 2+2),切线斜率k =1x 2, ∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1, ②由题意知,①与②相同,∴⎩⎨⎧ 1e x =1x 2⇒x 2=1e x -,③-x 11e x +1e x =ln x 2+1,④把③代入④有-x 11e x +1e x =-x 1+1, 即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.。

高二数学复习典型题型与知识点专题讲解14---导数的概念及其意义+导数的运算(解析版)

高二数学复习典型题型与知识点专题讲解14---导数的概念及其意义+导数的运算(解析版)

高二数学复习典型题型与知识点专题讲解14 导数的概念及其意义+导数的运算一、典例精析拓思维(名师点拨) 知识点1 变化率与导数 知识点2 导数几何意义 知识点3 导数的四则运算 知识点4 复合函数求导 二、题型归类练专练一、典例精析拓思维(名师点拨)知识点1 变化率与导数例1.(2021·江苏·高二专题练习)函数()221y f x x ==-在区间[]1,1x +∆上的平均变化率yx∆∆等于( ).A .4B .42x +∆C .()242x +∆D .4x 【答案】B 【详解】因函数()221y f x x ==-,则()f x 在区间[]1,1x +∆上的函数增量y ∆有:()()()()()22112112142y f x f x x x ∆=+∆-+∆---=∆+∆=,于是有42yx x∆=+∆∆, 所以所求平均变化率yx∆∆等于42x +∆.故选:B练习1-1.(2021·江苏·高二专题练习)已知函数()224f x x =-的图象上一点()1,2-及邻近一点()1,2x y +∆-+∆,则yx∆=∆( ) A .4B .4x ∆C .42x +∆D .()242x +∆ 【答案】C 【详解】解:∵()()()()()22112142424y f x f x x x ∆=+∆-=+∆---=∆+∆,∴24yx x∆=∆+∆, 故选:C .名师点评:平均变化率函数()y f x =从1x 到2x 的平均变化率是2121()()f x f x y x x x -∆=∆-. 例2.(2021·全国·高二课时练习)已知函数()f x 在0x 处的导数为0()f x ',则()()000lim x f x m x f x x∆→-∆-∆等于( )A .0()mf x 'B .0()mf x '-C .0(1)f m x -'D .01()f x m' 【答案】B 【详解】因为函数()f x 在0x 处的导数为0()f x ', 所以()()0000im)l (x f x m x f f x x x m ∆→-∆-'=-∆,所以()()()()0000000liml ()imx x f x m x f x f x m x f x m xxf m x m ∆→∆→-∆--∆-=-=-∆-'∆,故选:B.练习2-1.(2021·山西·晋城市第一中学校高二阶段练习)设()f x 为可导函数,且当0x ∆→时,()()1112f f x x--∆→-∆,则曲线()y f x =在点()() 1,1f 处的切线斜率为( )A .2B .1-C .1D .2- 【答案】D 【详解】解:由导数的几何意义,点()() 1,1f 处的切线斜率为(1)f ', 因为0x ∆→时,()()1112f f x x--∆→-∆,所以()()()()11(1)liml 11222imx x f f x f f x xxf ∆→∆→--∆--∆='=-∆∆=,所以在点()() 1,1f 处的切线斜率为2-, 故选:D.名师点评:瞬时变化率函数()y f x =在0x x =处的瞬时变化率0000()()lim lim x x f x x f x yx x ∆→∆→+∆-∆=∆∆. 在实际解题时要注意00()()f x x f x +∆-中两()中的量做差得到的结果才是分母中的x ∆.如在例2()()0000lim()x f x m x f x f x x∆→-∆-'≠∆,在该式中,分子两()中的量作差后得到的()()00x m x x m x -∆-=-∆,所以()()0000lim ()x f xm x f x f x m x∆→-∆-'=-∆,所以在题目中的分母要凑配常数,即:()()()()()000000lim()lim()x x m m f x m x f x f x m x f x f x xxm ∆→∆→---∆--∆-'=∆-=∆.知识点2 导数几何意义例1.(2021·全国·高二单元测试)如图,函数()y f x =的图象在点(2,)P y 处的切线是l ,则(2)(2)f f '+=( )A .-3B .-2C .2D .1 【答案】D 【详解】解:由题图可得函数()y f x =的图象在点P 处的切线与x 轴交于点(4,0),与y 轴交于点(0,4),则切线:4l x y +=,(2)2f ∴=,(2)1f '=-,(2)(2)211f f '+=-=,故选:D.练习1-1.(2021·全国·高二单元测试)已知()y f x =的图象如图所示,则()A f x '与()B f x '的大小关系是( ) A .()()A B f x f x ''> B .()()A B f x f x ''= C .()()A B f x f x ''<D .()A f x '与()B f x '大小不能确定 【答案】A 【详解】根据题意,由图象可得f (x )在x =x A 处切线的斜率大于在x =x B 处切线的斜率, 则有()()A B f x f x ''>; 故选:A名师点评:函数()y f x =在0x x =处的导数0()f x '的几何意义是在曲线()y f x =上点00(,)P x y 处的切线的斜率(0()k f x '=).例2.(2021·陕西汉中·一模(理))已知函数3C :()ln f x x x =+,则曲线在点(1,(1))f 处的切线方程为___________. 【答案】430x y --= 【详解】解:因为21()3f x x x'=+, 所以(1)4k f '==, 又(1)1,f =故切线方程为14(1)y x -=-, 整理为430x y --=, 故答案为:430x y --=练习2-1.(2021·四川成都·一模(文))曲线()3f x x x =-在点(2,6)处的切线方程为_______.【答案】11160x y --= 【详解】因为()3f x x x =-,所以()231f x x '=-,()211f '=所以切线方程为()6112y x -=-,即11160x y --= 故答案为:11160x y --=名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时需另设切点求解.如本例2,求函数3C :()ln f x x x =+,在点(1,(1))f 处的切线方程,此时切点为(1,(1))f ,只需求出斜率(1)k f '=.例3.(2021·河南·南阳中学高三阶段练习(文))曲线()ln 3f x x =+的过点()1,1-的切线方程为________.【答案】20x y -+= 【详解】设切点坐标为()00,ln 3x x +,()1f x x'=,()001f x x '∴=,∴切线方程为()0001ln 3y x x x x --=-, 切线过点()1,1-,()00011ln 31x x x ∴--=--, 化简得:0011ln x x +=,解得:01x =, ∴切线方程为2y x =+,即20x y -+=.故答案为:20x y -+=.练习3-1.(2021·全国·高二课时练习)已知函数()32698f x x x x =-+-+,则过点()0,0可作曲线()y f x =的切线的条数为___________.【答案】2 【详解】∵点()0,0不在函数()y f x =的图象上,∴点()0,0不是切点,设切点为()320000,698P x x x x -+-+(00x ≠),由()32698f x x x x =-+-+,可得()23129'=-+-f x x x ,则切线的斜率()20003129k f x x x '==-+-,∴3220000006983129x x x x x x -+-+-+-=,解得01x =-或02x =,故切线有2条. 故答案为:2名师点评:曲线求切线问题可分为两类:①在点00(,)P x y 处的切线,此时00(,)P x y 为切点;②过点00(,)P x y 处的切线方程,此时无论00(,)P x y 是否在曲线上,都需另设切点求解.如本例3,求曲线()ln 3f x x =+的过点()1,1-的切线方程,此时应设切点00(,)P x y ,在利用导数0()k f x '=,求出切线方程,再利用()1,1-在切线上,求出切点00(,)P x y ,从而求出切线方程.注意和例题2做对比.知识点3 导数的四则运算例1.(2021·江苏·高二专题练习)求下列函数的导数;(1)32235y x x =-+(2)22log xy x =+(3)31sin x y x-=(4)sin sin cos x y x x =+【答案】(1)266y x x '=- (2)12ln 2ln 2x y x '=+(3)()2323sin cos 1sin x x x x y x--'=(4)11sin 2y x'=+(1)解:因为32235y x x =-+,所以266y x x '=-; (2)解:因为22log xy x =+,所以12ln 2ln 2x y x '=+; (3)解:因为31sin x y x -=,所以()()()()()3323221sin sin 13sin cos 1sin sin x x x x x x x x y x x ''-----'== (4) 解:因为sin sin cos xy x x=+,所以()()()()()()()22sin sin cos sin cos sin cos sin cos cos sin sin 11sin 2sin cos sin cos x x x x x x x x x x x x y x x x x x ''+-++--'===+++练习1-1.(2021·全国·高二课时练习)已知函数()f x 的导数为()f x ',而且()()232ln f x x xf x '=++,求()2f '. 【答案】94-【详解】()()1232f x x f x ''=++,()()124322f f ''∴=++,解得:()924f '=-.名师点评:导数的运算法则: (1)[()()]()()f x g x f x g x '''±=±(2)[()()]()()()()f x g x f x g x f x g x '''⋅=⋅+⋅ (3)2()()()()()[](()0)()()f x f xg x f x g x g x g x g x ''⋅-⋅'=≠ 知识点4 复合函数求导例1.(2021·全国·高二课时练习)求下列函数的导数.(1)()sin 23y x =+;(2)21e x y -+=;(3)()22log 21y x =-.【答案】(1)()2cos 23x +(2)212e x -+-(3)()2421ln 2xx -⋅(1)函数()sin 23y x =+可以看作函数sin y u =和23u x =+的复合函数,由复合函数的求导法则可得()()()sin 23cos 22cos 2cos 23x u x y y u u x u u x ''⋅'''=⋅=+=⋅==+. (2)函数21e x y -+=可以看作函数u y e =和21u x =-+的复合函数, 由复合函数的求导法则可得()()()21e 21e 22eu u x x u x y y u x -+''''=⋅=⋅-+=⋅-=-'. (3)函数()22log 21y x =-可以看作函数2log y u =和221u x =-的复合函数,由复合函数的求导法则可得()2144ln 221ln 2x u x xy y u x u x '''=⋅=⋅=-⋅.练习1-1.(2021·全国·高二课时练习)求下列函数的导数: (1)7(35)y x =+;(2)57e x y -=;(3)ln(4)y x =-+;(4)213x y -=;(5)sin 26y x π⎛⎫=- ⎪⎝⎭;(6)34(35)y x =-.【答案】(1)621(35)y x '=+(2)57e 5x y -'=(3)14y x '=- (4)212ln 33x y -'=⨯(5)2cos 26y x π⎛⎫'=- ⎪⎝⎭(6)149(35)4x y --'= (1)667(35)(35)21(35)y x x x ''=+⨯+=+;(2)5757e e (57)5x x x y --'⨯'=-=;(3) 11(4)44y x x x ''=⨯-+=-+- (4)1212ln 3(21)2ln 333x x x y --'⨯-=⨯'=;(5)cos 2(2)2cos 2666y x x x πππ⎛⎫⎛⎫''=-⨯-=- ⎪ ⎪⎝⎭⎝⎭(6)314149(33(35)45)(35)4x y x x --'=---'=⨯.名师点评:复合函数(())y f g x =的导数和函数()y f μ=,()g x μ=的导数间的关系为x x y y μμ'''=⋅,即y 对x 的导数等于y 对μ的导数与μ对x 的导数的乘积.二、题型归类练专练一、单选题1.(2021·全国·高二课时练习)函数()2f x x =在1x =附近(即从1到1x +∆之间)的平均变化率是( )A .2x +∆B .2x -∆C .2D .22()x +∆ 【答案】C 【详解】Δy =f (1+Δx )-f (1)=2(1+Δx )-2=2Δx . 所以2 2.y x x x∆∆==∆∆ 故选:C2.(2021·全国·高一课时练习)函数2()1f x x =+,当自变量x 由1变到1.1时,函数()f x 的平均变化率为( ) A .2.1B .1.1C .2D .1 【答案】A 【详解】由题意,函数的平均变化率为:()()221.11 1.112.11.110.1f f --==-. 故选:A.3.(2021·江苏·高二专题练习)函数()12f x x=在2x =处的导数为( ) A .2B .12C .14D .18- 【答案】D 【详解】()()()()000011222222111lim lim lim lim 2428x x x x f x f x f x x x x x ∆→∆→∆→∆→-∆+∆-+∆⨯⎛⎫===-⋅=- ⎪∆∆∆+∆⎝⎭,所以函数()f x 在2x =处的导数为18-.故选:D.4.(2021·江苏·高二专题练习)设函数()f x 在0x x =附近有定义,且有()()()002f x f x x b x x a +-=+∆∆∆,其中a ,b 为常数,则( ) A .()f x a '=B .()f x b '=C .()0f x a '=D .()0f x b '=【答案】C【详解】因为()()()002f x f x x b x x a +-=+∆∆∆,所以()()00f x x f x a b x x+∆-=+∆∆,则()()()0000lim lim x x f x x f x a b x a x∆→∆→+∆-=+∆=∆,即()0f x a '=. 故选:C.5.(2021·全国·高二课时练习)已知曲线y =13x 3上一点P 82,3⎛⎫ ⎪⎝⎭,则该曲线在P 点处切线的斜率为( )A .4B .2C .-4D .8【答案】A【详解】3322200011()133lim lim lim 33()3x x x x x x y y x x x x x x x ∆→∆→∆→+∆-∆'⎡⎤===+⋅∆+∆=⎣⎦∆∆ 故y ′=x 2,y ′|x =2=22=4,结合导数的几何意义知,曲线在P 点处切线的斜率为4.故选:A6.(2021·河南·温县第一高级中学高三阶段练习(文))已知函数2()ln 2f x x m x x =-+的图象在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线与直线20x y +=垂直,则m =( ) A .54B .54-C .12D .12- 【答案】C【详解】函数2()ln 2f x x m x x =-+的导数为()22m f x x x'=-+, 可得在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为1322f m ⎛⎫=⎪⎭'- ⎝, 又切线与直线20x y +=垂直,所以()13212m -⋅-=-,解得12m =. 故选:C .7.(2021·四川·树德中学高三期中(文))设函数()()ln f x g x x x =++,曲线()y g x =在点1,1g 处的切线方程为21y x =+,则曲线()y f x =在点()()1,1f 处的切线方程为( )A .4y x =B .48=-y xC .22y x =+D .21y x =+【答案】A【详解】因为曲线()y g x =在点(1,(1))g 处的切线方程为21y x =+,所以(1)3(1)2g g =⎧⎨='⎩, 因为()()ln =++f x g x x x ,则1()()1f x g x x''=++,所以1(1)(1)141f g ''=++=, 且(1)(1)1ln14f g =++=,因此曲线()y f x =在点(1,(1))f 处的切线方程为()441y x -=-,即4y x =,故选:A.8.(2021·江苏·扬州中学高二阶段练习)已知()()220x f x e xf '=-,则()1f '=( )A .243e -B .2423e -C .ln 2e +D .221e - 【答案】B【详解】()()2e 20x f x xf '=-,则()()22e 20x f x f ''=-,()()0220f f ''=-,()203f '=.()242e 3x f x '=-,()2412e 3f '=-.故选:B二、填空题9.(2021·河南·高二期末(文))已知函数()2e sin x f x x m x =⋅-的图象在0x =处的切线与直线310x y ++=垂直,则实数m =___________.【答案】-1【详解】()2sin x f x x e m x =⋅-的定义域为R ,则()22cos x x f x e x e m x '=+⋅-,则函数在0x =处的切线斜率为1(0)2k f m '==-,又直线310x y ++=的斜率213k =-, 由切线和直线垂直,则121k k ,即1(2)()13m -⨯-=-, 解得1m =-.故答案为:1-10.(2021·山东·高三阶段练习)曲线2()ln(2)f x x x =+在点(1,(1))f 处的切线方程为________.【答案】3ln 22y x =+-【详解】()11()2222f x x x x x x ''=⋅+=+, (1)3k f '∴==,又(1)1ln 2f =+,∴切线方程为(1ln 2)3(1)y x -+=-,即3ln 22y x =+-故答案为:3ln 22y x =+-11.(2021·陕西蒲城·高三期中(理))已知函数()sin cos f x x x x =+,则()f π'-=_____.【答案】π【详解】由()sin cos f x x x x =+求导得:()sin cos sin cos f x x x x x x x '=+-=,于是得()cos()f ππππ'-=--=,所以()f ππ'-=.故答案为:π12.(2021·云南师大附中高三阶段练习(理))已知函数cos2()1x f x x =+,则曲线()y f x =在点(0,(0))f 处的切线方程为____________.【答案】+10x y -=【详解】解:由题,得()()()22sin 21cos 21x x x f x x -⋅+-=+',则(0)1f '=-,而(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y x -=-,即10x y +-=.故答案为:+10x y -=.三、解答题13.(2021·山西·芮城中学高二阶段练习)已知曲线3S 2y x x =-:(1)求曲线S 在点(2,4)A 处的切线方程;(2)求过点(1,1)B -并与曲线S 相切的直线方程.【答案】(1)10160x y --=(2)20x y --=或5410x y +-=(1)∵32y x x =-,则232y x '=-,∴当2x =时,10y '=,∴点A 处的切线方程为:()4102y x -=-,即10160x y --=.(2)设()3000,2P x x x -为切点,则切线的斜率为()20032f x x '=-,故切线方程为:()()()320000232y x x x x x --=--, 又知切线过点()1,1-,代入上述方程()()()32000012321x x x x ---=--,解得01x =或012x =-, 故所求的切线方程为20x y --=或5410x y +-=.14.(2021·北京市第十五中学南口学校高三期中)已知函数321()33f x x x x =--,求曲线()y f x =在1x =处的切线的方程. 【答案】143y x =-+ 因为321()33f x x x x =--,所以111(1)1333f =--=-,2()23f x x x '=-- 所以(1)1234f '=--=-所以曲线()y f x =在1x =处的切线的方程为()11413y x +=--,即143y x =-+。

导数的基本公式14个推导

导数的基本公式14个推导

导数的基本公式14个推导导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。

导数的基本公式有14个,它们可以通过推导得出。

在本文中,我们将简要介绍这些基本公式。

1. 常数函数的导数:对于任何常数c,常数函数f(x) = c的导数为0。

这是因为常数函数的斜率为零,即在任何点上它的变化率都为零。

2. 幂函数的导数:对于幂函数f(x) = x^n(其中n是常数),它的导数为f'(x) = nx^(n-1)。

这可以通过使用极限和基本的代数运算法则来推导。

3. 指数函数的导数:指数函数f(x) = e^x的导数为f'(x) = e^x。

这个公式的推导中需要使用指数函数的定义和一些性质。

4. 对数函数的导数:对数函数f(x) = ln(x)的导数为f'(x) =1/x。

这个公式可以通过使用指数函数的导数和链式法则来推导。

5. 三角函数的导数:三角函数(包括正弦、余弦和正切函数)的导数可按照以下规律推导得出:- 正弦函数f(x) = sin(x)的导数为f'(x) = cos(x)。

- 余弦函数f(x) = cos(x)的导数为f'(x) = -sin(x)。

- 正切函数f(x) = tan(x)的导数为f'(x) = sec^2(x)。

其中sec(x)表示secant函数,它是余弦函数的倒数。

6. 反三角函数的导数:反三角函数是三角函数的反函数,其导数可以按照以下规律推导得出:- 反正弦函数f(x) = arcsin(x)的导数为f'(x) = 1/√(1-x^2)。

- 反余弦函数f(x) = arccos(x)的导数为f'(x) = -1/√(1-x^2)。

- 反正切函数f(x) = arctan(x)的导数为f'(x) = 1/(1+x^2)。

7. 基本初等函数的求导规则:基本初等函数是由常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数通过有限次的四则运算和复合运算(即求导运算)得到的函数。

导数的概念及运算

导数的概念及运算

导数的概念及运算导数是微积分中的重要概念之一,它描述了函数在某一点上的变化率。

导数的概念在数学和物理学中都有广泛的应用,是解决问题和研究现象的重要工具。

导数的定义可以通过极限来进行解释。

对于函数f(x),如果存在一个常数a,使得当x趋近于a时,函数f(x)与直线L的斜率趋近于一个确定的值,那么这个确定的值就是函数f(x)在点a处的导数。

导数通常用f'(a)或者dy/dx|_(x=a)来表示。

导数的运算规则是微积分中的重要内容之一,它可以帮助我们求解复杂函数的导数。

常见的导数运算规则包括常数法则、幂法则、和法则、差法则、乘法法则、除法法则、复合函数法则等。

常数法则指出,对于任意常数c,其导数为0,即d/dx(c) = 0。

这是因为常数不随x的变化而变化,所以其变化率为0。

幂法则指出,对于任意正整数n和常数c,有d/dx(x^n) =nx^(n-1)。

这是因为幂函数的导数与幂指数有关,且指数减1。

和法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)+g(x)) = d/dx(f(x)) + d/dx(g(x))。

这是因为求导是一个线性运算,可以对每一项分别求导。

差法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)-g(x)) = d/dx(f(x)) - d/dx(g(x))。

这也是因为求导是一个线性运算。

乘法法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)。

这是因为乘法的导数可以通过对每一项分别求导得到。

除法法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)/g(x)) = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2。

这是因为除法的导数可以通过乘法和差法则得到。

复合函数法则指出,对于复合函数y = f(g(x)),其导数可以通过链式法则求得。

高三一轮复习导数的概念、几何意义及导数的计算 (1)

高三一轮复习导数的概念、几何意义及导数的计算 (1)

第十四课时 导数的概念、几何意义及导数的计算考纲要求:1.导数的概念(A) 2.导数的几何意义(B) 3.导数的运算(B)知识梳理:1.导数的概念(1)函数y =f (x )在x =x 0处的导数称函数y =f (x )在x =x 0处的瞬时变化率为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x=x 0,即f ′(x 0)=(2)导数的几何意义函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -y 0=f ′(x 0)·(x -x 0).(3)函数f (x )的导函数称函数f ′(x )=li m Δx →0 f (x +Δx )-f (x )Δx为f (x )的导函数. 2.导数公式及运算法则(1)(2)①[f (x )±g (x )]′=f ′(x )±g ′(x );②[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );③⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 基础训练:1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)f ′(x 0)与[f (x 0)]′表示的意义相同.( )(2)f ′(x 0)是导函数f ′(x )在x =x 0处的函数值.( )(3)曲线的切线不一定与曲线只有一个公共点.( )(4)⎝⎛⎭⎫sin π3′=cos π3.( ) (5)(3x )′=3x ln 3.( )(6)⎝⎛⎭⎫e x +cos π4′=e x .( ) 答案:(1)× (2)√ (3)√ (4)× (5)√ (6)√2.曲线y =sin x +e x 在点(0,1)处的切线方程是________.解析:∵y =sin x +e x ,∴y ′=cos x +e x ,∴y ′x =0=cos 0+e 0=2,∴曲线y =sin x +e x 在点(0,1)处的切线方程为y -1=2(x -0),即2x -y +1=0.答案:2x -y +1=03.求下列函数的导数:(1)y =x n e x ;(2)y =x 3-1sin x. 答案:(1)y ′=e x (nx n -1+x n ).(2)y ′=3x 2sin x -(x 3-1)cos x sin 2x.[典题1] 求下列函数的导数:(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =ln x x; (3)y =tan x ;(4)y =3x e x -2x +e ;解析: (1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x -x =x -12-x 12, ∴y ′=(x -12)′-(x 12)′=-12x -32-12x -12. (2)y ′=⎝⎛⎭⎫ln x x ′=(ln x )′x -x ′ln x x 2=1x ·x -ln x x 2=1-ln x x 2. (3)y ′=⎝⎛⎭⎫sin x cos x ′=(sin x )′cos x -sin x (cos x )′cos 2x=cos x cos x -sin x (-sin x )cos 2x =1cos 2x. (4)y ′=(3x e x )′-(2x )′+e ′=(3x )′e x +3x (e x )′-(2x )′=3x (ln 3)·e x +3x e x -2x ln 2= (ln 3+1)·(3e)x -2x ln 2.小结:导数的运算方法(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幂的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.[典题2](1)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________.(2)已知f (x )=12x 2+2xf ′(2 016)+2 016ln x ,则f ′(2 016)=________. 解析:(1)f ′(x )=a ⎝⎛⎭⎫ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.(2)由题意得f ′(x )=x +2f ′(2 016)+2 016x, 所以f ′(2 016)=2 016+2f ′(2 016)+2 0162 016, 即f ′(2 016)=-(2 016+1)=-2 017.答案:(1)3 (2)-2 017注意:在求导过程中,要仔细分析函数解析式的特点,紧扣法则,记准公式,预防运算错误.练习:1.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)=________.解析:∵f (x )=ax 4+bx 2+c ,∴f ′(x )=4ax 3+2bx .又f ′(1)=2,∴4a +2b =2,∴f ′(-1)=-4a -2b =-2.答案:-22.在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)·(x -a 2)·…·(x -a 8),则f ′(0)的值为________.解析:因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x =(x -a 1)·(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.答案:212导数的几何意义是每年高考的必考内容,考查题型既有填空题,也常出现在解答题的第(1)问中,难度偏小,属中低档题,且主要有以下几个命题角度:角度一:求切线方程[典题3](1)曲线y =e x -ln x 在点(1,e)处的切线方程为________.(2)设曲线y =e x +12ax 在点(0,1)处的切线与直线x +2y -1=0垂直,则实数a =________. (3)已知函数f (x )=x 3-4x 2+5x -4.①求曲线f (x )在点(2,f (2))处的切线方程;②求经过点A (2,-2)的曲线f (x )的切线方程.解析:(1)由于y ′=e -1x,所以y ′x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.(2)∵与直线x +2y -1=0垂直的直线斜率为2,∴f ′(0)=e 0+12a =2,解得a =2. (3)①∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线f (x )在点(2,f (2))处的切线方程为y -(-2)=x -2,即x -y -4=0.②设切点坐标为(x 0,x 30-4x 20+5x 0-4),∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点(x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2), 整理得(x 0-2)2(x 0-1)=0,解得x 0=2或x 0=1,∴经过A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.答案:(1)(e -1)x -y +1=0 (2)2注意:注意区分曲线在某点处的切线和曲线过某点的切线.曲线y =f (x )在点P (x 0,f (x 0))处的切线方程是y -f (x 0)=f ′(x 0)(x -x 0);求过某点的切线方程,需先设出切点坐标,再依据已知点在切线上求解.角度二:求切点坐标[典题4] 设曲线y =e x 在点(0,1)处的切线与曲线y =1x(x >0)上点P 处的切线垂直,则P 的坐标为________.解析: y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x(x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)小结:已知斜率k ,求切点A (x 0,f (x 0)),即解方程f ′(x 0)=k .角度三:求参数的值[典题5](1)若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.(2)已知函数f (x )=ax 3+x +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.(3)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.解析:(1)∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧ m =a ,m =1,即a =1, ∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1.又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1.(2)∵f ′(x )=3ax 2+1,∴f ′(1)=3a +1.又f (1)=a +2,∴切线方程为y -(a +2)=(3a +1)(x -1).∵切线过点(2,7),∴7-(a +2)=3a +1,解得a =1.(3)法一:∵y =x +ln x ,∴y ′=1+1x,y ′x =1=2. ∴曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.∵y =2x -1与曲线y =ax 2+(a +2)x +1相切,∴a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0. 由Δ=a 2-8a =0,解得a =8.法二:同法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).∵y ′=2ax +(a +2),∴y ′x =x 0=2ax 0+(a +2).由⎩⎪⎨⎪⎧ 2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧ x 0=-12,a =8.答案:(1)1 (2)1 (3)8小结:(1)根据导数的几何意义求参数的值时,一般是利用切点P (x 0,y 0)既在曲线上又在切线上构造方程组求解.(2)当切线方程中x (或y )的系数含有字母参数时,则切线恒过定点.总结:1.f ′(x 0)代表函数f (x )在x =x 0处的导数值;(f (x 0))′是函数值f (x 0)的导数,而函数值f (x 0)是一个常数,其导数一定为0,即(f (x 0))′=0.2.对于函数求导,一般要遵循先化简再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用,在实施化简时,首先必须注意变换的等价性,避免不必要的运算失误.3.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.注意:1.曲线y =f (x )“在点P (x 0,y 0)处的切线”与“过点P (x 0,y 0)的切线”的区别:前者P (x 0,y 0)为切点,而后者P (x 0,y 0)不一定为切点.2.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.3.直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.4.曲线未必在其切线的同侧,如曲线y =x 3在其过(0,0)点的切线y =0的两侧.课后作业:1.曲线y =e x 在点A (0,1)处的切线斜率为________.解析:由题意知y ′=e x ,故所求切线斜率k =e x x =0=e 0=1.答案:12.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=________. 解析:∵f ′(x )=-1x 2cos x +1x (-sin x ),∴f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 答案:-3π3.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a 等于________.解析:∵y ′=-1-cos x sin 2x ,∴y ′x =π2=-1,由条件知1a=-1,∴a =-1. 答案:-14.设直线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为________. 解析:设切点坐标为(x 0,ln x 0),则1x 0=12,即x 0=2,∴切点坐标为(2,ln 2),又切点在直线y =12x +b 上,∴ln 2=1+b ,即b =ln 2-1. 答案:ln 2-15.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小值为________.解析:因为定义域为(0,+∞),所以y ′=2x -1x=1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 答案:26.已知函数f (x )=x ln x ,若f ′(x 0)=2,则x 0=________.解析:f ′(x )=ln x +1,由f ′(x 0)=2,即ln x 0+1=2,解得x 0=e.答案:e7.若直线l 与幂函数y =x n 的图象相切于点A (2,8),则直线l 的方程为________. 解析:由题意知,A (2,8)在y =x n 上,∴2n =8,∴n =3,∴y ′=3x 2,直线l 的斜率k =3×22=12,又直线l 过点(2,8).∴y -8=12(x -2),即直线l 的方程为12x -y -16=0.答案:12x -y -16=08.在平面直角坐标系xOy 中,点M 在曲线C :y =x 3-x 上,且在第二象限内,已知曲线C 在点M 处的切线的斜率为2,则点M 的坐标为________.解析:∵y ′=3x 2-1,曲线C 在点M 处的切线的斜率为2,∴3x 2-1=2,x =±1,又∵点M 在第二象限,∴x =-1,∴y =(-1)3-(-1)=0,∴M 点的坐标为(-1,0).答案:(-1,0)9.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x=0,即a =-13x3(x >0),故a ∈(-∞,0). 答案:(-∞,0)10.已知曲线C :f (x )=x 3-ax +a ,若过曲线C 外一点A (1,0)引曲线C 的两条切线,它们的倾斜角互补,则a 的值为________.解析:设切点坐标为(t ,t 3-at +a ).由题意知,f ′(x )=3x 2-a ,切线的斜率k =3t 2-a ①,所以切线方程为y -(t 3-at +a )=(3t 2-a )(x -t ) ②.将点A (1,0)代入②式得-(t 3-at +a )=(3t 2-a )(1-t ),解得t =0或t =32.分别将t =0和t =32代入①式,得k =-a 和k =274-a ,由题意得它们互为相反数,故a =278. 答案:27811.函数f (x )=e x +x 2+x +1与g (x )的图象关于直线2x -y -3=0对称,P ,Q 分别是函数f (x ),g (x )图象上的动点,则|PQ |的最小值为________.解析:因为f (x )与g (x )的图象关于直线2x -y -3=0对称,所以当f (x )与g (x )在P ,Q 处的切线与2x -y -3=0平行时,|PQ |的长度最小.f ′(x )=e x +2x +1,令e x +2x +1=2,得x =0,此时P (0,2),且P 到2x -y -3=0的距离为5,所以|PQ |min =2 5.答案:2512.已知函数f (x )=x ,g (x )=a ln x ,a ∈R .若曲线y =f (x )与曲线y =g (x )相交,且在交点处有相同的切线,则a =________,切线方程为________.解析:f ′(x )=12x,g ′(x )=a x (x >0), 由已知得⎩⎪⎨⎪⎧x =a ln x ,12x=a x ,解得a =e 2,x =e 2, ∴两条曲线交点的坐标为(e 2,e),切线的斜率为k =f ′(e 2)=12e, ∴切线的方程为y -e =12e (x -e 2),即x -2e y +e 2=0.答案:e 2x -2e y +e 2=013.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标. 解:(1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1,∴f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13.∴切线的方程为y +6=13(x -2),即y =13x -32.(2)设切点坐标为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,y 0=x 30+x 0-16,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16.又∵直线l 过原点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, ∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,得切点坐标(-2,-26),k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26).14.设函数y =x 2-2x +2的图象为C 1,函数y =-x 2+ax +b 的图象为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2,对于C 2:y =-x 2+ax +b ,有y ′=-2x +a ,设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直.∴(2x 0-2)·(-2x 0+a )=-1,即4x 20-2(a +2)x 0+2a -1=0,①又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b ,⇒2x 20-(a +2)x 0+2-b =0.②由①②消去x 0,可得a +b =52. 15.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C . (1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3,则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k , 则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧ k ≥-1,-1k≥-1, 解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。

导数的定义与计算方法

导数的定义与计算方法

导数的定义与计算方法导数是微积分中的重要概念之一,用于研究函数的变化率和曲线的切线斜率。

本文将从导数的定义入手,介绍导数的计算方法,并给出一些例题来帮助读者更好地理解和应用导数。

一、导数的定义在数学上,给定一个函数y=f(x),其导数定义为函数在某一点x处的变化率。

导数可以用极限来表示,即:f'(x) = lim Δx→0 (f(x+Δx) - f(x))/Δx其中f'(x)表示函数f(x)在点x处的导数,Δx为自变量的增量。

导数的值可以表示函数在该点的切线斜率,即函数曲线在该点处的速率。

二、导数的计算方法导数的计算方法有多种,下面列举几种常见的:1. 基本导数公式对于常见的基本函数,存在一些导数的基本公式,如:- 常数函数导数为零:d/dx(c) = 0,其中c为常数;- 幂函数导数为功率减一:d/dx(x^n) = nx^(n-1),其中n为常数;- 指数函数导数等于自身:d/dx(e^x) = e^x;- 对数函数导数为倒数:d/dx(ln(x)) = 1/x。

通过应用基本导数公式,可以计算更复杂函数的导数。

2. 导数的四则运算规则对于已知的函数f(x)和g(x),导数的四则运算规则如下:- 和差法则:(f(x) ± g(x))' = f'(x) ± g'(x)- 积法则:(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- 商法则:(f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2以上规则为导数的基本运算规则,可以根据需要进行组合和推广。

3. 链式法则如果函数y=f(g(x))是由两个函数复合而成,那么它的导数可以用链式法则来计算。

链式法则可以表示为:d/dx(f(g(x))) = f'(g(x)) * g'(x)通过链式法则,可以求解更复杂的复合函数的导数,进一步扩展了导数的计算方法。

14导数的定义及导数的计算

14导数的定义及导数的计算

第11节 导数的定义及导数的计算 (14)一.知识要点:1.导数的定义:割线1l 的斜率=00()()f x x f x y x x +∆-∆=∆∆,当x ∆ 趋于0时得到()f x 在0x 处切线的斜率:0000()()limlim l x x f x x f x yk x x∆→∆→+∆-∆==∆∆也称()f x 在0x 处的导数。

2.导函数的定义:若()f x 在区间(,)a b 上的每一点x 处都有导数,导数记为()f x ',则0()()()limx f x x f x f x x∆→+∆-'=∆,称()f x '为()f x 的导函数。

3.导数的几何意义:()f x 在0x 处的导数值等于曲线()f x 在点00(,())P x f x 处切线的斜率。

即:0()l k f x '=.4.常见导数公式:0C '= 1()x xααα-'=(sin )cos x x '= (cos )sin x x '=-()ln x x a a a '=()x xe e '= 1(log )ln a x x a '=1(ln )x x'= 5.导数运算法则:(1).[]()()()()f x g x f x g x '''±=±(2)[]()()()()()()f x g x f x g x f x g x '''⋅=⋅+⋅(3)2()()()()()()()f x f x g x f x g x g x g x '''⎡⎤-=⎢⎥⎣⎦6.复合函数求导:(理)(()),(),()y f g x y f u u g x ===设,则()().y f u u x '''=⋅二.考点评析例1.利用导数定义求函数的导数(1)2348y x x =-+ (2)1y x x=+y xl 1l f(x 0)f(x 0+x)yxx 0x 0+xOyxLf(x)P(x 0,f(x 0))o x 0例2.利用公式求导13(1)ln ;x y x =+ 131(2);x y e x x =-+(3)ln y x x =(4)sin ;y x x = 2(5);x y x e =- 1(6);1x y x -=+(7)xe y x= 2(8)(23)(32)y x x =+- (9)()sin(1)y x =-+理21(10)()x y e -+=理例3.(利用导数求切线方程)3(1)-112f x 1600xy x x x =-+=+-求曲线在点(,)处的切线方程.(2)求函数()过点(,)的切线方程.三.学生练习1.如果质点A 按规律32s t =运动。

导数的概念与导数运算考点及题型全归纳

导数的概念与导数运算考点及题型全归纳

第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。

导数公式及导数的运算法则

导数公式及导数的运算法则

导数公式及导数的运算法则导数是微积分中的重要概念,用来描述函数在其中一点处的变化率。

导数公式和导数的运算法则是使用导数进行计算和推导的基本工具。

下面将介绍导数的定义、导数公式以及导数的运算法则。

一、导数的定义对于给定的函数y=f(x),在其中一点x=a处的导数定义如下:f'(a) = lim┬(h→0)⁡(f(a+h)-f(a))/h其中,lim表示极限,h为x在a点的增量。

该定义表明导数表示函数在其中一点处的斜率或变化率。

二、导数的主要公式1.常数的导数公式如果f(x)=c,其中c为常数,则f'(x)=0。

2.幂函数的导数公式如果f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。

3.指数函数的导数公式如果f(x)=e^x,则f'(x)=e^x。

指数函数e^x的导数仍然是e^x。

4.对数函数的导数公式如果f(x) = ln(x),其中ln表示以e为底的对数,则f'(x) = 1/x。

5.三角函数的导数公式- sin函数的导数:f(x) = sin(x),则f'(x) = cos(x)。

- cos函数的导数:f(x) = cos(x),则f'(x) = -sin(x)。

- tan函数的导数:f(x) = tan(x),则f'(x) = sec^2(x),其中sec^2表示secant的平方。

6.反三角函数的导数公式- arcsin函数的导数:f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。

- arccos函数的导数:f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。

- arctan函数的导数:f(x) = arctan(x),则f'(x) = 1/(1+x^2)。

导数具有一些基本的运算法则,可以用于计算复杂函数的导数。

1.常数乘以函数的导数法则如果f(x)的导数是f'(x),则(cf(x))' = cf'(x),其中c为常数。

2022数学课时规范练14导数的概念及运算文含解析

2022数学课时规范练14导数的概念及运算文含解析

课时规范练14 导数的概念及运算基础巩固组1。

已知函数f (x )在x=x 0处的导数为f'(x 0),则lim Δx →0f (x 0-mΔx )-f (x 0)Δx等于( ) A 。

mf’(x 0) B.—mf'(x 0) C 。

-1mf’(x 0)D.1mf’(x 0)2。

函数f (x )=(2e x )2+sin x 的导数是( ) A.f'(x )=4e x+cos xB 。

f'(x )=4e x-cos xC 。

f'(x )=8e 2x+cos x D.f'(x )=8e 2x-cos x 3。

若f’(x 0)=—3,则lim h →0f (x 0+ℎ)-f (x 0-ℎ)ℎ=( )A.—3 B 。

-6C.-9D.-124。

设函数f (x )=ax 3+1。

若f'(1)=3,则a 的值为( ) A 。

0 B.1 C 。

2D.45。

(2020陕西西安中学八模,理5)已知函数f (x )=x 2ln x+1-f'(1)x ,则函数f (x )的图像在点(1,f (1))处的切线斜率为( ) A 。

12B.—12C 。

12—3e D.3e —126.设函数f (x )在R 上可导,f (x )=x 2f’(1)-2x+1,则f (a 2—a+2)与f (1)的大小关系是( ) A 。

f (a 2—a+2)〉f (1) B.f (a 2—a+2)=f (1) C 。

f (a 2—a+2)〈f (1)D.不确定7。

(2019全国3,文7,理6)已知曲线y=a e x +x ln x 在点(1,a e )处的切线方程为y=2x+b ,则( ) A.a=e ,b=—1 B.a=e,b=1 C 。

a=e -1,b=1D.a=e —1,b=—18.(2020北京二中月考,5)直线y=kx —1与曲线y=ln x 相切,则实数k=( ) A.—1 B.1 C 。

导数公式及导数的运算法则

导数公式及导数的运算法则

导数公式及导数的运算法则导数是微积分中的重要概念之一,它描述了函数在其中一点处的变化速率。

导数公式和导数的运算法则是求导过程中常用的工具。

本文将详细介绍导数的公式及运算法则,包括常见的导数公式、基本运算法则、链式法则、求高阶导数、隐函数求导、参数方程求导等。

一、导数公式1.常数的导数公式:若y=c(c为常数),则y'=0。

2.幂函数的导数公式:若y=x^n(n为常数),则y' = nx^(n-1)。

3.指数函数的导数公式:若y=a^x(a为常数且a>0),则y' =a^xlna。

4.对数函数的导数公式:若y=loga(x)(a为常数且a>0,且a≠1),则y' = 1/(xlna)。

5.三角函数的导数公式:若y=sin(x),则y' = cos(x);若y=cos(x),则y' = -sin(x);若y=tan(x),则y' = sec^2(x)。

6.反三角函数的导数公式:若y=arcsinx,则y' = 1/sqrt(1-x^2);若y=arccosx,则y' = -1/sqrt(1-x^2);若y=arctanx,则y' =1/(1+x^2)。

二、导数的基本运算法则1.和差法则:若y=u±v,则y'=u'±v'。

2.数乘法则:若y = cu(c为常数),则y' = cu'。

3.乘积法则:若y = u·v,则y' = u'v + uv'。

4.商法则:若y = u/v,则y' = (u'v - uv')/v^2(v≠0)。

5.复合函数法则(链式法则):若y=f(g(x)),则y'=f'(g(x))·g'(x)。

三、高阶导数高阶导数是指求得导函数后再对导函数求导的过程,常用的高阶导数符号有y''、y''',分别表示二阶导数、三阶导数等。

导数的概念及其计算

导数的概念及其计算
y′ | x x0 , 即 f ′(x0)=
x 0
lim
f ( x0 x) f ( x0 ) . x
(2)导数的几何意义:函数 y=f(x)在点 x0 处的导数 f′(x0),就是曲线 y=f(x)在点 P(x0,y0)处的切线的 斜率 . (3)导数的物理意义:函数 s=s(t)在点 t0 处的导数 s′(t0),就是物体的运动方程为 s=s(t)在时刻 t0 时的 瞬时 速度 v.即 v=s′(t0).
x 0
探究提高 由导数的定义可知,求函数 y=f(x)的导数的 一般方法是: (1)求函数的改变量 Δy=f(x+Δx)-f(x); Δy f(x+Δx)-f(x) (2)求平均变化率Δx= ; Δx Δy y (3)取极限,得导数 lim Δx.
x0
变式训练 1 过曲线 y= f (x)= x3 上两点 P(1,1)和 Q(1+ Δ x,1+Δ y)作曲线的割线, 求出当 Δ x= 0.1 时割线的 斜率,并求曲线在点 P 处切线的斜率.
2.曲线 y=f(x)“在点 P(x0,y0)处的切线”与“过点 P(x0,y0)的切线”的区别与联系 (1)曲线 y=f(x)在点 P(x0,y0)处的切线是指 P 为切点, 切线斜率为 k=f′(x0)的切线,是唯一的一条切线. (2)曲线 y=f(x)过点 P(x0,y0)的切线,是指切线经过 P 点.点 P 可以是切点,也可以不是切点,而且这样的 直线可能有多条.
基础自测 1. 已知函数 f ( x) =13-8 x+ 2 x , 且 f ' ( x0 ) =
2
3 2 4,则 x0 的值为________.
解析
f ' ( x) =-8+2 2x,
f ' ( x0 ) =-8+2 2 x0 =4,∴ x0 =3 2.

高中导数的基本公式14个

高中导数的基本公式14个

高中导数的基本公式14个
高中导数的基本公式是高中数学中需要掌握的基本内容之一,系统
性地掌握这些公式,可以帮助我们更加深入地理解导数的本质和应用。

下面是高中导数的基本公式列表:
一、导数的定义公式
导数的定义公式是利用导数的极限定义来计算导数,公式如下:
f’(x)=lim┬(Δx→0)⁡〖(f(x+Δx)-f(x))/Δx 〗
二、基本导数公式
基本导数公式是我们在计算导数时最基本的公式,它们是:
1.常数函数的导数
(k)’=0
2.幂函数的导数
(x^n)’=n*x^(n-1)
3.指数函数的导数
(a^x)’=a^xlna
4.对数函数的导数
log⁡(a,x)’=1/(xlna)
5.三角函数的导数
sinx’=cosx,cosx’=-sinx,tanx’=sec^2x
三、导数的四则运算公式
导数的四则运算公式是指导数在加减乘除中的运算规则,具体如下:
1.和的导数
(f+g)’=f’+g’
2.差的导数
(f-g)’=f’-g’
3.积的导数
(f*g)’=f’g+fg’
4.商的导数
(f/g)’=(f’g-fg’)/g^2
四、复合函数的导数
复合函数的导数是指由两个简单函数组成的函数对导数的求解,具体如下:
设y=f(u),u=g(x),则y=f(g(x)),则y对x的导数为:
dy/dx=f′(u)·g′(x)
以上就是高中导数的基本公式,自己多加练习,掌握这些公式,将有助于你更加深入地理解导数的本质和应用。

高考数学一轮复习课时过关检测(十四) 导数的概念及运算

高考数学一轮复习课时过关检测(十四)  导数的概念及运算

课时过关检测(十四) 导数的概念及运算A 级——基础达标1.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C 由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)·(x -1),即(e -1)x -y +1=0.2.已知函数f (x )的导函数为f ′(x ),且满足关系式f (x )=x 2+3xf ′(2)+ln x ,则f ′(2)的值等于( )A .-2B .2C .-94D .94解析:选C 因为f (x )=x 2+3xf ′(2)+ln x ,所以f ′(x )=2x +3f ′(2)+1x,所以f ′(2)=2×2+3f ′(2)+12,解得f ′(2)=-94.3.(2021·益阳、湘潭调研)已知函数f (x )在R 上可导,其部分图象如图所示,设错误!=a ,则下列不等式正确的是( )A .f ′(1)<f ′(2)<aB .f ′(1)<a <f ′(2)C .f ′(2)<f ′(1)<aD .a <f ′(1)<f ′(2)解析:选B 由图象可知,在(0,+∞)上,函数f (x )单调递增,且曲线切线的斜率越来越大, ∵错误!=a ,∴易知f ′(1)<a <f ′(2).4.(2021·湖北八校第一次联考)已知曲线C :f (x )=x 3-3x ,直线l :y =ax -3a ,则a =6是直线l 与曲线C 相切的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 因为曲线C :f (x )=x 3-3x ,所以f ′(x )=3x 2-3.设直线l 与曲线C 相切,且切点的横坐标为x 0,则切线方程为y =(3x 20-3)x -2x 30,所以⎩⎪⎨⎪⎧3x20-3=a ,2x30=3a ,解得⎩⎪⎨⎪⎧x0=3,a =6或⎩⎪⎨⎪⎧x0=-32,a =-34,所以a =6是直线l 与曲线C 相切的充分不必要条件,故选A .5.(多选)如图所示的是物体甲、乙在时间0到t 1范围内路程的变化情况,下列说法不正确的是( )A .在0到t 0范围内,甲的平均速度大于乙的平均速度B .在0到t 0范围内,甲的平均速度小于乙的平均速度C .在t 0到t 1范围内,甲的平均速度大于乙的平均速度D .在t 0到t 1范围内,甲的平均速度小于乙的平均速度解析:选ABD 在0到t 0范围内,甲、乙的平均速度都为v =s0t0,故A 、B 错误;在t 0到t 1范围内,甲的平均速度为s2-s0t1-t0,乙的平均速度为s1-s0t1-t0.因为s 2-s 0>s 1-s 0,t 1-t 0>0,所以s2-s0t1-t0>s1-s0t1-t0,故C 正确,D 错误.6.(多选)若函数f (x )的导函数f ′(x )的图象关于y 轴对称,则f (x )的解析式可能为( ) A .f (x )=3cos x B .f (x )=x 3+x C .f (x )=x +1xD .f (x )=e x +x解析:选BC 对于A ,f (x )=3cos x ,其导数f ′(x )=-3sin x ,其导函数为奇函数,图象不关于y 轴对称,不符合题意;对于B ,f (x )=x 3+x ,其导数f ′(x )=3x 2+1,其导函数为偶函数,图象关于y 轴对称,符合题意;对于C ,f (x )=x +1x ,其导数f ′(x )=1-1x2,其导函数为偶函数,图象关于y 轴对称,符合题意;对于D ,f (x )=e x +x ,其导数f ′(x )=e x +1,其导函数不是偶函数,图象不关于y 轴对称,不符合题意.7.(2021·江西南昌一模)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)= .解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e8.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),则曲线g (x )在x =3处的切线方程为 .解析:由题图可知曲线y =f (x )在x =3处的切线斜率等于-13,即f ′(3)=-13.又g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g (3)=3f (3)=3,g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0,则曲线g (x )在x =3处的切线方程为y -3=0.答案:y -3=09.(2021·开封市模拟考试)已知函数f (x )=mx 3+6mx -2e x ,若曲线y =f (x )在点(0,f (0))处的切线与直线4x +y -2=0平行,则m = .解析:f ′(x )=3mx 2+6m -2e x,则f ′(0)=6m -2=-4,解得m =-13.答案:-1310.若函数y =2x 3+1与y =3x 2-b 的图象在一个公共点处的切线相同,则实数b = . 解析:设公共切点的横坐标为x 0,函数y =2x 3+1的导函数为y ′=6x 2,y =3x 2-b 的导函数为y ′=6x ,由图象在一个公共点处的切线相同,可得6x 20=6x 0且1+2x 30=3x 20-b ,解得x 0=0,b =-1或x 0=1,b =0.故实数b =0或-1.答案:0或-111.已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1)求P 0的坐标;(2)若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程. 解:(1)由y =x 3+x -2,得y ′=3x 2+1, 由已知令3x 2+1=4,解得x =±1. 当x =1时,y =0;当x =-1时,y =-4. 又∵点P 0在第三象限, ∴切点P 0的坐标为(-1,-4). (2)∵直线l ⊥l 1,l 1的斜率为4, ∴直线l 的斜率为-14.∵l 过切点P 0,点P 0的坐标为(-1,-4), ∴直线l 的方程为y +4=-14(x +1),即x +4y +17=0.12.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)设P (x 0,y 0)为曲线上任一点,由y ′=1+3x2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x20(x -x 0),即y -⎝⎛⎭⎪⎫x0-3x0=⎝ ⎛⎭⎪⎫1+3x20(x -x 0).令x =0,得y =-6x0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎪⎫0,-6x0.令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪⎪⎪-6x0·|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.B 级——综合应用13.(2021·甘肃、青海、宁夏联考)过点M (-1,0)引曲线C :y =2x 3+ax +a 的两条切线,这两条切线与y 轴分别交于A 、B 两点,若|MA |=|MB |,则a = .解析:设切点坐标为(t,2t 3+at +a ),∵y ′=6x 2+a ,∴6t 2+a =2t3+at +at +1,即4t 3+6t 2=0,解得t =0或t =-32,∵|MA |=|MB |,∴两切线的斜率互为相反数,即2a +6×⎝ ⎛⎭⎪⎫-322=0,解得a =-274. 答案:-27414.(2021·江西五校联考)已知函数f (x )=x +a2x,若曲线y =f (x )存在两条过(1,0)点的切线,则a 的取值范围是 .解析:f ′(x )=1-a2x2,设切点坐标为⎝ ⎛⎭⎪⎫x0,x0+a 2x0,则切线方程为y -x 0-a2x0=⎝ ⎛⎭⎪⎫1-a 2x20(x -x 0),又切线过点(1,0),所以-x 0-a2x0=⎝ ⎛⎭⎪⎫1-a 2x20(1-x 0),整理得2x 20+2ax 0-a =0,又曲线y =f (x )存在两条过(1,0)点的切线,故方程有两个不等实根,即满足Δ=4a 2-8(-a )>0,解得a >0或a <-2.答案:(-∞,-2)∪(0,+∞)15.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a ,因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2.在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

14 导数的概念及运算(解析版)

14 导数的概念及运算(解析版)

导数的概念及运算1.(2020春•咸阳期末)已知()f x 是可导函数,且000()()lim 2x f x x f x x→+-=,则0()(f x '= )A .2B .1-C .1D .2-【分析】根据导数的定义即可得出0()2f x '=,从而得出正确的选项. 【解答】解:0000()()()lim2x f x x f x f x x→+-'==.故选:A .2.(2020春•重庆期末)已知函数()sin f x a x b =+的导函数为()f x ',若()13f π'=,则(a = )A .4B .2C .1D .12【分析】可以求出导函数()cos f x a x '=,从而得出()132af π'==,然后求出a 的值即可.【解答】解:()cos f x a x '=,∴()132af π'==, 2a ∴=.故选:B .3.(2019秋•南岸区期末)函数2()(1)f x ln x =+的图象在点(1,f (1))处的切线的倾斜角为( ) A .0B .2πC .3π D .4π 【分析】先求出函数在切点出的导数值,即为切线在此处的斜率,从而求得切线在此处的倾斜角. 【解答】解:函数2()(1)f x ln x =+的图象在点(1,f (1))处的切线的斜率为121(2)|11x x x ==+, 设函数2()(1)f x ln x =+的图象在点(1,f (1))处的切线的倾斜角为θ, 则tan 1θ=,4πθ∴=,故选:D .4.(2020春•钦州期末)已知曲线()af x lnx x=+在点(1,f (1))处的切线与直线1y x =+垂直,则a 的值为( ) A .2-B .0C .1D .2【分析】求出函数的导数,计算f '(1),利用直线的斜率,列出关系式,即可求出a 的值.【解答】解:曲线()a f x lnx x =+,可得21()a f x x x'=-, 所以f '(1)1a =-,曲线()af x lnx x=+在点(1,f (1))处的切线与直线1y x =+垂直, 所以11a -=-,解得2a =, 故选:D .5.(2020春•赤峰期末)若曲线(1)1x my e x x =+<-+上存在两条垂直于y 轴的切线,则m 的取值范围是( ) A .34(e ,1) B .34(,)e -∞ C .34(0,)e D .34(1,)e - 【分析】先求出原函数的导函数,令0y '=,得到2(1)x m x e =+,然后将问题转化为2(1)x m x e =+在(,1)-∞-上有两个不同的解,再构造函数2()(1)(1)x f x x e x =+<-,求出()f x 的取值范围,即可得到m 的取值范围. 【解答】解:由(1)1x my e x x =+<-+,得2(1)x m y e x '=-+, 令0y '=,则2(1)x m x e =+, 曲线(1)1x my e x x =+<-+存在两条垂直于y 轴的切线, 2(1)x m x e ∴=+在(,1)-∞-上有两个不同的解.令2()(1)x f x x e =+,则22()2(1)(1)(43)x x x f x x e x e x x e '=+++=++.∴当3x <-时,()0f x '>,当31x -<<-时,()0f x '<,()f x ∴在(,3)-∞-上单调递增,在(3,1)--上单调递减,∴34()(3)max f x f e =-=, 又当3x <-时,()0f x >,(1)0f -=. m ∴的取值范围为34(0,)e . 故选:C .6.(2020•河南模拟)已知:过点(,0)M m 可作函数2()2f x x x t =-+图象的两条切线1l ,2l ,且12l l ⊥,则(t =) A .1B .54C .32D .2【分析】先设切点为2(,2)n n n t -+,然后利用导数求出切线方程,再将(,0)m 代入切线方程,得到关于n 的一元二次方程,设1n ,2n 为两切线1l ,2l 切点的横坐标,由韦达定理得到12n n +,12n n ,根据12l l ⊥得12()()0f n f n '=,将韦达定理代入,即可解出t 的值.【解答】解:设切点为2(,2)n n n t -+,()22f x x '=-,故切线斜率为22n -.所以切线方程:2(2)(22)()y n n t n x n --+=--, 将(,0)m 代入整理得:2220n mn m t -+-=,设1l ,2l 的切点横坐标分别为1n ,2n ,则:122n n m +=,122n n m t =-. 因为12l l ⊥,所以12121212()()(22)(22)44()41f n f n n n n n n n ''=--=-++=-①. 结合韦达定理得4(2)4241m t m ⨯--⨯+=-,解得54t =. 故选:B .7.(2020•合肥模拟)若函数()f x lnx =与函数2()2(0)g x x x lna x =++<有公切线,则实数a 的取值范围是()A .(0,1)B .1(0,)2eC .(1,)+∞D .1(,)2e+∞ 【分析】分别设出切点,求出切线,然后根据切线相等,得到()g x 的切点横坐标与a 的关系式,转化为函数的值域问题.【解答】解:设()f x 的切点为1(x ,1)lnx ,因为1()f x x'=, 所以切线为:1111()y lnx x x x -=-,即1111y x lnx x =+-,1(0)x >. 设()g x 的切点为2(x ,2222)x x lna ++,因为()22g x x '=+, 故切线为:22222(2)(22)()y x x lna x x x -++=+-. 即222(22)y x x x lna =+-+.2(0)x <. 因为是公切线,所以212121221x x lnx x lna ⎧=+⎪⎨⎪-=-+⎩,消去1x 得,222112(1)lna x ln x =-++,令21()12(1)h x x lnx =+-+,(1,0)x ∈-.21221()211x x h x x x x +-'=-=++,2221y x x =+-开口向上,且10||10x x y y =-===-<,10x +>.所以()0h x '<,故()h x 在(1,0)-上单调递减,故11()(0)122h x h ln ln e>=-=,即12lna lne >,故12a e>. 故选:D .8.(多选)(2020春•菏泽期末)下列各式正确的是( ) A .(sin )cos 33ππ'= B .(cos )sin x x '=C .(sin )cos x x '=D .56()5x x --'=-【分析】根据常函数,三角函数和幂函数的导数运算,逐一排除即可. 【解答】解:对于A ,(sin )03π'=,选项错误;对于B ,(cos )sin x x '=-,选项错误; 对于C ,(sin )cos x x '=,选项正确; 对于D ,56()5x x --'=-,选项正确; 故选:CD .9.(2020春•沙坪坝区校级期末)若函数()f x xlnx =,则()f x 在点(1,f (1))处的切线方程为 . 【分析】求出原函数的导函数,得到函数在1x =处的导数,再求出f (1),利用直线方程的点斜式得答案. 【解答】解:()f x xlnx =,()1f x lnx ∴'=+,则f '(1)1=,又f (1)0=,()f x ∴在点(1,f (1))处的切线方程为1(1)y x =⨯-,即10x y --=.故答案为:10x y --=.10.(2020春•凉山州期末)过原点作曲线y lnx =的切线,则切点为 .【分析】先另设切点,利用导数求出切线方程,将(0,0)代入,求出切点坐标,进而得到切线方程. 【解答】解:设切点为0(x ,0)lnx ,因为1y x'=. 故切线方程为:0001()y lnx x x x -=-, 将(0,0)代入得:0001()lnx x x -=-, 解得0x e =,所以01lnx =, 故切点为(,1)e . 故答案为:(,1)e .11.(2020•新课标Ⅰ)曲线1y lnx x =++的一条切线的斜率为2,则该切线的方程为 . 【分析】求得函数1y lnx x =++的导数,设切点为(,)m n ,可得切线的斜率,解方程可得切点,进而得到所求切线的方程.【解答】解:1y lnx x =++的导数为11y x'=+, 设切点为(,)m n ,可得112k m=+=, 解得1m =,即有切点(1,2),则切线的方程为22(1)y x -=-,即2y x =, 故答案为:2y x =.12.(2020春•信阳期末)已知1()x f x e+=与22()(21)4e g x x x =++有相同的公切线:l y kx b =+,设直线l 与x轴交于点0(P x ,0),则0x 的值为 .【分析】分别求得()f x ,()g x 的导数,可得切线的斜率,求得切线的方程,由直线方程相同可得关于1x ,2x 的方程组,解方程可得所求值.【解答】解:1()x f x e+'=,2()(1)2e g x x '=+,设1()x f x e +=与的切点为1(x ,_11)x e +, 可得切线的方程为_11_111()x x y e e x x ++-=-, 即为_11_111(1)x x y e x e x ++=--,设22()(21)4e g x x x =++的切点为2(B x ,2222(21))4e x x ++,可得切线的方程为2222222(21)(1)()42e e y x x x x x -++=+-,即22222(1)(1)24e e y x x x =++-, 两函数有公切线,即令上述两切线的方程相同, 则有1121221212(1)2(1)(1)4x x e e x e e x x ++⎧=+⎪⎪⎨⎪-=-⎪⎩,可得121x x ==, 所以切线的方程为2y e x =,直线l 与x 轴交于点0(P x ,0),则00x =. 故答案为:0.13.(2020春•西城区校级期中)已知:直线1y kx =+与抛物线2(y ax a =为常数)交于两点1(A x ,1)y ,2(B x ,2)y ,且抛物线在点A ,B 处的切线互相垂直.(1)求a 的值;(2)求两条切线交点的横坐标(用k 表示).【分析】(1)先联立直线、抛物线方程,消去y 得到关于x 的一元二次方程,利用韦达定理结合A 、B 两点处的导数积为1-,即可求出a 的值;(2)先表示出A 、B 两点处的切线方程,然后解出交点的横坐标即可. 【解答】解:(1)由21y kx y ax=+⎧⎨=⎩,消去y 得:210ax kx --=,显然0a ≠. 又直线与抛物线交于两点1(A x ,1)y ,2(B x ,2)y ,所以12121,k x x x x a a -+==.对2y ax =求导得2y ax '=,所以两条切线的斜率分别为112k ax =,222k ax =. 因为两条切线互相垂直,所以21212441k k a x x a ==-=-, 所以14a =. (2)由题意知切点分别为:2111(,)4A x x ,2221(,)4B x x ,所以两条切线的方程分别为22111111111()2424y x x x x x x x =-+=-⋯⋯①;和2221124y x x x =-⋯⋯②. 联立①②解方程组得:交点的横坐标为:12222x x kx k a+===.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.独立思考,合作学习,探究利用导数公式和导数的四则运算求简单函数导数的规律和方法.
3.积极参与,善于发现和提出问题,享受学习成功的快乐。
【重点难点】重点:利用导数公式和导数的运算法则求简单函数导数;难点:导数的应用。
【课前预习】
一、基础知识梳理:
1.什么是函数在点 处的导数及导函数?
2.函数在点 处导数的几何意义是什么?
A.1B.2C. D.
【答案】A
4.(2011年高考全国Ⅰ卷)曲线 在点(1,0)处的切线方程为()
(A) (B)
(C) (D)
【答案】A
5.(2011年高考全国Ⅱ理8)曲线 在点(0,2)处的切线与直线 和 围成的三角形的面积为()
(A) (B) (C) (D)1
【答案】A
6.(2011年高考山东文4)曲线 在点P(1,12)处的切线与y轴交点的纵坐标是()
对于半径为 的球,若将 看作 上的变量,请你写出类似于①的式子___________,且用自然
语言叙述为____________.
【我的疑问】
【课内探究】
一、讨论、展示、点评、质疑
探究一、求函数的导数
例1.求下列函数的导数:
⑴ ⑵
(3) (4)
拓展:
(1)求函数 在点P(3,f(3))处的导数;
(2)求 在 处的导数
A. 或 B. 或 C. 或 D. 或
二、填空题:
10.直线 垂直,且与曲线 相切的直线方程是
11.在曲线 的切线中,经过原点的切线为
12. 和 在它们交点处的两条切线与 轴所围成的三角形的面积是
三、解答题
13.(AB层探究拓展)已知曲线方程为 (1)求过 点且与曲线相切的直线方程;
(2)求过点 且与曲线相切的直线方程
探究二、求切线方程例2.(来自B层探究拓展)知函数f(x)=x +x-16⑴求直线 在点 处的切线的方程;
⑵直线 为曲线 的切线,且经过原点,求直线 的方程及切点坐标;
⑶如果曲线 的某一切线与直线 垂直,求切点坐标与切线的方程。
拓展:(A层能力提升)曲线 的切线中,求斜率最小的切线方程。
二、总结提升
1.知识方面:
2.数学思想方法:
NO.14课题:导数的概念及其运算
【课后训练案】
使用说明:1.限时30分钟完成:2.独立、认真;规范快速。
一、选择题:
1.已知 若 则 的值等于()
A. B. C. D.
2.设函数 ,曲线 在点 处的切线方程为 ,则曲线 在点 处切线的斜率为()
A. B. C. D.
3.(2011年高考江西卷)曲线 在点A(0,1)处的切线斜率为()
思考:(1)如何求曲线的切线方程?
(2)函数在点 处的切线方程与函数过点 的切线方程有什么区别?
3.导数的基本运算
1基本初等函数的导数公式:
为常数) =
; ; ;
②函数的和、差、积、商的求导法则
4.(理)复合函数的导数:一般地,设函数 在x处有导数 ,函数y=f(u)在x的对应点u处有导数 ,则复合函数 在点x处也有导数,且 .
二、我的知识树:
三、小试牛刀:
1.设 若 ,则 ()
A B eC D ln2
2.若曲线 的一条切线 与直线 垂直,则 的方程为()
A. B. C. D.
3.函数 的图象在点 处的切线的倾斜角为()
A.4 B. C.1 D.
4. 的圆的面积 ,周长 ,若将 看作 上的变量,则
…………………①
①式可用自然语言叙述为:圆的面积函数的导数等于圆的周长的函数.
14.(A层能力提升)设曲线C: 在点 处的切线为
(1) 的方程
(2) 与x轴、y轴所围成的三角形面积为S(t),求S(t)的最大值
【自主纠错】请珍惜每一次训练的机会,发现自己存在的问题,重视纠错,总结经验,继续前进!
(A)-9(B)-3(C)9(D)15
【答案】C
7.已知使函数y=x 的导数为0的x值也使y值为0,则常数a的值为()
A.0 B. C.0或 D.非以上答案
8. 与 是定义在 上的两个可导函数,若 , 满足 则 与 满足() 为常数函数
为常数函数
9.若存在过点 的直线与曲线 和 都相切,则 等于()
NO.14课题:导数的概念及其运算使用时间:
【使用说明及学法指导】
1.先仔细阅读教材选修。。。:P-P,再思考知识梳理所提问题,有针对性的二次阅读教材,构建知识体系,画出知识树;2.限时30分钟独立、规范完成探究部分,并总结规律方法.
【学习目标】
1.了解导数的概念,理解导数的几何意义,能利用基本初等函数的导数公式和导数的四则运算求简单函数的导数,提高运算求解能力。
相关文档
最新文档